#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

from typing import TYPE_CHECKING

import numpy as np

import paddle
from paddle import _C_ops
from paddle.base.data_feeder import check_type, check_variable_and_dtype
from paddle.base.framework import (
    convert_np_dtype_to_dtype_,
    core,
    in_dynamic_or_pir_mode,
)
from paddle.common_ops_import import Variable
from paddle.framework import LayerHelper
from paddle.utils.decorator_utils import (
    param_one_alias,
)

if TYPE_CHECKING:
    from collections.abc import Sequence

    from paddle import Tensor
    from paddle._typing import DTypeLike, ShapeLike

__all__ = []

_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
    core.VarDesc.VarType.BOOL,
]


def sin(x: Tensor, name: str | None = None) -> Tensor:
    """
    Calculate elementwise sin of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = sin(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, complex64, complex128.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-2., 0., 1.])
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.sin(sparse_x)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[-0.90929741,  0.84147102])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_sin(x)


def tan(x: Tensor, name: str | None = None) -> Tensor:
    """
    Calculate elementwise tan of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = tan(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, complex64, complex128.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-2., 0., 1.])
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.tan(sparse_x)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[2.18503976, 1.55740774])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_tan(x)


def asin(x: Tensor, name: str | None = None) -> Tensor:
    """
    Calculate elementwise asin of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = asin(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, complex64, complex128.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-2., 0., 1.])
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.asin(sparse_x)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[nan       , 1.57079625])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_asin(x)


def transpose(
    x: Tensor, perm: Sequence[int], name: str | None = None
) -> Tensor:
    """
    Changes the perm order of ``x`` without changing its data, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = transpose(x, perm)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A transposed Sparse Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            >>> # doctest: +SKIP('indices overflow')
            >>> # doctest: +REQUIRES(env:GPU)
            >>> import paddle

            >>> dense_x = paddle.to_tensor([[-2., 0.], [1., 2.]])
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.transpose(sparse_x, [1, 0])
            >>> out
            Tensor(shape=[2, 2], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
                indices=[[0, 0]],
                values=[[-2.,  0.],
                        [ 1.,  2.]])

    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_transpose(x, perm)


def sum(
    x: Tensor,
    axis: int | Sequence[int] | None = None,
    dtype: DTypeLike | None = None,
    keepdim: bool = False,
    name: str | None = None,
) -> Tensor:
    """
    Computes the sum of sparse tensor elements over the given dimension, requiring x to be a SparseCooTensor or SparseCsrTensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple|None, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str|None, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str|None, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`.
        if `x.dtype='bool'` or `x.dtype='int32'`, it's data type is `'int64'`,
        otherwise it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([[-2., 0.], [1., 2.]])
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out1 = paddle.sparse.sum(sparse_x)
            >>> out1
            Tensor(shape=[1], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[0],
                values=1.)
            >>> out2 = paddle.sparse.sum(sparse_x, axis=0)
            >>> out2
            Tensor(shape=[1, 2], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0]],
                values=[[-1.,  2.]])
            >>> out3 = paddle.sparse.sum(sparse_x, axis=-1)
            >>> out3
            Tensor(shape=[2], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 1]],
                values=[-2.,  3.])
            >>> out4 = paddle.sparse.sum(sparse_x, axis=1, keepdim=True)
            >>> out4
            Tensor(shape=[2, 1], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 1]],
                values=[[-2.],
                        [ 3.]])
    """
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dynamic_or_pir_mode():
        return _C_ops.sparse_sum(x, axis, dtype, keepdim)
    else:
        if axis is None:
            axis = []
        else:
            axis = [axis]
        attrs = {'axis': axis, 'dtype': dtype, 'keepdim': keepdim}

        if dtype_flag:
            attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})

