
    q9iS                        d dl mZmZmZmZmZmZmZ d dlm	Z	 d dl
mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZ d dlmZ d dlmZ d dl Z d dl!m"Z" erd dl#m$Z$  e jJ                  e&      Z'erd d	l(m)Z)  G d
 de	d         Z*y)    )TYPE_CHECKINGOptionalUnionListcastDictAny)CollectionCommon)URICollectionMetadata	EmbeddingPyEmbeddingIncludeMetadataDocumentImageWhereIDs	GetResultQueryResultID	OneOrManyWhereDocumentSearchResultmaybe_cast_one_to_many)UpdateCollectionConfiguration)SearchN)Function)AttachedFunction)	ServerAPIc                      e Zd ZdefdZ	 	 	 	 	 d-dee   deeee	   ee
   f      deee      deee      deee      d	eee      ddfd
Zdddddddgfdeee      dee   dee   dee   dee   dedefdZd.dedefdZddddddddg df	deeee	   ee
   f      deee      deee      deee      deee      dedee   dee   dedefdZ	 	 	 d/dee   dee   dee   ddfdZdedd fdZd ee   defd!Z	 	 	 	 	 d-dee   deeee	   ee
   f      deee      deee      deee      d	eee      ddfd"Z 	 	 	 	 	 d-dee   deeee	   ee
   f      deee      deee      deee      d	eee      ddfd#Z!	 	 	 d/dee"   dee   dee   ddfd$Z#	 d0d%e$ded&ed'ee%ee&f      dd(f
d)Z'dedd(fd*Z(	 d1ded+e)de)fd,Z*y)2
Collectionreturnc                 z    | j                   j                  | j                  | j                  | j                        S )zThe total number of embeddings added to the database

        Returns:
            int: The total number of embeddings added to the database

        )collection_idtenantdatabase)_client_countidr&   r'   )selfs    g/var/www/html/leadgen/airagagent/rag_env/lib/python3.12/site-packages/chromadb/api/models/Collection.pycountzCollection.count(   s5     ||""'';;]] # 
 	
    Nids
embeddings	metadatas	documentsimagesurisc           
          | j                  ||||||      }| j                  j                  | j                  |d   |d   |d   |d   |d   | j                  | j
                         y)	a]  Add embeddings to the data store.
        Args:
            ids: The ids of the embeddings you wish to add
            embeddings: The embeddings to add. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional.
            metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
            documents: The documents to associate with the embeddings. Optional.
            images: The images to associate with the embeddings. Optional.
            uris: The uris of the images to associate with the embeddings. Optional.

        Returns:
            None

        Raises:
            ValueError: If you don't provide either embeddings or documents
            ValueError: If the length of ids, embeddings, metadatas, or documents don't match
            ValueError: If you don't provide an embedding function and don't provide embeddings
            ValueError: If you provide both embeddings and documents
            ValueError: If you provide an id that already exists

        r/   r0   r1   r2   r3   r4   r/   r0   r1   r2   r4   r%   r/   r0   r1   r2   r4   r&   r'   N)!_validate_and_prepare_add_requestr(   _addr*   r&   r'   )r+   r/   r0   r1   r2   r3   r4   add_requests           r,   addzCollection.add5   s    F <<! = 
 	''E""<0!+.!+.V$;;]] 	 		
r.   wherelimitoffsetwhere_documentincludec                     | j                  ||||      }| j                  j                  | j                  |d   |d   |d   |d   ||| j                  | j
                  	      }| j                  ||d         S )a  Get embeddings and their associate data from the data store. If no ids or where filter is provided returns
        all embeddings up to limit starting at offset.

        Args:
            ids: The ids of the embeddings to get. Optional.
            where: A Where type dict used to filter results by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional.
            limit: The number of documents to return. Optional.
            offset: The offset to start returning results from. Useful for paging results with limit. Optional.
            where_document: A WhereDocument type dict used to filter by the documents. E.g. `{"$contains": "hello"}`. Optional.
            include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`. Ids are always included. Defaults to `["metadatas", "documents"]`. Optional.

        Returns:
            GetResult: A GetResult object containing the results.

