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PROLOGUE

FEW YEARS AGO a man won the Spanish national lottery

with a ticket that ended in the number 48. Proud of his

“accomplishment,” he revealed the theory that brought him
the riches. “I dreamed of the number 7 for seven straight nights,” he
said, “and 7 times 7 is 48.”! Those of us with a better command of our
multiplication tables might chuckle at the man’s error, but we all cre-
ate our own view of the world and then employ it to filter and process
our perceptions, extracting meaning from the ocean of data that
washes over us in daily life. And we often make errors that, though
less obvious, are just as significant as his.

The fact that human intuition is ill suited to situations involving
uncertainty was known as early as the 1930s, when researchers noted
that people could neither make up a sequence of numbers that
passed mathematical tests for randomness nor recognize reliably
whether a given string was randomly generated. In the past few
decades a new academic field has emerged to study how people
make judgments and decisions when faced with imperfect or incom-
plete information. Their research has shown that when chance is
involved, people’s thought processes are often seriously flawed. The
work draws from many disciplines, from mathematics and the tradi-
tional sciences as well as cognitive psychology, behavioral econom-
ics, and modern neuroscience. But although such studies were
legitimated by a recent Nobel Prize (in Economics), their lessons for
the most part have not trickled down from academic circles to the
popular psyche. This book is an attempt to remedy that. It is about
the principles that govern chance, the development of those ideas,
and the manner in which they play out in politics, business, medi-
cine, economics, sports, leisure, and other areas of human affairs. It is
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also about the way we make choices and the processes that lead us to
make mistaken judgments and poor decisions when confronted with
randomness or uncertainty.

Information that is lacking often invites competing interpreta-
tions. That's why such great effort was required to confirm global
warming, why drugs are sometimes declared safe and then pulled
from the market, and presumably why not everyone agrees with my
observation that chocolate milkshakes are an indispensable compo-
nent of a heart-healthy diet. Unfortunately the misinterpretation of
data has many negative consequences, both large and small. As we’ll
see, for example, both doctors and patients often misinterpret statis-
tics regarding the effectiveness of drugs and the meaning of impor-
tant medical tests. Parents, teachers, and students misunderstand the
significance of exams such as the SAT, and wine connoisseurs make
the same mistakes about wine ratings. Investors draw invalid conclu-
sions from the historical performance of mutual funds.

In sports we have developed a culture in which, based on intuitive
feelings of correlation, a team’s success or failure is often attributed
largely to the ability of the coach. As a result, when teams fail, the
coach is often fired. Mathematical analysis of firings in all major
sports, however, has shown that those firings had, on average, no
effect on team performance.? An analogous phenomenon occurs in
the corporate world, where CEOs are thought to have superhuman
power to make or break a company. Yet time and time again at
Kodak, Lucent, Xerox, and other companies, that power has proved
illusory. In the 1990s, for instance, when he ran GE Capital Services
under Jack Welch, Gary Wendt was thought of as one of the smartest
businessmen in the country. Wendt parlayed that reputation into a
$45 million bonus when he was hired to run the troubled finance
company Conseco. Investors apparently agreed that with Wendt at
the helm, Conseco’s troubles were over: the company’s stock tripled
within a year. But two years after that Wendt abruptly resigned, Con-
seco went bankrupt, and the stock was trading for pennies.> Had
Wendt’s task been impossible? Was he asleep at the wheel? Or had
his coronation rested on questionable assumptions—for example,

X1
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that an executive has a near-absolute ability to affect a company or a
person’s single past success is a reliable indicator of future perfor-
mance? On any specific occasion one cannot be confident of the
answers without examining the details of the situation at hand. I will
do that in several instances in this book, but more important, I will
present the tools needed to identify the footprints of chance.

To swim against the current of human intuition is a difhcult task.
As we'll see, the human mind is built to identify for each event a def-
inite cause and can therefore have a hard time accepting the influ-
ence of unrelated or random factors. And so the first step is to realize
that success or failure sometimes arises neither from great skill nor
from great incompetence but from, as the economist Armen Alchian
wrote, “fortuitous circumstances.” Random processes are funda-
mental in nature and are ubiquitous in our everyday lives, yet most
people do not understand them or think much about them.

The title The Drunkard’s Walk comes from a mathematical term
describing random motion, such as the paths molecules follow as
they fly through space, incessantly bumping, and being bumped by,
their sister molecules. That can be a metaphor for our lives, our paths
from college to career, from single life to family life, from first hole of
golf to eighteenth. The surprise is that the tools used to understand
the drunkard’s walk can also be employed to help understand the
events of everyday life. The goal of this book is to illustrate the role of
chance in the world around us and to show how we may recognize it
at work in human affairs. I hope that after this tour of the world of
randomness, you, the reader, will begin to see life in a different light,
with a deeper understanding of the everyday world.

x11
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CHAPTER 1

Peering through the Eyepiece
of Randomness

REMEMBER, as a teenager, watching the yellow flame of the
ISabbath candles dancing randomly above the white parathn

cylinders that fueled them. I was too young to think candlelight
romantic, but still I found it magical —because of the flickering
images created by the fire. They shifted and morphed, grew and
waned, all without apparent cause or plan. Surely, I believed, there
must be rhyme and reason underlying the flame, some pattern that
scientists could predict and explain with their mathematical equa-
tions. “Life isn’t like that,” my father told me. “Sometimes things
happen that cannot be foreseen.” He told me of the time when, in
Buchenwald, the Nazi concentration camp in which he was impris-
oned and starving, he stole a loaf of bread from the bakery. The baker
had the Gestapo gather everyone who might have committed the
crime and line the suspects up. “Who stole the bread?” the baker
asked. When no one answered, he told the guards to shoot the sus-
pects one by one until either they were all dead or someone con-
fessed. My father stepped forward to spare the others. He did not try
to paint himself in a heroic light but told me that he did it because he
expected to be shot either way. Instead of having him killed, though,
the baker gave my father a plum job, as his assistant. “A chance
event,” my father said. “It had nothing to do with you, but had it hap-
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pened differently, you would never have been born.” It struck me
then that [ have Hitler to thank for my existence, for the Germans
had killed my father’s wife and two young children, erasing his prior
life. And so were it not for the war, my father would never have emi-
grated to New York, never have met my mother, also a refugee, and
never have produced me and my two brothers.

My father rarely spoke of the war. I didn’t realize it then, but years
later it dawned on me that whenever he shared his ordeals, it was not
so much because he wanted me to know of his experiences but rather
because he wanted to impart a larger lesson about life. War is an
extreme circumstance, but the role of chance in our lives is not pred-
icated on extremes. The outline of our lives, like the candle’s flame,
is continuously coaxed in new directions by a variety of random
events that, along with our responses to them, determine our fate. As
a result, life is both hard to predict and hard to interpret. Just as, look-
ing at a Rorschach blot, you might see Madonna and I, a duck-billed
platypus, the data we encounter in business, law, medicine, sports,
the media, or your child’s third-grade report card can be read in
many ways. Yet interpreting the role of chance in an event is not like
intepreting a Rorschach blot; there are right ways and wrong ways to
doit.

We often employ intuitive processes when we make assessments
and choices in uncertain situations. Those processes no doubt car-
ried an evolutionary advantage when we had to decide whether a
saber-toothed tiger was smiling because it was fat and happy or
because it was famished and saw us as its next meal. But the modern
world has a different balance, and today those intuitive processes
come with drawbacks. When we use our habitual ways of thinking
to deal with today’s tigers, we can be led to decisions that are less
than optimal or even incongruous. That conclusion comes as no sur-
prise to those who study how the brain processes uncertainty: many
studies point to a close connection between the parts of our brain that
make assessments of chance situations and those that handle the
human characteristic that is often considered our prime source of
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irrationality—our emotions. Functional magnetic resonance imag-
ing, for example, shows that risk and reward are assessed by parts of
the dopaminergic system, a brain-reward circuit important for moti-
vational and emotional processes.! The images show, too, that the
amygdala, which is also linked to our emotional state, especially fear,
is activated when we make decisions couched in uncertainty.?

The mechanisms by which people analyze situations involving
chance are an intricate product of evolutionary factors, brain struc-
ture, personal experience, knowledge, and emotion. In fact, the
human response to uncertainty is so complex that sometimes differ-
ent structures within the brain come to different conclusions and
apparently fight it out to determine which one will dominate. For
example, if your face swells to five times its normal size three out of
every four times you eat shrimp, the “logical” left hemisphere of your
brain will attempt to find a pattern. The “intuitive” right hemisphere
of your brain, on the other hand, will simply say “avoid shrimp.” At
least that’s what researchers found in less painful experimental
setups. The game is called probability guessing. In lieu of toying with
shrimp and histamine, subjects are shown a series of cards or lights,
which can have two colors, say green and red. Things are arranged so
that the colors will appear with different probabilities but otherwise
without a pattern. For example, red might appear twice as often as
green in a sequence like red-red-green-red-green-red-red-green-
green-red-red-red, and so on. The task of the subject, after watching
for a while, is to predict whether each new member of the sequence
will be red or green.

The game has two basic strategies. One is to always guess the
color that you notice occurs more frequently. That is the route
favored by rats and other nonhuman animals. If you employ this strat-
egy, you are guaranteed a certain degree of success but you are also
conceding that you will do no better. For instance, if green shows up
75 percent of the time and you decide to always guess green, you will
be correct 75 percent of the time. The other strategy is to “match”
your proportion of green and red guesses to the proportion of green
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and red you observed in the past. If the greens and reds appear in a
pattern and you can figure out the pattern, this strategy enables you
to guess right every time. But if the colors appear at random, you
would be better off sticking with the first strategy. In the case where
green randomly appears 75 percent of the time, the second strategy
will lead to the correct guess only about 6 times in 10.

Humans usually try to guess the pattern, and in the process we
allow ourselves to be outperformed by a rat. But there are people with
certain types of post-surgical brain impairment—called a split
brain —that precludes the right and left hemispheres of the brain
from communicating with each other. If the probability experiment
is performed on these patients such that they see the colored light or
card with only their left eye and employ only their left hand to signal
their predictions, it amounts to an experiment on the right side of the
brain. But if the experiment is performed so as to involve only their
right eye and right hand, it is an experiment on the left brain. When
researchers performed those experiments, they found that—in the
same patients—the right hemisphere always chose to guess the more
frequent color and the left hemisphere always tried to guess the
pattern.’?

Making wise assessments and choices in the face of uncertainty is
a rare skill. But like any skill, it can be improved with experience. In
the pages that follow, I will examine the role of chance in the world
around us, the ideas that have been developed over the centuries to
help us understand that role, and the factors that often lead us astray.
The British philosopher and mathematician Bertrand Russell wrote,

We all start from “naive realism,” i.e., the doctrine that things
are what they seem. We think that grass is green, that stones
are hard, and that snow is cold. But physics assures us that the
greenness of grass, the hardness of stones, and the coldness of
snow are not the greenness of grass, the hardness of stones, and
the coldness of snow that we know in our own experience, but
something very different.*
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In what follows we will peer at life through the eyepiece of random-
ness and see that many of the events of our lives, too, are not quite
what they seem but rather something very different.

IN 2002 THE NOBEL COMMITTEE awarded the Nobel Prize in
Economics to a scientist named Daniel Kahneman. Economists do
all sorts of things these days—they explain why teachers are paid so
little, why football teams are worth so much, and why bodily func-
tions help set a limit on the size of hog farms (a hog excretes three to
five times as much as a human, so a farm with thousands of hogs on it
often produces more waste than the neighboring cities).> Despite all
the great research generated by economists, the 2002 Nobel Prize
was notable because Kahneman is not an economist. He is a psychol-
ogist, and for decades, with the late Amos Tversky, Kahneman stud-
ied and clarified the kinds of misperceptions of randomness that fuel
many of the common fallacies I will talk about in this book.

The greatest challenge in understanding the role of randomness
in life is that although the basic principles of randomness arise from
everyday logic, many of the consequences that follow from those
principles prove counterintuitive. Kahneman and Tversky’s studies
were themselves spurred by a random event. In the mid-1960s, Kah-
neman, then a junior psychology professor at Hebrew University,
agreed to perform a rather unexciting chore: lecturing to a group of
Israeli air force flight instructors on the conventional wisdom of
behavior modification and its application to the psychology of flight
training. Kahneman drove home the point that rewarding positive
behavior works but punishing mistakes does not. One of his students
interrupted, voicing an opinion that would lead Kahneman to an
epiphany and guide his research for decades.

“I've often praised people warmly for beautifully executed
maneuvers, and the next time they always do worse,” the flight
instructor said. “And I've screamed at people for badly executed
maneuvers, and by and large the next time they improve. Don't tell
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me that reward works and punishment doesn’t work. My experience
contradicts it.” The other flight instructors agreed. To Kahneman the
flight instructors” experiences rang true. On the other hand, Kahne-
man believed in the animal experiments that demonstrated that
reward works better than punishment. He ruminated on this appar-
ent paradox. And then it struck him: the screaming preceded the
improvement, but contrary to appearances it did not cause it.

How can that be? The answer lies in a phenomenon called regres-
sion toward the mean. That is, in any series of random events an
extraordinary event is most likely to be followed, due purely to
chance, by a more ordinary one. Here is how it works: The student
pilots all had a certain personal ability to fly fighter planes. Raising
their skill level involved many factors and required extensive prac-
tice, so although their skill was slowly improving through flight train-
ing, the change wouldn’t be noticeable from one maneuver to the
next. Any especially good or especially poor performance was thus
mostly a matter of luck. So if a pilot made an exceptionally good
landing—one far above his normal level of performance —then the
odds would be good that he would perform closer to his norm—that
is, worse—the next day. And if his instructor had praised him, it
would appear that the praise had done no good. But if a pilot made
an exceptionally bad landing—running the plane off the end of the
runway and into the vat of corn chowder in the base cafeteria—then
the odds would be good that the next day he would perform closer to
his norm —that is, better. And if his instructor had a habit of scream-
ing “you clumsy ape” when a student performed poorly, it would
appear that his criticism did some good. In this way an apparent pat-
tern would emerge: student performs well, praise does no good; stu-
dent performs poorly, instructor compares student to lower primate
at high volume, student improves. The instructors in Kahneman’s
class had concluded from such experiences that their screaming was
a powerful educational tool. In reality it made no difference at all.

This error in intuition spurred Kahneman’s thinking. He won-
dered, are such misconceptions universal? Do we, like the flight
instructors, believe that harsh criticism improves our children’s
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behavior or our employees’ performance? Do we make other mis-
judgments when faced with uncertainty? Kahneman knew that
human beings, by necessity, employ certain strategies to reduce the
complexity of tasks of judgment and that intuition about probabilities
plays an important part in that process. Will you feel sick after eating
that luscious-looking seviche tostada from the street vendor? You
don’t consciously recall all the comparable food stands you've
patronized, count the number of times you've spent the following
night guzzling Pepto-Bismol, and come up with a numerical esti-
mate. You let your intuition do the work. But research in the 1950s
and early '60s indicated that people’s intuition about randomness
fails them in such situations. How widespread, Kahneman won-
dered, was this misunderstanding of uncertainty? And what are its
implications for human decision making? A few years passed, and
Kahneman invited a fellow junior professor, Amos Tversky, to give a
guest lecture at one of his seminars. Later, at lunch, Kahneman men-
tioned his developing ideas to Tversky. Over the next thirty years,
Tversky and Kahneman found that even among sophisticated sub-
jects, when it came to random processes—whether in military or
sports situations, business quandaries, or medical questions—
people’s beliefs and intuition very often let them down.

Suppose four publishers have rejected the manuscript for your
thriller about love, war, and global warming. Your intuition and the
bad feeling in the pit of your stomach might say that the rejections by
all those publishing experts mean your manuscript is no good. But is
your intuition correct? Is your novel unsellable? We all know from
experience that if several tosses of a coin come up heads, it doesn’t
mean we are tossing a two-headed coin. Could it be that publishing
success is so unpredictable that even if our novel is destined for the
best-seller list, numerous publishers could miss the point and send
those letters that say thanks but no thanks? One book in the 1950s
was rejected by publishers, who responded with such comments as
“very dull,” “a dreary record of typical family bickering, petty annoy-
ances and adolescent emotions,” and “even if the work had come to
light five years ago, when the subject [World War II] was timely, I
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don’t see that there would have been a chance for it.” That book, The
Diary of a Young Girl by Anne Frank, has sold 30 million copies,
making it one of the best-selling books in history. Rejection letters
were also sent to Sylvia Plath because “there certainly isn’t enough
genuine talent for us to take notice,” to George Orwell for Animal
Farm because “it is impossible to sell animal stories in the U.S.;” and
to Isaac Bashevis Singer because “it’s Poland and the rich Jews
again.” Before he hit it big, Tony Hillerman’s agent dumped him,
advising that he should “get rid of all that Indian stuft.””

Those were not isolated misjudgments. In fact, many books des-
tined for great success had to survive not just rejection, but repeated
rejection. For example, few books today are considered to have more
obvious and nearly universal appeal than the works of John Grisham,
Theodor Geisel (Dr. Seuss), and J. K. Rowling. Yet the manuscripts
they wrote before they became famous—all eventually hugely
successful —were all repeatedly rejected. John Grisham’s manuscript
for A Time to Kill was rejected by twenty-six publishers; his second
manuscript, for The Firm, drew interest from publishers only after a
bootleg copy circulating in Hollywood drew a $600,000 offer for the
movie rights. Dr. Seuss’s first children’s book, And to Think That 1
Saw It on Mulberry Street, was rejected by twenty-seven publishers.
And J. K. Rowling’s first Harry Potter manuscript was rejected by
nine.’ Then there is the other side of the coin—the side anyone in
the business knows all too well: the many authors who had great
potential but never made it, John Grishams who quit after the first
twenty rejections or J. K. Rowlings who gave up after the first five.
After his many rejections, one such writer, John Kennedy Toole, lost
hope of ever getting his novel published and committed suicide. His
mother persevered, however, and eleven years later A Confederacy of
Dunces was published; it won the Pulitzer Prize for Fiction and has
sold nearly 2 million copies.

There exists a vast gulf of randomness and uncertainty between
the creation of a great novel —or piece of jewelry or chocolate-chip
cookie—and the presence of huge stacks of that novel —or jewelry or
bags of cookies —at the front of thousands of retail outlets. That’s why

10
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successful people in every field are almost universally members of a
certain set—the set of people who don’t give up.

Alot of what happens to us—success in our careers, in our invest-
ments, and in our life decisions, both major and minor—is as much
the result of random factors as the result of skill, preparedness, and
hard work. So the reality that we perceive is not a direct reflection of
the people or circumstances that underlie it but is instead an image
blurred by the randomizing effects of unforeseeable or fluctuating
external forces. That is not to say that ability doesn’t matter —it is one
of the factors that increase the chances of success—but the connec-
tion between actions and results is not as direct as we might like to
believe. Thus our past is not so easy to understand, nor is our future
so easy to predict, and in both enterprises we benefit from looking
beyond the superficial explanations.

WE HABITUALLY UNDERESTIMATE THE EFFECTS of random-
ness. Our stockbroker recommends that we invest in the Latin Amer-
ican mutual fund that “beat the pants off the domestic funds” five
years running. Our doctor attributes that increase in our triglycerides
to our new habit of enjoying a Hostess Ding Dong with milk every
morning after dutifully feeding the kids a breakfast of mangoes and
nonfat yogurt. We may or may not take our stockbroker’s or doctor’s
advice, but few of us question whether he or she has enough data
to give it. In the political world, the economic world, the business
world—even when careers and millions of dollars are at stake —
chance events are often conspicuously misinterpreted as accomplish-
ments or failures.

Hollywood provides a nice illustration. Are the rewards (and pun-
ishments) of the Hollywood game deserved, or does luck play a far
more important role in box office success (and failure) than people
imagine? We all understand that genius doesn’t guarantee success,
but it’s seductive to assume that success must come from genius. Yet
the idea that no one can know in advance whether a film will hit or
miss has been an uncomfortable suspicion in Hollywood at least

11
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since the novelist and screenwriter William Goldman enunciated it
in his classic 1983 book Adventures in the Screen Trade. In that book,
Goldman quoted the former studio executive David Picker as saying,
“If I had said yes to all the projects I turned down, and no to all the
other ones I took, it would have worked out about the same.”

That's not to say that a jittery homemade horror video could
become a hit just as easily as, say, Exorcist: The Beginning, which
cost an estimated $80 million. Well, actually, that is what happened
some years back with The Blair Witch Project: it cost the ilmmakers
a mere $60,000 but brought in $140 million in domestic box office
revenue —more than three times the business of Exorcist. Still, that’s
not what Goldman was saying. He was referring only to profession-
ally made Hollywood films with production values good enough to
land the film a respectable distributor. And Goldman didn’t deny
that there are reasons for a film’s box office performance. But he did
say that those reasons are so complex and the path from green light to
opening weekend so vulnerable to unforeseeable and uncontrollable
influences that educated guesses about an unmade film’s potential
aren’t much better than flips of a coin.

Examples of Hollywood’s unpredictability are easy to find. Movie
buffs will remember the great expectations the studios had for the
megaflops Ishtar (Warren Beatty + Dustin Hoffman + a $55 million
budget = $14 million in box office revenue) and Last Action Hero
(Arnold Schwarzenegger + $85 million = $50 million). On the other
hand, you might recall the grave doubts that executives at Universal
Studios had about the young director George Lucas’s film American
Graffiti, shot for less than $1 million. Despite their skepticism, it took
in $115 million, but still that didn’t stop them from having even
graver doubts about Lucas’s next idea. He called the story Adventures
of Luke Starkiller as taken from “The Journal of the Whills.” Universal
called it unproducible. Ultimately 20th Century Fox made the film,
but the studio’s faith in the project went only so far: it paid Lucas just
$200,000 to write and direct it; in exchange, Lucas received the
sequel and merchandising rights. In the end, Star Wars took in

12
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$461 million on a budget of $13 million, and Lucas had himself an
empire.

Given the fact that green light decisions are made years before a
film is completed and films are subject to many unpredictable factors
that arise during those years of production and marketing, not to
mention the inscrutable tastes of the audience, Goldman’s theory
doesn’t seem at all far-fetched. (It is also one that is supported by
much recent economic research.)!? Despite all this, studio executives
are not judged by the bread-and-butter management skills that are as
essential to the head of the United States Steel Corporation as they
are to the head of Paramount Pictures. Instead, they are judged by
their ability to pick hits. If Goldman is right, that ability is mere illu-
sion, and in spite of his or her swagger no executive is worth that $25
million contract.

Deciding just how much of an outcome is due to skill and how
much to luck is not a no-brainer. Random events often come like the
raisins in a box of cereal—in groups, streaks, and clusters. And
although Fortune is fair in potentialities, she is not fair in outcomes.
That means that if each of 10 Hollywood executives tosses 10 coins,
although each has an equal chance of being the winner or the loser,
in the end there will be winners and losers. In this example, the
chances are 2 out of 3 that at least | of the executives will score 8 or
more heads or tails.

Imagine that George Lucas makes a new Star Wars film and in
one test market decides to perform a crazy experiment. He releases
the identical film under two titles: Star Wars: Episode A and Star
Wars: Episode B. Fach film has its own marketing campaign and dis-
tribution schedule, with the corresponding details identical except
that the trailers and ads for one film say Episode A and those for the
other, Episode B. Now we make a contest out of it. Which film will
be more popular? Say we look at the first 20,000 moviegoers and
record the film they choose to see (ignoring those die-hard fans who
will go to both and then insist there were subtle but meaningful dif-
ferences between the two). Since the films and their marketing cam-
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paigns are identical, we can mathematically model the game this
way: Imagine lining up all the viewers in a row and flipping a coin for
each viewer in turn. If the coin lands heads up, he or she sees Episode
A; if the coin lands tails up, it's Episode B. Because the coin has an
equal chance of coming up either way, you might think that in this
experimental box office war each film should be in the lead about
half the time. But the mathematics of randomness says otherwise: the
most probable number of changes in the lead is 0, and it is 88 times
more probable that one of the two films will lead through all 20,000
customers than it is that, say, the lead continuously seesaws.!! The
lesson is not that there is no difference between films but that some
films will do better than others even if all the films are identical.

Such issues are not discussed in corporate boardrooms, in Holly-
wood, or elsewhere, and so the typical patterns of randomness—
apparent hot or cold streaks or the bunching of data into
clusters—are routinely misinterpreted and, worse, acted on as if they
represented a new trend.

One of the most high profile examples of anointment and regi-
cide in modern Hollywood was the case of Sherry Lansing, who ran
Paramount with great success for many years.!? Under Lansing, Para-
mount won Best Picture awards for Forrest Gump, Braveheart, and
Titanic and posted its two highest-grossing years ever. Then Lansing’s
reputation suddenly plunged, and she was dumped after Paramount
experienced, as Variety put it, “a long stretch of underperformance at
the box office.”!3

In mathematical terms there is both a short and a long explana-
tion for Lansing’s fate. First, the short answer. Look at this series of
percentages: 11.4, 10.6, 11.3, 7.4, 7.1, 6.7. Notice something? Lans-
ing’s boss, Sumner Redstone, did too, and for him the trend was
significant, for those six numbers represented the market share of
Paramount’s Motion Picture Group for the final six years of Lans-
ing’s tenure. The trend caused BusinessWeek to speculate that Lans-
ing “may simply no longer have Hollywood’s hot hand.”!* Soon
Lansing announced she was leaving, and a few months later a talent
manager named Brad Grey was brought on board.
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How can a surefire genius lead a company through seven great
years and then fail practically overnight? There were plenty of theo-
ries explaining Lansing’s early success. While Paramount was doing
well, Lansing was praised for making it one of Hollywood’s best-run
studios and for her knack for turning conventional stories into $100
million hits. When her fortune changed, the revisionists took over.
Her penchant for making successful remakes and sequels became a
drawback. Most damning of all, perhaps, was the notion that her fail-
ure was due to her “middle-of-the-road tastes.” She was now blamed
for green-lighting such box office dogs as Timeline and Lara Croft
‘Tomb Raider: The Cradle of Life. Suddenly the conventional wisdom
was that Lansing was risk averse, old-fashioned, and out of touch with
the trends. But can she really be blamed for thinking that a Michael
Crichton bestseller would be promising movie fodder? And where
were all the Lara Croft critics when the first Tomb Raider film took in
$131 million in box office revenue?

Even if the theories of Lansing’s shortcomings were plausible,
consider how abruptly her demise occurred. Did she become risk
averse and out of touch overnight? Because Paramount’s market
share plunged that suddenly. One year Lansing was flying high; the
next she was a punch line for late-night comedians. Her change of
fortune might have been understandable if, like others in Hollywood,
she had become depressed over a nasty divorce proceeding, had been
charged with embezzlement, or had joined a religious cult. That was
not the case. And she certainly hadn’t sustained any damage to her
cerebral cortex. The only evidence of Lansing’s newly developed fail-
ings that her critics could offer was, in fact, her newly developed
failings.

In hindsight it is clear that Lansing was fired because of the indus-
try’s misunderstanding of randomness and not because of her flawed
decision making: Paramount’s films for the following year were
already in the pipeline when Lansing left the company. So if we want
to know roughly how Lansing would have done in some parallel uni-
verse in which she remained in her job, all we need to do is look at
the data in the year following her departure. With such films as War
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of the Worlds and The Longest Yard, Paramount had its best summer
in a decade and saw its market share rebound to nearly 10 percent.
That isn’t merely ironic —it’s again that aspect of randomness called
regression toward the mean. A Variety headline on the subject read,
“Parting Gifts: Old Regime’s Pics Fuel Paramount Rebound,”” but
one can’t help but think that had Viacom (Paramount’s parent com-
pany) had more patience, the headline might have read, “Banner
Year Puts Paramount and Lansing’s Career Back on Track.”

Sherry Lansing had good luck at the beginning and bad luck at
the end, but it could have been worse. She could have had her bad
luck at the beginning. That’s what happened to a Columbia Pictures
chief named Mark Canton. Described as box office savvy and enthu-
siastic shortly after he was hired, he was fired after his first few years
produced disappointing box office results. Criticized by one
unnamed colleague for being “incapable of distinguishing the win-
ners from the losers” and by another for being “too busy cheerlead-
ing,” this disgraced man left in the pipeline when he departed such
films as Men in Black ($589 million in worldwide box office rev-
enue), Air Force One ($315 million), The Fifth Element ($264 mil-
lion), Jerry Maguire ($274 million), and Anaconda ($137 million). As
Variety put it, Canton’s legacy pictures “hit and hit big.”1

Well, that's Hollywood, a town where Michael Ovitz works as Dis-
ney president for fifteen months and then leaves with a $140 million
severance package and where the studio head David Begelman is
fired by Columbia Pictures for forgery and embezzlement and then
is hired a few years later as CEO of MGM. But as we'll see in the fol-
lowing chapters, the same sort of misjudgments that plague Holly-
wood also plague people’s perceptions in all realms of life.

