
    q9iH                         d dl mZmZmZmZmZ d dlmZmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZmZmZ d dlmZ d dlmZ d dlmZ erd dlmZ  G d ded	         Z y
)    )TYPE_CHECKINGOptionalUnionListcast)URICollectionMetadata	EmbeddingPyEmbeddingIncludeMetadataDocumentImageWhereIDs	GetResultQueryResultID	OneOrManyWhereDocumentSearchResultmaybe_cast_one_to_many)CollectionCommon)UpdateCollectionConfiguration)Search)AsyncServerAPIc                   4   e Zd Z	 	 	 	 	 d%dee   deeee   ee   f      deee	      deee
      deee      deee      ddfd	Zdefd
Zdddddddgfdeee      dee   dee   dee   dee   dedefdZd&dedefdZddddddddg df	deeee   ee   f      deee
      deee      deee      deee      dedee   dee   dedefdZ	 	 	 d'dee   dee   dee   ddfdZdedd fdZd ee   defd!Z	 	 	 	 	 d%dee   deeee   ee   f      deee	      deee
      deee      deee      ddfd"Z 	 	 	 	 	 d%dee   deeee   ee   f      deee	      deee
      deee      deee      ddfd#Z!	 	 	 d'dee"   dee   dee   ddfd$Z#y)(AsyncCollectionNids
embeddings	metadatas	documentsimagesurisreturnc           
         K   | j                  ||||||      }| j                  j                  | j                  |d   |d   |d   |d   |d   | j                  | j
                         d{    y7 w)	a]  Add embeddings to the data store.
        Args:
            ids: The ids of the embeddings you wish to add
            embeddings: The embeddings to add. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional.
            metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
            documents: The documents to associate with the embeddings. Optional.
            images: The images to associate with the embeddings. Optional.
            uris: The uris of the images to associate with the embeddings. Optional.

        Returns:
            None

        Raises:
            ValueError: If you don't provide either embeddings or documents
            ValueError: If the length of ids, embeddings, metadatas, or documents don't match
            ValueError: If you don't provide an embedding function and don't provide embeddings
            ValueError: If you provide both embeddings and documents
            ValueError: If you provide an id that already exists

        r   r    r!   r"   r#   r$   r   r    r!   r"   r$   collection_idr   r    r!   r"   r$   tenantdatabaseN)!_validate_and_prepare_add_request_client_addidr*   r+   )selfr   r    r!   r"   r#   r$   add_requests           l/var/www/html/leadgen/airagagent/rag_env/lib/python3.12/site-packages/chromadb/api/models/AsyncCollection.pyaddzAsyncCollection.add    s     D <<! = 
 ll''E""<0!+.!+.V$;;]]   	
 		
 		
   A+A5-A3.A5c                    K   | j                   j                  | j                  | j                  | j                         d{   S 7 w)zThe total number of embeddings added to the database

        Returns:
            int: The total number of embeddings added to the database

        )r)   r*   r+   N)r-   _countr/   r*   r+   )r0   s    r2   countzAsyncCollection.countV   sC      \\(('';;]] ) 
 
 	
 
s   A A	AA	wherelimitoffsetwhere_documentincludec                   K   | j                  ||||      }| j                  j                  | j                  |d   |d   |d   |d   ||| j                  | j
                  	       d{   }| j                  ||d         S 7 w)	a  Get embeddings and their associate data from the data store. If no ids or where filter is provided returns
        all embeddings up to limit starting at offset.

        Args:
            ids: The ids of the embeddings to get. Optional.
            where: A Where type dict used to filter results by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional.
            limit: The number of documents to return. Optional.
            offset: The offset to start returning results from. Useful for paging results with limit. Optional.
            where_document: A WhereDocument type dict used to filter by the documents. E.g. `{"$contains": "hello"}`. Optional.
            include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`. Ids are always included. Defaults to `["metadatas", "documents"]`. Optional.

        Returns:
            GetResult: A GetResult object containing the results.

        )r   r8   r;   r<   r   r8   r;   r<   )	r)   r   r8   r;   r<   r9   r:   r*   r+   Nresponser<   )!_validate_and_prepare_get_requestr-   _getr/   r*   r+   _transform_get_response)	r0   r   r8   r9   r:   r;   r<   get_requestget_resultss	            r2   getzAsyncCollection.getc   s     0 <<)	 = 
 !LL--''E"g&&'78	*;;]] . 

 

 ++ +i*@ , 
 	


s   A'B)B*B
   c                    K   | j                  | j                  j                  | j                  || j                  | j
                         d{         S 7 w)zGet the first few results in the database up to limit

        Args:
            limit: The number of results to return.

