
    N;?i]                    r   d dl mZ d dlmZmZ d dlZd dlmZ d dlmZm	Z	m
Z
 ddlmZ ddlmZ dd	lmZmZmZ dd
lmZ erd dlmZ ed   ZddgZ	 	 d	 	 	 	 	 	 	 	 	 	 	 ddZ	 d	 	 	 	 	 	 	 	 	 ddZ	 	 	 	 	 	 	 	 d	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ddZ	 	 	 	 	 	 	 	 	 d	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ddZy)    )annotations)TYPE_CHECKINGLiteralN)_C_ops)in_dynamic_modein_dynamic_or_pir_modein_pir_mode   )check_variable_and_dtype)LayerHelper)fft_c2cfft_c2rfft_r2c)
is_complex)Tensorr   stftistftc                t   |dvrt        d| d      t        |t              r|dk  rt        d| d      t        |t              r|dk  rt        d| d      t               rI|| j                  |   kD  rt        d| d	| j                  |    d
      t        j                  | |||      S t               rt        j                  | |||      S d}t        | dg d|       t        |fi t               }|j                  d      }|j                  |      }|j                  |d| i|||dd|i       |S )ak  
    Slice the N-dimensional (where N >= 1) input into (overlapping) frames.

    Args:
        x (Tensor): The input data which is a N-dimensional (where N >= 1) Tensor
            with shape `[..., seq_length]` or `[seq_length, ...]`.
        frame_length (int): Length of the frame and `0 < frame_length <= x.shape[axis]`.
        hop_length (int): Number of steps to advance between adjacent frames
            and `0 < hop_length`.
        axis (int, optional): Specify the axis to operate on the input Tensors. Its
            value should be 0(the first dimension) or -1(the last dimension). If not
            specified, the last axis is used by default.
        name (str|None, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        The output frames tensor with shape `[..., frame_length, num_frames]` if `axis==-1`,
            otherwise `[num_frames, frame_length, ...]` where

            `num_frames = 1 + (x.shape[axis] - frame_length) // hop_length`

    Examples:

        .. code-block:: python

            >>> import paddle
            >>> from paddle import signal

            >>> # 1D
            >>> x = paddle.arange(8)
            >>> y0 = signal.frame(x, frame_length=4, hop_length=2, axis=-1)
            >>> print(y0)
            Tensor(shape=[4, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 2, 4],
             [1, 3, 5],
             [2, 4, 6],
             [3, 5, 7]])

            >>> y1 = signal.frame(x, frame_length=4, hop_length=2, axis=0)
            >>> print(y1)
            Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0, 1, 2, 3],
             [2, 3, 4, 5],
             [4, 5, 6, 7]])

            >>> # 2D
            >>> x0 = paddle.arange(16).reshape([2, 8])
            >>> y0 = signal.frame(x0, frame_length=4, hop_length=2, axis=-1)
            >>> print(y0)
            Tensor(shape=[2, 4, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[[0 , 2 , 4 ],
              [1 , 3 , 5 ],
              [2 , 4 , 6 ],
              [3 , 5 , 7 ]],
             [[8 , 10, 12],
              [9 , 11, 13],
              [10, 12, 14],
              [11, 13, 15]]])

            >>> x1 = paddle.arange(16).reshape([8, 2])
            >>> y1 = signal.frame(x1, frame_length=4, hop_length=2, axis=0)
            >>> print(y1.shape)
            [3, 4, 2]

            >>> # > 2D
            >>> x0 = paddle.arange(32).reshape([2, 2, 8])
            >>> y0 = signal.frame(x0, frame_length=4, hop_length=2, axis=-1)
            >>> print(y0.shape)
            [2, 2, 4, 3]