My OowN EPIPHANY regarding the hidden effects of randomness
came in college, when I took a course in probability and began apply-
ing its principles to the sports world. That is easy to do because, as in
the film business, most accomplishments in sports are easily quanti-
fied and the data are readily available. What I discovered was that just
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as the lessons of persistence, practice, and teamwork that we learn
from sports apply equally to all endeavors of life, so do the lessons of
randomness. And so I set out to examine a tale of two baseball slug-
gers, Roger Maris and Mickey Mantle, a tale that bears a lesson for all
of us, even those who wouldn’t know a baseball from a Ping-Pong
ball.

The year was 1961. I was barely of reading age, but I still recall the
faces of Maris and his more popular New York Yankees teammate,
Mantle, on the cover of Life magazine. The two baseball players were
engaged in a historic race to tie or break Babe Ruth’s beloved 1927
record of 60 home runs in one year. Those were idealistic times
when my teacher would say things like “we need more heroes like
Babe Ruth,” or “we never had a crooked president.” Because the leg-
end of Babe Ruth was sacred, anyone who might challenge it had
better be worthy. Mantle, a courageous perennial slugger who fought
on despite bad knees, was the fans’—and the press’s—overwhelming
favorite. A good-looking, good-natured fellow, Mantle came across as
the kind of all-American boy everyone hoped would set records.
Maris, on the other hand, was a gruff, private fellow, an underdog
who had never hit more than 39 home runs in a year, much less any-
where near 60. He was seen as a nasty sort, someone who didn’t give
interviews and didn’t like kids. They all rooted for Mantle. I liked
Maris.

As it turned out, Mantle’s knees got the best of him, and he made
it to only 54 home runs. Maris broke Ruth’s record with 61. Over his
career, Babe Ruth had hit 50 or more home runs in a season four
times and twelve times had hit more than anyone else in the league.
Maris never again hit 50 or even 40 and never again led the league.
That overall performance fed the resentment. As the years went by,
Maris was criticized relentlessly by fans, sportswriters, and sometimes
other players. Their verdict: he had crumbled under the pressure of
being a champion. Said one famous baseball old-timer, “Maris had
no right to break Ruth’s record.”!” That may have been true, but not
for the reason the old-timer thought.

Many years later, influenced by that college math course, I would
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learn to think about Maris’s achievement in a new light. To analyze
the Ruth-Mantle race I reread that old Life article and found in it a
brief discussion of probability theory!® and how it could be used to
predict the result of the Maris-Mantle race. I decided to make my
own mathematical model of home run hitting. Here’s how it goes:
The result of any particular at bat (that is, an opportunity for success)
depends primarily on the player’s ability, of course. But it also
depends on the interplay of many other factors: his health; the wind,
the sun, or the stadium lights; the quality of the pitches he receives;
the game situation; whether he correctly guesses how the pitcher will
throw; whether his hand-eye coordination works just perfectly as he
takes his swing; whether that brunette he met at the bar kept him up
too late or the chili-cheese dog with garlic fries he had for breakfast
soured his stomach. If not for all the unpredictable factors, a player
would either hit a home run on every at bat or fail to do so. Instead,
for each at bat all you can say is that he has a certain probability of
hitting a home run and a certain probability of failing to hit one.
Over the hundreds of at bats he has each year, those random factors
usually average out and result in some typical home run production
that increases as the player becomes more skillful and then eventu-
ally decreases owing to the same process that etches wrinkles in his
handsome face. But sometimes the random factors don’t average out.
How often does that happen, and how large is the aberration?

From the player’s yearly statistics you can estimate his probability
of hitting a home run at each opportunity —that is, on each trip to the
plate.’? In 1960, the year before his record year, Roger Maris hit
1 home run for every 14.7 opportunities (about the same as his home
run output averaged over his four prime years). Let’s call this perfor-
mance normal Maris. You can model the home run hitting skill of
normal Maris this way: Imagine a coin that comes up heads on aver-
age not | time every 2 tosses but 1 time every 14.7. Then flip that
coin 1 time for every trip to the plate and award Maris 1 home run
every time the coin comes up heads. If you want to match, say,
Maris’s 1961 season, you flip the coin once for every home run
opportunity he had that year. By that method you can generate a
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whole series of alternative 1961 seasons in which Maris’s skill level
matches the home run totals of normal-Maris. The results of those
mock seasons illustrate the range of accomplishment that normal
Maris could have expected in 1961 if his talent had not spiked —that
is, given only his “normal” home run ability plus the effects of pure
luck.

To have actually performed this experiment, I'd have needed a
rather odd coin, a rather strong wrist, and a leave of absence from col-
lege. In practice the mathematics of randomness allowed me to do
the analysis employing equations and a computer. In most of my
imaginary 1961 seasons, normal Maris’s home run output was, not
surprisingly, in the range that was normal for Maris. Some mock sea-
sons he hit a few more, some a few less. Only rarely did he hit a lot
more or a lot less. How frequently did normal Maris’s talent produce
Ruthian results?

[ had expected normal Maris’s chances of matching Ruth’s record
to be roughly equal to Jack Whittaker’s when he plopped down an
extra dollar as he bought breakfast biscuits at a convenience store a
few years back and ended up winning $314 million in his state
Powerball lottery. That’s what a less talented player’s chances would
have been. But normal Maris, though not Ruthian, was still far above
average at hitting home runs. And so normal Maris’s probability of
producing a record output by chance was not microscopic: he
matched or broke Ruth’s record about I time every 32 seasons. That
might not sound like good odds, and you probably wouldn’t have
wanted to bet on either Maris or the year 1961 in particular. But
those odds lead to a striking conclusion. To see why, let’s now ask a
more interesting question. Let’s consider all players with the talent of
normal Maris and the entire seventy-year period from Ruth’s record
to the start of the “steroid era” (when, because of players’ drug use,
home runs became far more common). What are the odds that some
player at some time would have matched or broken Ruth’s record by
chance alone? Is it reasonable to believe that Maris just happened to
be the recipient of the lucky aberrant season?

History shows that in that period there was about 1 player every
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3 years with both the talent and the opportunities comparable to
those of normal Maris in 1961. When you add it all up, that makes
the probability that by chance alone one of those players would have
matched or broken Ruth’s record a little greater than 50 percent. In
other words, over a period of seventy years a random spike of 60 or
more home runs for a player whose production process merits more
like 40 home runs is to be expected —a phenomenon something like
that occasional loud crackle you hear amid the static in a bad tele-
phone connection. It is also to be expected, of course, that we will
deify, or vilify—and certainly endlessly analyze—whoever that
“lucky” person turns out to be.

We can never know for certain whether Maris was a far better
player in 1961 than in any of the other years he played professional
baseball or whether he was merely the beneficiary of good fortune.
But detailed analyses of baseball and other sports by scientists as emi-
nent as the late Stephen Jay Gould and the Nobel laureate E. M.
Purcell show that coin-tossing models like the one I've described
match very closely the actual performance of both players and teams,
including their hot and cold streaks.?

When we look at extraordinary accomplishments in sports—or
elsewhere —we should keep in mind that extraordinary events can
happen without extraordinary causes. Random events often look like
nonrandom events, and in interpreting human affairs we must take
care not to confuse the two. Though it has taken many centuries, sci-
entists have learned to look beyond apparent order and recognize the
hidden randomness in both nature and everyday life. In this chapter
I've presented a few glimpses of those workings. In the following
chapters I shall consider the central ideas of randomness within their
historical context and describe their relevance with the aim of offer-
ing a new perspective on our everyday surroundings and hence a bet-
ter understanding of the connection between this fundamental
aspect of nature and our own experience.
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CHAPTER 2

The Laws of Truths
and Half-Truths

OOKING TO THE SKY on a clear, moonless night, the

human eye can detect thousands of twinkling sources of

light. Nestled among those haphazardly scattered stars are
patterns. A lion here, a dipper there. The ability to detect patterns can
be both a strength and a weakness. Isaac Newton pondered the pat-
terns of falling objects and created a law of universal gravitation. Oth-
ers have noted a spike in their athletic performance when they are
wearing dirty socks and thenceforth have refused to wear clean ones.
Among all the patterns of nature, how do we distinguish the mean-
ingful ones? Drawing that distinction is an inherently practical enter-
prise. And so it might not astonish you to learn that, unlike geometry,
which arose as a set of axioms, proofs, and theorems created by a cul-
ture of ponderous philosophers, the theory of randomness sprang
from minds focused on spells and gambling, figures we might sooner
imagine with dice or a potion in hand than a book or a scroll.

The theory of randomness is fundamentally a codification of
common sense. But it is also a field of subtlety, a field in which great
experts have been famously wrong and expert gamblers infamously
correct. What it takes to understand randomness and overcome our
misconceptions is both experience and a lot of careful thinking. And
so we begin our tour with some of the basic laws of probability and
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the challenges involved in uncovering, understanding, and applying
them. One of the classic explorations of people’s intuition about
those laws was an experiment conducted by the pair who did so much
to elucidate our misconceptions, Daniel Kahneman and Amos Tver-
sky.! Feel free to take part—and learn something about your own
probabilistic intuition.

Imagine a woman named Linda, thirty-one years old, single, out-
spoken, and very bright. In college she majored in philosophy. While
a student she was deeply concerned with discrimination and social
justice and participated in antinuclear demonstrations. Tversky and
Kahneman presented this description to a group of eighty-eight sub-
jects and asked them to rank the following statements on a scale of
1 to 8 according to their probability, with 1 representing the most
probable and § the least. Here are the results, in order from most to
least probable:

Statement Average Probability Rank
Linda is active in the feminist movement. 2.1
Linda is a psychiatric social worker. 3.1
Linda works in a bookstore and takes yoga classes. 3.3
Linda is a bank teller and is active in the feminist

movement. 4.1
Linda is a teacher in an elementary school. 5.2
Linda is a member of the League of Women Voters. 5.4
Linda is a bank teller. 6.2
Linda is an insurance salesperson. 6.4

At first glance there may appear to be nothing unusual in these
results: the description was in fact designed to be representative of an
active feminist and unrepresentative of a bank teller or an insurance
salesperson. But now let’s focus on just three of the possibilities and
their average ranks, listed below in order from most to least probable.
This is the order in which 85 percent of the respondents ranked the
three possibilities:
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Statement Average Probability Rank
Linda is active in the feminist movement. 2.1
Linda is a bank teller and is active in the feminist

movement. 4.1
Linda is a bank teller. 6.2

If nothing about this looks strange, then Kahneman and Tversky
have fooled you, for if the chance that Linda is a bank teller and is
active in the feminist movement were greater than the chance that
Linda is a bank teller, there would be a violation of our first law of
probability, which is one of the most basic of all: The probability that
two events will both occur can never be greater than the probability
that each will occur individually. Why not? Simple arithmetic: the
chances that event A will occur = the chances that events A and B
will occur + the chance that event A will occur and event B will not
occur.

Kahneman and Tversky were not surprised by the result because
they had given their subjects a large number of possibilities, and the
connections among the three scenarios could easily have gotten lost
in the shuffle. And so they presented the description of Linda to
another group, but this time they presented only these possibilities:

Linda is active in the feminist movement.
Linda is a bank teller and is active in the feminist movement.
Linda is a bank teller.

To their surprise, 87 percent of the subjects in this trial also
ranked the probability that Linda is a bank teller and is active in the
feminist movement higher than the probability that Linda is a bank
teller. And so the researchers pushed further: they explicitly asked a
group of thirty-six fairly sophisticated graduate students to consider
their answers in light of our first law of probability. Even after the
prompting, two of the subjects clung to the illogical response.

The interesting thing that Kahneman and Tversky noticed about
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this stubborn misperception is that people will not make the same
mistake if you ask questions that are unrelated to what they know
about Linda. For example, suppose Kahneman and Tversky had
asked which of these statements seems most probable:

Linda owns an International House of Pancakes franchise.

Linda had a sex-change operation and is now known as Larry.

Linda had a sex-change operation, is now known as Larry,
and owns an International House of Pancakes franchise.

In this case few people would choose the last option as more likely
than either of the other two.

Kahneman and Tversky concluded that because the detail “Linda
is active in the feminist movement” rang true based on the initial
description of her character, when they added that detail to the bank-
teller speculation, it increased the scenario’s credibility. But a lot
could have happened between Linda’s hippie days and her fourth
decade on the planet. She might have undergone a conversion to a
fundamentalist religious cult, married a skinhead and had a swastika
tattooed on her left buttock, or become too busy with other aspects
of her life to remain politically active. In each of these cases and
many others she would probably not be active in the feminist move-
ment. So adding that detail lowered the chances that the scenario
was accurate even though it appeared to raise the chances of its
accuracy.

If the details we are given fit our mental picture of something,
then the more details in a scenario, the more real it seems and hence
the more probable we consider it to be—even though any act of
adding less-than-certain details to a conjecture makes the conjecture
less probable. This inconsistency between the logic of probability
and people’s assessments of uncertain events interested Kahneman
and Tversky because it can lead to unfair or mistaken assessments in
real-life situations. Which is more likely: that a defendant, after dis-
covering the body, left the scene of the crime or that a defendant,
after discovering the body, left the scene of the crime because he
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feared being accused of the grisly murder? Is it more probable that
the president will increase federal aid to education or that he or she
will increase federal aid to education with funding freed by cutting
other aid to the states? Is it more likely that your company will
increase sales next year or that it will increase sales next year because
the overall economy has had a banner year? In each case, even
though the latter is less probable than the former, it may sound more
likely. Or as Kahneman and Tversky put it, “A good story is often less
probable than a less satisfactory . . . [explanation].”

Kahneman and Tversky found that even highly trained doctors
make this error.? They presented a group of internists with a serious
medical problem: a pulmonary embolism (a blood clot in the lung).
If you have that ailment, you might display one or more of a set of
symptoms. Some of those symptoms, such as partial paralysis, are
uncommon; others, such as shortness of breath, are probable. Which
is more likely: that the victim of an embolism will experience only
partial paralysis or that the victim will experience both partial paraly-
sis and shortness of breath? Kahneman and Tversky found that 91
percent of the doctors believed a clot was less likely to cause just a
rare symptom than it was to cause a combination of the rare symptom
and a common one. (In the doctors’ defense, patients don’t walk into
their offices and say things like “I have a blood clot in my lungs.
Guess my symptoms.”)

Years later one of Kahneman’s students and another researcher
found that attorneys fall prey to the same bias in their judgments.’
Whether involved in a criminal case or a civil case, clients typically
depend on their lawyers to assess what may occur if their case goes to
trial. What are the chances of acquittal or of a settlement or a mone-
tary judgment in various amounts? Although attorneys might not
phrase their opinions in terms of numerical probabilities, they offer
advice based on their personal forecast of the relative likelihood of
the possible outcomes. Here, too, the researchers found that lawyers
assign higher probabilities to contingencies that are described in
greater detail. For example, at the time of the civil lawsuit brought by
Paula Jones against then president Bill Clinton, 200 practicing
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lawyers were asked to predict the probability that the trial would not
run its full course. For some of the subjects that possibility was bro-
ken down into specific causes for the trial’s early end, such as settle-
ment, withdrawal of the charges, or dismissal by the judge. In
comparing the two groups—lawyers who had simply been asked to
predict whether the trial would run its full course and lawyers who
had been presented with ways in which the trial might reach a pre-
mature conclusion—the researchers found that the lawyers who had
been presented with causes of a premature conclusion were much
more likely than the other lawyers to predict that the trial would
reach an early end.

The ability to evaluate meaningful connections among different
phenomena in our environment may be so important that it is worth
seeing a few mirages. If a starving caveman sees an indistinct greenish
blur on a distant rock, it is more costly to dismiss it as uninteresting
when it is in reality a plump, tasty lizard than it is to race over and
pounce on what turns out to be a few stray leaves. And so, that theory
goes, we might have evolved to avoid the former mistake at the cost of
sometimes making the latter.

IN THE STORY of mathematics the ancient Greeks stand out as the
inventors of the manner in which modern mathematics is carried
out: through axioms, proofs, theorems, more proofs, more theorems,
and so on. In the 1930s, however, the Czech American mathemati-
cian Kurt Gédel —a friend of Einstein’s—showed this approach to be
somewhat deficient: most of mathematics, he demonstrated, must be
inconsistent or else must contain truths that cannot be proved. Still,
the march of mathematics has continued unabated in the Greek
style, the style of Fuclid. The Greeks, geniuses in geometry, created a
small set of axioms, statements to be accepted without proof, and pro-
ceeded from there to prove many beautiful theorems detailing the
properties of lines, planes, triangles, and other geometric forms.
From this knowledge they discerned, for example, that the earth is a
sphere and even calculated its radius. One must wonder why a civi-
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lization that could produce a theorem such as proposition 29 of
book 1 of Euclid’s Elements— “a straight line falling on two parallel
straight lines makes the alternate angles equal to one another, the
exterior angle equal to the interior and opposite angle, and the inte-
rior angles on the same side equal to two right angles” —did not cre-
ate a theory showing that if you throw two dice, it would be unwise to
bet your Corvette on their both coming up a 6.

Actually, not only didn’t the Greeks have Corvettes, but they also
didn’t have dice. They did have gambling addictions, however. They
also had plenty of animal carcasses, and so what they tossed were
astragali, made from heel bones. An astragalus has six sides, but only
four are stable enough to allow the bone to come to rest on them.
Modern scholars note that because of the bone’s construction, the
chances of its landing on each of the four sides are not equal: they are
about 10 percent for two of the sides and 40 percent for the other two.
A common game involved tossing four astragali. The outcome con-
sidered best was a rare one, but not the rarest: the case in which all
four astragali came up different. This was called a Venus throw. The
Venus throw has a probability of about 384 out of 10,000, but the
Greeks, lacking a theory of randomness, didn’t know that.

The Grecks also employed astragali when making inquiries of
their oracles. From their oracles, questioners could receive answers
that were said to be the words of the gods. Many important choices
made by prominent Greeks were based on the advice of oracles, as
evidenced by the accounts of the historian Herodotus, and writers
like Homer, Aeschylus, and Sophocles. But despite the importance
of astragali tosses in both gambling and religion, the Greeks made no
effort to understand the regularities of astragali throws.

Why didn’t the Greeks develop a theory of probability? One
answer is that many Greeks believed that the future unfolded accord-
ing to the will of the gods. If the result of an astragalus toss meant
“marry the stocky Spartan girl who pinned you in that wrestling
match behind the school barracks,” a Greek boy wouldn’t view the
toss as the lucky (or unlucky) result of a random process; he would
view it as the gods” will. Given such a view, an understanding of ran-
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domness would have been irrelevant. Thus a mathematical predic-
tion of randomness would have seemed impossible. Another answer
may lie in the very philosophy that made the Greeks such great math-
ematicians: they insisted on absolute truth, proved by logic and
axioms, and frowned on uncertain pronouncements. In Plato’s
Phaedo, for example, Simmias tells Socrates that “arguments from
probabilities are impostors” and anticipates the work of Kahneman
and Tversky by pointing out that “unless great caution is observed in
the use of them they are apt to be deceptive—in geometry, and in
other things too.”* And in Theaetetus, Socrates says that any mathe-
matician “who argued from probabilities and likelihoods in geometry
would not be worth an ace.” But even Greeks who believed that
probabilists were worth an ace might have had difficulty working
out a consistent theory in those days before extensive record keep-
ing because people have notoriously poor memories when it comes
to estimating the frequency—and hence the probability—of past
occurrences.

Which is greater: the number of six-letter English words having n
as their fifth letter or the number of six-letter English words ending in
ing? Most people choose the group of words ending in ing.¢ Why?
Because words ending in ing are easier to think of than generic six-
letter words having n as their fifth letter. But you don’t have to survey
the Oxford English Dictionary—or even know how to count—to
prove that guess wrong: the group of six-letter words having n as their
fifth letter words includes all six-letter words ending in ing. Psycholo-
gists call that type of mistake the availability bias because in recon-
structing the past, we give unwarranted importance to memories that
are most vivid and hence most available for retrieval.

The nasty thing about the availability bias is that it insidiously dis-
torts our view of the world by distorting our perception of past events
and our environment. For example, people tend to overestimate the
fraction of homeless people who are mentally ill because when they
encounter a homeless person who is not behaving oddly, they don’t
take notice and tell all their friends about that unremarkable home-
less person they ran into. But when they encounter a homeless per-
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son stomping down the street and waving his arms at an imaginary
companion while singing “When the Saints Go Marching In,” they
do tend to remember the incident.” How probable is it that of the five
lines at the grocery-store checkout you will choose the one that takes
the longest? Unless you've been cursed by a practitioner of the black
arts, the answer is around 1 in 5. So why, when you look back, do you
get the feeling you have a supernatural knack for choosing the
longest line? Because you have more important things to focus on
when things go right, but it makes an impression when the lady in
front of you with a single item in her cart decides to argue about why
her chicken is priced at $1.50 a pound when she is certain the sign at
the meat counter said $1.49.

One stark illustration of the effect the availability bias can have on
our judgment and decision making came from a mock jury trial.® In
the study the jury was given equal doses of exonerating and incrimi-
nating evidence regarding the charge that a driver was drunk when
he ran into a garbage truck. The catch is that one group of jurors was
given the exonerating evidence in a “pallid” version: “The owner of
the garbage truck stated under cross-examination that his garbage
truck was difficult to see at night because it was gray in color.” The
other group was given a more “vivid” form of the same evidence:
“The owner of the garbage truck stated under cross-examination that
his garbage truck was difficult to see at night because it was gray in
color. The owner remarked his trucks are gray ‘because it hides the
dirt. What do you want, I should paint "em pink?” ” The incriminat-
ing evidence was also presented in two ways, this time in a vivid form
to the first group and in a pallid version to the second. When the
jurors were asked to produce guilt/innocence ratings, the side with
the more vivid presentation of the evidence always prevailed, and the
effect was enhanced when there was a forty-eight-hour delay before
rendering the verdict (presumably because the recall gap was even
greater).

By distorting our view of the past, the availability bias complicates
any attempt to make sense of it. That was true for the ancient Greeks
just as it is true for us. But there was one other major obstacle to an
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early theory of randomness, a very practical one: although basic prob-
ability requires only knowledge of arithmetic, the Greeks did not
know arithmetic, at least not in a form that is easy to work with. In
Athens in the fifth century B.c., for instance, at the height of Greek
civilization, a person who wanted to write down a number used a
kind of alphabetic code.” The first nine of the twenty-four letters in
the Greek alphabet stood for the numbers we call 1 through 9. The
next nine letters stood for the numbers we call 10, 20, 30, and so on.
And the last six letters plus three additional symbols stood for the first
nine hundreds (100, 200, and so on, to 900). If you think you have
trouble with arithmetic now, imagine trying to subtract AI'© from
QWII! To make matters worse, the order in which the ones, tens, and
hundreds were written didn’t really matter: sometimes the hundreds
were written first, sometimes last, and sometimes all order was
ignored. Finally, the Greeks had no zero.

The concept of zero came to Greece when Alexander invaded the
Babylonian Empire in 331 B.c. Even then, although the Alexandri-
ans began to use the zero to denote the absence of a number, it
wasn’t employed as a number in its own right. In modern mathemat-
ics the number 0 has two key properties: in addition it is the number
that, when added to any other number, leaves the other number
unchanged, and in multiplication it is the number that, when multi-
plied by any other number, is itself unchanged. This concept wasn’t
introduced until the ninth century, by the Indian mathematician
Mahavira.

Even after the development of a usable number system it would
be many more centuries before people came to recognize addition,
subtraction, multiplication, and division as the fundamental arith-
metic operations—and slowly realized that convenient symbols
would make their manipulation far easier. And so it wasn’t until the
sixteenth century that the Western world was truly poised to develop
a theory of probability. Still, despite the handicap of an awkward sys-
tem of calculation, it was the civilization that conquered the
Greeks—the Romans—who made the first progress in understanding
randomness.
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THE RoMANS generally scorned mathematics, at least the mathe-
matics of the Greeks. In the words of the Roman statesman Cicero,
who lived from 106 to 43 B.C., “The Greeks held the geometer in the
highest honor; accordingly, nothing made more brilliant progress
among them than mathematics. But we have established as the limit
of this art its usefulness in measuring and counting.”!? Indeed,
whereas one might imagine a Greek textbook focused on the proof of
congruences among abstract triangles, a typical Roman text focused
on such issues as how to determine the width of a river when the
enemy is occupying the other bank.! With such mathematical prior-
ities, it is not surprising that while the Greeks produced mathe-
matical luminaries like Archimedes, Diophantus, Euclid, Eudoxus,
Pythagoras, and Thales; the Romans did not produce even one math-
ematician.!? In Roman culture it was comfort and war, not truth and
beauty, that occupied center stage. And yet precisely because they
focused on the practical, the Romans saw value in understanding
probability. So while finding little value in abstract geometry, Cicero
wrote that “probability is the very guide of life.”13

Cicero was perhaps the greatest ancient champion of probability.
He employed it to argue against the common interpretation of gam-
bling success as due to divine intervention, writing that the “man
who plays often will at some time or other make a Venus cast: now
and then indeed he will make it twice and even thrice in succession.
Are we going to be so feeble-minded then as to affirm that such a
thing happened by the personal intervention of Venus rather than by
pure luck?”1* Cicero believed that an event could be anticipated and
predicted even though its occurrence would be a result of blind
chance. He even used a statistical argument to ridicule the belief in
astrology. Annoyed that although outlawed in Rome, astrology was
nevertheless alive and well, Cicero noted that at Cannae in 216 B.C.,
Hannibal, leading about 50,000 Carthaginian and allied troops,
crushed the much larger Roman army, slaughtering more than

60,000 of its 80,000 soldiers. “Did all the Romans who fell at Cannae
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have the same horoscope?” Cicero asked. “Yet all had one and the
same end.”" Cicero might have been encouraged to know that a cou-
ple of thousand years later in the journal Nature a scientific study of
the validity of astrological predictions agreed with his conclusion. !¢
The New York Post, on the other hand, advises today that as a Sagittar-
ius, I must look at criticisms objectively and make whatever changes
seem necessary.

In the end, Cicero’s principal legacy in the field of randomness is
the term he used, probabilis, which is the origin of the term we
employ today. But it is one part of the Roman code of law, the Digest,
compiled by Emperor Justinian in the sixth century, that is the first
document in which probability appears as an everyday term of art.!”
To appreciate the Roman applications of mathematical thinking to
legal theory, one must understand the context: Roman law in the
Dark Ages was based on the practice of the Germanic tribes. It wasn’t
pretty. Take, for example, the rules of testimony. The veracity of, say,
a husband denying an affair with his wife’s toga maker would be
determined not by hubby’s ability to withstand a grilling by prickly
opposing counsel but by whether he’d stick to his story even after
being pricked—by a red-hot iron. (Bring back that custom and you’ll
see a lot more divorce cases settled out of court.) And if the defendant
says the chariot never tried to stop but the expert witness says the hoof
prints show that the brakes were applied, Germanic doctrine offered
a simple prescription: “Let one man be chosen from each group to
fight it out with shields and spears. Whoever loses is a perjurer and
must lose his right hand.”!8

In replacing, or at least supplementing, the practice of trial by bat-
tle, the Romans sought in mathematical precision a cure for the defi-
ciencies of their old, arbitrary system. Seen in this context, the
Roman idea of justice employed advanced intellectual concepts.
Recognizing that evidence and testimony often conflicted and that
the best way to resolve such conflicts was to quantify the inevitable
uncertainty, the Romans created the concept of half proof, which
applied in cases in which there was no compelling reason to believe
or disbelieve evidence or testimony. In some cases the Roman doc-
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trine of evidence included even finer degrees of proof, as in the
church decree that “a bishop should not be condemned except with
seventy-two witnesses . . . a cardinal priest should not be condemned
except with forty-four witnesses, a cardinal deacon of the city of
Rome without thirty-six witnesses, a subdeacon, acolyte, exorcist, lec-
tor, or doorkeeper except with seven witnesses.”!? To be convicted
under those rules, you'd have to have not only committed the crime
but also sold tickets. Still, the recognition that the probability of truth
in testimony can vary and that rules for combining such probabilities
are necessary was a start. And so it was in the unlikely venue of
ancient Rome that a systematic set of rules based on probability first
arose.

Unfortunately it is hard to achieve quantitative dexterity when
you're juggling VIIIs and XIVs. In the end, though Roman law had a
certain legal rationality and coherence, it fell short of mathematical
validity. In Roman law, for example, two half proofs constituted a
complete proof. That might sound reasonable to a mind unaccus-
tomed to quantitative thought, but with today’s familiarity with frac-
tions it invites the question, if two half proofs equal a complete
certainty, what do three half proofs make? According to the correct
manner of compounding probabilities, not only do two half proofs
yield less than a whole certainty, but no finite number of partial
proofs will ever add up to a certainty because to compound probabil-
ities, you don’t add them; you multiply.

That brings us to our next law, the rule for compounding proba-
bilities: If two possible events, A and B, are independent, then the prob-
ability that both A and B will occur is equal to the product of their
individual probabilities. Suppose a married person has on average
roughly a 1 in 50 chance of getting divorced each year. On the other
hand, a police officer has about a 1 in 5,000 chance each year of
being killed on the job. What are the chances that a married police
officer will be divorced and killed in the same year? According to the
above principle, if those events were independent, the chances
would be roughly Y50 x %5000, which equals Y250000. Of course the
events are not independent; they are linked: once you die, darn it,
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you can no longer get divorced. And so the chance of that much bad
luck is actually a little less than 1 in 250,000.