        Returns:
            GetResult: A GetResult object containing the results.
        )r)   nr*   r+   N)_transform_peek_responser-   _peekr/   r*   r+   )r0   r9   s     r2   peekzAsyncCollection.peek   sT      ,,,,$$"gg{{	 %  
 	
s   AAA	A)r!   r"   	distancesquery_embeddingsquery_textsquery_images
query_uris	n_resultsc
                 &  K   | j                  |||||||||		      }
| j                  j                  | j                  |
d   |
d   |
d   |
d   |
d   |
d   | j                  | j
                  	       d	{   }| j                  ||
d   
      S 7 w)a  Get the n_results nearest neighbor embeddings for provided query_embeddings or query_texts.

        Args:
            query_embeddings: The embeddings to get the closes neighbors of. Optional.
            query_texts: The document texts to get the closes neighbors of. Optional.
            query_images: The images to get the closes neighbors of. Optional.
            ids: A subset of ids to search within. Optional.
            n_results: The number of neighbors to return for each query_embedding or query_texts. Optional.
            where: A Where type dict used to filter results by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional.
            where_document: A WhereDocument type dict used to filter by the documents. E.g. `{"$contains": "hello"}`. Optional.
            include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`, `"distances"`. Ids are always included. Defaults to `["metadatas", "documents", "distances"]`. Optional.

        Returns:
            QueryResult: A QueryResult object containing the results.

        Raises:
            ValueError: If you don't provide either query_embeddings, query_texts, or query_images
            ValueError: If you provide both query_embeddings and query_texts
            ValueError: If you provide both query_embeddings and query_images
            ValueError: If you provide both query_texts and query_images

        )	rM   rN   rO   rP   r   rQ   r8   r;   r<   r   r    rQ   r8   r;   r<   )	r)   r   rM   rQ   r8   r;   r<   r*   r+   Nr>   )#_validate_and_prepare_query_requestr-   _queryr/   r*   r+   _transform_query_response)r0   rM   rN   rO   rP   r   rQ   r8   r;   r<   query_requestquery_resultss               r2   queryzAsyncCollection.query   s     X @@-#%!) A 

 #ll11''e$*<8#K0(()9:!),;;]] 2 

 

 --"M),D . 
 	


s   A2B4B5Bnamemetadataconfigurationc                    K   | j                  |       | j                  j                  | j                  |||| j                  | j
                         d{    | j                  |||       y7 w)zModify the collection name or metadata

        Args:
            name: The updated name for the collection. Optional.
            metadata: The updated metadata for the collection. Optional.

        Returns:
            None
        )r/   new_namenew_metadatanew_configurationr*   r+   N)_validate_modify_requestr-   _modifyr/   r*   r+   "_update_model_after_modify_success)r0   rY   rZ   r[   s       r2   modifyzAsyncCollection.modify   sp       	%%h/
 ll""ww!+;;]] # 
 	
 	
 	//hN	
s   AA1A/A1r]   c                    K   | j                   j                  | j                  || j                  | j                         d{   }t        | j                   || j                  | j                        S 7 1w)a  Fork the current collection under a new name. The returning collection should contain identical data to the current collection.
        This is an experimental API that only works for Hosted Chroma for now.

        Args:
            new_name: The name of the new collection.

        Returns:
            Collection: A new collection with the specified name and containing identical data to the current collection.
        )r)   r]   r*   r+   N)clientmodelembedding_functiondata_loader)r-   _forkr/   r*   r+   r   _embedding_function_data_loader)r0   r]   rf   s      r2   forkzAsyncCollection.fork  sn      ll(('';;]]	 ) 
 
 <<#77))	
 	

s   AA7A52A7searchesc                 &  K   t        |      }|g }|D cg c]  }| j                  |       }}| j                  j                  | j                  t        t        t           |      | j                  | j                         d{   S c c}w 7 	w)a	  Perform hybrid search on the collection.
        This is an experimental API that only works for Hosted Chroma for now.

        Args:
            searches: A single Search object or a list of Search objects, each containing:
                - where: Where expression for filtering
                - rank: Ranking expression for hybrid search (defaults to Val(0.0))
                - limit: Limit configuration for pagination (defaults to no limit)
                - select: Select configuration for keys to return (defaults to empty)

        Returns:
            SearchResult: Column-major format response with:
                - ids: List of result IDs for each search payload
                - documents: Optional documents for each payload
                - embeddings: Optional embeddings for each payload
                - metadatas: Optional metadata for each payload
                - scores: Optional scores for each payload
                - select: List of selected keys for each payload

        Raises:
            NotImplementedError: For local/segment API implementations

        Examples:
            # Using builder pattern with Key constants
            from chromadb.execution.expression import (
                Search, Key, K, Knn, Val
            )

            # Note: K is an alias for Key, so K.DOCUMENT == Key.DOCUMENT
            search = (Search()
                .where((K("category") == "science") & (K("score") > 0.5))
                .rank(Knn(query=[0.1, 0.2, 0.3]) * 0.8 + Val(0.5) * 0.2)
                .limit(10, offset=0)
                .select(K.DOCUMENT, K.SCORE, "title"))