            >>> x1 = paddle.arange(32).reshape([8, 2, 2])
            >>> y1 = signal.frame(x1, frame_length=4, hop_length=2, axis=0)
            >>> print(y1.shape)
            [3, 4, 2, 2]
    r   Unexpected axis: . It should be 0 or -1.r   zUnexpected frame_length: #. It should be an positive integer.Unexpected hop_length: zKAttribute frame_length should be less equal than sequence length, but got (z) > (z).framex)int32int64float16float32float64input_param_namedtypeX)frame_length
hop_lengthaxisOuttypeinputsattrsoutputs)
ValueError
isinstanceintr   shaper   r   r	   r   r   localsinput_dtype"create_variable_for_type_inference	append_op)	r   r'   r(   r)   nameop_typehelperr%   outs	            c/var/www/html/leadgen/airagagent/ocr_fallback/ocr_env/lib/python3.12/site-packages/paddle/signal.pyr   r   *   s{   d 7,TF2IJKKlC(LA,='~5XY
 	
 j#&*/%j\1TU
 	
 !''$-'(>qwwt}oRA  ||A|Z>>	||A|Z>> sG	
 W11""C"877e7D8 ,(
 CL 	 		
 J    c                   |dvrt        d| d      t        |t              r|dk  rt        d| d      d}t               rt	        j
                  | ||      }|S t        | dg d	|       t        |fi t               }|j                  d
      }|j                  |      }|j                  |d| i||dd|i       |S )aH
  
    Reconstructs a tensor consisted of overlap added sequences from input frames.

    Args:
        x (Tensor): The input data which is a N-dimensional (where N >= 2) Tensor
            with shape `[..., frame_length, num_frames]` or
            `[num_frames, frame_length ...]`.
        hop_length (int): Number of steps to advance between adjacent frames and
            `0 < hop_length <= frame_length`.
        axis (int, optional): Specify the axis to operate on the input Tensors. Its
            value should be 0(the first dimension) or -1(the last dimension). If not
            specified, the last axis is used by default.
        name (str|None, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        The output frames tensor with shape `[..., seq_length]` if `axis==-1`,
            otherwise `[seq_length, ...]` where

            `seq_length = (n_frames - 1) * hop_length + frame_length`

    Examples:

        .. code-block:: python

            >>> import paddle
            >>> from paddle.signal import overlap_add

            >>> # 2D
            >>> x0 = paddle.arange(16).reshape([8, 2])
            >>> print(x0)
            Tensor(shape=[8, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 ],
             [2 , 3 ],
             [4 , 5 ],
             [6 , 7 ],
             [8 , 9 ],
             [10, 11],
             [12, 13],
             [14, 15]])


            >>> y0 = overlap_add(x0, hop_length=2, axis=-1)
            >>> print(y0)
            Tensor(shape=[10], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0 , 2 , 5 , 9 , 13, 17, 21, 25, 13, 15])

            >>> x1 = paddle.arange(16).reshape([2, 8])
            >>> print(x1)
            Tensor(shape=[2, 8], dtype=int64, place=Place(cpu), stop_gradient=True,
            [[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ],
             [8 , 9 , 10, 11, 12, 13, 14, 15]])


            >>> y1 = overlap_add(x1, hop_length=2, axis=0)
            >>> print(y1)
            Tensor(shape=[10], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0 , 1 , 10, 12, 14, 16, 18, 20, 14, 15])


            >>> # > 2D
            >>> x0 = paddle.arange(32).reshape([2, 1, 8, 2])
            >>> y0 = overlap_add(x0, hop_length=2, axis=-1)
            >>> print(y0.shape)
            [2, 1, 10]

            >>> x1 = paddle.arange(32).reshape([2, 8, 1, 2])
            >>> y1 = overlap_add(x1, hop_length=2, axis=0)
            >>> print(y1.shape)
            [10, 1, 2]
    r   r   r   r   r   r   overlap_addr   )r   r   r   r    r!   uint16r"   r$   r&   )r(   r)   r*   r+   )r0   r1   r2   r   r   r?   r   r   r4   r5   r6   r7   )r   r(   r)   r8   r9   r;   r:   r%   s           r<   r?   r?      s    T 7,TF2IJKKj#&*/%j\1TU
 	
 G  J5" J 	!I		
 W11""C"877e7D8!+T:CL	 	 	
 Jr=   c
           	        t        | j                        }
|
dv s
J d|
        |
dk(  r| j                  d      } |t        |dz        }|dkD  sJ d| d       ||}t	               r5d|cxk  r| j                  d	   k  sn J d
| j                  d	    d| d       d|cxk  r|k  sn J d| d| d       |>t        |j                        dk(  rt        |      |k(  s:J d| d|j                   d       t        j                  |f| j                        }||k  r>||z
  dz  }||z
  |z
  }t
        j                  j                  j                  |||gd      }|ra|dv sJ d| d       |dz  }t
        j                  j                  j                  | j                  d	      ||g|d      j                  d	      } t        | ||d	      }|j                  g d      }t        j                  ||      }|rdnd}|t        |       }t        |      r	|rJ d       t        |       st!        |dd	|d||	      }nt#        |dd	|d|	       }|j                  g d      }|
dk(  r|j%                  d       |S )!aT  

    Short-time Fourier transform (STFT).