        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
            ],
            'sparse_sum',
        )

        check_type(
            axis, 'axis', (int, list, tuple, type(None), Variable), 'sparse_sum'
        )

        op_type = 'sparse_sum'
        helper = LayerHelper(op_type)
        if dtype_flag:
            out = helper.create_sparse_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_sparse_variable_for_type_inference(
                dtype=x.dtype
            )
        helper.append_op(
            type=op_type, inputs={'x': x}, outputs={'out': out}, attrs=attrs
        )
        return out


def atan(x: Tensor, name: str | None = None) -> Tensor:
    """
    Calculate elementwise atan of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = atan(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, complex64, complex128.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-2., 0., 1.])
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.atan(sparse_x)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[-1.10714877,  0.78539819])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_atan(x)


def sinh(x: Tensor, name: str | None = None) -> Tensor:
    """
    Calculate elementwise sinh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = sinh(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, complex64, complex128.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-2., 0., 1.])
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.sinh(sparse_x)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[-3.62686038,  1.17520118])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_sinh(x)


def asinh(x: Tensor, name: str | None = None) -> Tensor:
    """
    Calculate elementwise asinh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = asinh(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, complex64, complex128.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-2., 0., 1.])
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.asinh(sparse_x)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[-1.44363546,  0.88137358])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_asinh(x)


def atanh(x: Tensor, name: str | None = None) -> Tensor:
    """
    Calculate elementwise atanh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = atanh(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, complex64, complex128.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-2., 0., 1.])
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.atanh(sparse_x)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[nan , inf.])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_atanh(x)


def tanh(x: Tensor, name: str | None = None) -> Tensor:
    """
    Calculate elementwise tanh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = tanh(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, complex64, complex128.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-2., 0., 1.])
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.tanh(sparse_x)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[-0.96402758,  0.76159418])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_tanh(x)


def square(x: Tensor, name: str | None = None) -> Tensor:
    """
    Calculate elementwise square of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = square(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, complex64, complex128.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-2., 0., 1.])
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.square(sparse_x)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[4., 1.])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_square(x)


def sqrt(x: Tensor, name: str | None = None) -> Tensor:
    """
    Calculate elementwise sqrt of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = sqrt(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-2., 0., 1.])
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.sqrt(sparse_x)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[nan, 1. ])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_sqrt(x)


def log1p(x: Tensor, name: str | None = None) -> Tensor:
    """
    Calculate the natural log of (1+x), requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = ln(1+x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, complex64, complex128.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.log1p(sparse_x)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[nan       , 0.69314718])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_log1p(x)


def cast(
    x: Tensor,
    index_dtype: DTypeLike | None = None,
    value_dtype: DTypeLike | None = None,
    name: str | None = None,
) -> Tensor:
    """
    cast non-zero-index of SparseTensor to `index_dtype`, non-zero-element of SparseTensor to
    `value_dtype` , requiring x to be a SparseCooTensor or SparseCsrTensor.

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        index_dtype (np.dtype|str, optional): Data type of the index of SparseCooTensor,
            or crows/cols of SparseCsrTensor. Can be uint8, int8, int16, int32, int64.
        value_dtype (np.dtype|str, optional): Data type of the value of SparseCooTensor,
            SparseCsrTensor. Can be bool, float16, float32, float64, int8, int32, int64, uint8.
        name (str|core.VarDesc.VarType|core.DataType|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-2, 0, 1])
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.cast(sparse_x, 'int32', 'float64')
            >>> out
            Tensor(shape=[3], dtype=paddle.float64, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[-2.,  1.])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    if index_dtype and not isinstance(
        index_dtype, (core.VarDesc.VarType, core.DataType)
    ):
        index_dtype = convert_np_dtype_to_dtype_(index_dtype)
    if value_dtype and not isinstance(
        value_dtype, (core.VarDesc.VarType, core.DataType)
    ):
        value_dtype = convert_np_dtype_to_dtype_(value_dtype)
    return _C_ops.sparse_cast(x, index_dtype, value_dtype)


def pow(x: Tensor, factor: float, name: str | None = None) -> Tensor:
    """
    Calculate elementwise pow of x, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = x^{factor}

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        factor (float|int): factor of pow.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32')
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.pow(sparse_x, 2)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[4., 9.])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_pow(x, float(factor))


def neg(x: Tensor, name: str | None = None) -> Tensor:
    """
    Calculate elementwise negative of x, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = -x

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32')
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.neg(sparse_x)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[ 2., -3.])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_scale(x, -1.0, 0.0, True)


def abs(x: Tensor, name: str | None = None) -> Tensor:
    """
    Calculate elementwise absolute value of x, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = |x|

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, complex64, complex128.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32')
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.abs(sparse_x)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[2., 3.])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_abs(x)


def coalesce(x: Tensor, name: str | None = None) -> Tensor:
    r"""
    the coalesced operator include sorted and merge, after coalesced, the indices of x is sorted and unique.

    Parameters:
        x (Tensor): the input SparseCooTensor.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: return the SparseCooTensor after coalesced.