            # Direct construction
            from chromadb.execution.expression import (
                Search, Eq, And, Gt, Knn, Limit, Select, Key
            )

            search = Search(
                where=And([Eq("category", "science"), Gt("score", 0.5)]),
                rank=Knn(query=[0.1, 0.2, 0.3]),
                limit=Limit(offset=0, limit=10),
                select=Select(keys={Key.DOCUMENT, Key.SCORE, "title"})
            )

            # Single search
            result = await collection.search(search)

            # Multiple searches at once
            searches = [
                Search().where(K("type") == "article").rank(Knn(query=[0.1, 0.2])),
                Search().where(K("type") == "paper").rank(Knn(query=[0.3, 0.4]))
            ]
            results = await collection.search(searches)
        N)r)   rm   r*   r+   )
r   _embed_search_string_queriesr-   _searchr/   r   r   r   r*   r+   )r0   rm   searches_listsearchembedded_searchess        r2   rr   zAsyncCollection.search&  s     | /x8 M ER
:@D--f5
 
 \\))''$v,(9:;;]]	 * 
 
 	
	

s   BB
ABB
Bc           
         K   | j                  ||||||      }| j                  j                  | j                  |d   |d   |d   |d   |d   | j                  | j
                         d{    y7 w)	a  Update the embeddings, metadatas or documents for provided ids.

        Args:
            ids: The ids of the embeddings to update
            embeddings: The embeddings to update. If None, embeddings will be computed based on the documents or images using the embedding_function set for the Collection. Optional.
            metadatas:  The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
            documents: The documents to associate with the embeddings. Optional.
            images: The images to associate with the embeddings. Optional.
        Returns:
            None
        r'   r   r    r!   r"   r$   r(   N)$_validate_and_prepare_update_requestr-   _updater/   r*   r+   )r0   r   r    r!   r"   r#   r$   update_requests           r2   updatezAsyncCollection.updatet       2 BB! C 
 ll""''u%%l3$[1$[1';;]] # 	
 		
 		
r4   c           
         K   | j                  ||||||      }| j                  j                  | j                  |d   |d   |d   |d   |d   | j                  | j
                         d{    y7 w)	aO  Update the embeddings, metadatas or documents for provided ids, or create them if they don't exist.

        Args:
            ids: The ids of the embeddings to update
            embeddings: The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional.
            metadatas:  The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional.
            documents: The documents to associate with the embeddings. Optional.

        Returns:
            None
        r'   r   r    r!   r"   r$   r(   N)$_validate_and_prepare_upsert_requestr-   _upsertr/   r*   r+   )r0   r   r    r!   r"   r#   r$   upsert_requests           r2   upsertzAsyncCollection.upsert  ry   r4   c                    K   | j                  |||      }| j                  j                  | j                  |d   |d   |d   | j                  | j
                         d{    y7 w)a0  Delete the embeddings based on ids and/or a where filter

        Args:
            ids: The ids of the embeddings to delete
            where: A Where type dict used to filter the delection by. E.g. `{"$and": [{"color" : "red"}, {"price": {"$gte": 4.20}}]}`. Optional.
            where_document: A WhereDocument type dict used to filter the deletion by the document content. E.g. `{"$contains": "hello"}`. Optional.

        Returns:
            None

        Raises:
            ValueError: If you don't provide either ids, where, or where_document
        r   r8   r;   )r)   r   r8   r;   r*   r+   N)$_validate_and_prepare_delete_requestr-   _deleter/   r*   r+   )r0   r   r8   r;   delete_requests        r2   deletezAsyncCollection.delete  sp     & BB
 ll""''u% ))*:;;;]] # 
 	
 	
s   AA)!A'"A))NNNNN)rF   )NNN)$__name__
__module____qualname__r   r   r   r   r
   r   r   r   r   r   r3   intr7   r   r   r   r   rE   rK   r   rX   strr	   r   rc   rl   r   r   rr   rx   r~   r   r        r2   r   r      s?    3737-1)-4
r]4
 )$+&(
4
 Ih/04
 Ih/04
 5)*4
 y~&4
 
4
l
S 
 (,!%# $26'5-
im$-
 -
 }	-

 -
 !/-
 -
 
-
^
 
Y 
2 5937/3'+!%26
F
")$+&(
F
 i12F
 y/0F
 Ys^,F
 im$F
 F
 F
 !/F
 F
( 
)F
T #15AE	OsmO -.O   =>	O
 
O@

 

4L
F#L
 
L
l 3737-1)-+
r]+
 )$+&(
+
 Ih/0+
 Ih/0+
 5)*+
 y~&+
 
+
j 3737-1)-+
r]+
 )$+&(
+
 Ih/0+
 Ih/0+
 5)*+
 y~&+
 
+
^ "!%26	
c]
 
 !/	

 

r   r   r   N)!typingr   r   r   r   r   chromadb.api.typesr   r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r   $chromadb.api.models.CollectionCommonr   %chromadb.api.collection_configurationr   "chromadb.execution.expression.planr   chromadb.apir   r   r   r   r2   <module>r      sK    = =    ( B O 5+M
&'78 M
r   