    The STFT computes the discrete Fourier transforms (DFT) of short overlapping
    windows of the input using this formula:

    .. math::
        X_t[f] = \sum_{n = 0}^{N-1} \text{window}[n]\ x[t \times H + n]\ e^{-{2 \pi j f n}/{N}}

    Where:
    - :math:`t`: The :math:`t`-th input window.
    - :math:`f`: Frequency :math:`0 \leq f < \text{n_fft}` for `onesided=False`,
    or :math:`0 \leq f < \lfloor \text{n_fft} / 2 \rfloor + 1` for `onesided=True`.
    - :math:`N`: Value of `n_fft`.
    - :math:`H`: Value of `hop_length`.

    Args:
        x (Tensor): The input data which is a 1-dimensional or 2-dimensional Tensor with
            shape `[..., seq_length]`. It can be a real-valued or a complex Tensor.
        n_fft (int): The number of input samples to perform Fourier transform.
        hop_length (int|None, optional): Number of steps to advance between adjacent windows
            and `0 < hop_length`. Default: `None` (treated as equal to `n_fft//4`)
        win_length (int|None, optional): The size of window. Default: `None` (treated as equal
            to `n_fft`)
        window (Tensor|None, optional): A 1-dimensional tensor of size `win_length`. It will
            be center padded to length `n_fft` if `win_length < n_fft`. Default: `None` (
            treated as a rectangle window with value equal to 1 of size `win_length`).
        center (bool, optional): Whether to pad `x` to make that the
            :math:`t \times hop\_length` at the center of :math:`t`-th frame. Default: `True`.
        pad_mode (str, optional): Choose padding pattern when `center` is `True`. See
            `paddle.nn.functional.pad` for all padding options. Default: `"reflect"`
        normalized (bool, optional): Control whether to scale the output by `1/sqrt(n_fft)`.
            Default: `False`
        onesided (bool, optional): Control whether to return half of the Fourier transform
            output that satisfies the conjugate symmetry condition when input is a real-valued
            tensor. It can not be `True` if input is a complex tensor. Default: `None`
        name (str|None, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        The complex STFT output tensor with shape `[..., n_fft//2 + 1, num_frames]`
        (real-valued input and `onesided` is `True`) or `[..., n_fft, num_frames]`
        (`onesided` is `False`)

    Examples:
        .. code-block:: python

            >>> import paddle
            >>> from paddle.signal import stft

            >>> # real-valued input
            >>> x = paddle.randn([8, 48000], dtype=paddle.float64)
            >>> y1 = stft(x, n_fft=512)
            >>> print(y1.shape)
            [8, 257, 376]

            >>> y2 = stft(x, n_fft=512, onesided=False)
            >>> print(y2.shape)
            [8, 512, 376]

            >>> # complex input
            >>> x = paddle.randn([8, 48000], dtype=paddle.float64) + \
            ...         paddle.randn([8, 48000], dtype=paddle.float64)*1j
            >>> print(x.shape)
            [8, 48000]
            >>> print(x.dtype)
            paddle.complex128

            >>> y1 = stft(x, n_fft=512, center=False, onesided=False)
            >>> print(y1.shape)
            [8, 512, 372]

    )r
      z9x should be a 1D or 2D real tensor, but got rank of x is r
   r   N   z"hop_length should be > 0, but got .r   z"n_fft should be in (0, seq_length()], but got "win_length should be in (0, n_fft(8expected a 1D window tensor of size equal to win_length(), but got window with shape r3   r%   rB   constantpadmode)rJ   reflectz5pad_mode should be "reflect" or "constant", but got "z".NLC)rL   rM   data_format)r   r'   r(   r)   r   rB   r
   permorthobackwardzBonesided should be False when input or window is a complex Tensor.T)r   nr)   normforwardonesidedr8   r   rV   r)   rW   rX   r8   )lenr3   	unsqueezer2   r   paddleonesr%   nn
functionalrL   squeezer   	transposemultiplyr   r   r   squeeze_)r   n_fftr(   
win_lengthwindowcenterpad_mode
normalizedrY   r8   x_rankpad_left	pad_right
pad_lengthx_framesrW   r;   s                    r<   r   r     s   n \F   L 
C6(KL 
 {KKN!_
>M?
|1MM>
5'AGGBK' 	
0\%PQR	
' z"U" 
,UG<
|1M" 6<< A%#f+*C 	
FzlRopvp|p|o}}~	
C J=@EJ&1,J&1	%%))9-J * 
  