Why multiply rather than add? Suppose you make a pack of trad-
ing cards out of the pictures of those 100 guys you've met so far
through your Internet dating service, those men who in their Web
site photos often look like Tom Cruise but in person more often
resemble Danny DeVito. Suppose also that on the back of each card
you list certain data about the men, such as honest (yes or no) and
attractive (yes or no). Finally, suppose that 1 in 10 of the prospective
soul mates rates a yes in each case. How many in your pack of 100
will pass the test on both counts? Let’s take honest as the first trait (we
could equally well have taken attractive). Since 1 in 10 cards lists a
yes under honest, 10 of the 100 cards will qualify. Of those 10, how
many are attractive? Again, 1 in 10, so now you are left with 1 card.
The first 1 in 10 cuts the possibilities down by Y10, and so does the
next 1 in 10, making the result 1 in 100. That's why you multiply.
And if you have more requirements than just honest and attractive,
you have to keep multiplying, so . . . well, good luck.

Before we move on, it is worth paying attention to an important
detail: the clause that reads if two possible events, A and B, are inde-
pendent. Suppose an airline has 1 seat left on a flight and 2 passen-
gers have yet to show up. Suppose that from experience the airline
knows there is a 2 in 3 chance a passenger who books a seat will arrive
to claim it. Employing the multiplication rule, the gate attendant can
conclude there is a %5 X %5 or about a 44 percent chance she will have
to deal with an unhappy customer. The chance that neither cus-
tomer will show and the plane will have to fly with an empty seat, on
the other hand, is ¥ X /5, or only about 11 percent. But that assumes
the passengers are independent. If, say, they are traveling together,
then the above analysis is wrong. The chances that both will show up
are 2 in 3, the same as the chances that one will show up. It is impor-
tant to remember that you get the compound probability from the
simple ones by multiplying only if the events are in no way contin-
gent on each other.

The rule we just applied could be applied to the Roman rule of
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half proofs: the chances of two independent half proofs’ being wrong
are 1 in 4, so two half proofs constitute three-fourths of a proof, not a
whole proof. The Romans added where they should have multiplied.

There are situations in which probabilities should be added, and
that is our next law. It arises when we want to know the chances of
either one event or another occurring, as opposed to the earlier situa-
tion, in which we wanted to know the chance of one event and
another event both happening. The law is this: If an event can have a
number of different and distinct possible outcomes, A, B, C, and so on,
then the probability that either A or B will occur is equal to the sum of
the individual probabilities of A and B, and the sum of the probabili-
ties of all the possible outcomes (A, B, C, and so on) is 1 (that is, 100
percent). When you want to know the chances that two independent
events, A and B, will both occur, you multiply; if you want to know
the chances that either of two mutually exclusive events, A or B, will
occur, you add. Back to our airline: when should the gate attendant
add the probabilities instead of multiplying them? Suppose she wants
to know the chances that either both passengers or neither passenger
will show up. In this case she should add the individual probabilities,
which according to what we calculated above, would come to 55
percent.

These three laws, simple as they are, form much of the basis of
probability theory. Properly applied, they can give us much insight
into the workings of nature and the everyday world. We employ them
in our everyday decision making all the time. But like the Roman
lawmakers, we don’t always use them correctly.

IT 1S EASY TO LOOK BACK, shake our heads, and write books with
titles like The Rotten Romans (Scholastic, 1994). But lest we become
unjustifiably self-congratulatory, I shall end this chapter with a look
at some ways in which the basic laws I've discussed may be applied to
our own legal system. As it turns out, that’s enough to sober up any-
one drunk on feelings of cultural superiority.

The good news is that we don’t have half proofs today. But we do
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have a kind of #*%%%%1 000,000 proof. For instance, it is not uncommon
for experts in DNA analysis to testify at a criminal trial that a DNA
sample taken from a crime scene matches that taken from a suspect.
How certain are such matches? When DNA evidence was first intro-
duced, a number of experts testified that false positives are impossible
in DNA testing. Today DNA experts regularly testify that the odds
of a random person’s matching the crime sample are less than 1 in
1 million or 1 in 1 billion. With those odds one could hardly blame
a juror for thinking, throw away the key. But there is another statistic
that is often not presented to the jury, one having to do with the fact
that labs make errors, for instance, in collecting or handling a sam-
ple, by accidentally mixing or swapping samples, or by misinterpret-
ing or incorrectly reporting results. Each of these errors is rare but
not nearly as rare as a random match. The Philadelphia City Crime
Laboratory, for instance, admitted that it had swapped the reference
sample of the defendant and the victim in a rape case, and a testing
firm called Cellmark Diagnostics admitted a similar error.?’ Unfortu-
nately, the power of statistics relating to DNA presented in court is
such that in Oklahoma a court sentenced a man named Timothy
Durham to more than 3,100 years in prison even though eleven wit-
nesses had placed him in another state at the time of the crime. It
turned out that in the initial analysis the lab had failed to completely
separate the DNA of the rapist and that of the victim in the fluid they
tested, and the combination of the victim’s and the rapist’s DNA pro-
duced a positive result when compared with Durham’s. A later retest
turned up the error, and Durham was released after spending nearly
four years in prison.?!

Estimates of the error rate due to human causes vary, but many
experts put it at around 1 percent. However, since the error rate of
many labs has never been measured, courts often do not allow testi-
mony on this overall statistic. Even if courts did allow testimony
regarding false positives, how would jurors assess it? Most jurors
assume that given the two types of error—the 1 in 1 billion acciden-
tal match and the 1 in 100 lab-error match —the overall error rate
must be somewhere in between, say 1 in 500 million, which is still for
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most jurors beyond a reasonable doubt. But employing the laws of
probability, we find a much different answer.

The way to think of it is this: Since both errors are very unlikely,
we can ignore the possibility that there is both an accidental match
and a lab error. Therefore, we seek the probability that one error or
the other occurred. That is given by our sum rule: it is the probability
of alab error (1 in 100) + the probability of an accidental match (1 in
1 billion). Since the latter is 10 million times smaller than the for-
mer, to a very good approximation the chance of both errors is the
same as the chance of the more probable error—that is, the chances
are 1 in 100. Given both possible causes, therefore, we should ignore
the fancy expert testimony about the odds of accidental matches and
focus instead on the much higher laboratory error rate —the very data
courts often do not allow attorneys to present! And so the oft-repeated
claims of DNA infallibility are exaggerated.

This is not an isolated issue. The use of mathematics in the mod-
ern legal system suffers from problems no less serious than those that
arose in Rome so many centuries ago. One of the most famous cases
illustrating the use and misuse of probability in law is People v.
Collins, heard in 1968 by the California Supreme Court.?2 Here are
the facts of the case as presented in the court decision:

On June 18, 1964, about 11:30 a.m. Mrs. Juanita Brooks, who
had been shopping, was walking home along an alley in the
San Pedro area of the city of Los Angeles. She was pulling
behind her a wicker basket carryall containing groceries and
had her purse on top of the packages. She was using a cane. As
she stooped down to pick up an empty carton, she was sud-
denly pushed to the ground by a person whom she neither saw
nor heard approach. She was stunned by the fall and felt some
pain. She managed to look up and saw a young woman run-
ning from the scene. According to Mrs. Brooks the latter
appeared to weigh about 145 pounds, was wearing “something
dark,” and had hair “between a dark blond and a light blond,”
but lighter than the color of defendant Janet Collins” hair as it
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appeared at the trial. Immediately after the incident, Mrs.
Brooks discovered that her purse, containing between $35 and
$40, was missing.

About the same time as the robbery, John Bass, who lived
on the street at the end of the alley, was in front of his house
watering his lawn. His attention was attracted by “a lot of cry-
ing and screaming” coming from the alley. As he looked in
that direction, he saw a woman run out of the alley and enter a
yellow automobile parked across the street from him. He was
unable to give the make of the car. The car started off immedi-
ately and pulled wide around another parked vehicle so that in
the narrow street it passed within six feet of Bass. The latter
then saw that it was being driven by a male Negro, wearing a
mustache and beard. . . . Other witnesses variously described
the car as yellow, as yellow with an off-white top, and yellow
with an egg-shell white top. The car was also described as
being medium to large in size.

A few days after the incident a Los Angeles police officer spotted a
yellow Lincoln with an off-white top in front of the defendants” home
and spoke with them, explaining that he was investigating a robbery.
He noted that the suspects fit the description of the man and woman
who had committed the crime, except that the man did not have a
beard, though he admitted that he sometimes wore one. Later that
day the Los Angeles police arrested the two suspects, Malcolm
Ricardo Collins, and his wife, Janet.

The evidence against the couple was scant, and the case rested
heavily on the identification by the victim and the witness, John Bass.
Unfortunately for the prosecution, neither proved to be a star on the
witness stand. The victim could not identify Janet as the perpetrator
and hadn’t seen the driver at all. John Bass had not seen the perpetra-
tor and said at the police lineup that he could not positively identify
Malcolm Collins as the driver. And so, it seemed, the case was falling
apart.

Enter the star witness, described in the California Supreme Court
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opinion only as “an instructor of mathematics at a state college.” This
witness testified that the fact that the defendants were “a Caucasian
woman with a blond ponytail . . . [and] a Negro with a beard and
mustache” who drove a partly yellow automobile was enough to con-
vict the couple. To illustrate its point, the prosecution presented this
table, quoted here verbatim from the supreme court decision:

Characteristic Individual Probability
Partly yellow automobile )
Man with mustache Vi
Negro man with beard )
Girl with ponytail Y10
Girl with blond hair %
Interracial couple in car Y4 000

The math instructor called by the prosecution said that the prod-
uct rule applies to this data. By multiplying all the probabilities, one
concludes that the chances of a couple fitting all these distinctive
characteristics are 1 in 12 million. Accordingly, he said, one could
infer that the chances that the couple was innocent were 1 in 12 mil-
lion. The prosecutor then pointed out that these individual probabil-
ities were estimates and invited the jurors to supply their own guesses
and then do the math. He himself, he said, believed they were con-
servative estimates, and the probability he came up with employing
the factors he assigned was more like 1 in 1 billion. The jury bought
it and convicted the couple.

What is wrong with this picture? For one thing, as we've seen, in
order to find a compound probability by multiplying the component
probabilities, the categories have to be independent, and in this case
they clearly aren’t. For example, the table quotes the chance of
observing a “Negro man with beard” as 1 in 10 and a “man with mus-
tache” as 1 in 4. But most men with a beard also have a mustache, so
if you observe a “Negro man with beard,” the chances are no longer
1 in 4 that the man you observe has a mustache—they are much
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higher. That issue can be remedied if you eliminate the category
“Negro man with beard.” Then the product of the probabilities falls
to about 1 in 1 million.

There is another error in the analysis: the relevant probability is
not the one stated above —the probability that a couple selected at
random will match the suspects” description. Rather, the relevant
probability is the chance that a couple matching all these character-
istics is the guilty couple. The former might be 1 in I million. But as
for the latter, the population of the area adjoining the one where the
crime was committed was several million, so you might reasonably
expect there to be 2 or 3 couples in the area who matched the
description. In that case the probability that a couple who matched
the description was guilty, based on this evidence alone (which is
pretty much all the prosecution had), is only 1 in 2 or 3. Hardly
beyond a reasonable doubt. For these reasons the supreme court
overturned Collins’s conviction.

The use of probability and statistics in modern courtrooms is still
a controversial subject. In the Collins case the California Supreme
Court derided what it called “trial by mathematics,” but it left the
door open to more “proper applications of mathematical tech-
niques.” In the ensuing years, courts rarely considered mathematical
arguments, but even when attorneys and judges don’t quote expli-
cit probabilities or mathematical theorems, they do often employ
this sort of reasoning, as do jurors when they weigh the evidence.
Moreover, statistical arguments are becoming increasingly impor-
tant because of the necessity of assessing DNA evidence. Unfortu-
nately, with this increased importance has not come increased
understanding on the part of attorneys, judges, or juries. As explained
by Thomas Lyon, who teaches probability and the law at the Univer-
sity of Southern California, “Few students take a probability in law
course, and few attorneys feel it has a place.” In law as in other
realms, the understanding of randomness can reveal hidden layers of
truth, but only to those who possess the tools to uncover them. In the
next chapter we shall consider the story of the first man to study those
tools systematically.
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CHAPTER 3

Finding Your Way through

a Space of Possibilities

N THE YEARS leading up to 1576, an oddly attired old man

could be found roving with a strange, irregular gait up and down

the streets of Rome, shouting occasionally to no one in particular
and being listened to by no one at all. He had once been celebrated
throughout Europe, a famous astrologer, physician to nobles of the
court, chair of medicine at the University of Pavia. He had created
enduring inventions, including a forerunner of the combination lock
and the universal joint, which is used in automobiles today. He had
published 131 books on a wide range of topics in philosophy, medi-
cine, mathematics, and science. In 1576, however, he was a man
with a past but no future, living in obscurity and abject poverty. In
the late summer of that year he sat at his desk and wrote his final
words, an ode to his favorite son, his oldest, who had been executed
sixteen years earlier, at age twenty-six. The old man died on Septem-
ber 20, a few days shy of his seventy-fifth birthday. He had outlived
two of his three children; at his death his surviving son was employed
by the Inquisition as a professional torturer. That plum job was a
reward for having given evidence against his father.

Before his death, Gerolamo Cardano burned 170 unpublished
manuscripts.! Those sifting through his possessions found 111 that
survived. One, written decades earlier and, from the looks of it, often
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revised, was a treatise of thirty-two short chapters. Titled The Book on
Games of Chance, it was the first book ever written on the theory of
randomness. People had been gambling and coping with other
uncertainties for thousands of years. Can I make it across the desert
before I die of thirst? Is it dangerous to remain under the cliff while
the earth is shaking like this? Does that grin from the cave girl who
likes to paint buffaloes on the sides of rocks mean she likes me? Yet
until Cardano came along, no one had accomplished a reasoned
analysis of the course that games or other uncertain processes take.
Cardano’s insight into how chance works came embodied in a princi-
ple we shall call the law of the sample space. The law of the sample
space represented a new idea and a new methodology and has
formed the basis of the mathematical description of uncertainty in all
the centuries that followed. It is a simple methodology, a laws-of-
chance analog of the idea of balancing a checkbook. Yet with this
simple method we gain the ability to approach many problems sys-
tematically that would otherwise prove almost hopelessly confusing.
To illustrate both the use and the power of the law, we shall consider
a problem that although easily stated and requiring no advanced
mathematics to solve, has probably stumped more people than any
other in the history of randomness.

AS NEWSPAPER COLUMNS GO, Parade magazine’s “Ask Marilyn”
has to be considered a smashing success. Distributed in 350 newspa-
pers and boasting a combined circulation of nearly 36 million, the
question-and-answer column originated in 1986 and is still going
strong. The questions can be as enlightening as the answers, an (unsci-
entific) Gallup Poll of what is on Americans’ minds. For instance:

When the stock market closes at the end of the day, why does
everyone stand around smiling and clapping regardless of
whether the stocks are up or down?

A friend is pregnant with twins that she knows are fraternal.
What are the chances that at least one of the babies is a girl?
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When you drive by a dead skunk in the road, why does it
take about 10 seconds before you smell it? Assume that you
did not actually drive over the skunk.

Apparently Americans are a very practical people. The thing to note
here is that each of the queries has a certain scientific or mathemati-
cal component to it, a characteristic of many of the questions
answered in the column.

One might ask, especially if one knows a little something about
mathematics and science, “Who is this guru Marilyn?” Well, Marilyn
is Marilyn vos Savant, famous for being listed for years in the Guin-
ness World Records Hall of Fame as the person with the world’s high-
est recorded 1Q (228). She is also famous for being married to Robert
Jarvik, inventor of the Jarvik artificial heart. But sometimes famous
people, despite their other accomplishments, are remembered for
something they wished had never happened (“I did not have sexual
relations with that woman”). That may be the case for Marilyn, who
is most famous for her response to the following question, which
appeared in her column one Sunday in September 1990 (I have
altered the wording slightly):

Suppose the contestants on a game show are given the choice
of three doors: Behind one door is a car; behind the others,
goats. After a contestant picks a door, the host, who knows
what’s behind all the doors, opens one of the unchosen doors,
which reveals a goat. He then says to the contestant, “Do you
want to switch to the other unopened door?” Is it to the contes-
tant’s advantage to make the switch??

The question was inspired by the workings of the television game
show Let’s Make a Deal, which ran from 1963 to 1976 and in several
incarnations from 1980 to 1991. The show’s main draw was its hand-
some, amiable host, Monty Hall, and his provocatively clad assistant,
Carol Merrill, Miss Azusa (California) of 1957.

It had to come as a surprise to the show’s creators that after airing
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4,500 episodes in nearly twenty-seven years, it was this question of
mathematical probability that would be their principal legacy. This
issue has immortalized both Marilyn and Let’s Make a Deal because
of the vehemence with which Marilyn vos Savant’s readers responded
to the column. After all, it appears to be a pretty silly question. Two
doors are available—open one and you win; open the other and you
lose—so it seems self-evident that whether you change your choice
or not, your chances of winning are 50/50. What could be simpler?
The thing is, Marilyn said in her column that it is better to switch.

Despite the public’s much-heralded lethargy when it comes to
mathematical issues, Marilyn’s readers reacted as if she’d advocated
ceding California back to Mexico. Her denial of the obvious brought
her an avalanche of mail, 10,000 letters by her estimate.? If you ask
the American people whether they agree that plants create the oxy-
gen in the air, light travels faster than sound, or you cannot make
radioactive milk safe by boiling it, you will get double-digit disagree-
ment in each case (13 percent, 24 percent, and 35 percent, respec-
tively).* But on this issue, Americans were united: 92 percent agreed
Marilyn was wrong.

Many readers seemed to feel let down. How could a person they
trusted on such a broad range of issues be confused by such a simple
question? Was her mistake a symbol of the woeful ignorance of the
American people? Almost 1,000 PhDs wrote in, many of them math
professors, who seemed to be especially irate.” “You blew it,” wrote a
mathematician from George Mason University:

Let me explain: If one door is shown to be a loser, that infor-
mation changes the probability of either remaining choice —
neither of which has any reason to be more likely—to %2. As a
professional mathematician, I'm very concerned with the gen-
eral public’s lack of mathematical skills. Please help by con-
fessing your error and, in the future, being more careful.

From Dickinson State University came this: “I am in shock that after
being corrected by at least three mathematicians, you still do not see
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your mistake.” From Georgetown: “How many irate mathematicians
are needed to change your mind?” And someone from the U.S. Army
Research Institute remarked, “If all those PhDs are wrong the coun-
try would be in serious trouble.” Responses continued in such great
numbers and for such a long time that after devoting quite a bit of
column space to the issue, Marilyn decided she would no longer
address it.

The army PhD who wrote in may have been correct that if all
those PhDs were wrong, it would be a sign of trouble. But Marilyn
was correct. When told of this, Paul Erdés, one of the leading mathe-
maticians of the twentieth century, said, “That’s impossible.” Then,
when presented with a formal mathematical proof of the correct
answer, he still didn’t believe it and grew angry. Only after a col-
league arranged for a computer simulation in which Erdés watched
hundreds of trials that came out 2 to 1 in favor of switching did Erdos
concede he was wrong.®

How can something that seems so obvious be wrong? In the words
of a Harvard professor who specializes in probability and statistics,
“Our brains are just not wired to do probability problems very well.””
The great American physicist Richard Feynman once told me never
to think I understood a work in physics if all I had done was read
someone else’s derivation. The only way to really understand a the-
ory, he said, is to derive it yourself (or perhaps end up disproving it!).
For those of us who aren’t Feynman, re-proving other people’s work is
a good way to end up untenured and plying our math skills as a
checker at Home Depot. But the Monty Hall problem is one of those
that can be solved without any specialized mathematical knowledge.
You don’t need calculus, geometry, algebra, or even amphetamines,
which Erdos was reportedly fond of taking.® (As legend has it, once
after quitting for a month, he remarked, “Before, when I looked at a
piece of blank paper my mind was filled with ideas. Now all I see is a
blank piece of paper.”) All you need is a basic understanding of how
probability works and the law of the sample space, that framework for
analyzing chance situations that was first put on paper in the six-
teenth century by Gerolamo Cardano.
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GErROLAMO CARDANO was no rebel breaking forth from the intel-
lectual milieu of sixteenth-century Europe. To Cardano a dog’s howl
portended the death of a loved one, and a few ravens croaking on the
roof meant a grave illness was on its way. He believed as much as any-
one else in fate, in luck, and in seeing your future in the alignment of
planets and stars. Still, had he played poker, he wouldn’t have been
found drawing to an inside straight. For Cardano, gambling was sec-
ond nature. His feeling for it was seated in his gut, not in his head,
and so his understanding of the mathematical relationships among a
game’s possible random outcomes transcended his belief that owing
to fate, any such insight is futile. Cardano’s work also transcended the
primitive state of mathematics in his day, for algebra and even arith-
metic were yet in their stone age in the early sixteenth century, pre-
ceding even the invention of the equal sign.

History has much to say about Cardano, based on both his autobi-
ography and the writings of some of his contemporaries. Some of the
writings are contradictory, but one thing is certain: born in 1501,
Gerolamo Cardano was not a child you'd have put your money
on. His mother, Chiara, despised children, though—or perhaps
because—she already had three boys. Short, stout, hot tempered, and
promiscuous, she prepared a kind of sixteenth-century morning-after
pill when she became pregnant with Gerolamo—a brew of worm-
wood, burned barleycorn, and tamarisk root. She drank it down in an
attempt to abort the fetus. The brew sickened her, but the unborn
Gerolamo was unfazed, perfectly content with whatever metabolites
the concoction left in his mother’s bloodstream. Her other attempts
met with similar failure.

Chiara and Gerolamo’s father, Fazio Cardano, were not married,
but they often acted as if they were —they were known for their many
loud quarrels. A month before Gerolamo’s birth, Chiara left their
home in Milan to live with her sister in Pavia, twenty miles to the
south. Gerolamo emerged after three days of painful labor. One look
at the infant and Chiara must have thought she would be rid of him
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after all. He was frail, and worse, lay silent. Chiara’s midwife pre-
dicted he’d be dead within the hour. But if Chiara was thinking, good
riddance, she was let down again, for the baby’s wet nurse soaked him
in a bath of warm wine, and Gerolamo revived. The infant’s good
health lasted only a few months, however. Then he, his nurse, and
his three half brothers all came down with the plague. The Black
Death, as the plague is sometimes called, is really three distinct dis-
eases: bubonic, pneumonic, and septicemic plague. Cardano con-
tracted bubonic, the most common, named for the buboes, the
painful egg-size swellings of the lymph nodes that are one of the dis-
ease’s prominent symptoms. Life expectancy, once buboes appeared,
was about a week.

The Black Death had first entered Europe through a harbor in
Messina in northeastern Sicily in 1347, carried by a Genoese fleet
returning from the Orient.? The fleet was quickly quarantined, and
the entire crew died aboard the ship—but the rats survived and scur-
ried ashore, carrying both the bacteria and the fleas that would
spread them. The ensuing outbreak killed half the city within two
months and, eventually, between 25 percent and 50 percent of the
population of Europe. Successive epidemics kept coming, tamping
down the population of Europe for centuries. The year 1501 was a
bad one for the plague in Italy. Gerolamo’s nurse and brothers died.
The lucky baby got away with nothing but dishgurement: warts on
his nose, forehead, cheeks, and chin. He was destined to live nearly
seventy-five years. Along the way there was plenty of disharmony
and, in his early years, a good many beatings.

Gerolamo’s father was a bit of an operator. A sometime pal of
Leonardo da Vinci’s, he was by profession a geometer, never a profes-
sion that brought in much cash. Fazio often had trouble making the
rent, so he started a consulting business, providing the highborn with
advice on law and medicine. That enterprise eventually thrived,
aided by Fazio’s claim that he was descended from a brother of a fel-
low named Goffredo Castiglioni of Milan, better known as Pope
Celestine IV. When Gerolamo reached the age of five, his father
brought him into the business—in a manner of speaking. That is, he
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strapped a pannier to his son’s back, stuffed it with heavy legal and
medical books, and began dragging the young boy to meetings with
his patrons all over town. Gerolamo would later write that “from time
to time as we walked the streets my father would command me to
stop while he opened a book and, using my head as a table, read
some long passage, prodding me the while with his foot to keep still if
[ wearied of the great weight.”10

In 1516, Gerolamo decided his best opportunity lay in the field of
medicine and announced that he wanted to leave his family’s home
in Milan and travel back to Pavia to study there. Fazio wanted him to
study law, however, because then he would become eligible for an
annual stipend of 100 crowns. After a huge family brawl, Fazio
relented, but the question remained: without the stipend, how would
Gerolamo support himself in Pavia? He began to save the money he
earned reading horoscopes and tutoring pupils in geometry,
alchemy, and astronomy. Somewhere along the way he noticed he
had a talent for gambling, a talent that would bring him cash much
faster than any of those other means.

For anyone interested in gambling in Cardano’s day, every city
was Las Vegas. On cards, dice, backgammon, even chess, wagers
were made everywhere. Cardano classified these games according to
two types: those that involved some strategy, or skill, and those that
were governed by pure chance. In games like chess, Cardano risked
being outplayed by some sixteenth-century Bobby Fischer. But when
he bet on the fall of a couple of small cubes, his chances were as good
as anyone else’s. And yet in those games he did have an advantage,
because he had developed a better understanding of the odds of
winning in various situations than any of his opponents. And so for
his entrée into the betting world, Cardano played the games of
pure chance. Before long he had set aside over 1,000 crowns for his
education—more than a decade’s worth of the stipend his father
wanted for him. In 1520 he registered as a student in Pavia. Soon
after, he began to write down his theory of gambling.
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LiviNG WHEN HE DID, Cardano had the advantage of under-
standing many things that had been Greek to the Greeks, and to the
Romans, for the Hindus had taken the first large steps toward
employing arithmetic as a powerful tool. It was in that milieu that
positional notation in base ten developed, and became standard,
around A.D. 700." The Hindus also made great progress in the arith-
metic of fractions —something crucial to the analysis of probabilities,
since the chances of something occurring are always less than one.
This Hindu knowledge was picked up by the Arabs and eventually
brought to Europe. There the first abbreviations, p for “plus” and m
for “minus,” were used in the fifteenth century. The symbols + and —
were introduced around the same time by the Germans, but only to
indicate excess and deficient weights of chests. It gives one a feeling
for some of the challenges Cardano faced to note that the equal sign
did not yet exist, to be invented in 1557 by Robert Recorde of Oxford
and Cambridge, who, inspired by geometry, remarked that no things
could be more nearly alike than parallel lines and hence decided that
such lines should denote equality. And the symbol x, for multiplica-
tion, attributable to an Anglican minister, didn’t arrive on the scene
until the seventeenth century.

Cardano’s Book on Games of Chance covers card games, dice,
backgammon, and astragali. It is not perfect. In its pages are reflected
Cardano’s character, his crazy ideas, his wild temper, the passion
with which he approached every undertaking—and the turbulence
of his life and times. It considers only processes—such as the toss of a
die or the dealing of a playing card—in which one outcome is as
likely as another. And some points Cardano gets wrong. Still, The
Book on Games of Chance represents a beachhead, the first success in
the human quest to understand the nature of uncertainty. And Car-
dano’s method of attacking questions of chance is startling both in its
power and in its simplicity.

Not all the chapters of Cardano’s book treat technical issues. For
instance, chapter 26 is titled “Do Those Who Teach Well Also Play
Well?” (he concludes, “It seems to be a different thing to know and to
execute”). Chapter 29 is called “On the Character of Players”
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(“There are some who with many words drive both themselves and
others from their proper senses”). These seem more “Dear Abby”
than “Ask Marilyn.” But then there is chapter 14, “On Combined
Points” (on possibilities). There Cardano states what he calls “a gen-
eral rule” —our law of the sample space.

The term sample space refers to the idea that the possible out-
comes of a random process can be thought of as the points in a space.
In simple cases the space might consist of just a few points, but in
more complex situations it can be a continuum, just like the space
we live in. Cardano didn’t call it a space, however: the notion that a
set of numbers could form a space was a century off, awaiting the
genius of Descartes, his invention of coordinates, and his unification
of algebra and geometry.

In modern language, Cardano’s rule reads like this: Suppose a
random process has many equally likely outcomes, some favorable
(that is, winning), some unfavorable (losing). Then the probability of
obtaining a favorable outcome is equal to the proportion of outcomes
that are favorable. The set of all possible outcomes is called the sample
space. In other words, if a die can land on any of six sides, those six
outcomes form the sample space, and if you place a bet on, say, two
of them, your chances of winning are 2 in 6.

A word on the assumption that all the outcomes are equally likely.
Obviously that’s not always true. The sample space for observing
Oprah Winfrey’s adult weight runs (historically) from 145 pounds to
237 pounds, and over time not all weight intervals have proved
equally likely.!2 The complication that different possibilities have dif-
ferent probabilities can be accounted for by associating the proper
odds with each possible outcome—that is, by careful accounting.
But for now we’ll look at examples in which all outcomes are equally
probable, like those Cardano analyzed.