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> indices = [[0, 0, 1], [1, 1, 2]]
            >>> values = [1.0, 2.0, 3.0]
            >>> sp_x = paddle.sparse.sparse_coo_tensor(indices, values)
            >>> sp_x = paddle.sparse.coalesce(sp_x)
            >>> print(sp_x.indices())
            Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 1],
             [1, 2]])
            >>> print(sp_x.values())
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [3., 3.])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_coalesce(x)


def rad2deg(x: Tensor, name: str | None = None) -> Tensor:
    r"""
    Convert each of the elements of input x from radian to degree,
    requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        rad2deg(x) = 180/ \pi * x

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, int32, int64.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([3.142, 0., -3.142])
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.rad2deg(sparse_x)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[ 180.02334595, -180.02334595])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    if x.dtype in _int_dtype_:
        x = _C_ops.sparse_cast(x, None, core.VarDesc.VarType.FP32)
    return _C_ops.sparse_scale(x, 180.0 / np.pi, 0.0, True)


def deg2rad(x: Tensor, name: str | None = None) -> Tensor:
    r"""
    Convert each of the elements of input x from degree to radian,
    requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        deg2rad(x) = \pi * x / 180

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, int32, int64.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-180, 0, 180])
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.deg2rad(sparse_x)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[-3.14159274,  3.14159274])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    if x.dtype in _int_dtype_:
        x = _C_ops.sparse_cast(x, None, core.VarDesc.VarType.FP32)
    return _C_ops.sparse_scale(x, np.pi / 180.0, 0.0, True)


def expm1(x: Tensor, name: str | None = None) -> Tensor:
    """
    Calculate elementwise `exp(x)-1` , requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = exp(x) - 1

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, complex64, complex128.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> dense_x = paddle.to_tensor([-2., 0., 1.])
            >>> sparse_x = dense_x.to_sparse_coo(1)
            >>> out = paddle.sparse.expm1(sparse_x)
            >>> out
            Tensor(shape=[3], dtype=paddle.float32, place=Place(cpu), stop_gradient=True,
                indices=[[0, 2]],
                values=[-0.86466473,  1.71828187])
    """
    assert in_dynamic_or_pir_mode(), (
        "Currently, Sparse API only support dynamic mode or pir mode."
    )
    return _C_ops.sparse_expm1(x)


@param_one_alias(["x", "input"])
def reshape(x: Tensor, shape: ShapeLike, name: str | None = None) -> Tensor:
    """
    Changes the shape of ``x`` without changing its value, requiring x to be a SparseCooTensor or SparseCsrTensor.
    Currently this function can only reshape the sparse dims of ``x`` , but ``shape`` argument must be specified
    as the shape of the reshaped tensor.

    Note that if x is a SparseCsrTensor, then len(shape) must be 2 or 3.

    There are some tricks when specifying the target shape.

        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.

        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The indices of 0 in the target shape can not exceed the rank of x.

    Here are some examples to explain it.

        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.

        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.

        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.

    .. note::
        Alias Support: The parameter name ``input`` can be used as an alias for ``x``.
        For example, ``reshape(input=tensor_x, ...)`` is equivalent to ``reshape(x=tensor_x, ...)``.

    Args:
        x (Tensor): The input sparse tensor with data type ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``.
        shape (list|tuple): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32``.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            >>> import paddle

            >>> x_shape = [6, 2, 3]
            >>> new_shape = [1, 0, 2, -1, 3]
            >>> format = "coo"

            >>> dense_x = paddle.randint(-100, 100, x_shape) * paddle.randint(0, 2, x_shape)

            >>> if format == "coo":
            ...     sp_x = dense_x.to_sparse_coo(len(x_shape))
            >>> else:
            ...     sp_x = dense_x.to_sparse_csr()
            >>> sp_out = paddle.sparse.reshape(sp_x, new_shape)

            >>> print(sp_out.shape)
            [1, 2, 2, 3, 3]

    """
    if in_dynamic_or_pir_mode():
        return _C_ops.sparse_reshape(x, shape)
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'bool',
                'uint16',
            ],
            'reshape',
        )
        check_type(shape, 'shape', (list, tuple), 'reshape')

        inputs = {"x": x}
        attrs = {"shape": shape}

        helper = LayerHelper('sparse_reshape')
        out = helper.create_sparse_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='sparse_reshape',
            inputs=inputs,
            outputs={'out': out},
            attrs=attrs,
        )
        return out


def isnan(x: Tensor, name: str | None = None) -> Tensor:
    """

    Return whether every element of input tensor is `NaN` or not, requiring x to be a SparseCooTensor or SparseCsrTensor.