        )r/   r<   r?   r@   r/   r<   r?   r@   )	r%   r/   r<   r?   r@   r=   r>   r&   r'   responser@   )!_validate_and_prepare_get_requestr(   _getr*   r&   r'   _transform_get_response)	r+   r/   r<   r=   r>   r?   r@   get_requestget_resultss	            r,   getzCollection.getl   s    0 <<)	 = 
 ll''''E"g&&'78	*;;]] ( 

 ++ +i*@ , 
 	
r.   
   c                     | j                  | j                  j                  | j                  || j                  | j
                              S )zGet the first few results in the database up to limit

        Args:
            limit: The number of results to return.

        Returns:
            GetResult: A GetResult object containing the results.
        )r%   nr&   r'   )_transform_peek_responser(   _peekr*   r&   r'   )r+   r=   s     r,   peekzCollection.peek   sF     ,,LL"gg{{	  
 	
r.   )r1   r2   	distancesquery_embeddingsquery_textsquery_images
query_uris	n_resultsc
                 
   | j                  |||||||||		      }
| j                  j                  | j                  |
d   |
d   |
d   |
d   |
d   |
d   | j                  | j
                  	      }| j                  ||
d   	      S )
a  Get the n_results nearest neighbor embeddings for provided query_embeddings or query_texts.

        Args:
            query_embeddings: The embeddings to get the closes neighbors of. Optional.
            query_texts: The document texts to get the closes neighbors of. Optional.
            query_images: The images to get the closes neighbors of. Optional.
            query_uris: The URIs to be used with data loader. Optional.
            ids: A subset of ids to search within. Optional.
            n_results: The number of neighbors to return for each query_embedding or query_texts. Optional.
            where: A Where type dict used to filter results by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional.
            where_document: A WhereDocument type dict used to filter by the documents. E.g. `{"$contains": "hello"}`. Optional.
            include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`, `"distances"`. Ids are always included. Defaults to `["metadatas", "documents", "distances"]`. Optional.

        Returns:
            QueryResult: A QueryResult object containing the results.

        Raises:
            ValueError: If you don't provide either query_embeddings, query_texts, or query_images
            ValueError: If you provide both query_embeddings and query_texts
            ValueError: If you provide both query_embeddings and query_images
            ValueError: If you provide both query_texts and query_images

        )	rQ   rR   rS   rT   r/   rU   r<   r?   r@   r/   r0   rU   r<   r?   r@   )	r%   r/   rQ   rU   r<   r?   r@   r&   r'   rB   )#_validate_and_prepare_query_requestr(   _queryr*   r&   r'   _transform_query_response)r+   rQ   rR   rS   rT   r/   rU   r<   r?   r@   query_requestquery_resultss               r,   queryzCollection.query   s    Z @@-#%!) A 

 ++''e$*<8#K0(()9:!),;;]] , 

 --"M),D . 
 	
r.   namemetadataconfigurationc                     | j                  |       | j                  j                  | j                  |||| j                  | j
                         | j                  |||       y)zModify the collection name or metadata

        Args:
            name: The updated name for the collection. Optional.
            metadata: The updated metadata for the collection. Optional.

        Returns:
            None
        )r*   new_namenew_metadatanew_configurationr&   r'   N)_validate_modify_requestr(   _modifyr*   r&   r'   "_update_model_after_modify_success)r+   r]   r^   r_   s       r,   modifyzCollection.modify   s]      	%%h/
 	ww!+;;]] 	 	
 	//hNr.   ra   c                     | j                   j                  | j                  || j                  | j                        }t        | j                   || j                  | j                        S )a  Fork the current collection under a new name. The returning collection should contain identical data to the current collection.
        This is an experimental API that only works for Hosted Chroma for now.

        Args:
            new_name: The name of the new collection.

        Returns:
            Collection: A new collection with the specified name and containing identical data to the current collection.
        )r%   ra   r&   r'   )clientmodelembedding_functiondata_loader)r(   _forkr*   r&   r'   r"   _embedding_function_data_loader)r+   ra   rj   s      r,   forkzCollection.fork  s`     ""'';;]]	 # 
 <<#77))	
 	
r.   searchesc                 
   t        |      }|g }|D cg c]  }| j                  |       }}| j                  j                  | j                  t        t        t           |      | j                  | j                        S c c}w )a	  Perform hybrid search on the collection.
        This is an experimental API that only works for Hosted Chroma for now.