The potency of Cardano’s rule goes hand in hand with certain
subtleties. One lies in the meaning of the term outcomes. As late as
the eighteenth century the famous French mathematician Jean Le
Rond d’Alembert, author of several works on probability, misused the
concept when he analyzed the toss of two coins.!* The number of
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heads that turns up in those two tosses can be 0, 1, or 2. Since there
are three outcomes, Alembert reasoned, the chances of each must be
1 in 3. But Alembert was mistaken.

One of the greatest deficiencies of Cardano’s work was that he
made no systematic analysis of the different ways in which a series of
events, such as coin tosses, can turn out. As we shall see in the next
chapter, no one did that until the following century. Still, a series of
two coin tosses is simple enough that Cardano’s methods are easily
applied. The key is to realize that the possible outcomes of coin flip-
ping are the data describing how the two coins land, not the total
number of heads calculated from that data, as in Alembert’s analysis.
In other words, we should not consider 0, 1, or 2 heads as the possible
outcomes but rather the sequences (heads, heads), (heads, tails),
(tails, heads), and (tails, tails). These are the 4 possibilities that make
up the sample space.

The next step, according to Cardano, is to sort through the out-
comes, cataloguing the number of heads we can harvest from each.
Only 1 of the 4 outcomes— (heads, heads)—yields 2 heads. Simi-
larly, only (tails, tails) yields 0 heads. But if we desire 1 head, then 2
of the outcomes are favorable: (heads, tails) and (tails, heads). And so
Cardano’s method shows that Alembert was wrong: the chances are
25 percent for 0 or 2 heads but 50 percent for 1 head. Had Cardano
laid his cash on 1 head at 3 to 1, he would have lost only half the
time but tripled his money the other half, a great opportunity for a
sixteenth-century kid trying to save up money for college—and still
a great opportunity today if you can find anyone offering it.

A related problem often taught in elementary probability courses
is the two-daughter problem, which is similar to one of the questions
I quoted from the “Ask Marilyn” column. Suppose a mother is carry-
ing fraternal twins and wants to know the odds of having two gitls, a
boy and a girl, and so on. Then the sample space consists of all the
possible lists of the sexes of the children in their birth order: (girl,
girl), (girl, boy), (boy, girl), and (boy, boy). It is the same as the space
for the coin-toss problem except for the way we name the points:
heads becomes girl, and tails becomes boy. Mathematicians have a
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fancy name for the situation in which one problem is another in dis-
guise: they call it an isomorphism. When you find an isomorphism, it
often means you've saved yourself a lot of work. In this case it means
we can figure the chances that both children will be girls in exactly
the same way we figured the chances of both tosses coming up heads
in the coin-toss problem. And so without even doing the analysis, we
know that the answer is the same: 25 percent. We can now answer the
question asked in Marilyn’s column: the chance that at least one of
the babies will be a girl is the chance that both will be girls plus the
chance that just one will be a girl —that is, 25 percent plus 50 per-
cent, which is 75 percent.

In the two-daughter problem, an additional question is usually
asked: What are the chances, given that one of the children is a girl,
that both children will be girls? One might reason this way: since it is
given that one of the children is a girl, there is only one child left to
look at. The chance of that child’s being a girl is 50 percent, so the
probability that both children are girls is 50 percent.

That is not correct. Why? Although the statement of the problem
says that one child is a girl, it doesn’t say which one, and that changes
things. If that sounds confusing, that’s okay, because it provides a
good illustration of the power of Cardano’s method, which makes the
reasoning clear.

The new information —one of the children is a girfl —means that
we are eliminating from consideration the possibility that both chil-
dren are boys. And so, employing Cardano’s approach, we eliminate
the possible outcome (boy, boy) from the sample space. That leaves
only 3 outcomes in the sample space: (girl, boy), (boy, girl), and (girl,
girl). Of these, only (girl, girl) is the favorable outcome —that is, both
children are daughters—so the chances that both children are girls is
1 in 3, or 33 percent. Now we can see why it matters that the state-
ment of the problem didn’t specify which child was a daughter. For
instance, if the problem had asked for the chances of both children
being girls given that the first child is a girl, then we would have elim-
inated both (boy, boy) and (boy, girl) from the sample space and the
odds would have been 1 in 2, or 50 percent.
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One has to give credit to Marilyn vos Savant, not only for attempt-
ing to raise public understanding of elementary probability but also
for having the courage to continue to publish such questions even
after her frustrating Monty Hall experience. We will end this discus-
sion with another question taken from her column, this one from

March 1996:

My dad heard this story on the radio. At Duke University, two
students had received A’s in chemistry all semester. But on the
night before the final exam, they were partying in another state
and didn’t get back to Duke until it was over. Their excuse to
the professor was that they had a flat tire, and they asked if they
could take a make-up test. The professor agreed, wrote out a
test, and sent the two to separate rooms to take it. The first
question (on one side of the paper) was worth five points.
Then they flipped the paper over and found the second ques-
tion, worth 95 points: “which tire was it?” What was the proba-
bility that both students would say the same thing? My dad
and I think it’s 1 in 16. Is that right?1*

No, it is not: If the students were lying, the correct probability of
their choosing the same answer is 1 in 4 (if you need help to see why,
you can look at the notes at the back of this book)."> And now that
we're accustomed to decomposing a problem into lists of possibili-
ties, we are ready to employ the law of the sample space to tackle the
Monty Hall problem.

As I saip EARLIER, understanding the Monty Hall problem
requires no mathematical training. But it does require some careful
logical thought, so if you are reading this while watching Simpsons
reruns, you might want to postpone one activity or the other. The
good news is it goes on for only a few pages.

In the Monty Hall problem you are facing three doors: behind
one door is something valuable, say a shiny red Maserati; behind the
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other two, an item of far less interest, say the complete works of
Shakespeare in Serbian. You have chosen door 1. The sample space
in this case is this list of three possible outcomes:

Maserati is behind door 1.
Maserati is behind door 2.
Maserati is behind door 3.

Each of these has a probability of 1 in 3. Since the assumption is
that most people would prefer the Maserati, the first case is the win-
ning case, and your chances of having guessed right are 1 in 3.

Now according to the problem, the next thing that happens is that
the host, who knows what’s behind all the doors, opens one you did
not choose, revealing one of the sets of Shakespeare. In opening this
door, the host has used what he knows to avoid revealing the
Maserati, so this is not a completely random process. There are two
cases to consider.

One is the case in which your initial choice was correct. Let’s call
that the Lucky Guess scenario. The host will now randomly open
door 2 or door 3, and, if you choose to switch, instead of enjoying a
fast, sexy ride, you'll be the owner of Troilus and Cressida in the Tor-
lakian dialect. In the Lucky Guess scenario you are better off not
switching—but the probability of landing in the Lucky Guess sce-
nario is only 1 in 3.

The other case we must consider is that in which your initial
choice was wrong. We'll call that the Wrong Guess scenario. The
chances you guessed wrong are 2 out of 3, so the Wrong Guess sce-
nario is twice as likely to occur as the Lucky Guess scenario. How
does the Wrong Guess scenario differ from the Lucky Guess sce-
nario? In the Wrong Guess scenario the Maserati is behind one of
the doors you did not choose, and a copy of the Serbian Shakespeare
is behind the other unchosen door. Unlike the Lucky Guess sce-
nario, in this scenario the host does not randomly open an unchosen
door. Since he does not want to reveal the Maserati, he chooses to
open precisely the door that does not have the Maserati behind it. In
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other words, in the Wrong Guess scenario the host intervenes in
what until now has been a random process. So the process is no
longer random: the host uses his knowledge to bias the result, violat-
ing randomness by guaranteeing that if you switch your choice, you
will get the fancy red car. Because of this intervention, if you find
yourself in the Wrong Guess scenario, you will win if you switch and
lose if you don't.

To summarize: if you are in the Lucky Guess scenario (probabil-
ity 1 in 3), you'll win if you stick with your choice. If you are in the
Wrong Guess scenario (probability 2 in 3), owing to the actions of
the host, you will win if you switch your choice. And so your decision
comes down to a guess: in which scenario do you find yourself? If you
feel that ESP or fate has guided your initial choice, maybe you
shouldn’t switch. But unless you can bend silver spoons into pretzels
with your brain waves, the odds are 2 to 1 that you are in the Wrong
Guess scenario, and so it is better to switch. Statistics from the televi-
sion program bear this out: those who found themselves in the situa-
tion described in the problem and switched their choice won about
twice as often as those who did not.

The Monty Hall problem is hard to grasp because unless you
think about it carefully, the role of the host, like that of your mother,
goes unappreciated. But the host is fixing the game. The host’s role
can be made obvious if we suppose that instead of 3 doors, there were
100. You still choose door 1, but now you have a probability of 1 in
100 of being right. Meanwhile the chance of the Maserati’s being
behind one of the other doors is 99 in 100. As before, the host opens
all but one of the doors that you did not pick, being sure not to open
the door hiding the Maserati if it is one of them. After he is done, the
chances are still 1 in 100 that the Maserati was behind the door you
chose and still 99 in 100 that it was behind one of the other doors.
But now, thanks to the intervention of the host, there is only one door
left representing all 99 of those other doors, and so the probability
that the Maserati is behind that remaining door is 99 out of 100!

Had the Monty Hall problem been around in Cardano’s day,
would he have been a Marilyn vos Savant or a Paul Erdos? The law of
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the sample space handles the problem nicely, but we have no way of
knowing for sure, for the earliest known statement of the problem
(under a different name) didn’t occur until 1959, in an article by
Martin Gardner in Scientific American.'® Gardner called it “a won-
derfully confusing little problem” and noted that “in no other branch
of mathematics is it so easy for experts to blunder as in probability
theory.” Of course, to a mathematician a blunder is an issue of
embarrassment, but to a gambler it is an issue of livelihood. And so it
is fitting that when it came to the first systematic theory of probability,
it took Cardano, the gambler, to figure things out.

ONE DAY while Cardano was in his teens, one of his friends died
suddenly. After a few months, Cardano noticed, his friend’s name
was no longer mentioned by anyone. This saddened him and left a
deep impression. How does one overcome the fact that life is transi-
tory? He decided that the only way was to leave something behind —
heirs or lasting works of some kind or both. In his autobiography,
Cardano describes developing “an unshakable ambition” to leave his
mark on the world.!”

After obtaining his medical degree, Cardano returned to Milan,
secking employment. While in college he had written a paper, “On
the Differing Opinions of Physicians,” that essentially called the
medical establishment a bunch of quacks. The Milan College of
Physicians now returned the favor, refusing to admit him. That
meant he could not practice in Milan. And so, using money he had
saved from his tutoring and gambling, Cardano bought a tiny house
to the east, in the town of Piove di Sacco. He expected to do good
business there because disease was rife in the town and it had no
physician. But his market research had a fatal flaw: the town had no
doctor because the populace preferred to be treated by sorcerers and
priests. After years of intense work and study, Cardano found himself
with little income but a lot of spare time on his hands. It proved a
lucky break, for he seized the opportunity and began to write books.
One of them was The Book on Games of Chance.
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In 1532, after five years in Sacco, Cardano moved back to Milan,
hoping to have his work published and once again applying for
membership in the College of Physicians. On both fronts he was
roundly rejected. “In those days,” he wrote, “I was sickened so to the
heart that I would visit diviners and wizards so that some solution
might be found to my manifold troubles.”’® One wizard suggested he
shield himself from moon rays. Another that, on waking, he sneeze
three times and knock on wood. Cardano followed all their prescrip-
tions, but none changed his bad fortune. And so, hooded, he took to
sneaking from building to building at night, surreptitiously treating
patients who either couldn’t afford the fees of sanctioned doctors or
else didn’t improve in their care. To supplement the income he
earned from that endeavor, he wrote in his autobiography, he was
“forced to the dice again so that I could support my wife; and here my
knowledge defeated fortune, and we were able to buy food and live,
though our lodgings were desolate.”'” As for The Book on Games of
Chance, though he would revise and improve the manuscript repeat-
edly in the years to come, he never again sought to have it published,
perhaps because he realized it wasn’t a good idea to teach anyone to
gamble as well as he could.

Cardano eventually achieved his goals in life, obtaining both
heirs and fame—and a good deal of fortune to boot. The fortune
began to accrue when he published a book based on his old college
paper, altering the title from the somewhat academic “On the Differ-
ing Opinions of Physicians” to the zinger On the Bad Practice of
Medicine in Common Use. The book was a hit. And then, when one
of his secret patients, a well-known prior of the Augustinian order of
friars, suddenly (and in all likelihood by chance) improved and
attributed his recovery to Cardano’s care, Cardano’s fame as a physi-
cian took off on an upward spiral that reached such heights the Col-
lege of Physicians felt compelled not only to grant him membership
but also to make him its rector. Meanwhile he was publishing more
books, and they did well, especially one for the general public called
The Practice of Arithmetic. A few years later he published a more
technical book, called the Ars magna, or The Great Art, a treatise on
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algebra in which he gave the first clear picture of negative numbers
and a famous analysis of certain algebraic equations. When he
reached his early fifties, in the mid-1550s, Cardano was at his peak,
chairman of medicine at the University of Pavia and a wealthy man.

His good fortune didn’t last. To a large extent what brought Car-
dano down was the other part of his legacy— his children. When she
was sixteen, his daughter Chiara (named after his mother) seduced
his older son, Giovanni, and become pregnant. She had a successful
abortion, but it left her infertile. That suited her just fine, for she was
boldly promiscuous, even after her marriage, and contracted syphilis.
Giovanni went on to become a doctor but was soon more famous as a
petty criminal, so famous he was blackmailed into marriage by a fam-
ily of gold diggers who had proof that he had murdered, by poison, a
minor city official. Meanwhile Aldo, Cardano’s younger son who as a
child had engaged in the torture of animals, turned that passion into
work as a freelance torturer for the Inquisition. And like Giovanni, he
moonlighted as a crook.

A few years after his marriage Giovanni gave one of his servants a
mysterious mixture to incorporate into a cake for Giovanni’s wife.
When she keeled over after enjoying her dessert, the authorities put
two and two together. Despite Gerolamo’s spending a fortune on
lawyers, his attempts to pull strings, and his testimony on his son’s
behalf, young Giovanni was executed in prison a short while later.
The drain on Cardano’s funds and reputation made him vulnerable
to his old enemies. The senate in Milan expunged his name from the
list of those allowed to lecture, and accusing him of sodomy and
incest, had him exiled from the province. When Cardano left Milan
at the end of 1563, he wrote in his autobiography, he was “reduced
once more to rags, my fortune gone, my income ceased, my rents
withheld, my books impounded.”? By that time his mind was going
too, and he was given to periods of incoherence. As the final blow, a
self-taught mathematician named Niccolo Tartaglia, angry because
in Ars magna Cardano had revealed Tartaglia’s secret method of solv-
ing certain equations, coaxed Aldo into giving evidence against his
father in exchange for an official appointment as public torturer and
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executioner for the city of Bologna. Cardano was jailed briefly, then
quietly lived out his last few years in Rome. The Book on Games of
Chance was finally published in 1663, over 100 years after young
Cardano had first put the words to paper. By then his methods of
analysis had been reproduced and surpassed.
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CHAPTER 4

"Tracking the Pathways
to Success

F A GAMBLER of Cardano’s day had understood Cardano’s
I mathematical work on chance, he could have made a tidy profit
betting against less sophisticated players. Today, with what he
had to offer, Cardano could have achieved both fame and fortune
writing books like The Idiot’s Guide to Casting Dice with Suckers. But
in his own time, Cardano’s work made no big splash, and his Book on
Games of Chance remained unpublished until long after his death.
Why did Cardano’s work have so little impact? As we’ve said, one hin-
drance to those who preceded him was the lack of a good system of
algebraic notation. That system in Cardano’s day was improving but
was still in its infancy. Another roadblock, however, had yet to be
removed: Cardano worked at a time when mystical incantation was
more valued than mathematical calculation. If people did not look
for the order in nature and did not develop numerical descriptions of
events, then a theory of the effect of randomness on those events was
bound to go unappreciated. As it turned out, had Cardano lived just
a few decades later, both his work and its reception might have been
far different, for the decades after his death saw the unfolding of his-
toric changes in European thought and belief, a transformation that
has traditionally been dubbed the scientific revolution.
The scientific revolution was a revolt against a way of thinking
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that was prevalent as Europe emerged from the Middle Ages, an era
in which people’s beliefs about the way the world worked were not
scrutinized in any systematic manner. Merchants in one town stole
the clothes off a hanged man because they believed it would help
their sales of beer. Parishioners in another believed illness could be
cured by chanting sacrilegious prayers as they marched naked
around their church altar.! One trader even believed that relieving
himself in the “wrong” toilet would bring bad fortune. Actually he
was a bond trader who confessed his secret to a CNN reporter in
2003.2 Yes, some people still adhere to superstitions today, but at least
today, for those who are interested, we have the intellectual tools to
prove or disprove the efficacy of such actions. But if Cardano’s con-
temporaries, say, won at dice, rather than analyzing their experience
mathematically, they would say a prayer of thanks or refuse to wash
their lucky socks. Cardano himself believed that streaks of losses
occur because “fortune is averse” and that one way to improve your
results is to give the dice a good hard throw. If a lucky 7 is all in the
wrist, why stoop to mathematics?

The moment that is often considered the turning point for the sci-
entific revolution came in 1583, just seven years after Cardano’s
death. That is when a young student at the University of Pisa sat in a
cathedral and, according to legend, rather than listening to the ser-
vices, stared at something he found far more intriguing: the swinging
of a large hanging lamp. Using his pulse as a timer, Galileo Galilei
noticed that the lamp seemed to take the same amount of time to
swing through a wide arc as it did to swing through a narrow one.
That observation suggested to him a law: the time required by a
pendulum to perform a swing is independent of the amplitude of
the swing. Galileo’s was a precise and practical observation, and
although simple, it signified a new approach to the description of
physical phenomena: the idea that science must focus on experience
and experimentation —how nature operates—rather than on what
intuition dictates or our minds find appealing. And most of all, it
must be done with mathematics.

Galileo employed his scientific skills to write a short piece on
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gambling, “Thoughts about Dice Games.” The work was produced
at the behest of his patron, the grand duke of Tuscany. The problem
that bothered the grand duke was this: when you throw three dice,
why does the number 10 appear more frequently than the number 9?
The excess of 10s is only about 8 percent, and neither 10 nor 9 comes
up very often, so the fact that the grand duke played enough to notice
the small difference means he probably needed a good twelve-step
program more than he needed Galileo. For whatever reason, Galileo
was not keen to work on the problem and grumbled about it. But like
any consultant who wants to stay employed, he kept his grumbling
low-key and did his job.

If you throw a single die, the chances of any number in particular
coming up are 1 in 6. But if you throw two dice, the chances of differ-
ent totals are no longer equal. For example, there is a I in 36 chance
of the dice totaling 2 but twice that chance of their totaling 3. The
reason is that a total of 2 can be obtained in only 1 way, by tossing two
Is, but a total of 3 can be obtained in 2 ways, by tossing a 1 and then
a 2 ora 2 and then a 1. That brings us to the next big step in under-
standing random processes, which is the subject of this chapter: the
development of systematic methods for analyzing the number of
ways in which events can happen.

THE KEY TO UNDERSTANDING the grand duke’s confusion is to
approach the problem as if you were a Talmudic scholar: rather than
attempting to explain why 10 comes up more frequently than 9, we
ask, why shouldn’t 10 come up more frequently than 9? It turns out
there is a tempting reason to believe that the dice should sum to 10
and 9 with equal frequency: both 10 and 9 can be constructed in 6
ways from the throw of three dice. For 9 we can write those ways as
(621), (531), (522), (441), (432), and (333). For 10 they are (631),
(622), (541), (532), (442), and (433). According to Cardano’s law of
the sample space, the probability of obtaining a favorable outcome
is equal to the proportion of outcomes that are favorable. A sum of
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9 and 10 can be constructed in the same number of ways. So why is
one more probable than the other?

The reason is that, as I've said, the law of the sample space in its
original form applies only to outcomes that are equally probable, and
the combinations listed above are not. For instance, the outcome
(631)—that is, throwing a 6, a 3, and a 1 —is 6 times more likely than
the outcome (333) because although there is only 1 way you can
throw three 3s, there are 6 ways you can throw a 6, a 3, and a 1: you
can throw a 6 first, then a 3, and then a 1, or you can throw a 1 first,
then a 3, then a 6, and so on. Let’s represent an outcome in which we
are keeping track of the order of throws by a triplet of numbers sepa-
rated by commas. Then the short way of saying what we just said is
that the outcome (631) consists of the possibilities (1,3,6), (1,6,3),
(3,1,6), (3,6,1), (6,1,3), and (6,3,1), whereas the outcome (333) con-
sists only of (3,3,3). Once we've made this decomposition, we can see
that the outcomes are equally probable and we can apply the law.
Since there are 27 ways of rolling a 10 with three dice but only 25
ways to get a total of 9, Galileo concluded that with three dice,
rolling a 10 was 27/25, or about 1.08, times more likely.

In solving the problem, Galileo implicitly employed our next
important principle: The chances of an event depend on the number of
ways in which it can occur. That is not a surprising statement. The
surprise is just how large that effect is—and how difficult it can be to
calculate. For example, suppose you give a 10-question true-or-false
quiz to your class of 25 sixth-graders. Let’s do an accounting of the
results a particular student might achieve: she could answer all ques-
tions correctly; she could miss 1 question—that can happen in 10
ways because there are 10 questions she could miss; she could miss a
pair of questions—that can happen in 45 ways because there are 45
distinct pairs of questions; and so on. As a result, on average in a col-
lection of students who are randomly guessing, for every student scor-
ing 100 percent, you'll find about 10 scoring 90 percent and 45
scoring 80 percent. The chances of getting a grade near 50 percent
are of course higher still, but in a class of 25 the probability that at
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least one student will get a B (80 percent) or better if all the students
are guessing is about 75 percent. So if you are a veteran teacher, it is
likely that among all the students over the years who have shown up
unprepared and more or less guessed at your quizzes, some were
rewarded with an A or a B.

A few years ago Canadian lottery officials learned the importance
of careful counting the hard way when they decided to give back
some unclaimed prize money that had accumulated.? They pur-
chased 500 automobiles as bonus prizes and programmed a com-
puter to determine the winners by randomly selecting 500 numbers
from their list of 2.4 million subscriber numbers. The officials pub-
lished the unsorted list of 500 winning numbers, promising an auto-
mobile for each number listed. To their embarrassment, one
individual claimed (rightly) that he had won two cars. The officials
were flabbergasted —with over 2 million numbers to choose from,
how could the computer have randomly chosen the same number
twice? Was there a fault in their program?

The counting problem the lottery officials ran into is equivalent
to a problem called the birthday problem: how many people must a
group contain in order for there to be a better than even chance that
two members of the group will share the same birthday (assuming all
birth dates are equally probable)? Most people think the answer is
half the number of days in a year, or about 183. But that is the correct
answer to a different question: how many people do you need to have
at a party for there to be a better than even chance that one of them
will share your birthday? If there is no restriction on which two people
will share a birthday, the fact that there are many possible pairs of
individuals who might have shared birthdays changes the answer
drastically. In fact, the answer is astonishingly low: just 23. When
pulling from a pool of 2.4 million, as in the case of the Canadian lot-
tery, it takes many more than 500 numbers to have an even chance of
a repeat. But still that possibility should not have been ignored. The
chances of a match come out, in fact, to about 5 percent. Not huge,
but it could have been accounted for by having the computer cross
each number off the list as it was chosen. For the record, the Cana-
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dian lottery requested the lucky fellow to forgo the second car, but he
refused.

Another lottery mystery that raised many eyebrows occurred in
Germany on June 21, 1995.# The freak event happened in a lottery
called Lotto 6/49, which means that the winning six numbers are
drawn from the numbers 1 to 49. On the day in question the winning
numbers were 15-25-27-30-42-48. The very same sequence had been
drawn previously, on December 20, 1986. It was the first time in
3,016 drawings that a winning sequence had been repeated. What
were the chances of that? Not as bad as you'd think. When you do the
math, the chance of a repeat at some point over the years comes out
to around 28 percent.

Since in a random process the number of ways in which an out-
come can occur is a key to determining how probable it is, the key
question is, how do you calculate the number of ways in which some-
thing can occur? Galileo seems to have missed the significance of
that question. He did not carry his work on randomness beyond that
problem of dice and said in the first paragraph of his work that he was
writing about dice only because he had been “ordered” to do so.> In
1633, as his reward for promoting a new approach to science, Galileo
was condemned by the Inquisition. But science and theology had
parted ways for good; scientists now analyzing how? were unbur-
dened by the theologians’ issue of why? Soon a scholar from a new
generation, schooled since his youth on Galileo’s philosophy of sci-
ence, would take the analysis of contingency counting to new
heights, reaching a level of understanding without which most of
today’s science could not be conducted.

WITH THE BLOSSOMING of the scientific revolution the frontiers
of randomness moved from Italy to France, where a new breed of sci-
entist, rebelling against Aristotle and following Galileo, developed it
further and deeper than had either Cardano or Galileo. This time
the importance of the new work would be recognized, and it would
make waves all over Europe. Though the new ideas would again be
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developed in the context of gambling, the first of this new breed was
more a mathematician turned gambler than, like Cardano, a gam-
bler turned mathematician. His name was Blaise Pascal.

Pascal was born in June 1623 in Clermont-Ferrand, a little more
than 250 miles south of Paris. Realizing his son’s brilliance, and hav-
ing moved to Paris, Blaise’s father introduced him at age thirteen to a
newly founded discussion group there that insiders called the
Académie Mersenne after the black-robed friar who had founded it.
Mersenne’s society included the famed philosopher-mathematician
René Descartes and the amateur mathematics genius Pierre de Fer-
mat. The strange mix of brilliant thinkers and large egos, with
Mersenne present to stir the pot, must have had a great influence on
the teenage Blaise, who developed personal ties to both Fermat and
Descartes and picked up a deep grounding in the new scientific
method. “Let all the disciples of Aristotle . . . ;” he would write, “rec-
ognize that experiment is the true master who must be followed in
Physics.”0

But how did a bookish and stodgy fellow of pious beliefs become
involved with issues of the urban gambling scene? On and off Pascal
experienced stomach pains, had difficulty swallowing and keeping
food down, and suffered from debilitating weakness, severe
headaches, bouts of sweating, and partial paralysis of the legs. He sto-
ically followed the advice of his physicians, which involved bleed-
ings, purgings, and the consumption of asses’ milk and other
“disgusting” potions that he could barely keep from vomiting—
a “veritable torture,” according to his sister Gilberte.” Pascal had by
then left Paris, but in the summer of 1647, aged twenty-four and
growing desperate, he moved back with his sister Jacqueline in
search of better medical care. There his new bevy of doctors offered
the state-of-the-art advice that Pascal “ought to give up all continued
mental labor, and should seek as much as possible all opportunities
to divert himself.”® And so Pascal taught himself to kick back and
relax and began to spend time in the company of other young men of
leisure. Then, in 1651, Blaise’s father died, and suddenly Pascal was a
twenty-something with an inheritance. He put the cash to good use,
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at least in the sense of his doctors” orders. Biographers call the years
from 1651 to 1654 Pascal’s “worldly period.” His sister Gilberte
called it “the time of his life that was worst employed.” Though he
put some effort into self-promotion, his scientific research went
almost nowhere, but for the record, his health was the best it had ever
been.

Often in history the study of the random has been aided by an
event that was itself random. Pascal’s work represents such an occa-
sion, for it was his abandonment of study that led him to the study of
chance. It all began when one of his partying pals introduced him to
a forty-ive-year-old snob named Antoine Gombaud. Gombaud, a
nobleman whose title was chevalier de Méré, regarded himself as a
master of flirtation, and judging by his catalog of romantic entangle-
ments, he was. But de Méré was also an expert gambler who liked the
stakes high and won often enough that some suspected him of cheat-
ing. And when he stumbled on a little gambling quandary, he turned
to Pascal for help. With that, de Méré initiated an investigation that
would bring to an end Pascal’s scientific dry spell, cement de Méré’s
own place in the history of ideas, and solve the problem left open by
Galileo’s work on the grand duke’s dice-tossing question.

The year was 1654. The question de Méré brought to Pascal was
called the problem of points: Suppose you and another player are
playing a game in which you both have equal chances and the first
player to earn a certain number of points wins. The game is inter-
rupted with one player in the lead. What is the fairest way to divide
the pot? The solution, de Méré noted, should reflect each player’s
chance of victory given the score that prevails when the game is inter-
rupted. But how do you calculate that?

Pascal realized that whatever the answer, the methods needed to
calculate it were yet unknown, and those methods, whatever they
were, could have important implications in any type of competitive
situation. And yet, as often happens in theoretical research, Pascal
found himself unsure of, and even confused about, his plan of attack.
He decided he needed a collaborator, or at least another mathemati-
cian with whom he could discuss his ideas. Marin Mersenne, the
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great communicator, had died a few years earlier, but Pascal was still
wired into the Académie Mersenne network. And so in 1654 began
one of the great correspondences in the history of mathematics,
between Pascal and Pierre de Fermat.