 
 	P C8*BO	P 

 aZ
II  $$KKOZ(	 % 

 '"+ 	
 qu"MH!! " H x0H 7jD!(++( 	
P	
| a=
 $RdDt
 --Y-
'C{QJr=   c                2   t        | dddgd       t        | j                        }|dv s
J d|        |dk(  r| j                  d      } |t	        |d
z        }||}d|cxk  r|k  sn J d| d| d       d|cxk  r|k  sn J d| d| d       | j                  d   }| j                  d   }t               rJ| j                  dk7  sJ d       |r||dz  dz   k(  s'J d|dz  dz    d| d       ||k(  sJ d| d| d       |>t        |j                        dk(  rt        |      |k(  s|J d| d|j                   d       | j                  t        j                  t        j                  fv rt        j                  nt        j                  }t        j                  |f|      }||k  r>||z
  dz  }||z
  |z
  }t        j                  j                  j                  |||gd      }| j!                  g d      } |rdnd}|	r|rJ d        t#        | d	d|d!d	"      }n;t%        |      rJ d#       |d!u r| d	d	d	d	d	|dz  dz   f   } t'        | d	d|d!d	"      }t        j(                  ||      j!                  g d      }t+        ||d$      }t+        t        j,                  t        j(                  ||      j                  d      |dg%      j!                  ddg      |d$      }|!|r?|d	d	|dz  |dz   f   }||dz  |dz    }n |r|dz  }nd}|d	d	|||z   f   }||||z    }t               r:|j/                         j1                         j3                         d&k  rt5        d'      ||z  }|dk(  rt        j6                  |d(      }|S ))a  
    Inverse short-time Fourier transform (ISTFT).

    Reconstruct time-domain signal from the giving complex input and window tensor when
    nonzero overlap-add (NOLA) condition is met:

    .. math::
        \sum_{t = -\infty}^{\infty} \text{window}^2[n - t \times H]\ \neq \ 0, \ \text{for } all \ n

    Where:
    - :math:`t`: The :math:`t`-th input window.
    - :math:`N`: Value of `n_fft`.
    - :math:`H`: Value of `hop_length`.

        Result of `istft` expected to be the inverse of `paddle.signal.stft`, but it is
        not guaranteed to reconstruct a exactly realizable time-domain signal from a STFT
        complex tensor which has been modified (via masking or otherwise). Therefore, `istft`
        gives the `[Griffin-Lim optimal estimate] <https://ieeexplore.ieee.org/document/1164317>`_
        (optimal in a least-squares sense) for the corresponding signal.

    Args:
        x (Tensor): The input data which is a 2-dimensional or 3-dimensional **complex**
            Tensor with shape `[..., n_fft, num_frames]`.
        n_fft (int): The size of Fourier transform.
        hop_length (int|None, optional): Number of steps to advance between adjacent windows
            from time-domain signal and `0 < hop_length < win_length`. Default: `None` (
            treated as equal to `n_fft//4`)
        win_length (int|None, optional): The size of window. Default: `None` (treated as equal
            to `n_fft`)
        window (Tensor|None, optional): A 1-dimensional tensor of size `win_length`. It will
            be center padded to length `n_fft` if `win_length < n_fft`. It should be a
            real-valued tensor if `return_complex` is False. Default: `None`(treated as
            a rectangle window with value equal to 1 of size `win_length`).
        center (bool, optional): It means that whether the time-domain signal has been
            center padded. Default: `True`.
        normalized (bool, optional): Control whether to scale the output by :math:`1/sqrt(n_{fft})`.
            Default: `False`
        onesided (bool, optional): It means that whether the input STFT tensor is a half
            of the conjugate symmetry STFT tensor transformed from a real-valued signal
            and `istft` will return a real-valued tensor when it is set to `True`.
            Default: `True`.
        length (int|None, optional): Specify the length of time-domain signal. Default: `None`(
            treated as the whole length of signal).
        return_complex (bool, optional): It means that whether the time-domain signal is
            real-valued. If `return_complex` is set to `True`, `onesided` should be set to
            `False` cause the output is complex.
        name (str|None, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor of least squares estimation of the reconstructed signal(s) with shape
        `[..., seq_length]`