    Args:
        x (Tensor): The input tensor (SparseCooTensor or SparseCsrTensor), it's data type should be float16, float32, float64, int32, int64.
        name (str|None, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same shape as ``x``,  the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            >>> import paddle
            >>> import numpy as np

            >>> format = "coo"
            >>> np_x = np.asarray([[[0., 0], [1., 2.]], [[0., 0], [3., float('nan')]]])
            >>> dense_x = paddle.to_tensor(np_x)

            >>> if format == "coo":
            ...     sparse_x = dense_x.to_sparse_coo(len(np_x.shape))
            >>> else:
            ...     sparse_x = dense_x.to_sparse_csr()
            ...
            >>> sparse_out = paddle.sparse.isnan(sparse_x)
            >>> print(sparse_out)
            Tensor(shape=[2, 2, 2], dtype=paddle.bool, place=Place(gpu:0), stop_gradient=True,
                   indices=[[0, 0, 1, 1],
                            [1, 1, 1, 1],
                            [0, 1, 0, 1]],
                   values=[False, False, False, True ])

    """
    if in_dynamic_or_pir_mode():
        return _C_ops.sparse_isnan(x)
    else:
        op_type = 'sparse_isnan'
        helper = LayerHelper(op_type)
        out = helper.create_sparse_variable_for_type_inference(x.dtype)
        helper.append_op(
            type=op_type, inputs={'x': x}, outputs={'out': out}, attrs={}
        )
        return out


def slice(
    x: Tensor,
    axes: Sequence[int] | Sequence[Tensor] | Tensor,
    starts: Sequence[int] | Sequence[Tensor] | Tensor,
    ends: Sequence[int] | Sequence[Tensor] | Tensor,
    name: str | None = None,
) -> Tensor:
    """
    This operator produces a slice of ``x`` along multiple axes for sparse tensors.
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input sparse tensor (x). If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`, it represents the reverse position of
    the axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than the number of elements
    in the dimension (n), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended to pass
    in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.

    Args:
        x (Tensor): The input Tensor (``SparseCooTensor`` or ``SparseCsrTensor``), it's data type should be ``float16``, ``float32``, ``float64``, ``int32``, ``int64``.
        axes (list|tuple|Tensor): The data type is ``int32``.If ``axes`` is a list or tuple, the elements of
                it should be integers or a 0-D Tensor with shape []. If ``axes`` is a Tensor, it should be a 1-D Tensor.
                Axes that `starts` and `ends` apply to.
        starts (list|tuple|Tensor): The data type is ``int32``. If ``starts`` is a list or tuple, the elements of
                it should be integers or a 0-D Tensor with shape []. If ``starts`` is a Tensor, it should be a 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32``. If ``ends`` is a list or tuple, the elements of
                it should be integers or a 0-D Tensor with shape []. If ``ends`` is a Tensor, it should be a 1-D Tensor.
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
        A Sparse Tensor. The data type is same as ``x``.

    Examples:
        .. code-block:: python

            >>> import paddle
            >>> import numpy as np

            >>> format = 'coo'
            >>> np_x = np.asarray([[4, 0, 7, 0], [0, 0, 5, 0], [-4, 2, 0, 0]])
            >>> dense_x = paddle.to_tensor(np_x)
            >>> if format == 'coo':
            ...     sp_x = dense_x.to_sparse_coo(len(np_x.shape))
            >>> else:
            ...     sp_x = dense_x.to_sparse_csr()
            ...
            >>> axes = [0, 1]
            >>> starts = [1, 0]
            >>> ends = [3, -2]
            >>> sp_out = paddle.sparse.slice(sp_x, axes, starts, ends)
            >>> # sp_out is x[1:3, 0:-2]

            >>> print(sp_out)
            Tensor(shape=[2, 2], dtype=paddle.int64, place=Place(cpu), stop_gradient=True,
                   indices=[[1, 1],
                            [0, 1]],
                   values=[-4,  2])