In 1654, Fermat held a high position in the Tournelle, or criminal
court, in Toulouse. When the court was in session, a finely robed Fer-
mat might be found condemning errant functionaries to be burned
at the stake. But when the court was not in session, he would turn his
analytic skills to the gentler pursuit of mathematics. He may have
been an amateur, but Pierre de Fermat is usually considered the
greatest amateur mathematician of all times.

Fermat had not gained his high position through any particular
ambition or accomplishment. He achieved it the old-fashioned way,
by moving up steadily as his superiors dropped dead of the plague. In
fact, when Pascal’s letter arrived, Fermat himself was recovering from
a bout of the disease. He had even been reported dead, by his friend
Bernard Medon. When Fermat didn’t die, an embarrassed but pre-
sumably happy Medon retracted his announcement, but there is no
doubt that Fermat had been on the brink. As it turned out, though
twenty-two years Pascal’s senior, Fermat would outlive his newfound
correspondent by several years.

As we'll see, the problem of points comes up in any area of life
in which two entities compete. In their letters, Pascal and Fermat
each developed his own approach and solved several versions of the
problem. But it was Pascal’s method that proved simpler—even
beautiful —and yet is general enough to be applied to many prob-
lems we encounter in our everyday experience. Because the problem
of points first arose in a betting situation, I'll illustrate the problem
with an example from the world of sports. In 1996 the Atlanta Braves
beat the New York Yankees in the first 2 games of the baseball World
Series, in which the first team to win 4 games is crowned champion.
The fact that the Braves won the first 2 games didn’t necessarily mean
they were the superior team. Still, it could be taken as a sign that they
were indeed better. Nevertheless, for our current purposes we will
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stick to the assumption that either team was equally likely to win each
game and that the first 2 games just happened to go to the Braves.

Given that assumption, what would have been fair odds for a bet
on the Yankees—that is, what was the chance of a Yankee comeback?
To calculate it, we count all the ways in which the Yankees could
have won and compare that to the number of ways in which they
could have lost. Two games of the series had been played, so there
were 5 possible games yet to play. And since each of those games had
2 possible outcomes—a Yankee win (Y) or a Braves win (B)—there
were 2°, or 32, possible outcomes. For instance, the Yankees could
have won 3, then lost 2: YYYBB; or they could have alternated victo-
ries: YBYBY. (In the latter case, since the Braves would have won
4 games with the 6th game, the last game would never have been
played, but we’ll get to that in a minute.) The probability that the
Yankees would come back to win the series was equal to the number
of sequences in which they would win at least 4 games divided by the
total number of sequences, 32; the chance that the Braves would win
was equal to the number of sequences in which they would win at
least 2 more games also divided by 32.

This calculation may seem odd, because as I mentioned, it
includes scenarios (such as YBYBY) in which the teams keep playing
even after the Braves have won the required 4 games. The teams
would certainly not play a 7th game once the Braves had won 4. But
mathematics is independent of human whim, and whether or not the
players play the games does not affect the fact that such sequences
exist. For example, suppose you're playing a coin-toss game in which
you win if at any time heads come up. There are 22, or 4, possible
two-toss sequences: HT, HH, TH, and T'T" In the first two of these,
you would not bother tossing the coin again because you would
already have won. Still, your chances of winning are 3 in 4 because 3
of the 4 complete sequences include an H.

So in order to calculate the Yankees” and the Braves’ chances of
victory, we simply make an accounting of the possible 5-game
sequences for the remainder of the series. First, the Yankees would
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have been victorious if they had won 4 of the 5 possible remaining
games. That could have happened in 1 of 5 ways: BYYYY, YBYYY,
YYBYY, YYYBY, or YYYYB. Alternatively, the Yankees would have tri-
umphed if they had won all 5 of the remaining games, which could
have happened in only 1 way: YYYYY. Now for the Braves: they
would have become champions if the Yankees had won only
3 games, which could have happened in 10 ways (BBYYY, BYBYY,
and so on), or if the Yankees had won only 2 games (which again
could have happened in 10 ways), or if the Yankees had won only
1 game (which could have happened in 5 ways), or if they had won
none (which could have happened in only 1 way). Adding these pos-
sible outcomes together, we find that the chance of a Yankees victory
was 6 in 32, or about 19 percent, versus 26 in 32, or about 81 percent
for the Braves. According to Pascal and Fermat, if the series had
abruptly been terminated, that’s how they should have split the bonus
pot, and those are the odds that should have been set if a bet was to be
made after the first 2 games. For the record, the Yankees did come
back to win the next 4 games, and they were crowned champion.
The same reasoning could also be applied to the start of the
series—that is, before any game has been played. If the two teams
have equal chances of winning each game, you will find, of course,
that they have an equal chance of winning the series. But similar rea-
soning works if they don’t have an equal chance, except that the sim-
ple accounting I just employed would have to be altered slightly:
each outcome would have to be weighted by a factor describing its
relative probability. If you do that and analyze the situation at the
start of the series, you will discover that in a 7-game series there is a
sizable chance that the inferior team will be crowned champion. For
instance, if one team is good enough to warrant beating another in
55 percent of its games, the weaker team will nevertheless win a
7-game series about 4 times out of 10. And if the superior team could
be expected to beat its opponent, on average, 2 out of each 3 times
they meet, the inferior team will still win a 7-game series about once
every 5> matchups. There is really no way for sports leagues to change
this. In the lopsided %-probability case, for example, you'd have to
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play a series consisting of at minimum the best of 23 games to deter-
mine the winner with what is called statistical significance, meaning
the weaker team would be crowned champion 5 percent or less of
the time (see chapter 5). And in the case of one team’s having only a
55-45 edge, the shortest statistically significant “world series” would
be the best of 269 games, a tedious endeavor indeed! So sports play-
off series can be fun and exciting, but being crowned “world cham-
pion” is not a very reliable indication that a team is actually the
best one.

As I said, the same reasoning applies to more than games, gam-
bling, and sports. For example, it shows that if two companies com-
pete head-to-head or two employees within a company compete,
though there may be a winner and a loser each quarter or each year,
to get a reliable answer regarding which company or which
employee is superior by simply tallying who beats whom, you’d have
to make the comparison over decades or centuries. If, for instance,
employee A is truly superior and would in the long run win a perfor-
mance comparison with employee B on 60 out of 100 occasions, in a
simple best-of-5 series of comparisons the weaker employee will still
win almost one-third of the time. It is dangerous to judge ability by
short-term results.

The counting in all these problems has been simple enough to
carry out without much effort. But when the numbers are higher, the
counting becomes difficult. Consider, for example, this problem:
You are arranging a wedding reception for 100 guests, and each table
seats 10. You can’t sit your cousin Rod with your friend Amy because
eight years ago they had an affair and she dumped him. On the other
hand, both Amy and Leticia want to sit next to your buff cousin
Bobby, and your aunt Ruth had better be at a table out of earshot or
the dueling flirtations will be gossip fodder for holiday dinners for the
next five years. You carefully consider the possibilities. Take just the
first table. How many ways are there to choose 10 people from a
group of 100? That’s the same question as, in how many ways can you
apportion 10 investments among 100 mutual funds or 10 germanium
atoms among 100 locations in a silicon crystal? It’s the type of prob-
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lem that comes up repeatedly in the theory of randomness, and not
only in the problem of points. But with larger numbers it is tedious or
impossible to count the possibilities by listing them explicitly. That
was Pascal’s real accomplishment: a generally applicable and system-
atic approach to counting that allows you to calculate the answer
from a formula or read it off a chart. It is based on a curious arrange-
ment of numbers in the shape of a triangle.

THE COMPUTATIONAL METHOD at the heart of Pascal’s work was
actually discovered by a Chinese mathematician named Jia Xian
around 1050, published by another Chinese mathematician, Zhu
Shijie, in 1303, discussed in a work by Cardano in 1570, and plugged
into the greater whole of probability theory by Pascal, who ended up
getting most of the credit.!® But the prior work didn’t bother Pascal.
“Let no one say I have said nothing new,” Pascal argued in his autobi-
ography. “T'he arrangement of the subject is new. When we play ten-
nis, we both play with the same ball, but one of us places it better.”!!
The graphic invention employed by Pascal, given below, is thus
called Pascal’s triangle. In the figure, I have truncated Pascal’s trian-
gle at the tenth row, but it can be continued downward indefinitely.
In fact, it is easy to continue the triangle, for with the exception of the
1 at the apex, each number is the sum of the number in the line

Row
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1
10 1 10 45 120 210 252 210 120 45 10

Pascal’s triangle
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above it to the left and the number in the line above it to the right
(add a 0 if there is no number in the line above it to the left or to the
right).

Pascal’s triangle is useful any time you need to know the number
of ways in which you can choose some number of objects from a col-
lection that has an equal or greater number. Here is how it works in
the case of the wedding guests: To find the number of distinct seat-
ings of 10 you can form from a group of 100 guests, you would start
by looking down the numbers to the left of the triangle until you
found the row labeled 100. The triangle I supplied does not go down
that far, but for now let’s pretend it does. The first number in row 100
tells you the number of ways you can choose 0 guests from a group of
100. There is just 1 way, of course: you simply don’t choose anyone.
That is true no matter how many total guests you are choosing from,
which is why the first number in every row is a 1. The second number
in row 100 tells you the number of ways you can choose 1 guest from
the group of 100. There are 100 ways to do that: you can choose just
guest number 1, or just guest number 2, and so on. That reasoning
applies to every row, and so the second number in each row is simply
the number of that row. The third number in each row represents the
number of distinct groups of 2 you can form, and so on. The number
we seek—the number of distinct arrangements of 10 you can form —
is therefore the eleventh number in the row. Even if I had extended
the triangle to include 100 rows, that number would be far too large
to put on the page. In fact, when some wedding guest inevitably com-
plains about the seating arrangements, you might point out how long
it would have taken you to consider every possibility: assuming you
spent one second considering each one, it would come to roughly
10,000 billion years. The unhappy guest will assume, of course, that
you are being histrionic.

In order for us to use Pascal’s triangle, let’s say for now that your
guest list consists of just 10 guests. Then the relevant row is the one at
the bottom of the triangle I provided, labeled 10. The numbers in
that row represent the number of distinct tables of 0, 1, 2, and so on,
that can be formed from a collection of 10 people. You may recog-
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nize these numbers from the sixth-grade quiz example —the number
of ways in which a student can get a given number of problems
wrong on a 10-question true-or-false test is the same as the number of
ways in which you can choose guests from a group of 10. That is one
of the reasons for the power of Pascal’s triangle: the same mathemat-
ics can be applied to many different situations. For the Yankees-
Braves World Series example, in which we tediously counted all the
possibilities for the remaining 5 games, we can now read the number
of ways in which the Yankees can win 0, 1, 2, 3,4, or 5 games directly
from row 5 of the triangle:

1 5 10 10 5 1

We can see at a glance that the Yankees” chance of winning 2
games (10 ways) was twice as high as their chance of winning 1 game
(5 ways).

Once you learn the method, applications of Pascal’s triangle
crop up everywhere. A friend of mine once worked for a start-up
computer-games company. She would often relate how, although the
marketing director conceded that small focus groups were suited for
“qualitative conclusions only,” she nevertheless sometimes reported
an “overwhelming” 4-to-2 or 5-to-1 agreement among the members
of the group as if it were meaningful. But suppose you hold a focus
group in which 6 people will examine and comment on a new prod-
uct you are developing. Suppose that in actuality the product appeals
to half the population. How accurately will this preference be
reflected in your focus group? Now the relevant line of the triangle is
the one labeled 6, representing the number of possible subgroups of 0,
1,2,3,4, 5, or 6 whose members might like (or dislike) your product:

1 6 15 20 15 6 1
From these numbers we see that there are 20 ways in which the

group members could split 50/50, accurately reflecting the views of
the populace at large. But there are also 1 + 6 + 15+ 15+ 6+ 1 =44
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ways in which you might find an unrepresentative consensus, either
for or against. So if you are not careful, the chances of being misled
are 44 out of 64, or about two-thirds. This example does not prove
that if agreement is achieved, it is random. But neither should you
assume that it is significant.

Pascal and Fermat’s analysis proved to be a big first step in a coher-
ent mathematical theory of randomness. The final letter of their
famous exchange is dated October 27, 1654. A few weeks later Pas-
cal sat in a trance for two hours. Some call that trance a mystical
experience. Others lament that he had finally blasted off from planet
Sanity. However you describe it, Pascal emerged from the event
a transformed man. It was a transformation that would lead him
to make one more fundamental contribution to the concept of
randomness.

IN 1662, a few days after Pascal died, a servant noticed a curious
bulge in one of Pascal’s jackets. The servant pulled open the lining to
find hidden within it folded sheets of parchment and paper. Pascal
had apparently carried them with him every day for the last eight
years of his life. Scribbled on the sheets, in his handwriting, was a
series of isolated words and phrases dated November 23, 1654. The
writings were an emotional account of the trance, in which he
described how God had come to him and in the space of two hours
delivered him from his corrupt ways.

Following that revelation, Pascal had dropped most of his friends,
calling them “horrible attachments.”!? He sold his carriage, his
horses, his furniture, his library—everything except his Bible. He
gave his money to the poor, leaving himself with so little that he often
had to beg or borrow to obtain food. He wore an iron belt with points
on the inside so that he was in constant discomfort and pushed the
belt’s spikes into his flesh whenever he found himself in danger of
feeling happy. He denounced his studies of mathematics and sci-
ence. Of his childhood fascination with geometry, he wrote, “I can
scarcely remember that there is such a thing as geometry. I recognize
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geometry to be so useless . . . it is quite possible I shall never think of
it again.”1?

Yet Pascal remained productive. In the years that followed the
trance, he recorded his thoughts about God, religion, and life. Those
thoughts were later published in a book titled Pensées, a work that is
still in print today. And although Pascal had denounced mathemat-
ics, amid his vision of the futility of the worldly life is a mathematical
exposition in which he trained his weapon of mathematical probabil-
ity squarely on a question of theology and created a contribution just
as important as his earlier work on the problem of points.

The mathematics in Pensées is contained in two manuscript pages
covered on both sides by writing going in every direction and full of
erasures and corrections. In those pages, Pascal detailed an analysis
of the pros and cons of one’s duty to God as if he were calculating
mathematically the wisdom of a wager. His great innovation was his
method of balancing those pros and cons, a concept that is today
called mathematical expectation.

Pascal’s argument went like this: Suppose you concede that you
don’t know whether or not God exists and therefore assign a 50 per-
cent chance to either proposition. How should you weigh these odds
when deciding whether to lead a pious life? If you act piously and
God exists, Pascal argued, your gain —eternal happiness—is infinite.
If, on the other hand, God does not exist, your loss, or negative
return, is small —the sacrifices of piety. To weigh these possible gains
and losses, Pascal proposed, you multiply the probability of each pos-
sible outcome by its payoff and add them all up, forming a kind of
average or expected payoff. In other words, the mathematical expec-
tation of your return on piety is one-half infinity (your gain if God
exists) minus one-half a small number (your loss if he does not exist).
Pascal knew enough about infinity to know that the answer to this cal-
culation is infinite, and thus the expected return on piety is infinitely
positive. Every reasonable person, Pascal concluded, should there-
fore follow the laws of God. Today this argument is known as Pascal’s
wager.

Expectation is an important concept not just in gambling but in
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all decision making. In fact, Pascal’s wager is often considered the
founding of the mathematical discipline of game theory, the quanti-
tative study of optimal decision strategies in games. | must admit I
find such thinking addictive, and so I sometimes carry it a bit too far.
“How much does that parking meter cost?” I ask my son. The sign
says 25¢. Yes, but 1 time in every 20 or so visits, I come back late and
find a ticket, which runs $40, so the 25¢ cost of the meter is really just
a cruel lure, I explain, because my real cost is $2.25. (The extra $2
comes from my | in 20 chance of getting a ticket multiplied by its
$40 cost.) “How about our driveway,” I ask my other son, “is it a toll
road?” Well, we've lived at the house about 5 years, or roughly 2,400
times of backing down the driveway, and 3 times I've clipped my mir-
ror on the protruding fence post at $400 a shot. You may as well put a
toll box out there and toss in 50¢ each time you back up, he tells me.
He understands expectation. (He also recommends that I refrain
from driving them to school before I've had my morning coffee.)

Looking at the world through the lens of mathematical expecta-
tion, one often comes upon surprising results. For example, a recent
sweepstakes sent through the mail offered a grand prize of $5 mil-
lion.* All you had to do to win was mail in your entry. There was no
limit on how many times you could enter, but each entry had to be
mailed in separately. The sponsors were apparently expecting about
200 million entries, because the fine print said that the chances of
winning were 1 in 200 million. Does it pay to enter this kind of “free
sweepstakes offer”? Multiplying the probability of winning times the
payoff, we find that each entry was worth Y40 of $1, or 2.5¢ —far less
than the cost of mailing it in. In fact, the big winner in this contest
was the post office, which, if the projections were correct, made
nearly $80 million in postage revenue on all the submissions.

Here’s another crazy game. Suppose the state of California made
its citizens the following offer: Of all those who pay the dollar or two
to enter, most will receive nothing, one person will receive a fortune,
and one person will be put to death in a violent manner. Would any-
one enroll in that game? People do, and with enthusiasm. It is called
the state lottery. And although the state does not advertise it in the
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manner in which I have described it, that is the way it works in prac-
tice. For while one lucky person wins the grand prize in each game,
many millions of other contestants drive to and from their local ticket
vendors to purchase their tickets, and some die in accidents along the
way. Applying statistics from the National Highway Traffic Safety
Administration and depending on such assumptions as how far each
individual drives, how many tickets he or she buys, and how many
people are involved in a typical accident, you find that a reasonable
estimate of those fatalities is about one death per game.

State governments tend to ignore arguments about the possible
bad effects of lotteries. That’s because, for the most part, they know
enough about mathematical expectation to arrange that for each
ticket purchased, the expected winnings—the total prize money
divided by the number of tickets sold—is less than the cost of the
ticket. This generally leaves a tidy difference that can be diverted to
state coffers. In 1992, however, some investors in Melbourne, Aus-
tralia, noticed that the Virginia Lottery violated this principle.’> The
lottery involved picking 6 numbers from 1 to 44. Pascal’s triangle,
should we find one that goes that far, would show that there are
7,059,052 ways of choosing 6 numbers from a group of 44. The lot-
tery jackpot was $27 million, and with second, third, and fourth
prizes included, the pot grew to $27,918,561. The clever investors
reasoned, if they bought one ticket with each of the possible
7,059,052 number combinations, the value of those tickets would
equal the value of the pot. That made each ticket worth about $27.9
million divided by 7,059,052, or about $3.95. For what price was the
state of Virginia, in all its wisdom, selling the tickets? The usual $1.

The Australian investors quickly found 2,500 small investors in
Australia, New Zealand, Europe, and the United States willing to put
up an average of $3,000 each. If the scheme worked, the yield on that
investment would be about $10,800. There were some risks in their
plan. For one, since they weren’t the only ones buying tickets, it was
possible that another player or even more than one other player
would also choose the winning ticket, meaning they would have to
split the pot. In the 170 times the lottery had been held, there was no
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winner 120 times, a single winner only 40 times, and two winners
just 10 times. If those frequencies reflected accurately their odds,
then the data suggested there was a 120 in 170 chance they would get
the pot all to themselves, a 40 in 170 chance they would end up with
half the pot, and a 10 in 170 chance they would win just a third of it.
Recalculating their expected winnings employing Pascal’s principle
of mathematical expectation, they found them to be (120/170 X
$27.9 million) + (40/170 x $13.95 million) + (10/170 x $6.975 mil-
lion) = $23.4 million. That is $3.31 per ticket, a great return on a $1
expenditure even after expenses.

But there was another danger: the logistic nightmare of complet-
ing the purchase of all the tickets by the lottery deadline. That could
lead to the expenditure of a significant portion of their funds with no
significant prize to show for it.

The members of the investment group made careful prepara-
tions. They filled out 1.4 million slips by hand, as required by the
rules, each slip good for five games. They placed groups of buyers at
125 retail outlets and obtained cooperation from grocery stores,
which profited from each ticket they sold. The scheme got going just
seventy-two hours before the deadline. Grocery-store employees
worked in shifts to sell as many tickets as possible. One store sold
75,000 in the last forty-eight hours. A chain store accepted bank
checks for 2.4 million tickets, assigned the work of printing the tick-
ets among its stores, and hired couriers to gather them. Still, in the
end, the group ran out of time: they had purchased just 5 million of
the 7,059,052 tickets.

Several days passed after the winning ticket was announced, and
no one came forward to present it. The consortium had won, but it
took its members that long to find the winning ticket. Then, when
state lottery officials discovered what the consortium had done, they
balked at paying. A month of legal wrangling ensued before the ofh-
cials concluded they had no valid reason to deny the group. Finally,
they paid out the prize.

To the study of randomness, Pascal contributed both his ideas
about counting and the concept of mathematical expectation. Who
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knows what else he might have discovered, despite his renouncing
mathematics, if his health had held up. But it did not. In July 1662,
Pascal became seriously ill. His physicians prescribed the usual
remedies: they bled him and administered violent purges, enemas,
and emetics. He improved for a while, and then the illness returned,
along with severe headaches, dizziness, and convulsions. Pascal
vowed that if he survived, he would devote his life to helping the poor
and asked to be moved to a hospital for the incurable, in order that, if
he died, he would be in their company. He did die, a few days later,
in August 1662. He was thirty-nine. An autopsy found the cause of
death to be a brain hemorrhage, but it also revealed lesions in his
liver, stomach, and intestines that accounted for the illnesses that had
plagued him throughout his life.
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CHAPTER 3§

The Dueling Laws of Large

and Small Numbers

N THEIR WORK, Cardano, Galileo, and Pascal assumed that
Ithe probabilities relevant to the problems they tackled were

known. Galileo, for example, assumed that a die has an equal
chance of landing on any of its six faces. But how solid is such
“knowledge”? The grand duke’s dice were probably designed not to
favor any face, but that doesn’t mean fairness was actually achieved.
Galileo could have tested his assumption by observing a number of
tosses and recording how often each face came up. If he had repeated
the test several times, however, he would probably have found a
slightly different distribution each time, and even small deviations
might have mattered, given the tiny differential he was asked to
explain. In order to make the early work on randomness applicable to
the real world, that issue had to be addressed: What is the connection
between underlying probabilities and observed results? What does it
mean, from a practical point of view, when we say the chances are
1 in 6 a die will land on 2? If it doesn’t mean that in any series of
tosses the die will land on the 2 exactly 1 time in 6, then on what do
we base our belief that the chances of throwing a 2 really are 1 in 6?
And what does it mean when a doctor says that a drug is 70 percent
effective or has serious side effects in 1 percent of the cases or when a
poll finds that a candidate has support of 36 percent of voters? These
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are deep questions, related to the very meaning of the concept of ran-
domness, a concept mathematicians still like to debate.

[ recently engaged in such a discussion one warm spring day with
a statistician visiting from Hebrew University, Moshe, who sat across
the lunch table from me at Caltech. Between spoonfuls of nonfat
yogurt, Moshe espoused the opinion that truly random numbers do
not exist. “There is no such thing,” he said. “Oh, they publish charts
and write computer programs, but they are just fooling themselves.
No one has ever found a method of producing randomness that’s any
better than throwing a die, and throwing a die just won’t do it.”

Moshe waved his white plastic spoon at me. He was agitated now.
I felt a connection between his feelings about randomness and his
religious convictions. Moshe is an Orthodox Jew, and I know that
many religious people have problems thinking God can allow ran-
domness to exist. “Suppose you want a string of N random numbers
between 1 and 6,” he told me. “You throw a die N times and record
the string of N numbers that comes up. Is that a random string?”

No, he claimed, because no one can make a perfect die. There
will always be some faces that are favored and some that are disfa-
vored. It might take 1,000 throws to notice the difference, or 1 bil-
lion, but eventually you will notice it. You'll see more 4s than 6s or
maybe fewer. Any artificial device is bound to suffer from that flaw,
he said, because human beings do not have access to perfection.
That may be, but Nature does, and truly random events do occur on
the atomic level. In fact, that is the very basis of quantum theory, and
so we spent the rest of our lunch in a discussion of quantum optics.

Today cutting-edge quantum generators produce truly random
numbers from the toss of Nature’s perfect quantum dice. In the
past the perfection necessary for randomness was indeed an elusive
goal. One of the most creative approaches came from New York
City’s Harlem crime syndicates around 1920.! Needing a daily supply
of five-digit random numbers for an illegal lottery, the racketeers
thumbed their noses at the authorities by employing the last five dig-

its of the U.S. Treasury balance. (At this writing the U.S. government
is in debt by $8,995,800,515,946.50, or $29,679.02 per person, so
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today the racketeers could have obtained their five digits from the per
capita debt!) Their so-called Treasury lottery ran afoul of not only
criminal law, however, but also scientific law, for according to a rule
called Benford’s law, numbers arising in this cumulative fashion are
not random but rather are biased in favor of the lower digits.

Benford’s law was discovered not by a fellow named Benford but
by the American astronomer Simon Newcomb. Around 1881, New-
comb noticed that the pages of books of logarithms that dealt with
numbers beginning with the numeral 1 were dirtier and more frayed
than the pages corresponding to numbers beginning with the
numeral 2, and so on, down to the numeral 9, whose pages, in com-
parison, looked clean and new. Assuming that in the long run, wear
was proportional to amount of use, Newcomb concluded from his
observations that the scientists with whom he shared the book were
working with data that reflected that distribution of digits. The law’s
current name arose after Frank Benford noticed the same thing, in
1938, when scrutinizing the log tables at the General Electric
Research Laboratory in Schenectady, New York. But neither man
proved the law. That didn’t happen until 1995, in work by Ted Hill, a
mathematician at the Georgia Institute of Technology.

According to Benford’s law, rather than all nine digits” appearing
with equal frequency, the number 1 should appear as the first digit in
data about 30 percent of the time; the digit Z, about 18 percent of the
time; and so on, down to the digit 9, which should appear as the first
digit about 5 percent of the time. A similar law, though less pro-
nounced, applies to later digits. Many types of data obey Benford’s
law, in particular, financial data. In fact, the law seems tailor-made
for mining large amounts of financial data in search of fraud.

One famous application involved a young entrepreneur named
Kevin Lawrence, who raised $91 million to create a chain of high-
tech health clubs.? Engorged with cash, Lawrence raced into action,
hiring a bevy of executives and spending his investors’ money as
quickly as he had raised it. That would have been fine except for one
detail: he and his cohorts were spending most of the money not on
the business but on personal items. And since several homes, twenty
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personal watercraft, forty-seven cars (including five Hummers, four
Ferraris, three Dodge Vipers, two DeTomaso Panteras, and a Lam-
borghini Diablo), two Rolex watches, a twenty-one-carat diamond
bracelet, a $200,000 samurai sword, and a commercial-grade cotton
candy machine would have been difficult to explain as necessary
business expenditures, Lawrence and his pals tried to cover their
tracks by moving investors’ money through a complex web of bank
accounts and shell companies to give the appearance of a bustling
and growing business. Unfortunately for them, a suspicious forensic
accountant named Darrell Dorrell compiled a list of over 70,000
numbers representing their various checks and wire transters and
compared the distribution of digits with Benford’s law. The numbers
failed the test.? That, of course, was only the beginning of the investi-
gation, but from there the saga unfolded predictably, ending the day
before Thanksgiving 2003, when, flanked by his attorneys and clad in
light blue prison garb, Kevin Lawrence was sentenced to twenty years
without possibility of parole. The IRS has also studied Benford’s law
as a way to identify tax cheats. One researcher even applied the law to
thirteen years of Bill Clinton’s tax returns. They passed the test.*

Presumably neither the Harlem syndicate nor its customers
noticed these regularities in their lottery numbers. But had people
like Newcomb, Benford, or Hill played their lottery, in principle they
could have used Benford’s law to make favorable bets, earning a nice
supplement to their scholar’s salary.

In 1947, scientists at the Rand Corporation needed a large table
of random digits for a more admirable purpose: to help find approxi-
mate solutions to certain mathematical equations employing a tech-
nique aptly named the Monte Carlo method. To generate the digits,
they employed electronically generated noise, a kind of electronic
roulette wheel. Is electronic noise random? That is a question as sub-
tle as the definition of randomness itself.

In 1896 the American philosopher Charles Sanders Peirce wrote
that a random sample is one “taken according to a precept or method
which, being applied over and over again indefinitely, would in the
long run result in the drawing of any one of a set of instances as often
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as any other set of the same number.” That is called the frequency
interpretation of randomness. The main alternative to it is called the
subjective interpretation. Whereas in the frequency interpretation
you judge a sample by the way it turned out, in the subjective inter-
pretation you judge a sample by the way it is produced. According to
the subjective interpretation, a number or set of numbers is consid-
ered random if we either don’t know or cannot predict how the
process that produces it will turn out.

The difference between the two interpretations is more nuanced
than it may seem. For example, in a perfect world a throw of a die
would be random by the first definition but not by the second, since
all faces would be equally probable but we could (in a perfect world)
employ our exact knowledge of the physical conditions and the laws
of physics to determine before each throw exactly how the die will
land. In the imperfect real world, however, a throw of a die is random
according to the second definition but not the first. That’s because, as
Moshe pointed out, owing to its imperfections, a die will not land on
each face with equal frequency; nevertheless, because of our limita-
tions we have no prior knowledge about any face being favored over
any other.

