#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...tensor import linalg, manipulation, math
from ..layer.layers import Layer

__all__ = []


class FloatFunctionalLayer(Layer):
    def __init__(self):
        super().__init__()


class add(FloatFunctionalLayer):
    def __init__(self):
        super().__init__()

    def forward(self, x, y, name=None):
        return math.add(x, y, name=name)


class subtract(FloatFunctionalLayer):
    def __init__(self):
        super().__init__()

    def forward(self, x, y, name=None):
        return math.subtract(x, y, name=name)


class multiply(FloatFunctionalLayer):
    def __init__(self):
        super().__init__()

    def forward(self, x, y, name=None):
        return math.multiply(x, y, name=name)


class divide(FloatFunctionalLayer):
    def __init__(self):
        super().__init__()

    def forward(self, x, y, name=None):
        return math.divide(x, y, name=name)


class reshape(FloatFunctionalLayer):
    def __init__(self):
        super().__init__()

    def forward(self, x, shape, name=None):
        return manipulation.reshape(x, shape, name=name)


class transpose(FloatFunctionalLayer):
    def __init__(self):
        super().__init__()

    def forward(self, x, perm, name=None):
        return manipulation.transpose(x, perm, name=name)


class concat(FloatFunctionalLayer):
    def __init__(self):
        super().__init__()

    def forward(self, x, axis=0, name=None):
        return manipulation.concat(x, axis, name=name)


class flatten(FloatFunctionalLayer):
    def __init__(self):
        super().__init__()

    def forward(self, x, start_axis=0, stop_axis=-1, name=None):
        return manipulation.flatten(x, start_axis, stop_axis, name=name)


class matmul(FloatFunctionalLayer):
    def __init__(self):
        super().__init__()

    def forward(self, x, y, transpose_x=False, transpose_y=False, name=None):
        return linalg.matmul(x, y, transpose_x, transpose_y, name=name)