    """
    if in_dynamic_or_pir_mode():
        return _C_ops.sparse_slice(x, axes, starts, ends)
    else:
        attrs = {'axes': axes, 'starts': starts, 'ends': ends}
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
            ],
            'sparse_slice',
        )
        check_type(axes, 'axes', (list, tuple), 'sparse_slice')
        check_type(starts, 'starts', (list, tuple), 'sparse_slice')
        check_type(ends, 'ends', (list, tuple), 'sparse_slice')
        op_type = 'sparse_slice'
        helper = LayerHelper(op_type)
        out = helper.create_sparse_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type=op_type, inputs={'x': x}, outputs={'out': out}, attrs=attrs
        )
        return out


def pca_lowrank(
    x: Tensor,
    q: int | None = None,
    center: bool = True,
    niter: int = 2,
    name: str | None = None,
) -> tuple[Tensor, Tensor, Tensor]:
    r"""
    Performs linear Principal Component Analysis (PCA) on a sparse matrix.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
        X = U * diag(S) * V^{T}

    Args:
        x (Tensor): The input tensor. Its shape should be `[N, M]`,
            N and M can be arbitrary positive number.
            The data type of x should be float32 or float64.
        q (int|None, optional): a slightly overestimated rank of :math:`X`.
            Default value is :math:`q=min(6,N,M)`.
        center (bool, optional): if True, center the input tensor.
            Default value is True.
        name (str|None, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        - Tensor U, is N x q matrix.
        - Tensor S, is a vector with length q.
        - Tensor V, is M x q matrix.

        tuple (U, S, V): which is the nearly optimal approximation of a singular value decomposition of a centered matrix :math:`X`.

    Examples:
        .. code-block:: python

            >>> # doctest: +REQUIRES(env:GPU)
            >>> import paddle
            >>> paddle.device.set_device('gpu')

            >>> format = "coo"
            >>> paddle.seed(2023)
            >>> dense_x = paddle.randn((5, 5), dtype='float64')

            >>> if format == "coo":
            ...     sparse_x = dense_x.to_sparse_coo(len(dense_x.shape))
            >>> else:
            ...     sparse_x = dense_x.to_sparse_csr()

            >>> print("sparse.pca_lowrank API only support CUDA 11.x")
            >>> # U, S, V = None, None, None
            >>> # use code blow when your device CUDA version >= 11.0
            >>> U, S, V = paddle.sparse.pca_lowrank(sparse_x)

            >>> print(U)
            Tensor(shape=[5, 5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
                   [[-0.31412600,  0.44814876,  0.18390454, -0.19967630, -0.79170452],
                    [-0.31412600,  0.44814876,  0.18390454, -0.58579808,  0.56877700],
                    [-0.31412600,  0.44814876,  0.18390454,  0.78547437,  0.22292751],
                    [-0.38082462,  0.10982129, -0.91810233,  0.00000000,  0.00000000],
                    [ 0.74762770,  0.62082796, -0.23585052,  0.00000000, -0.00000000]])

            >>> print(S)
            Tensor(shape=[5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
                   [1.56031096, 1.12956227, 0.27922715, 0.00000000, 0.00000000])

            >>> print(V)
            Tensor(shape=[5, 5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
                   [[ 0.88568469, -0.29081908,  0.06163676,  0.19597228, -0.29796422],
                    [-0.26169364, -0.27616183,  0.43148760, -0.42522796, -0.69874939],
                    [ 0.28587685,  0.30695344, -0.47790836, -0.76982533, -0.05501437],
                    [-0.23958121, -0.62770647, -0.71141770,  0.11463224, -0.17125926],
                    [ 0.08918713, -0.59238761,  0.27478686, -0.41833534,  0.62498824]])
    """

    def get_floating_dtype(x):
        dtype = x.dtype
        if dtype in (paddle.float16, paddle.float32, paddle.float64):
            return dtype
        return paddle.float32

    def conjugate(x):
        if x.is_complex():
            return x.conj()
        return x

    def transpose(x):
        shape = x.shape
        perm = list(range(0, len(shape)))
        perm = [*perm[:-2], perm[-1], perm[-2]]
        if x.is_sparse():
            return paddle.sparse.transpose(x, perm)
        return paddle.transpose(x, perm)

    def transjugate(x):
        return conjugate(transpose(x))

    def get_approximate_basis(x, q, niter=2, M=None):
        niter = 2 if niter is None else niter
        m, n = x.shape[-2:]
        qr = paddle.linalg.qr

        R = paddle.randn((n, q), dtype=x.dtype)