In order to decide whether their table was random, the Rand sci-
entists subjected it to various tests. Upon closer inspection, their sys-
tem was shown to have biases, just like Moshe’s archetypally
imperfect dice.® The Rand scientists made some refinements to their
system but never managed to completely banish the regularities. As
Moshe said, complete chaos is ironically a kind of perfection. Still,
the Rand numbers proved random enough to be useful, and the com-
pany published them in 1955 under the catchy title A Million Ran-
dom Digits.

In their research the Rand scientists ran into a roulette-wheel
problem that had been discovered, in some abstract way, almost a
century earlier by an Englishman named Joseph Jagger.” Jagger was
an engineer and a mechanic in a cotton factory in Yorkshire, and so
he had an intuitive feel for the capabilities—and the shortcomings—
of machinery and one day in 1873 turned his intuition and fertile

85



THE DRUNKARD’'S WALK

mind from cotton to cash. How perfectly, he wondered, can the
roulette wheels in Monte Carlo really work?

The roulette wheel —invented, at least according to legend, by
Blaise Pascal as he was tinkering with an idea for a perpetual-motion
machine—is basically a large bowl with partitions (called frets) that
are shaped like thin slices of pie. When the wheel is spun, a marble
first bounces along the rim of the bowl but eventually comes to rest
in one of the compartments, which are numbered 1 through 36, plus
0 (and 00 on American roulette wheels). The bettor’s job is simple: to
guess in which compartment the marble will land. The existence of
roulette wheels is pretty good evidence that legitimate psychics don’t
exist, for in Monte Carlo if you bet $1 on a compartment and the
marble lands there, the house pays you $35 (plus your initial dollar).
If psychics really existed, you'd see them in places like that, hooting
and dancing and pushing wheelbarrows of cash down the street, and
not on Web sites calling themselves Zelda Who Knows All and Sees
All and offering twenty-four-hour free online love advice in competi-
tion with about 1.2 million other Web psychics (according to
Google). For me both the future and, increasingly, the past unfortu-
nately appear obscured by a thick fog. But I do know one thing: my
chances of losing at European roulette are 36 out of 37; my chances
of winning, 1 out of 37. That means that for every $1 I bet, the casino
stands to win (3%57 x $1) — (47 x $35). That comes to %47 of a dollar,
or about 2.7¢. Depending on my state of mind, it’s either the price I
pay for the enjoyment of watching a little marble bounce around a
big shiny wheel or else the price I pay for the opportunity of having
lightning strike me (in a good way). At least that is how it is supposed
to work.

But does it? Only if the roulette wheels are perfectly balanced,
thought Jagger, and he had worked with enough machines to share
Moshe’s point of view. He was willing to bet they weren’t. So he gath-
ered his savings, traveled to Monte Carlo, and hired six assistants,
one for each of the casino’s six roulette wheels. Every day his assis-
tants observed the wheels, writing down every number that came up
in the twelve hours the casino was open. Every night, back in his
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hotel room, Jagger analyzed the numbers. After six days, he had not
detected any bias in five of the wheels, but on the sixth wheel nine
numbers came up noticeably more often than the others. And so on
the seventh day he headed to the casino and started to bet heavily on
the nine favored numbers: 7, 8,9, 17, 18, 19, 22, 28, and 29.

When the casino shut that night, Jagger was up $70,000. His win-
nings did not go without notice. Other patrons swarmed his table,
tossing down their own cash to get in on a good thing. And casino
inspectors were all over him, trying to decipher his system or, better,
catch him cheating. By the fourth day of betting, Jagger had amassed
$300,000, and the casino’s managers were desperate to get rid of the
mystery guy, or at least thwart his scheme. One imagines this being
accomplished by a burly fellow from Brooklyn. Actually the casino
employees did something far more clever.

On the fifth day, Jagger began to lose. His losing, like his winning,
was not something you could spot immediately. Both before and after
the casino’s trick, he would win some and lose some, only now he lost
more often than he won instead of the other way around. With the
casino’s small margin, it would take some pretty diligent betting to
drain Jagger’s funds, but after four days of sucking in casino money,
he wasn’t about to let up on the straw. By the time his change of luck
deterred him, Jagger had lost half his fortune. One may imagine that
by then his mood —not to mention the mood of his hangers-on —was
sour. How could his scheme have suddenly failed?

Jagger at last made an astute observation. In the dozens of hours
he had spent winning, he had come to notice a tiny scratch on the
roulette wheel. This scratch was now absent. Had the casino kindly
touched it up so that he could drive them to bankruptey in style? Jag-
ger guessed not and checked the other roulette wheels. One of them
had a scratch. The casino managers had correctly guessed that Jag-
ger’s days of success were somehow related to the wheel he was play-
ing, and so overnight they had switched wheels. Jagger relocated and
again began to win. Soon he had pumped his winnings past where
they had been, to almost half a million.

Unfortunately for Jagger, the casino’s managers, finally zeroing in
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on his scheme, found a new way to thwart him. They decided to
move the frets each night after closing, turning them along the wheel
so that each day the wheel’s imbalance would favor different num-
bers, numbers unknown to Jagger. Jagger started losing again and
finally quit. His gambling career over, he left Monte Carlo with
$325,000 in hand, about $5 million in today’s dollars. Back home, he
left his job at the mill and invested his money in real estate.

[t may appear that Jagger’s scheme had been a sure thing, but it
wasn’t. For even a perfectly balanced wheel will not come up on 0, 1,
2, 3, and so on, with exactly equal frequencies, as if the numbers in
the lead would politely wait for the laggards to catch up. Instead,
some numbers are bound to come up more often than average and
others less often. And so even after six days of observations, there
remained a chance that Jagger was wrong. The higher frequencies
he observed for certain numbers may have arisen by chance and may
not have reflected higher probabilities. That means that Jagger, too,
had to face the question we raised at the start of this chapter: given a
set of underlying probabilities, how closely can you expect your
observations of a system to conform to those probabilities? Just as Pas-
cal’s work was done in the new climate of (the scientific) revolution,
so this question would be answered in the midst of a revolution, this
one in mathematics—the invention of calculus.

IN 1680 a great comet sailed through our neighborhood of the solar
system, close enough that the tiny fraction of sunlight it reflected was
sufficient to make it prominent in the night sky of our own planet. It
was in that part of earth’s orbit called November that the comet was
first spotted, and for months afterward it remained an object of
intense scrutiny, its path recorded in great detail. In 1687, Isaac New-
ton would use these data as an example of his inverse square law of
gravity at work. And on one clear night in that parcel of land called
Basel, Switzerland, another man destined for greatness was also pay-
ing attention. He was a young theologian who, gazing at the bright,
hazy light of the comet, realized that it was mathematics, not the
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church, with which he wanted to occupy his life.8 With that realiza-
tion sprouted not just Jakob Bernoulli’s own career change but also
what would become the greatest family tree in the history of mathe-
matics: in the century and a half between Jakob’s birth and 1800 the
Bernoulli family produced a great many offspring, about half of
whom were gifted, including eight noted mathematicians, and three
(Jakob, his younger brother Johann, and Johann’s son Daniel) who
are today counted as among the greatest mathematicians of all times.

Comets at the time were considered by theologians and the gen-
eral public alike as a sign of divine anger, and God must have seemed
pretty pissed off to create this one—it occupied more than half the
visible sky. One preacher called it a “heavenly warning of the Allpow-
erful and Holy God written and placed before the powerless and
unholy children of men.” It portended, he wrote, “a noteworthy
change in spirit or in worldly matters” for their country or town.’
Jakob Bernoulli had another point of view. In 1681 he published a
pamphlet titled Newly Discovered Method of How the Path of a
Comet or Tailed Star Can Be Reduced to Certain Fundamental Laws,
and Its Appearance Predicted.

Bernoulli had scooped Newton on the comet by six years. At least
he would have scooped him had his theory been correct. It wasn't,
but claiming publicly that comets follow natural law and not God’s
whim was a gutsy thing to do, especially given that the prior year—
almost fifty years after Galileo’s condemnation—the professor of
mathematics at the University of Basel, Peter Megerlin, had been
roundly attacked by theologians for accepting the Copernican system
and had been banned from teaching it at the university. A forbidding
schism lay between the mathematician-scientists and the theologians
in Basel, and Bernoulli was parking himself squarely on the side of
the scientists.

Bernoulli’s talent soon brought the embrace of the mathematics
community, and when Megerlin died, in late 1686, Bernoulli suc-
ceeded him as professor of mathematics. By then Bernoulli was work-
ing on problems connected with games of chance. One of his major
influences was a Dutch mathematician and scientist, Christiaan
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Huygens, who in addition to improving the telescope, being the first
to understand Saturn’s rings, creating the first pendulum clock
(based on Galileo’s ideas), and helping to develop the wave theory of
light, had written a mathematical primer on probability inspired by
the ideas of Pascal and Fermat.

For Bernoulli, Huygens’s book was an inspiration. And yet he
saw in the theory Huygens presented severe limitations. It might be
sufficient for games of chance, but what about aspects of life that
are more subjective? How can you assign a definite probability to
the credibility of legal testimony? Or to who was the better golfer,
Charles I of England or Mary, Queen of Scots? (Both were keen
golfers.) Bernoulli believed that for rational decision making to be
possible, there must be a reliable and mathematical way to determine
probabilities. His view reflected the culture of the times, in which to
conduct one’s affairs in a manner that was consistent with probabilis-
tic expectation was considered the mark of a reasonable person. But
it was not just subjectivity that, in Bernoulli’s opinion, limited the old
theory of randomness. He also recognized that the theory was not
designed for situations of ignorance, in which the probabilities of var-
ious outcomes could be defined in principle but in practice were not
known. It is the issue I discussed with Moshe and that Jagger had to
address: What are the odds that an imperfect die will come up with a
6? What are your chances of contracting the plague? What is the
probability that your breastplate can withstand a thrust from your
opponent’s long sword? In both subjective and uncertain situations,
Bernoulli believed it would be “insanity” to expect to have the sort of
prior, or a priori, knowledge of probabilities envisioned in Huygens’s
book.10

Bernoulli saw the answer in the same terms that Jagger later
would: instead of depending on probabilities being handed to us, we
should discern them through observation. Being a mathematician,
he sought to make the idea precise. Given that you view a certain
number of roulette spins, how closely can you nail down the underly-
ing probabilities, and with what level of confidence? We'll return to
those questions in the next chapter, but they are not quite the ques-
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tions Bernoulli was able to answer. Instead, he answered a closely
related question: how well are underlying probabilities reflected in
actual results? Bernoulli considered it obvious that we are justified in
expecting that as we increase the number of trials, the observed fre-
quencies will reflect—more and more accurately—their underlying
probabilities. He certainly wasn’t the first to believe that. But he was
the first to give the issue a formal treatment, to turn the idea into a
proof, and to quantify it, asking how many trials are necessary, and
how sure can we be. He was also among the first to appreciate the
importance of the new subject of calculus in addressing these issues.

THE YEAR Bernoulli was named professor in Basel proved to be a
milestone year in the history of mathematics: it was the year in which
Gottfried Leibniz published his revolutionary paper laying out the
principles of integral calculus, the complement to his 1684 paper on
differential calculus. Newton would publish his own version of the
subject in 1687, in his Philosophiae Naturalis Principia Mathema-
tica, or Mathematical Principles of Natural Philosophy, often referred
to simply as Principia. These advances would hold the key to Ber-
noulli’s work on randomness.

By the time they published, both Leibniz and Newton had
worked on the subject for years, but their almost simultaneous publi-
cations begged for controversy over who should be credited for the
idea. The great mathematician Karl Pearson (whom we shall
encounter again in chapter 8) said that the reputation of mathemati-
cians “stands for posterity largely not on what they did, but on what
their contemporaries attributed to them.”!! Perhaps Newton and
Leibniz would have agreed with that. In any case neither was above a
good fight, and the one that ensued was famously bitter. At the time
the outcome was mixed. The Germans and Swiss learned their calcu-
lus from Leibniz’s work, and the English and many of the French
from Newton’s. From the modern standpoint there is very little differ-
ence between the two, but in the long run Newton’s contribution is
often emphasized because he appears to have truly had the idea ear-
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lier and because in Principia he employed his invention in the cre-
ation of modern physics, making Principia probably the greatest sci-
entific book ever written. Leibniz, though, had developed a better
notation, and it is his symbols that are often used in calculus today.

Neither man’s publications were easy to follow. In addition to
being the greatest book on science, Newton’s Principia has also been
called “one of the most inaccessible books ever written.”!? And Leib-
niz’s work, according to one of Jakob Bernoulli’s biographers, was
“understood by no one”; it was not only unclear but also full of mis-
prints. Jakob’s brother Johann called it “an enigma rather than an
explanation.”?® In fact, so incomprehensible were both works that
scholars have speculated that both authors might have intentionally
made their works difficult to understand to keep amateurs from dab-
bling. This enigmatic quality was an advantage for Jakob Bernoulli,
though, for it did separate the wheat from the chaff, and his intellect
fell into the former category. Hence once he had deciphered Leib-
niz’s ideas, he possessed a weapon shared by only a handful of others
in the entire world, and with it he could easily solve problems that
were exceedingly difficult for others to attempt.

The set of concepts central to both calculus and Bernoulli’s work
is that of sequence, series, and limit. The term sequence means much
the same thing to a mathematician as it does to anybody else: an
ordered succession of elements, such as points or numbers. A series is
simply the sum of a sequence of numbers. And loosely speaking, if
the elements of a sequence seem to be heading somewhere —toward
a particular endpoint or a particular number—then that is called the
limit of the sequence.

Though calculus represents a new sophistication in the under-
standing of sequences, that idea, like so many others, had already
been familiar to the Greeks. In the fifth century B.c., in fact, the
Greek philosopher Zeno employed a curious sequence to formulate
a paradox that is still debated among college philosophy students
today, especially after a few beers. Zeno’s paradox goes like this: Sup-
pose a student wishes to step to the door, which is 1 meter away. (We
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choose a meter here for convenience, but the same argument holds
for a mile or any other measure.) Before she arrives there, she first
must arrive at the halfway point. But in order to reach the halfway
point, she must first arrive halfway to the halfway point—that is, at
the one-quarter-way point. And so on, ad infinitum. In other words,
in order to reach her destination, she must travel this sequence of dis-
tances: Y2 meter, % meter, 5 meter, “i6 meter, and so on. Zeno
argued that because the sequence goes on forever, she has to traverse
an infinite number of finite distances. That, Zeno said, must take an
infinite amount of time. Zeno’s conclusion: you can never get any-
where.

Over the centuries, philosophers from Aristotle to Kant have
debated this quandary. Diogenes the Cynic took the empirical
approach: he simply walked a few steps, then pointed out that things
in fact do move. To those of us who aren’t students of philosophy, that
probably sounds like a pretty good answer. But it wouldn’t have
impressed Zeno. Zeno was aware of the clash between his logical
proof and the evidence of his senses; it’s just that, unlike Diogenes,
what Zeno trusted was logic. And Zeno wasn’t just spinning his
wheels. Even Diogenes would have had to admit that his response
leaves us facing a puzzling (and, it turns out, deep) question: if our
sensory evidence is correct, then what is wrong with Zeno’s logic?

Consider the sequence of distances in Zeno’s paradox: 2 meter,
Vi meter, 3 meter, Y6 meter, and so on (the increments growing ever
smaller). This sequence has an infinite number of terms, so we can-
not compute its sum by simply adding them all up. But we can notice
that although the number of terms is infinite, those terms get succes-
sively smaller. Might there be a finite balance between the endless
stream of terms and their endlessly diminishing size? That is precisely
the kind of question we can address by employing the concepts of
sequence, series, and limit. To see how it works, instead of trying to
calculate how far the student went after the entire infinity of Zeno’s
intervals, let’s take one interval at a time. Here are the student’s dis-
tances after the first few intervals:
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After the first interval: 2 meter

After the second interval: Y2 meter + % meter = % meter

After the third interval: ¥2 meter + ¥4 meter + 4 meter =
/4 meter

After the fourth interval: /2 meter + ¥4 meter + % meter +
Y16 meter = %16 meter

There is a pattern in these numbers: 2 meter, 4 meter, /6 meter,
%6 meter . . . The denominator is a power of two, and the numerator
is one less than the denominator. We might guess from this pattern
that after 10 intervals the student would have traveled "2 024 meter;
after 20 intervals, "9*8°7% 045 576 meter; and so on. The pattern makes
it clear that Zeno is correct that the more intervals we include, the
greater the sum of distances we obtain. But Zeno is not correct when
he says that the sum is headed for infinity. Instead, the numbers seem
to be approaching 1; or as a mathematician would say, 1 meter is
the limit of this sequence of distances. That makes sense, because
although Zeno chopped her trip into an infinite number of intervals,
she had, after all, set out to travel just 1 meter.

Zeno’s paradox concerns the amount of time it takes to make
the journey, not the distance covered. If the student were forced to
take individual steps to cover each of Zeno’s intervals, she would
indeed be in some time trouble (not to mention her having to over-
come the difficulty of taking submillimeter steps)! But if she is
allowed to move at constant speed without pausing at Zeno’s imagi-
nary checkpoints—and why not? —then the time it takes to travel
each of Zeno’s intervals is proportional to the distance covered in that
interval, and so since the total distance is finite, as is the total time —
and fortunately for all of us—motion is possible after all.

Though the modern concept of limits wasn’t worked out until
long after Zeno’s life, and even Bernoulli’s—it came in the nine-
teenth century!*—it is this concept that informs the spirit of calculus,
and it is in this spirit that Jakob Bernoulli attacked the relationship
between probabilities and observation. In particular, Bernoulli inves-
tigated what happens in the limit of an arbitrarily large number of
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repeated observations. Toss a (balanced) coin 10 times and you might
observe 7 heads, but toss it 1 zillion times and you’ll most likely get
very near 50 percent. In the 1940s a South African mathematician
named John Kerrich decided to test this out in a practical experi-
ment, tossing a coin what must have seemed like 1 zillion times—
actually it was 10,000 —and recording the results of each toss.”” You
might think Kerrich would have had better things to do, but he was a
war prisoner at the time, having had the bad luck of being a visitor in
Copenhagen when the Germans invaded Denmark in April 1940.
According to Kerrich’s data, after 100 throws he had only 44 percent
heads, but by the time he reached 10,000, the number was much
closer to half: 50.67 percent. How do you quantify this phenomenon?
The answer to that question was Bernoulli’s accomplishment.

According to the historian and philosopher of science lan Hack-
ing, Bernoulli’s work “came before the public with a brilliant portent
of all the things we know about it now; its mathematical profundity,
its unbounded practical applications, its squirming duality and its
constant invitation for philosophizing. Probability had fully
emerged.” In Bernoulli’s more modest words, his study proved to be
one of “novelty, as well as...high utility.” It was also an effort,
Bernoulli wrote, of “grave dithculty.”® He worked on it for twenty
years.

JakoB BERNOULLI called the high point of his twenty-year effort
his “golden theorem.” Modern versions of it that differ in their tech-
nical nuance go by various names: Bernoulli’s theorem, the law of
large numbers, and the weak law of large numbers. The phrase law of
large numbers is employed because, as we've said, Bernoulli’s theo-
rem concerns the way results reflect underlying probabilities when
we make a large number of observations. But we’ll stick with
Bernoulli’s terminology and call his theorem the golden theorem
because we will be discussing it in its original form.!”

Although Bernoulli’s interest lay in real-world applications, some
of his favorite examples involved an item not found in most house-
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holds: an urn filled with colored pebbles. In one scenario, he envi-
sioned the urn holding 3,000 white pebbles and 2,000 black ones, a
ratio of 60 percent white to 40 percent black. In this example you
conduct a series of blind drawings from the urn “with replace-
ment” —that is, replacing each pebble before drawing the next in
order not to alter the 3:2 ratio. The a priori chances of drawing a
white pebble are then 3 out of 5, or 60 percent, and so in this exam-
ple Bernoulli’s central question becomes, how strictly should you
expect the proportion of white pebbles drawn to hew to the 60 per-
cent ratio, and with what probability?

The urn example is a good one because the same mathematics
that describes drawing pebbles from an urn can be employed to
describe any series of trials in which each trial has two possible out-
comes, as long as those outcomes are random and the trials are inde-
pendent of each other. Today such trials are called Bernoulli trials,
and a series of Bernoulli trials is a Bernoulli process. When a random
trial has two possible outcomes, one is often arbitrarily labeled “suc-
cess” and the other “failure.” The labeling is not meant to be literal
and sometimes has nothing to do with the everyday meaning of the
words—say, in the sense that if you can’t wait to read on, this book is
a success, and if you are using this book to keep yourself and your
sweetheart warm after the logs burned down, it is a failure. Flipping a
coin, deciding to vote for candidate A or candidate B, giving birth to a
boy or girl, buying or not buying a product, being cured or not being
cured, even dying or living are examples of Bernoulli trials. Actions
that have multiple outcomes can also be modeled as Bernoulli trials
if the question you are asking can be phrased in a way that has a yes
or no answer, such as “Did the die land on the number 4?” or “Is
there any ice left on the North Pole?” And so, although Bernoulli
wrote about pebbles and urns, all his examples apply equally to these
and many other analogous situations.

With that understanding we return to the urn, 60 percent of
whose pebbles are white. If you draw 100 pebbles from the urn (with
replacement), you might find that exactly 60 of them are white, but
you might also draw just 50 white pebbles or 59. What are the
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chances that you will draw between 58 percent and 62 percent white
pebbles? What are the chances youll draw between 59 percent and
61 percent? How much more confident can you be if instead of 100,
you draw 1,000 pebbles or 1 million? You can never be 100 percent
certain, but can you draw enough pebbles to make the chances
99.9999 percent certain that you will draw, say, between 59.9 percent
and 60.1 percent white pebbles? Bernoulli’s golden theorem
addresses questions such as these.

In order to apply the golden theorem, you must make two
choices. First, you must specify your tolerance of error. How near to
the underlying proportion of 60 percent are you demanding that your
series of trials come? You must choose an interval, such as plus or
minus 1 percent or 2 percent or 0.00001 percent. Second, you must
specify your tolerance of uncertainty. You can never be 100 percent
sure a trial will yield the result you are aiming for, but you can ensure
that you will get a satisfactory result 99 times out of 100 or 999 out
of 1,000.

The golden theorem tells you that it is always possible to draw
enough pebbles to be almost certain that the percentage of white
pebbles you draw will be near 60 percent no matter how demanding
you want to be in your personal definition of almost certain and near.
It also gives a numerical formula for calculating the number of trials
that are “enough,” given those definitions.

The first part of the law was a conceptual triumph, and it is the
only part that survives in modern versions of the theorem. Concern-
ing the second part—Bernoulli’s formula—it is important to under-
stand that although the golden theorem specifies a number of trials
that is sufficient to meet your goals of confidence and accuracy, it
does not say you can’t accomplish those goals with fewer trials. That
doesn’t affect the first part of the theorem, for which it is enough
to know simply that the number of trials specified is finite. But
Bernoulli also intended the number given by his formula to be of
practical use. Unfortunately, in most practical applications it isn’t.
For instance, here is a numerical example Bernoulli worked out him-
self, although I have changed the context: Suppose 60 percent of the
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voters in Basel support the mayor. How many people must you poll
for the chances to be 99.9 percent that you will find the mayor’s sup-
port to be between 58 percent and 62 percent—that is, for the result
to be accurate within plus or minus 2 percent? (Assume, in order to
be consistent with Bernoulli, that the people polled are chosen at
random, but with replacement. In other words, it is possible that you
poll a person more than once.) The answer is 25,550, which in
Bernoulli’s time was roughly the entire population of Basel. That this
number was impractical wasn’t lost on Bernoulli. He also knew that
accomplished gamblers can intuitively guess their chances of success
at a new game based on a sample of far fewer than thousands of trial
games.

One reason Bernoulli’s numerical estimate was so far from opti-
mal was that his proof was based on many approximations. Another
reason was that he chose 99.9 percent as his standard of certainty —
that is, he required that he get the wrong answer (an answer that dif-
fered more than 2 percent from the true one) less than 1 time in
1,000. That is a very demanding standard. Bernoulli called it moral
certainty, meaning the degree of certainty he thought a reasonable
person would require in order to make a rational decision. It is per-
haps a measure of how much the times have changed that today
we've abandoned the notion of moral certainty in favor of the one we
encountered in the last chapter, statistical significance, meaning that
your answer will be wrong less than 1 time in 20.

With today’s mathematical methods, statisticians have shown that
in a poll like the one I described, you can achieve a statistically signif-
icant result with an accuracy of plus or minus 5 percent by polling
only 370 subjects. And if you poll 1,000, you can achieve a 90 per-
cent chance of coming within 2 percent of the true result (60 percent
approval of Basel’s mayor). But despite its limitations, Bernoulli’s
golden theorem was a milestone because it showed, at least in princi-
ple, that a large enough sample will almost certainly reflect the
underlying makeup of the population being sampled.
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IN REAL LIFE we don’t often get to observe anyone’s or anything’s
performance over thousands of trials. And so if Bernoulli required an
overly strict standard of certainty, in real-life situations we often make
the opposite error: we assume that a sample or a series of trials is rep-
resentative of the underlying situation when it is actually far too
small to be reliable. For instance, if you polled exactly 5 residents of
Basel in Bernoulli’s day, a calculation like the ones we discussed in
chapter 4 shows that the chances are only about | in 3 that you will
find that 60 percent of the sample (3 people) supported the mayor.

Only 1 in 3? Shouldn’t the true percentage of the mayor’s sup-
porters be the most probable outcome when you poll a sample of vot-
ers? In fact, 1 in 3 is the most probable outcome: the odds of finding
0,1, 2,4, or 5 supporters are lower than the odds of finding 3. Never-
theless, finding 3 supporters is not likely: because there are so many
of those nonrepresentative possibilities, their combined odds add up
to twice the odds that your poll accurately reflects the population.
And so in a poll of 5 voters, 2 times out of 3 you will observe the
“wrong” percentage. In fact, about 1 in 10 times you’ll find that all
the voters you polled agree on whether they like or dislike the mayor.
And so if you paid any attention to a sample of 5, you'd probably
severely over- or underestimate the mayor’s true popularity.

The misconception—or the mistaken intuition—that a small
sample accurately reflects underlying probabilities is so widespread
that Kahneman and Tversky gave it a name: the law of small num-
bers.!® The law of small numbers is not really a law. It is a sarcastic
name describing the misguided attempt to apply the law of large
numbers when the numbers aren’t large.

If people applied the (untrue) law of small numbers only to urns,
there wouldn’t be much impact, but as we've said, many events in life
are Bernoulli processes, and so our intuition often leads us to misin-
terpret what we observe. That is why, as I described in chapter 1,
when people observe the handful of more successful or less success-
ful years achieved by the Sherry Lansings and Mark Cantons of the
world, they assume that their past performance accurately predicts
their future performance.
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Let’s apply these ideas to an example I mentioned briefly in chap-
ter 4: the situation in which two companies compete head-to-head or
two employees within a company compete. Think now of the CEOs
of the Fortune 500 companies. Let’s assume that, based on their
knowledge and abilities, each CEO has a certain probability of suc-
cess each year (however his or her company may define that). And to
make things simple, let’s assume that for these CEOs successtul years
occur with the same frequency as the white pebbles or the mayor’s
supporters: 60 percent. (Whether the true number is a little higher or
a little lower doesn’t affect the thrust of this argument.) Does that
mean we should expect, in a given five-year period, that a CEO will
have precisely three good years?

No. As the earlier analysis showed, even if the CEOs all have a
nice cutand-dried 60 percent success rate, the chances that in a
given five-year period a particular CEO’s performance will reflect
that underlying rate are only 1 in 3! Translated to the Fortune 500,
that means that over the past five years about 333 of the CEOs would
have exhibited performance that did not reflect their true ability.
Moreover, we should expect, by chance alone, about 1 in 10 of the
CEOs to have five winning or losing years in a row. What does this
tell us? It is more reliable to judge people by analyzing their abilities
than by glancing at the scoreboard. Or as Bernoulli put it, “One
should not appraise human action on the basis of its results.”1?

Going against the law of small numbers requires character. For
while anyone can sit back and point to the bottom line as justifica-
tion, assessing instead a person’s actual knowledge and actual ability
takes confidence, thought, good judgment, and, well, guts. You can’t
just stand up in a meeting with your colleagues and yell, “Don’t fire
her. She was just on the wrong end of a Bernoulli series.” Nor is it
likely to win you friends if you stand up and say of the gloating fellow
who just sold more Toyota Camrys than anyone else in the history of
the dealership, “It was just a random fluctuation.” And so it rarely
happens. Executives’ winning years are attributed to their brilliance,
explained retroactively through incisive hindsight. And when people
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don’t succeed, we often assume the failure accurately reflects the
proportion with which their talents and their abilities fill the urn.