    Examples:
        .. code-block:: python

            >>> import numpy as np
            >>> import paddle
            >>> from paddle.signal import stft, istft

            >>> paddle.seed(0)

            >>> # STFT
            >>> x = paddle.randn([8, 48000], dtype=paddle.float64)
            >>> y = stft(x, n_fft=512)
            >>> print(y.shape)
            [8, 257, 376]

            >>> # ISTFT
            >>> x_ = istft(y, n_fft=512)
            >>> print(x_.shape)
            [8, 48000]

            >>> np.allclose(x, x_)
            True
    r   	complex64
complex128r   )rB      z<x should be a 2D or 3D complex tensor, but got rank of x is rB   r   NrC   z'hop_length should be in (0, win_length(rE   rD   rF   r   z x should not be an empty tensor.r
   z+fft_size should be equal to n_fft // 2 + 1(z!) when onesided is True, but got z"fft_size should be equal to n_fft(z") when onesided is False, but got rG   rH   rI   rJ   rK   rQ   rR   rT   rU   zSonesided should be False when input(output of istft) or window is a complex Tensor.FrZ   zGData type of window should not be complex when return_complex is False.)r   r(   r)   )r   repeat_timesgdy=zAbort istft because Nonzero Overlap Add (NOLA) condition failed. For more information about NOLA constraint please see `scipy.signal.check_NOLA`(https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.check_NOLA.html).)r)   )r   r[   r3   r\   r2   r   sizer%   r]   r    rq   r!   r^   r_   r`   rL   rb   r   r   r   rc   r?   tileabsminitemr0   ra   )r   re   r(   rf   rg   rh   rj   rY   lengthreturn_complexr8   rk   n_framesfft_sizewindow_dtyperl   rm   rW   r;   window_envelopstarts                        r<   r   r     sn   r Qk<%@'J\F   O 
FfXNO 
 {KKN!_

 z'Z' 
1*\*UVW' z"U" 
,UG<
|1M" wwr{Hwwr{Hvv{>>>{uzA~- =eqj1n=MMnownxxyz- u$ 4UG;]^f]gghi$ 6<< A%#f+*C 	
FzlRopvp|p|o}}~	
C ww6>>6+;+;<< NN 	
 J=EEJ&1,J&1	%%))9-J * 
 	
 	 	A !7jD 	
a	
| Tu4Pf% 	
U	
% u!Q(%1*q.(()ATu4P
//#v
&
0
0 1 C 
*2C !
++ooff-77:"A
 )!Q)
 N ~a%1*%1*556C+UaZUaZ=INQJEE!UUV^++,'? ^//1557<<>F s
 	
 
C{nnSq)Jr=   )r   N)r   r   r'   r2   r(   r2   r)   _SignalAxesr8   
str | Nonereturnr   )
r   r   r(   r2   r)   r   r8   r   r   r   )NNNTrN   FNN)r   r   re   r2   r(   
int | Nonerf   r   rg   Tensor | Nonerh   boolri   zLiteral['reflect', 'constant']rj   r   rY   zbool | Noner8   r   r   r   )	NNNTFTNFN)r   r   re   r2   r(   r   rf   r   rg   r   rh   r   rj   r   rY   r   r{   r   r|   r   r8   r   r   r   )
__future__r   typingr   r   r]   r   paddle.frameworkr   r   r	   base.data_feederr   base.layer_helperr   fftr   r   r   tensor.attributer   r   r   __all__r   r?   r   r    r=   r<   <module>r      s   # )    7 * * * (%.K  zzz z 	z
 z z| LPfff&1f>HffX "! /8 rrr r 	r
 r r -r r r r rp "!  QQQ Q 	Q
 Q Q Q Q Q Q Q Qr=   