        Args:
            searches: A single Search object or a list of Search objects, each containing:
                - where: Where expression for filtering
                - rank: Ranking expression for hybrid search (defaults to Val(0.0))
                - limit: Limit configuration for pagination (defaults to no limit)
                - select: Select configuration for keys to return (defaults to empty)

        Returns:
            SearchResult: Column-major format response with:
                - ids: List of result IDs for each search payload
                - documents: Optional documents for each payload
                - embeddings: Optional embeddings for each payload
                - metadatas: Optional metadata for each payload
                - scores: Optional scores for each payload
                - select: List of selected keys for each payload

        Raises:
            NotImplementedError: For local/segment API implementations

        Examples:
            # Using builder pattern with Key constants
            from chromadb.execution.expression import (
                Search, Key, K, Knn, Val
            )

            # Note: K is an alias for Key, so K.DOCUMENT == Key.DOCUMENT
            search = (Search()
                .where((K("category") == "science") & (K("score") > 0.5))
                .rank(Knn(query=[0.1, 0.2, 0.3]) * 0.8 + Val(0.5) * 0.2)
                .limit(10, offset=0)
                .select(K.DOCUMENT, K.SCORE, "title"))

            # Direct construction
            from chromadb.execution.expression import (
                Search, Eq, And, Gt, Knn, Limit, Select, Key
            )

            search = Search(
                where=And([Eq("category", "science"), Gt("score", 0.5)]),
                rank=Knn(query=[0.1, 0.2, 0.3]),
                limit=Limit(offset=0, limit=10),
                select=Select(keys={Key.DOCUMENT, Key.SCORE, "title"})
            )

            # Single search
            result = collection.search(search)

            # Multiple searches at once
            searches = [
                Search().where(K("type") == "article").rank(Knn(query=[0.1, 0.2])),
                Search().where(K("type") == "paper").rank(Knn(query=[0.3, 0.4]))
            ]
            results = collection.search(searches)
        )r%   rq   r&   r'   )
r   _embed_search_string_queriesr(   _searchr*   r   r   r   r&   r'   )r+   rq   searches_listsearchembedded_searchess        r,   rv   zCollection.search/  s    | /x8 M ER
:@D--f5
 
 ||##''$v,(9:;;]]	 $ 
 	
	
s   B c           
          | j                  ||||||      }| j                  j                  | j                  |d   |d   |d   |d   |d   | j                  | j
                         y)	a  Update the embeddings, metadatas or documents for provided ids.

        Args:
            ids: The ids of the embeddings to update
            embeddings: The embeddings to update. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional.
            metadatas:  The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
            documents: The documents to associate with the embeddings. Optional.
            images: The images to associate with the embeddings. Optional.
        Returns:
            None
        r6   r/   r0   r1   r2   r4   r7   N)$_validate_and_prepare_update_requestr(   _updater*   r&   r'   )r+   r/   r0   r1   r2   r3   r4   update_requests           r,   updatezCollection.update}      2 BB! C 
 	''u%%l3$[1$[1';;]] 	 		
r.   c           
          | j                  ||||||      }| j                  j                  | j                  |d   |d   |d   |d   |d   | j                  | j
                         y)	aO  Update the embeddings, metadatas or documents for provided ids, or create them if they don't exist.

        Args:
            ids: The ids of the embeddings to update
            embeddings: The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional.
            metadatas:  The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
            documents: The documents to associate with the embeddings. Optional.

        Returns:
            None
        r6   r/   r0   r1   r2   r4   r7   N)$_validate_and_prepare_upsert_requestr(   _upsertr*   r&   r'   )r+   r/   r0   r1   r2   r3   r4   upsert_requests           r,   upsertzCollection.upsert  r}   r.   c                     | j                  |||      }| j                  j                  | j                  |d   |d   |d   | j                  | j
                         y)a0  Delete the embeddings based on ids and/or a where filter

        Args:
            ids: The ids of the embeddings to delete
            where: A Where type dict used to filter the delection by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}]}}`. Optional.
            where_document: A WhereDocument type dict used to filter the deletion by the document content. E.g. `{"$contains": "hello"}`. Optional.