Another mistaken notion connected with the law of large num-
bers is the idea that an event is more or less likely to occur because it
has or has not happened recently. The idea that the odds of an event
with a fixed probability increase or decrease depending on recent
occurrences of the event is called the gambler’s fallacy. For example,
if Kerrich landed, say, 44 heads in the first 100 tosses, the coin would
not develop a bias toward tails in order to catch up! That’s what is at
the root of such ideas as “her luck has run out” and “He is due.” That
does not happen. For what it’s worth, a good streak doesn’t jinx you,
and a bad one, unfortunately, does not mean better luck is in store.
Still, the gambler’s fallacy affects more people than you might think,
if not on a conscious level then on an unconscious one. People
expect good luck to follow bad luck, or they worry that bad will follow
good.

[ remember, on a cruise a few years back, watching an intense
pudgy man sweating as he frantically fed dollars into a slot machine
as fast as it would take them. His companion, seeing me eye them,
remarked simply, “He is due.” Although tempted to point out that,
no, he isn’t due, I instead walked on. After several steps I halted my
progress owing to a sudden flashing of lights, ringing of bells, not a lit-
tle hooting on the couple’s part, and the sound of, for what seemed
like minutes, a fast stream of dollar coins flying out of the machine’s
chute. Now I know that a modern slot machine is computerized, its
payoffs driven by a random-number generator, which by both law
and regulation must truly generate, as advertised, random numbers,
making each pull of the handle completely independent of the his-
tory of previous pulls. And yet . . . Well, let’s just say the gambler’s fal-
lacy is a powerful illusion.

THE mMaNUscRIPT in which Bernoulli presented his golden theo-
rem ends abruptly even though he promises earlier in the work that
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he will provide applications to various issues in civic affairs and eco-
nomics. It is as if “Bernoulli literally quit when he saw the number
25,550,” wrote the historian of statistics Stephen Stigler.?0 In fact,
Bernoulli was in the process of publishing his manuscript when he
died “of a slow fever” in August 1705, at the age of fifty. His publish-
ers asked Johann Bernoulli to complete it, but Johann refused, saying
he was too busy. That may appear odd, but the Bernoullis were an
odd family. If you were asked to choose the most unpleasant mathe-
matician who ever lived, you wouldn’t be too far off if you fingered
Johann Bernoulli. He has been variously described in historical texts
as jealous, vain, thin-skinned, stubborn, bilious, boastful, dishonest,
and a consummate liar. He accomplished much in mathematics, but
he is also known for having his son Daniel tossed out of the Académie
des Sciences after Daniel won a prize for which Johann himself had
competed, for attempting to steal both his brother’s and Leibniz’s
ideas, and for plagiarizing Daniel’s book on hydrodynamics and then
faking the publication date so that his book would appear to have
been published first.

When he was asked to complete his late brother’s manuscript, he
had recently relocated to Basel from the University of Groningen, in
the Netherlands, obtaining a post not in mathematics but as a profes-
sor of Greek. Jakob had found this career change suspicious, espe-
cially since in his estimation Johann did not know Greek. What
Jakob suspected, he wrote Leibniz, was that Johann had come to
Basel to usurp Jakob’s position. And, indeed, upon Jakob’s death,
Johann did obtain it.

Johann and Jakob had not gotten along for most of their adult
lives. They would regularly trade insults in mathematics publications
and in letters that, one mathematician wrote, “bristle with strong lan-
guage that is usually reserved for horse thieves.”?! And so when the
need arose to edit Jakob’s posthumous manuscript, the task fell fur-
ther down the food chain, to Jakob’s nephew Nikolaus, the son of one
of Jakob’s other brothers, also named Nikolaus. The younger Niko-
laus was only eighteen at the time, but he had been one of Jakob’s
pupils. Unfortunately he didn’t feel up to the task, possibly in part
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because he was aware of Leibniz’s opposition to his uncle’s ideas
about applications of the theory. And so the manuscript lay dormant
for eight years. The book was finally published in 1713 under the title
Ars conjectandi, or The Art of Conjecture. Like Pascal’s Pensées, it is
still in print.

Jakob Bernoulli had shown that through mathematical analysis
one could learn how the inner hidden probabilities that underlie nat-
ural systems are reflected in the data those systems produce. As for
the question that Bernoulli did not answer—the question of how to
infer, from the data produced, the underlying probability of events—
the answer would not come for several decades more.
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CHAPTER 6

False Positives and Positive
Fallacies

N THE 1970s a psychology professor at Harvard had an odd-
Ilooking middle-aged student in his class. After the first few class

meetings the student approached the professor to explain why he
had enrolled in the class.! In my experience teaching, though I have
had some polite students come up to me to explain why they were
dropping my course, I have never had a student feel the need to
explain why he was taking it. That’s probably why I can get away with
happily assuming that if asked, such a student would respond,
“Because I am fascinated by the subject, and you are a fine lecturer.”
But this student had other reasons. He said he needed help because
strange things were happening to him: his wife spoke the words he
was thinking before he could say them, and now she was divorcing
him; a co-worker casually mentioned layoffs over drinks, and two
days later the student lost his job. Over time, he reported, he had
experienced dozens of misfortunes and what he considered to be dis-
turbing coincidences.

At first the happenings confused him. Then, as most of us would,
he formed a mental model to reconcile the events with the way he
believed the world behaves. The theory he came up with, however,
was unlike anything most of us would devise: he was the subject of an
elaborate secret scientific experiment. He believed the experiment
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was staged by a large group of conspirators led by the famous psychol-
ogist B. F. Skinner. He also believed that when it was over, he would
become famous and perhaps be elected to a high public office. That,
he said, was why he was taking the course. He wanted to learn how to
test his hypothesis in light of the many instances of evidence he had
accumulated.

A few months after the course had run its course, the student
again called on the professor. The experiment was still in progress, he
reported, and now he was suing his former employer, who had pro-
duced a psychiatrist willing to testify that he suffered from paranoia.

One of the paranoid delusions the former employer’s psychia-
trist pointed to was the student’s alleged invention of a fictitious
eighteenth-century minister. In particular, the psychiatrist scoffed at
the student’s claim that this minister was an amateur mathematician
who had created in his spare moments a bizarre theory of probability.
The minister’s name, according to the student, was Thomas Bayes.
His theory, the student asserted, described how to assess the chances
that some event would occur if some other event also occurred. What
are the chances that a particular student would be the subject of a
vast secret conspiracy of experimental psychologists? Admittedly not
huge. But what if one’s wife speaks one’s thoughts before one can
utter them and co-workers foretell your professional fate over drinks
in casual conversation? The student claimed that Bayes’s theory
showed how you should alter your initial estimation in light of that
new evidence. And he presented the court with a mumbo jumbo of
formulas and calculations regarding his hypothesis, concluding that
the additional evidence meant that the probability was 999,999 in
1 million that he was right about the conspiracy. The enemy psychi-
atrist claimed that this mathematician-minister and his theory were
figments of the student’s schizophrenic imagination.

The student asked the professor to help him refute that claim.
The professor agreed. He had good reason, for Thomas Bayes, born
in London in 1701, really was a minister, with a parish at Tunbridge
Wells. He died in 1761 and was buried in a park in London called
Bunbhill Fields, in the same grave as his father, Joshua, also a minis-
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ter. And he indeed did invent a theory of “conditional probability” to
show how the theory of probability can be extended from indepen-
dent events to events whose outcomes are connected. For example,
the probability that a randomly chosen person is mentally ill and the
probability that a randomly chosen person believes his spouse can
read his mind are both very low, but the probability that a person is
mentally ill if he believes his spouse can read his mind is much
higher, as is the probability that a person believes his spouse can read
his mind if he is mentally ill. How are all these probabilities related?
That question is the subject of conditional probability.

The professor supplied a deposition explaining Bayes’s existence
and his theory, though not supporting the specific and dubious cal-
culations that his former student claimed proved his sanity. The sad
part of this story is not just the middle-aged schizophrenic himself,
but the medical and legal team on the other side. It is unfortunate
that some people suffer from schizophrenia, but even though drugs
can help to mediate the illness, they cannot battle ignorance. And
ignorance of the ideas of Thomas Bayes, as we shall see, resides at the
heart of many serious mistakes in both medical diagnosis and legal
judgment. It is an ignorance that is rarely addressed during a doctor’s
or a lawyer’s professional training.

We also make Bayesian judgments in our daily lives. A film tells
the story of an attorney who has a great job, a charming wife, and a
wonderful family. He loves his wife and daughter, but still he feels
that something is missing in his life. One night as he returns home on
the train he spots a beautiful woman gazing with a pensive expression
out the window of a dance studio. He looks for her again the next
night, and the night after that. Fach night as his train passes her stu-
dio, he falls further under her spell. Finally one evening he impul-
sively rushes off the train and signs up for dance lessons, hoping to
meet the woman. He finds that her haunting attraction withers once
his gaze from afar gives way to face-to-face encounters. He does fall in
love, however, not with her but with dancing.

He keeps his new obsession from his family and colleagues, mak-
ing excuses for spending more and more evenings away from home.
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His wife eventually discovers that he is not working late as often as he
says he is. She figures the chances of his lying about his after-work
activities are far greater if he is having an affair than if he isn’t, and so
she concludes that he is. But the wife was mistaken not just in her
conclusion but in her reasoning: she confused the probability that
her husband would sneak around if he were having an affair with the
probability that he was having an affair if he was sneaking around.

It’s a common mistake. Say your boss has been taking longer than
usual to respond to your e-mails. Many people would take that as a
sign that their star is falling because if your star is falling, the chances
are high that your boss will respond to your e-mails more slowly than
before. But your boss might be slower in responding because she is
unusually busy or her mother is ill. And so the chances that your star
is falling if she is taking longer to respond are much lower than the
chances that your boss will respond more slowly if your star is falling.
The appeal of many conspiracy theories depends on the misunder-
standing of this logic. That is, it depends on confusing the probability
that a series of events would happen if it were the product of a huge
conspiracy with the probability that a huge conspiracy exists if a
series of events occurs.

The effect on the probability that an event will occur if or given
that other events occur is what Bayes’s theory is all about. To see in
detail how it works, we’ll turn to another problem, one that is related
to the two-daughter problem we encountered in chapter 3. Let us
now suppose that a distant cousin has two children. Recall that in the
two-daughter problem you know that one or both are girls, and you
are trying to remember which it is—one or both? In a family with two
children, what are the chances, if one of the children is a girl, that
both children are girls? We didn’t discuss the question in those terms
in chapter 3, but the if makes this a problem in conditional probabil-
ity. If that if clause were not present, the chances that both children
were girls would be 1 in 4, the 4 possible birth orders being (boy,
boy), (boy, girl), (girl, boy), and (girl, girl). But given the additional
information that the family has a girl, the chances are 1 in 3. That is
because if one of the children is a girl, there are just 3 possible sce-
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narios for this family— (boy, girl), (girl, boy), and (girl, girl)—and
exactly 1 of the 3 corresponds to the outcome that both children are
girls. That’s probably the simplest way to look at Bayes’s ideas—they
are just a matter of accounting. First write down the sample space —
that is, the list of all the possibilities—along with their probabilities if
they are not all equal (that is actually a good idea in analyzing any
confusing probability issue). Next, cross off the possibilities that the
condition (in this case, “at least one girl”) eliminates. What is left are
the remaining possibilities and their relative probabilities.

That might all seem obvious. Feeling cocky, you may think you
could have figured it out without the help of dear Reverend Bayes
and vow to grab a different book to read the next time you step into
the bathtub. So before we proceed, let’s try a slight variant on the
two-daughter problem, one whose resolution may be a bit more
shocking.?

The variant is this: in a family with two children, what are the
chances, if one of the children is a girl named Florida, that both chil-
dren are girls? Yes, I said a girl named Florida. The name might
sound random, but it is not, for in addition to being the name of a
state known for Cuban immigrants, oranges, and old people who
traded their large homes up north for the joys of palm trees and orga-
nized bingo, it is a real name. In fact, it was in the top 1,000 female
American names for the first thirty or so years of the last century. I
picked it rather carefully, because part of the riddle is the question,
what, if anything, about the name Florida affects the odds? But I am
getting ahead of myself. Before we move on, please consider this
question: in the girl-named-Florida problem, are the chances of two
girls still 1 in 3 (as they are in the two-daughter problem)?

I will shortly show that the answer is no. The fact that one of the
girls is named Florida changes the chances to 1 in 2: Don’t worry if
that is difficult to imagine. The key to understanding randomness
and all of mathematics is not being able to intuit the answer to every
problem immediately but merely having the tools to figure out the
answer.
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THOSE WHO DOUBTED Bayes’s existence were right about one
thing: he never published a single scientific paper. We know little of
his life, but he probably pursued his work for his own pleasure and did
not feel much need to communicate it. In that and other respects he
and Jakob Bernoulli were opposites. For Bernoulli resisted the study
of theology, whereas Bayes embraced it. And Bernoulli sought fame,
whereas Bayes showed no interest in it. Finally, Bernoulli’s theorem
concerns how many heads to expect if, say, you plan to conduct many
tosses of a balanced coin, whereas Bayes investigated Bernoulli’s orig-
inal goal, the issue of how certain you can be that a coin is balanced
if you observe a certain number of heads.

The theory for which Bayes is known today came to light on
December 23, 1763, when another chaplain and mathematician,
Richard Price, read a paper to the Royal Society, Britain’s national
academy of science. The paper, by Bayes, was titled “An Essay toward
Solving a Problem in the Doctrine of Chances” and was published in
the Royal Society’s Philosophical Transactions in 1764. Bayes had left
Price the article in his will, along with £100. Referring to Price as “I
suppose a preacher at Newington Green,” Bayes died four months
after writing his will.3

Despite Bayes’s casual reference, Richard Price was not just
another obscure preacher. He was a well-known advocate of freedom
of religion, a friend of Benjamin Franklin’s, a man entrusted by
Adam Smith to critique parts of a draft of The Wealth of Nations, and
a well-known mathematician. He is also credited with founding actu-
ary science, a field he developed when, in 1765, three men from an
insurance company, the Equitable Society, requested his assistance.
Six years after that encounter he published his work in a book titled
Observations on Reversionary Payments. Though the book served as a
bible for actuaries well into the nineteenth century, because of some
poor data and estimation methods, he appears to have underesti-
mated life expectancies. The resulting inflated life insurance premi-
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ums enriched his pals at the Equitable Society. The hapless British
government, on the other hand, based annuity payments on Price’s
tables and took a bath when the pensioners did not proceed to keel
over at the predicted rate.

As I mentioned, Bayes developed conditional probability in an
attempt to answer the same question that inspired Bernoulli: how can
we infer underlying probability from observation? If a drug just cured
45 out of 60 patients in a clinical trial, what does that tell you about
the chances the drug will work on the next patient? If it worked for
600,000 out of 1 million patients, the odds are obviously good that its
chances of working are close to 60 percent. But what can you con-
clude from a smaller trial? Bayes also asked another question: if,
before the trial, you had reason to believe that the drug was only 50
percent effective, how much weight should the new data carry in
your future assessments? Most of our life experiences are like that: we
observe a relatively small sample of outcomes, from which we infer
information and make judgments about the qualities that produced
those outcomes. How should we make those inferences?

Bayes approached the problem via a metaphor.* Imagine we are
supplied with a square table and two balls. We roll the first ball onto
the table in a manner that makes it equally probable that the ball will
come to rest at any point. Our job is to determine, without looking,
where along the left-right axis the ball stopped. Our tool in this is the
second ball, which we may repeatedly roll onto the table in the same
manner as the first. With each roll a collaborator notes whether that
ball comes to rest to the right or the left of the place where the first
ball landed. At the end he informs us of the total number of times the
second ball landed in each of the two general locations. The first ball
represents the unknown that we wish to gain information about, and
the second ball represents the evidence we manage to obtain. If the
second ball lands consistently to the right of the first, we can be pretty
confident that the first ball rests toward the far left side of the table. If
it lands less consistently to the right, we might be less confident of
that conclusion, or we might guess that the first ball is situated farther
to the right. Bayes showed how to determine, based on the data of the
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second ball, the precise probability that the first ball is at any given
point on the left-right axis. And he showed how, given additional
data, one should revise one’s initial estimate. In Bayesian terminol-
ogy the initial estimates are called prior probabilities and the new
guesses, posterior probabilities.

Bayes concocted this game because it models many of the deci-
sions we make in life. In the drug-trial example the position of the
first ball represents the drug’s true effectiveness, and the reports
regarding the second ball represent the patient data. The position of
the first ball could also represent a film’s appeal, product quality, driv-
ing skill, hard work, stubbornness, talent, ability, or whatever it is that
determines the success or failure of a certain endeavor. The reports
on the second ball would then represent our observations or the data
we collect. Bayes’s theory shows how to make assessments and then
adjust them in the face of new data.

Today Bayesian analysis is widely employed throughout science
and industry. For instance, models employed to determine car
insurance rates include a mathematical function describing, per unit
of driving time, your personal probability of having zero, one, or
more accidents. Consider, for our purposes, a simplified model that
places everyone in one of two categories: high risk, which includes
drivers who average at least one accident each year, and low risk,
which includes drivers who average less than one. If, when you apply
for insurance, you have a driving record that stretches back twenty
years without an accident or one that goes back twenty years with
thirty-seven accidents, the insurance company can be pretty sure
which category to place you in. But if you are a new driver, should
you be classified as low risk (a kid who obeys the speed limit and vol-
unteers to be the designated driver) or high risk (a kid who races
down Main Street swigging from a half-empty $2 bottle of Boone’s
Farm apple wine)? Since the company has no data on you—no idea
of the “position of the first ball” —it might assign you an equal prior
probability of being in either group, or it might use what it knows
about the general population of new drivers and start you off by
guessing that the chances you are a high risk are, say, 1 in 3. In that
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case the company would model you as a hybrid —one-third high risk
and two-thirds low risk—and charge you one-third the price it
charges high-risk drivers plus two-thirds the price it charges low-risk
drivers. Then, after a year of observation—that is, after one of Bayes’s
second balls has been thrown—the company can employ the new
datum to reevaluate its model, adjust the one-third and two-third pro-
portions it previously assigned, and recalculate what it ought to
charge. If you have had no accidents, the proportion of low risk and
low price it assigns you will increase; if you have had two accidents, it
will decrease. The precise size of the adjustment is given by Bayes’s
theory. In the same manner the insurance company can periodically
adjust its assessments in later years to reflect the fact that you were
accident-free or that you twice had an accident while driving the
wrong way down a one-way street, holding a cell phone with your left
hand and a doughnut with your right. That is why insurance compa-
nies can give out “good driver” discounts: the absence of accidents
elevates the posterior probability that a driver belongs in a low-risk
group.

Obviously many of the details of Bayes’s theory are rather com-
plex. But as I mentioned when I analyzed the two-daughter problem,
the key to his approach is to use new information to prune the sample
space and adjust probabilities accordingly. In the two-daughter prob-
lem the sample space was initially (boy, boy), (boy, girl), (girl, boy),
and (girl, girl) but reduces to (boy, girl), (girl, boy), and (girl, girl) if
you learn that one of the children is a girl, making the chances of a
two-girl family 1 in 3. Let’s apply that same simple strategy to see
what happens if you learn that one of the children is a girl named
Florida.

In the girl-named-Florida problem our information concerns not
just the gender of the children, but also, for the girls, the name. Since
our original sample space should be a list of all the possibilities, in
this case it is a list of both gender and name. Denoting “girl-named-
Florida” by girl-F and “girl-not-named-Florida” by girl-NF, we write
the sample space this way: (boy, boy), (boy, girl-F), (boy, girl-NF),
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(girl-F, boy), (girl-NF, boy), (girl-NF, girl-F), (girl-F, girl-NF), (girl-
NF, girl-NF), and (girl-F, girl-F).

Now, the pruning. Since we know that one of the children is a girl
named Florida, we can reduce the sample space to (boy, girl-F),
(girl-F, boy), (girl-NF, girl-F), (girl-F, girl-NF), and (girl-F, girl-F).
That brings us to another way in which this problem differs from the
two-daughter problem. Here, because it is not equally probable that a
girl’s name is or is not Florida, not all the elements of the sample
space are equally probable.

In 1935, the last year for which the Social Security Administration
provided statistics on the name, about 1 in 30,000 girls were chris-
tened Florida.> Since the name has been dying out, for the sake of
argument let’s say that today the probability of a girl’s being named
Florida is I in I million. That means that if we learn that a particular
girl’s name is not Florida, it’s no big deal, but if we learn that a partic-
ular girl’s name is Florida, in a sense we've hit the jackpot. The
chances of both girls’ being named Florida (even if we ignore the fact
that parents tend to shy away from giving their children identical
names) are therefore so small we are justified in ignoring that possi-
bility. That leaves us with just (boy, girl-F), (girl-F, boy), (girl-NF,
girl-F), and (girl-F, girl-NF), which are, to a very good approxima-
tion, equally likely.

Since 2 of the 4, or half, of the elements in the sample space are
families with two girls, the answer is not 1 in 3—as it was in the two-
daughter problem —but 1 in 2. The added information—your knowl-
edge of the girl’s name —makes a difference.

One way to understand this, if it still seems puzzling, is to imag-
ine that we gather into a very large room 75 million families that have
two children, at least one of whom is a girl. As the two-daughter prob-
lem taught us, there will be about 25 million two-girl families in that
room and 50 million one-girl families (25 million in which the girl is
the older child and an equal number in which she is the younger).
Next comes the pruning: we ask that only the families that include a
girl named Florida remain. Since Florida is a 1 in 1 million name,
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about 50 of the 50 million one-girl families will remain. And of the
25 million two-girl families, 50 of them will also get to stay, 25
because their firstborn is named Florida and another 25 because
their younger girl has that name. It’s as if the girls are lottery tickets
and the girls named Florida are the winning tickets. Although there
are twice as many one-girl families as two-girl families, the two-girl
families each have two tickets, so the one-girl families and the two-
girl families will be about equally represented among the winners.

I have described the girl-named-Florida problem in potentially
annoying detail, the kind of detail that sometimes lands me on the
do-not-invite list for my neighbors’ parties. I did this not because I
expect you to run into this situation. I did it because the context is
simple, and the same kind of reasoning will bring clarity to many sit-
uations that really are encountered in life. Now let’s talk about a few
of those.

My MOST MEMORABLE ENCOUNTER with the Reverend Bayes
came one Friday afternoon in 1989, when my doctor told me by tele-
phone that the chances were 999 out of 1,000 that I'd be dead within
a decade. He added, “I'm really sorry,” as if he had some patients to
whom he would say he is sorry but not mean it. Then he answered a
few questions about the course of the disease and hung up, presum-
ably to offer another patient his or her Friday-afternoon news flash. It
is hard to describe or even remember exactly how the weekend went
for me, but let’s just say I did not go to Disneyland. Given my death
sentence, why am I still here, able to write about it?

The adventure started when my wife and I applied for life insur-
ance. The application procedure involved a blood test. A week or two
later we were turned down. The ever economical insurance com-
pany sent the news in two brief letters that were identical, except for
a single additional word in the letter to my wife. My letter stated that
the company was denying me insurance because of the “results of
your blood test.” My wife’s letter stated that the company was turning
her down because of the “results of your husband’s blood test.” When
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the added word hushand’s proved to be the extent of the clues the
kindhearted insurance company was willing to provide about our
uninsurability, I went to my doctor on a hunch and took an HIV test.
It came back positive. Though I was too shocked initially to quiz him
about the odds he quoted, I later learned that he had derived my
1-in-1,000 chance of being healthy from the following statistic: the
HIV test produced a positive result when the blood was not infected
with the AIDS virus in only 1 in 1,000 blood samples. That might
sound like the same message he passed on, but it wasn’t. My doctor
had confused the chances that [ would test positive if I was not HIV-
positive with the chances that I would not be HIV-positive if I tested
positive.

To understand my doctor’s error, let's employ Bayes’s method.
The first step is to define the sample space. We could include every-
one who has ever taken an HIV test, but we’ll get a more accurate
result if we employ a bit of additional relevant information about me
and consider only heterosexual non-IV-drug-abusing white male
Americans who have taken the test. (We'll see later what kind of dif-
ference this makes.)

Now that we know whom to include in the sample space, let’s
classify the members of the space. Instead of boy and girl, here the
relevant classes are those who tested positive and are HIV-positive
(true positives), those who tested positive but are not positive (false
positives), those who tested negative and are HIV-negative (true neg-
atives), and those who tested negative but are HIV-positive (false
negatives).

Finally, we ask, how many people are there in each of these
classes? Suppose we consider an initial population of 10,000. We can
estimate, employing statistics from the Centers for Disease Control
and Prevention, that in 1989 about 1 in those 10,000 heterosexual
non-IV-drug-abusing white male Americans who got tested were
infected with HIV.® Assuming that the false-negative rate is near 0,
that means that about 1 person out of every 10,000 will test positive
due to the presence of the infection. In addition, since the rate of
false positives is, as my doctor had quoted, 1 in 1,000, there will be
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about 10 others who are not infected with HIV but will test positive
anyway. The other 9,989 of the 10,000 men in the sample space will
test negative.

Now let’s prune the sample space to include only those who
tested positive. We end up with 10 people who are false positives and
1 true positive. In other words, only 1 in 11 people who test positive
are really infected with HIV. My doctor told me that the probability
that the test was wrong—and I was in fact healthy—was 1 in 1,000.
He should have said, “Don’t worry, the chances are better than 10
out of 11 that you are not infected.” In my case the screening test was
apparently fooled by certain markers that were present in my blood
even though the virus this test was screening for was not present.

It is important to know the false positive rate when assessing any
diagnostic test. For example, a test that identifies 99 percent of all
malignant tumors sounds very impressive, but I can easily devise a
test that identifies 100 percent of all tumors. All I have to do is report
that everyone I examine has a tumor. The key statistic that differenti-
ates my test from a useful one is that my test would produce a high
rate of false positives. But the above incident illustrates that knowl-
edge of the false positive rate is not sufficient to determine the useful-
ness of a test—you must also know how the false-positive rate
compares with the true prevalence of the disease. If the disease is
rare, even a low false-positive rate does not mean that a positive test
implies you have the disease. If a disease is common, a positive result
is much more likely to be meaningful. To see how the true preva-
lence affects the implications of a positive test, let’s suppose now that
I had been homosexual and tested positive. Assume that in the male
gay community the chance of infection among those being tested in
1989 was about 1 percent. That means that in the results of 10,000
tests, we would find not 1 (as before), but 100 true positives to go with
the 10 false positives. So in this case the chances that a positive test
meant [ was infected would have been 10 out of 11. That’s why, when
assessing test results, it is good to know whether you are in a high-risk

group.

116



False Positives and Positive Fallacies

BAYES’S THEORY shows that the probability that A will occur if B
occurs will generally differ from the probability that B will occur if A
occurs.” To not account for this is a common mistake in the medical
profession. For instance, in studies in Germany and the United
States, researchers asked physicians to estimate the probability that
an asymptomatic woman between the ages of 40 and 50 who has a
positive mammogram actually has breast cancer if 7 percent of mam-
mograms show cancer when there is none.® In addition, the doctors
were told that the actual incidence was about 0.8 percent and that
the false-negative rate about 10 percent. Putting that all together, one
can use Bayes’s methods to determine that a positive mammogram is
due to cancer in only about 9 percent of the cases. In the German
group, however, one-third of the physicians concluded that the prob-
ability was about 90 percent, and the median estimate was 70 per-
cent. In the American group, 95 out of 100 physicians estimated the
probability to be around 75 percent.

Similar issues arise in drug testing in athletes. Here again, the oft-
quoted but not directly relevant number is the false positive rate. This
gives a distorted view of the probability that an athlete is guilty. For
example, Mary Decker Slaney, a world-class runner and 1983 world
champion in the 1,500 and 3,000 meter race, was trying to make a
comeback when, at the U.S. Olympic Trials in Atlanta in 1996, she
was accused of doping violations consistent with testosterone use.
After various deliberations, the IAAF (known officially since 2001 as
the International Association of Athletics Federations) ruled that
Slaney “was guilty of a doping offense,” effectively ending her career.
According to some of the testimony in the Slaney case the false-
positive rate for the test to which her urine was subjected could have
been as high as 1 percent. This probably made many people comfort-
able that her chance of guilt was 99 percent, but as we have seen that
is not true. Suppose, for example, 1,000 athletes were tested, 1 in 10
was guilty, and the test, when given to a guilty athlete, had a 50 per-
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cent chance of revealing the doping violation. Then for every thou-
sand athletes tested, 100 would have been guilty and the test would
have fingered 50 of those. Meanwhile, of the 900 athletes who are
innocent, the test would have fingered 9. So what a positive-doping
test really meant was not that the probability she was guilty was
99 percent, but rather *%9 = 84.7 percent. Put another way, you
should have about as much confidence that Slaney was guilty based
on that evidence as you would that the number 1 won’t turn up when
she tossed a die. That certainly leaves room for reasonable doubt,
and, more important, indicates that to perform mass testing (90,000
athletes have their urine tested annually) and make judgments based
on such a procedure means to condemn a large number of innocent
people.”