        A_t = transpose(x)
        A_H = conjugate(A_t)
        if M is None:
            Q = qr(paddle.sparse.matmul(x, R))[0]
            for i in range(niter):
                Q = qr(paddle.sparse.matmul(A_H, Q))[0]
                Q = qr(paddle.sparse.matmul(x, Q))[0]
        else:
            M_H = transjugate(M)
            Q = qr(paddle.sparse.matmul(x, R) - paddle.matmul(M, R))[0]
            for i in range(niter):
                Q = qr(paddle.sparse.matmul(A_H, Q) - paddle.matmul(M_H, Q))[0]
                Q = qr(paddle.sparse.matmul(x, Q) - paddle.matmul(M, Q))[0]

        return Q

    def svd_lowrank(x, q=6, niter=2, M=None):
        q = 6 if q is None else q
        m, n = x.shape[-2:]
        if M is None:
            M_t = None
        else:
            M_t = transpose(M)
        A_t = transpose(x)

        if m < n or n > q:
            Q = get_approximate_basis(A_t, q, niter=niter, M=M_t)
            Q_c = conjugate(Q)
            if M is None:
                B_t = paddle.sparse.matmul(x, Q_c)
            else:
                B_t = paddle.sparse.matmul(x, Q_c) - paddle.matmul(M, Q_c)
            assert B_t.shape[-2] == m, (B_t.shape, m)
            assert B_t.shape[-1] == q, (B_t.shape, q)
            assert B_t.shape[-1] <= B_t.shape[-2], B_t.shape
            U, S, Vh = paddle.linalg.svd(B_t, full_matrices=False)
            V = transjugate(Vh)
            V = Q.matmul(V)
        else:
            Q = get_approximate_basis(x, q, niter=niter, M=M)
            Q_c = conjugate(Q)
            if M is None:
                B = paddle.sparse.matmul(A_t, Q_c)
            else:
                B = paddle.sparse.matmul(A_t, Q_c) - paddle.matmul(M_t, Q_c)
            B_t = transpose(B)
            assert B_t.shape[-2] == q, (B_t.shape, q)
            assert B_t.shape[-1] == n, (B_t.shape, n)
            assert B_t.shape[-1] <= B_t.shape[-2], B_t.shape
            U, S, Vh = paddle.linalg.svd(B_t, full_matrices=False)
            V = transjugate(Vh)
            U = Q.matmul(U)

        return U, S, V

    if not paddle.is_tensor(x):
        raise ValueError(f'Input must be tensor, but got {type(x)}')

    if not x.is_sparse():
        raise ValueError('Input must be sparse, but got dense')

    cuda_version = paddle.version.cuda()
    if (
        cuda_version is None
        or cuda_version == 'False'
        or int(cuda_version.split('.')[0]) < 11
    ):
        raise ValueError('sparse.pca_lowrank API only support CUDA 11.x')

    (m, n) = x.shape[-2:]

    if q is None:
        q = min(6, m, n)
    elif not (q >= 0 and q <= min(m, n)):
        raise ValueError(
            f'q(={q}) must be non-negative integer'
            f' and not greater than min(m, n)={min(m, n)}'
        )
    if not (niter >= 0):
        raise ValueError(f'niter(={niter}) must be non-negative integer')

    dtype = get_floating_dtype(x)

    if not center:
        return svd_lowrank(x, q, niter=niter, M=None)

    if len(x.shape) != 2:
        raise ValueError('input is expected to be 2-dimensional tensor')
    # TODO: complement sparse_csr_tensor test
    # when sparse.sum with axis(-2) is implemented
    s_sum = paddle.sparse.sum(x, axis=-2)
    s_val = s_sum.values() / m
    c = paddle.sparse.sparse_coo_tensor(
        s_sum.indices(), s_val, dtype=s_sum.dtype, place=s_sum.place
    )
    column_indices = c.indices()[0]
    indices = paddle.zeros((2, len(column_indices)), dtype=column_indices.dtype)
    indices[0] = column_indices
    C_t = paddle.sparse.sparse_coo_tensor(
        indices, c.values(), (n, 1), dtype=dtype, place=x.place
    )

    ones_m1_t = paddle.ones([*x.shape[:-2], 1, m], dtype=dtype)
    M = transpose(paddle.matmul(C_t.to_dense(), ones_m1_t))
    return svd_lowrank(x, q, niter=niter, M=M)