        Returns:
            None

        Raises:
            ValueError: If you don't provide either ids, where, or where_document
        r/   r<   r?   )r%   r/   r<   r?   r&   r'   N)$_validate_and_prepare_delete_requestr(   _deleter*   r&   r'   )r+   r/   r<   r?   delete_requests        r,   deletezCollection.delete  sb    & BB
 	''u% ))*:;;;]] 	 	
r.   functionoutput_collectionparamsr   c           	          t        |t              r|j                  n|}| j                  j	                  ||| j
                  ||| j                  | j                        S )a  Attach a function to this collection.

        Args:
            function: A Function enum value (e.g., STATISTICS_FUNCTION, RECORD_COUNTER_FUNCTION)
            name: Unique name for this attached function
            output_collection: Name of the collection where function output will be stored
            params: Optional dictionary with function-specific parameters

        Returns:
            AttachedFunction: Object representing the attached function

        Example:
            >>> from chromadb.api.functions import STATISTICS_FUNCTION
            >>> attached_fn = collection.attach_function(
            ...     function=STATISTICS_FUNCTION,
            ...     name="mycoll_stats_fn",
            ...     output_collection="mycoll_stats",
            ... )
        )function_idr]   input_collection_idr   r   r&   r'   )
isinstancer   valuer(   attach_functionr*   r&   r'   )r+   r   r]   r   r   r   s         r,   r   zCollection.attach_function  sU    4 )38X(FhnnH||++# $/;;]] , 
 	
r.   c                 |    | j                   j                  || j                  | j                  | j                        S )a  Get an attached function by name for this collection.

        Args:
            name: Name of the attached function

        Returns:
            AttachedFunction: The attached function object

        Raises:
            NotFoundError: If the attached function doesn't exist
        )r]   r   r&   r'   )r(   get_attached_functionr*   r&   r'   )r+   r]   s     r,   r   z Collection.get_attached_function  s8     ||11 $;;]]	 2 
 	
r.   delete_output_collectionc                 ~    | j                   j                  || j                  || j                  | j                        S )a  Detach a function from this collection.

        Args:
            name: The name of the attached function
            delete_output_collection: Whether to also delete the output collection. Defaults to False.

        Returns:
            bool: True if successful

        Example:
            >>> success = collection.detach_function("my_function", delete_output_collection=True)
        )r]   r   delete_outputr&   r'   )r(   detach_functionr*   r&   r'   )r+   r]   r   s      r,   r   zCollection.detach_function/  s;    " ||++ $2;;]] , 
 	
r.   )NNNNN)rJ   )NNN)N)F)+__name__
__module____qualname__intr-   r   r   r   r   r   r   r   r   r   r   r;   r   r   r   r   rI   rO   r   r\   strr   r   rg   rp   r   r   rv   r|   r   r   r   r   r   r	   r   r   boolr    r.   r,   r"   r"   '   s   
s 
* 3737-1)-5
r]5
 )$+&(
5
 Ih/05
 Ih/05
 5)*5
 y~&5
 
5
r (,!%# $26'5,
im$,
 ,
 }	,

 ,
 !/,
 ,
 
,
\
# 
y 
2 5937/3'+!%26
G
")$+&(
G
 i12G
 y/0G
 Ys^,G
 im$G
 G
 G
 !/G
 G
( 
)G
V #15AE	OsmO -.O   =>	O
 
O@

 

4L
F#L
 
L
l 3737-1)-+
r]+
 )$+&(
+
 Ih/0+
 Ih/0+
 5)*+
 y~&+
 
+
j 3737-1)-+
r]+
 )$+&(
+
 Ih/0+
 Ih/0+
 5)*+
 y~&+
 
+
^ "!%26	
c]
 
 !/	

 

J ,0#
#
 #
 	#

 c3h(#
 
#
J
# 
2D 
, */

 #'
 
	
r.   r"   r    )+typingr   r   r   r   r   r   r	   $chromadb.api.models.CollectionCommonr
   chromadb.api.typesr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   %chromadb.api.collection_configurationr   "chromadb.execution.expression.planr   loggingchromadb.api.functionsr   $chromadb.api.models.AttachedFunctionr   	getLoggerr   loggerchromadb.apir    r"   r   r.   r,   <module>r      sk    H H H A    & P 5  +E			8	$&_
!+. _
r.   