In legal circles the mistake of inversion is sometimes called the
prosecutor’s fallacy because prosecutors often employ that type of fal-
lacious argument to lead juries to convicting suspects on thin evi-
dence. Consider, for example, the case in Britain of Sally Clark.10
Clark’s first child died at 11 weeks. The death was reported as due to
sudden infant death syndrome, or SIDS, a diagnosis that is made
when the death of a baby is unexpected and a postmortem does not
reveal a cause of death. Clark conceived again, and this time her
baby died at 8§ weeks, again reportedly of SIDS. When that hap-
pened, she was arrested and accused of smothering both children. At
the trial the prosecution called in an expert pediatrician, Sir Roy
Meadow, to testify that based on the rarity of SIDS, the odds of both
children’s dying from it was 73 million to 1. The prosecution offered
no other substantive evidence against her. Should that have been
enough to convict? The jury thought so, and in November 1999,
Mrs. Clark was sent to prison.

Sir Meadow had estimated that the odds that a child will die of
SIDS are 1 in 8,543. He calculated his estimate of 73 million to 1 by
multiplying two such factors, one for each child. But this calculation
assumes that the deaths are independent—that is, that no environ-
mental or genetic effects play a role that might increase a second
child’s risk once an older sibling has died of SIDS. In fact, in an edi-
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torial in the British Medical Journal a few weeks after the trial, the
chances of two siblings’ dying of SIDS were estimated at 2.75 million
to 1.1 Those are still very long odds.

The key to understanding why Sally Clark was wrongly impris-
oned is again to consider the inversion error: it is not the probability
that two children will die of SIDS that we seek but the probability
that the two children who died, died of SIDS. Two years after Clark
was imprisoned, the Royal Statistical Society weighed in on this sub-
ject with a press release, declaring that the jury’s decision was based
on “a serious error of logic known as the Prosecutor’s Fallacy. The
jury needs to weigh up two competing explanations for the babies’
deaths: SIDS or murder. Two deaths by SIDS or two murders are
each quite unlikely, but one has apparently happened in this case.
What matters is the relative likelihood of the deaths . . . , not just how
unlikely . . . [the SIDS explanation is].”12 A mathematician later esti-
mated the relative likelihood of a family’s losing two babies by SIDS
or by murder. He concluded, based on the available data, that two
infants are 9 times more likely to be SIDS victims than murder
victims.!?

The Clarks appealed the case and, for the appeal, hired their own
statisticians as expert witnesses. They lost the appeal, but they contin-
ued to seek medical explanations for the deaths and in the process
uncovered the fact that the pathologist working for the prosecution
had withheld the fact that the second child had been suffering from a
bacterial infection at the time of death, an infection that might have
caused the infant’s death. Based on that discovery, a judge quashed
the conviction, and after nearly three and a half years, Sally Clark
was released from prison.

The renowned attorney and Harvard Law School professor Alan
Dershowitz also successfully employed the prosecutor’s fallacy—to
help defend O. J. Simpson in his trial for the murder of Simpson’s ex-
wife, Nicole Brown Simpson, and a male companion. The trial of
Simpson, a former football star, was one of the biggest media events
of 1994-95. The police had plenty of evidence against him. They
found a bloody glove at his estate that seemed to match one found at
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the murder scene. Bloodstains matching Nicole’s blood were found
on the gloves, in his white Ford Bronco, on a pair of socks in his bed-
room, and in his driveway and house. Moreover, DNA samples taken
from blood at the crime scene matched O. Js. The defense could do
litle more than accuse the Los Angeles Police Department of
racism—O. J. is African American—and criticize the integrity of the
police and the authenticity of their evidence.

The prosecution made a decision to focus the opening of its case
on O. ]s propensity toward violence against Nicole. Prosecutors
spent the first ten days of the trial entering evidence of his history of
abusing her and claimed that this alone was a good reason to suspect
him of her murder. As they put it, “a slap is a prelude to homicide.”*
The defense attorneys used this strategy as a launchpad for their
accusations of duplicity, arguing that the prosecution had spent two
weeks trying to mislead the jury and that the evidence that O. J. had
battered Nicole on previous occasions meant nothing. Here is Der-
showitz’s reasoning: 4 million women are battered annually by hus-
bands and boyfriends in the United States, yet in 1992, according to
the FBI Uniform Crime Reports, a total of 1,432, or I in 2,500, were
killed by their husbands or boyfriends.!> Therefore, the defense
retorted, few men who slap or beat their domestic partners go on to
murder them. True? Yes. Convincing? Yes. Relevant? No. The rele-
vant number is not the probability that a man who batters his wife
will go on to kill her (1 in 2,500) but rather the probability that a bat-
tered wife who was murdered was murdered by her abuser. Accord-
ing to the Uniform Crime Reports for the United States and Its
Possessions in 1993, the probability Dershowitz (or the prosecution)
should have reported was this one: of all the battered women mur-
dered in the United States in 1993, some 90 percent were killed by
their abuser. That statistic was not mentioned at the trial.

As the hour of the verdict’s announcement approached, long-
distance call volume dropped by half, trading volume on the New
York Stock Exchange fell by 40 percent, and an estimated 100 mil-
lion people turned to their televisions and radios to hear the verdict:
not guilty. Dershowitz may have felt justified in misleading the jury
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because, in his words, “the courtroom oath—‘to tell the truth, the
whole truth and nothing but the truth’—is applicable only to wit-
nesses. Defense attorneys, prosecutors, and judges don’t take this
oath . . . indeed, it is fair to say the American justice system is built
on a foundation of not telling the whole truth.”1°

THOUGH CONDITIONAL PROBABILITY represented a revolution
in ideas about randomness, Thomas Bayes was no revolutionary, and
his work languished unattended despite its publication in the presti-
gious Philosophical ‘Transactions in 1764. And so it fell to another
man, the French scientist and mathematician Pierre-Simon de
Laplace, to bring Bayes’s ideas to scientists” attention and fulfill the
goal of revealing to the world how the probabilities that underlie real-
world situations could be inferred from the outcomes we observe.
You may remember that Bernoulli’s golden theorem will tell you
before you conduct a series of coin tosses how certain you can be, if
the coin is fair, that you will observe some given outcome. You may
also remember that it will not tell you after you've made a given series
of tosses the chances that the coin was a fair one. Along the same
lines, if you know that the chances that an eighty-five-year-old will
survive to ninety are *%o, the golden theorem tells you the probability
that half the eighty-five-year-olds in a group of 1,000 will die in the
next five years, but if half the people in some group died in the five
years after their eighty-fifth birthday, it cannot tell you how likely it is
that the underlying chances of survival for the people in that group
were *%o. Or if Ford knows that 1 in 100 of its automobiles has a
defective transmission, the golden theorem can tell Ford the chances
that, in a batch of 1,000 autos, 10 or more of the transmissions will be
defective, but if Ford finds 10 defective transmissions in a sample of
1,000 autos, it does not tell the automaker the likelihood that the
average number of defective transmissions is 1 in 100. In these cases
it is the latter scenario that is more often useful in life: outside situa-
tions involving gambling, we are not normally provided with theoret-
ical knowledge of the odds but rather must estimate them after
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making a series of observations. Scientists, too, find themselves in this
position: they do not generally seek to know, given the value of a
physical quantity, the probability that a measurement will come out
one way or another but instead seek to discern the true value of a
physical quantity, given a set of measurements.

[ have stressed this distinction because it is an important one. It
defines the fundamental difference between probability and statis-
tics: the former concerns predictions based on fixed probabilities; the
latter concerns the inference of those probabilities based on observed
data.

It is the latter set of issues that was addressed by Laplace. He was
not aware of Bayes’s theory and therefore had to reinvent it. As he
framed it, the issue was this: given a series of measurements, what is
the best guess you can make of the true value of the measured quan-
tity, and what are the chances that this guess will be “near” the true
value, however demanding you are in your definition of near?

Laplace’s analysis began with a paper in 1774 but spread over four
decades. A brilliant and sometimes generous man, he also occasion-
ally borrowed without acknowledgment from the works of others and
was a tireless self-promoter. Most important, though, Laplace was a
flexible reed that bent with the breeze, a characteristic that allowed
him to continue his groundbreaking work virtually undisturbed by
the turbulent events transpiring around him. Prior to the French
Revolution, Laplace obtained the lucrative post of examiner to the
royal artillery, in which he had the luck to examine a promising
sixteen-year-old candidate named Napoléon Bonaparte. When the
revolution came, in 1789, he fell briefly under suspicion but unlike
many others emerged unscathed, declaring his “inextinguishable
hatred to royalty” and eventually winning new honors from the
republic. Then, when his acquaintance Napoléon crowned himself
emperor in 1804, he immediately shed his republicanism and in
1806 was given the title count. After the Bourbons returned, Laplace
slammed Napoléon in the 1814 edition of his treatise Théorie analy-
tique des probabilités, writing that “the fall of empires which aspired
to universal dominion could be predicted with very high probability
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by one versed in the calculus of chance.”!” The previous, 1812, edi-
tion had been dedicated to “Napoleon the Great.”

Laplace’s political dexterity was fortunate for mathematics, for in
the end his analysis was richer and more complete than Bayes’s. With
the foundation provided by Laplace’s work, in the next chapter we
shall leave the realm of probability and enter that of statistics. Their
joining point is one of the most important curves in all of mathemat-
ics and science, the bell curve, otherwise known as the normal distri-
bution. That, and the new theory of measurement that came with it,
are the subjects of the following chapter.
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CHAPTER 7

Measurement and the
Law of Errors

NE DAY not long ago my son Alexei came home and an-

nounced the grade on his most recent English essay. He

had received a 93. Under normal circumstances I would
have congratulated him on earning an A. And since it was a low A
and I know him to be capable of better, I would have added that this
grade was evidence that if he put in a little effort, he could score even
higher next time. But these were not normal circumstances, and in
this case I considered the grade of 93 to be a shocking underestima-
tion of the quality of the essay. At this point you might think that the
previous few sentences tell you more about me than about Alexei. If
so, you're right on target. In fact, the above episode is entirely about
me, for it was I who wrote Alexei’s essay.

Okay, shame on me. In my defense I should point out that I
would normally no sooner write Alexei’s essays than take a foot to the
chin for him in his kung fu class. But Alexei had come to me for a cri-
tique of his work and as usual presented his request late on the night
before the paper was due. I told him I'd get back to him. Proceeding
to read it on the computer, I first made a couple of minor changes,
nothing worth bothering to note. Then, being a relentless rewriter, |
gradually found myself sucked in, rearranging this and rewriting that,
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and before I finished, not only had he fallen asleep, but I had made
the essay my own. The next morning, sheepishly admitting that [ had
neglected to perform a “save as” on the original, I told him to just go
ahead and turn in my version.

He handed me the graded paper with a few words of encourage-
ment. “Not bad,” he told me. “A 93 is really more of an A— than an A,
but it was late and I'm sure if you were more awake, you would have
done better.” I was not happy. First of all, it is unpleasant when a
fifteen-year-old says the very words to you that you have previously
said to him, and nevertheless you find his words inane. But beyond
that, how could my material —the work of a person whom my
mother, at least, thinks of as a professional writer—not make the
grade in a high school English class? Apparently I am not alone.
Since then [ have been told of another writer who had a similar expe-
rience, except his daughter received a B. Apparently the writer, with
a PhD in English, writes well enough for Rolling Stone, Esquire, and
The New York Times but not for English 101. Alexei tried to comfort
me with another story: two of his friends, he said, once turned in
identical essays. He thought that was stupid and they’d both be sus-
pended, but not only did the overworked teacher not notice, she gave
one of the essays a 90 (an A) and the other a 79 (a C). (Sounds odd
unless, like me, you've had the experience of staying up all night
grading a tall stack of papers with Star Trek reruns playing in the
background to break the monotony.)

Numbers always seem to carry the weight of authority. The think-
ing, at least subliminally, goes like this: if a teacher awards grades on
a 100-point scale, those tiny distinctions must really mean something.
But if ten publishers could deem the manuscript for the first Harry
Potter book unworthy of publication, how could poor Mrs. Finnegan
(not her real name) distinguish so finely between essays as to award
one a 92 and another a 937 If we accept that the quality of an essay is
somehow definable, we must still recognize that a grade is not a
description of an essay’s degree of quality but rather a measurement of
it, and one of the most important ways randomness affects us is
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through its influence on measurement. In the case of the essay the
measurement apparatus was the teacher, and a teacher’s assessment,
like any measurement, is susceptible to random variance and error.

Voting is also a kind of measurement. In that case we are measur-
ing not simply how many people support each candidate on election
day but how many care enough to take the trouble to vote. There are
many sources of random error in this measurement. Some legitimate
voters might find that their name is not on the rolls of registered vot-
ers. Others mistakenly vote for a candidate other than the one
intended. And of course there are errors in counting the votes. Some
ballots are improperly accepted or rejected; others are simply lost. In
most elections the sum of all these factors doesn’t add up to enough
to affect the outcome. But in close elections it can, and then we usu-
ally go through one or more recounts, as if our second or third count-
ing of the votes will be less affected by random errors than our first.

In the 2004 governor’s race in the state of Washington, for exam-
ple, the Democratic candidate was eventually declared the winner
although the original tally had the Republican winning by 261 votes
out of about 3 million.! Since the original vote count was so close,
state law required a recount. In that count the Republican won
again, but by only 42 votes. It is not known whether anyone thought
it was a bad sign that the 219-vote difference between the first and
second vote counts was several times larger than the new margin of
victory, but the upshot was a third vote count, this one entirely “by
hand.” The 42-vote victory amounted to an edge of just 1 vote out of
each 70,000 cast, so the hand-counting effort could be compared to
asking 42 people to count from 1 to 70,000 and then hoping they
averaged less than 1 mistake each. Not surprisingly, the result
changed again. This time it favored the Democrat by 10 votes. That
number was later changed to 129 when 700 newly discovered “lost
votes” were included.

Neither the vote-counting process nor the voting process is per-
fect. If, for instance, owing to post othice mistakes, 1 in 100 prospec-
tive voters didn’t get the mailer with the location of the polling place
and | in 100 of those people did not vote because of it, in the Wash-
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ington election that would have amounted to 300 voters who would
have voted but didn’t because of government error. Elections, like all
measurements, are imprecise, and so are the recounts, so when elec-
tions come out extremely close, perhaps we ought to accept them as
is, or flip a coin, rather than conducting recount after recount.

The imprecision of measurement became a major issue in the
mid-eighteenth century, when one of the primary occupations of
those working in celestial physics and mathematics was the problem
of reconciling Newton’s laws with the observed motions of the moon
and planets. One way to produce a single number from a set of dis-
cordant measurements is to take the average, or mean. It seems to
have been young Isaac Newton who, in his optical investigations, first
employed it for that purpose.? But as in many things, Newton was an
anomaly. Most scientists in Newton’s day, and in the following cen-
tury, didn’t take the mean. Instead, they chose the single “golden
number” from among their measurements—the number they
deemed mainly by hunch to be the most reliable result they had.
That’s because they regarded variation in measurement not as the
inevitable by-product of the measuring process but as evidence of
failure —with, at times, even moral consequences. In fact, they rarely
published multiple measurements of the same quantity, feeling it
would amount to the admission of a botched process and raise the
issue of trust. But in the mid-eighteenth century the tide began to
change. Calculating the gross motion of heavenly bodies, a series of
nearly circular ellipses, is a simple task performed today by preco-
cious high school students as music blares through their headphones.
But to describe planetary motion in its finer points, taking into
account not only the gravitational pull of the sun but also that of the
other planets and the deviation of the planets and the moon from a
perfectly spherical shape, is even today a difficult problem. To
accomplish that goal, complex and approximate mathematics had to
be reconciled with imperfect observation and measurement.

There was another reason why the late eighteenth century
demanded a mathematical theory of measurement: beginning in the
1780s in France a new mode of rigorous experimental physics had
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arisen.> Before that period, physics consisted of two separate tradi-
tions. On the one hand, mathematical scientists investigated the pre-
cise consequences of Newton’s theories of motion and gravity. On
the other, a group sometimes described as experimental philosophers
performed empirical investigations of electricity, magnetism, light,
and heat. The experimental philosophers—often amateurs—were
less focused on the rigorous methodology of science than were the
mathematics-oriented researchers, and so a movement arose to
reform and mathematize experimental physics. In it Pierre-Simon de
Laplace again played a major role.

Laplace had become interested in physical science through the
work of his fellow Frenchman Antoine-Laurent Lavoisier, considered
the father of modern chemistry.* Laplace and Lavoisier worked
together for years, but Lavoisier did not prove as adept as Laplace at
navigating the troubled times. To earn money to finance his many
scientific experiments, he had become a member of a privileged pri-
vate association of state-protected tax collectors. There is probably no
time in history when having such a position would inspire your fel-
low citizens to invite you into their homes for a nice hot cup of gin-
gerbread cappuccino, but when the French Revolution came, it
proved an especially onerous credential. In 1794, Lavoisier was
arrested with the rest of the association and quickly sentenced to
death. Ever the dedicated scientist, he requested time to complete
some of his research so that it would be available to posterity. To that
the presiding judge famously replied, “The republic has no need of
scientists.” The father of modern chemistry was promptly beheaded,
his body tossed into a mass grave. He had reportedly instructed his
assistant to count the number of words his severed head would
attempt to mouth.

Laplace’s and Lavoisier’s work, along with that of a few others,
especially the French physicist Charles-Augustin de Coulomb, who
experimented on electricity and magnetism, transformed experimen-
tal physics. Their work also contributed to the development, in the
1790s, of a new rational system of units, the metric system, to replace
the disparate systems that had impeded science and were a frequent
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cause of dispute among merchants. Developed by a group appointed
by Louis XVI, the metric system was adopted by the revolutionary
government after Louis’s downfall. Lavoisier, ironically, had been
one of the group’s members.

The demands of both astronomy and experimental physics meant
that a great part of the mathematician’s task in the late eighteenth
and early nineteenth centuries was understanding and quantifying
random error. Those efforts led to a new field, mathematical statis-
tics, which provides a set of tools for the interpretation of the data
that arise from observation and experimentation. Statisticians some-
times view the growth of modern science as revolving around that
development, the creation of a theory of measurement. But statistics
also provides tools to address real-world issues, such as the effective-
ness of drugs or the popularity of politicians, so a proper understand-
ing of statistical reasoning is as useful in everyday life as it is in
science.

IT 1S ONE OF THOSE CONTRADICTIONS of life that although
measurement always carries uncertainty, the uncertainty in measure-
ment is rarely discussed when measurements are quoted. If a fastidi-
ous traffic cop tells the judge her radar gun clocked you going
thirty-nine in a thirty-five-mile-per-hour zone, the ticket will usually
stick despite the fact that readings from radar guns often vary by sev-
eral miles per hour.> And though many students (along with their
parents) would jump off the roof if doing so would raise their 598 on
the math SAT to a 625, few educators talk about the studies showing
that, if you want to gain 30 points, there’s a good chance you can do
it simply by taking the test a couple more times.® Sometimes mean-
ingless distinctions even make the news. One recent August the
Bureau of Labor Statistics reported that the unemployment rate
stood at 4.7 percent. In July the bureau had reported the rate at
4.8 percent. The change prompted headlines like this one in The
New York Times: “Jobs and Wages Increased Modestly Last Month.””
But as Gene Epstein, the economics editor of Barron’s, put it, “Merely
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because the number has changed it doesn’t necessarily mean that a
thing itself has changed. For example, any time the unemployment
rate moves by a tenth of a percentage point . . . that is a change that is
so small, there is no way to tell whether there really was a change.”
In other words, if the Bureau of Labor Statistics measures the unem-
ployment rate in August and then repeats its measurement an hour
later, by random error alone there is a good chance that the second
measurement will differ from the first by at least a tenth of a percent-
age point. Would The New York Times then run the headline “Jobs
and Wages Increased Modestly at 2 p.m.”?

The uncertainty in measurement is even more problematic when
the quantity being measured is subjective, like Alexei’s English-class
essay. For instance, a group of researchers at Clarion University of
Pennsylvania collected 120 term papers and treated them with a
degree of scrutiny you can be certain your own child’s work will
never receive: each term paper was scored independently by eight
faculty members. The resulting grades, on a scale from A to F, some-
times varied by two or more grades. On average they differed by
nearly one grade.” Since a student’s future often depends on such
judgments, the imprecision is unfortunate. Yet it is understandable
given that, in their approach and philosophy, the professors in any
given college department often run the gamut from Karl Marx to
Groucho Marx. But what if we control for that— that is, if the graders
are given, and instructed to follow, certain fixed grading criteria? A
researcher at lowa State University presented about 100 students’
essays to a group of doctoral students in rhetoric and professional
communication whom he had trained extensively according to such
criteria.!’ Two independent assessors graded each essay on a scale of
1 to 4. When the scores were compared, the assessors agreed in only
about half the cases. Similar results were found by the University of
Texas in an analysis of its scores on college-entrance essays.!! Even
the venerable College Board expects only that, when assessed by two
raters, “92% of all scored essays will receive ratings within + 1 point of
each other on the 6-point SAT essay scale.”12

Another subjective measurement that is given more credence
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than it warrants is the rating of wines. Back in the 1970s the wine
business was a sleepy enterprise, growing, but mainly in the sales of
low-grade jug wines. Then, in 1978, an event often credited with the
rapid growth of that industry occurred: a lawyer turned self-
proclaimed wine critic, Robert M. Parker Jr., decided that, in addi-
tion to his reviews, he would rate wines numerically on a 100-point
scale. Over the years most other wine publications followed suit.
Today annual wine sales in the United States exceed $20 billion, and
millions of wine aficionados won’t lay their money on the counter
without first looking to a wine’s rating to support their choice. So
when Wine Spectator awarded, say, the 2004 Valentin Bianchi Argen-
tine cabernet sauvignon a 90 rather than an 89, that single extra point
translated into a huge difference in Valentin Bianchi’s sales.!® In fact,
if you look in your local wine shop, youll find that the sale and bar-
gain wines, owing to their lesser appeal, are often the wines rated in
the high 80s. But what are the chances that the 2004 Valentin
Bianchi Argentine cabernet that received a 90 would have received
an 89 if the rating process had been repeated, say, an hour later?

In his 1890 book The Principles of Psychology, William James sug-
gested that wine expertise could extend to the ability to judge
whether a sample of Madeira came from the top or the bottom of a
bottle.!* In the wine tastings that I've attended over the years, I've
noticed that if the bearded fellow to my left mutters “a great nose”
(the wine smells good), others certainly might chime in their agree-
ment. But if you make your notes independently and without discus-
sion, you often find that the bearded fellow wrote, “Great nose”; the
guy with the shaved head scribbled, “No nose”; and the blond
woman with the perm wrote, “Interesting nose with hints of parsley
and freshly tanned leather.”

From the theoretical viewpoint, there are many reasons to ques-
tion the significance of wine ratings. For one thing, taste perception
depends on a complex interaction between taste and olfactory stimu-
lation. Strictly speaking, the sense of taste comes from five types of
receptor cells on the tongue: salty, sweet, sour, bitter, and umami.
The last responds to certain amino acid compounds (prevalent, for
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example, in soy sauce). But if that were all there was to taste percep-
tion, you could mimic everything—your favorite steak, baked potato,
and apple pie feast or a nice spaghetti Bolognese —employing only
table salt, sugar, vinegar, quinine, and monosodium glutamate. For-
tunately there is more to gluttony than that, and that is where the
sense of smell comes in. The sense of smell explains why, if you take
two identical solutions of sugar water and add to one a (sugar-free)
essence of strawberry, it will taste sweeter than the other.!> The per-
ceived taste of wine arises from the effects of a stew of between 600
and 800 volatile organic compounds on both the tongue and the
nose.!® That’s a problem, given that studies have shown that even
flavor-trained professionals can rarely reliably identify more than
three or four components in a mixture.!”

Expectations also affect your perception of taste. In 1963 three
researchers secretly added a bit of red food color to white wine to give
it the blush of a rosé. They then asked a group of experts to rate its
sweetness in comparison with the untinted wine. The experts per-
ceived the fake rosé as sweeter than the white, according to their
expectation. Another group of researchers gave a group of oenology
students two wine samples. Both samples contained the same white
wine, but to one was added a tasteless grape anthocyanin dye that
made it appear to be red wine. The students also perceived differ-
ences between the red and the white corresponding to their expecta-
tions.!"® And in a 2008 study a group of volunteers asked to rate five
wines rated a bottle labeled $90 higher than another bottle labeled
$10, even though the sneaky researchers had filled both bottles with
the same wine. What's more, this test was conducted while the sub-
jects were having their brains imaged in a magnetic resonance scan-
ner. The scans showed that the area of the brain thought to encode
our experience of pleasure was truly more active when the subjects
drank the wine they believed was more expensive.!” But before you
judge the oenophiles, consider this: when a researcher asked 30 cola
drinkers whether they preferred Coke or Pepsi and then asked them
to test their preference by tasting both brands side by side, 21 of the
30 reported that the taste test confirmed their choice even though
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this sneaky researcher had put Coke in the Pepsi bottle and vice
versa.?l When we perform an assessment or measurement, our brains
do not rely solely on direct perceptional input. They also integrate
other sources of information —such as our expectation.

Wine tasters are also often fooled by the flip side of the
expectancy bias: a lack of context. Holding a chunk of horseradish
under your nostril, you'd probably not mistake it for a clove of garlic,
nor would you mistake a clove of garlic for, say, the inside of your
sneaker. But if you sniff clear liquid scents, all bets are off. In the
absence of context, there’s a good chance you’d mix the scents up. At
least that's what happened when two researchers presented experts
with a series of sixteen random odors: the experts misidentified about
1 out of every 4 scents.?!

Given all these reasons for skepticism, scientists designed ways to
measure wine experts’ taste discrimination directly. One method is to
use a wine triangle. It is not a physical triangle but a metaphor: each
expert is given three wines, two of which are identical. The mission:
to choose the odd sample. In a 1990 study, the experts identified the
odd sample only two-thirds of the time, which means that in 1 out
of 3 taste challenges these wine gurus couldn’t distinguish a pinot
noir with, say, “an exuberant nose of wild strawberry, luscious black-
berry, and raspberry,” from one with “the scent of distinctive dried
plums, yellow cherries, and silky cassis.”?? In the same study an en-
semble of experts was asked to rank a series of wines based on 12
components, such as alcohol content, the presence of tannins, sweet-
ness, and fruitiness. The experts disagreed significantly on 9 of the
12 components. Finally, when asked to match wines with the de-
scriptions provided by other experts, the subjects were correct only 70
percent of the time.

Wine critics are conscious of all these difficulties. “On many lev-
els . .. [the ratings system] is nonsensical,” says the editor of Wine
and Spirits Magazine.?? And according to a former editor of Wine
Enthusiast, “The deeper you get into this the more you realize how
misguided and misleading this all is.”2* Yet the rating system thrives.
Why? The critics found that when they attempted to encapsulate
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wine quality with a system of stars or simple verbal descriptors such as
good, bad, and maybe ugly, their opinions were unconvincing. But
when they used numbers, shoppers worshipped their pronounce-
ments. Numerical ratings, though dubious, make buyers confident
that they can pick the golden needle (or the silver one, depending on
their budget) from the haystack of wine varieties, makers, and vin-
tages.

If a wine—or an essay —truly admits some measure of quality that
can be summarized by a number, a theory of measurement must
address two key issues: How do we determine that number from a
series of varying measurements? And given a limited set of measure-
ments, how can we assess the probability that our determination is
correct? We now turn to these questions, for whether the source of
data is objective or subjective, their answers are the goal of the theory
of measurement.

THE KEY to understanding measurement is understanding the
nature of the variation in data caused by random error. Suppose we
offer a number of wines to fifteen critics or we offer the wines to one
critic repeatedly on different days or we do both. We can neatly sum-
marize the opinions employing the average, or mean, of the ratings.
But it is not just the mean that matters: if all fifteen critics agree that
the wine is a 90, that sends one message; if the critics produce the rat-
ings 80, 81, 82, 87, 89, 89, 90, 90, 90, 91, 91, 94, 97, 99, and 100, that
sends another. Both sets of data have the same mean, but they differ
in the amount they vary from that mean. Since the manner in which
data points are distributed is such an important piece of information,
mathematicians created a numerical measure of variation to describe
it. That number is called the sample standard deviation. Mathemati-
cians also measure the variation by its square, which is called the
sample variance.

The sample standard deviation characterizes how close to the
mean a set of data clusters or, in practical terms, the uncertainty of
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the data. When it is low, the data fall near the mean. For the data in
which all wine critics rated the wine 90, for example, the sample
standard deviation is 0, telling you that all the data are identical to
the mean. When the sample standard deviation is high, however, the
data are not clustered around the mean. For the set of wine ratings
above that ranges from 80 to 100, the sample standard deviation is 6,
meaning that as a rule of thumb most of the ratings fall within 6
points of the mean. In that case all you can really say about the wine
is that it is probably somewhere between an 84 and a 96.

In judging the meaning of their measurements, scientists in the
eighteenth and nineteenth centuries faced the same issues as the
skeptical oenophile. For if a group of researchers makes a series of
observations, the results will almost always differ. One astronomer
might suffer adverse atmospheric conditions; another might be jos-
tled by a breeze; a third might have just returned from a Madeira tast-
ing with William James. In 1838 the mathematician and astronomer
F. W. Bessel categorized eleven classes of random errors that occur in
every telescopic observation. Even if a single astronomer makes
repeated measurements, variables such as unreliable eyesight or the
effect of temperature on the apparatus will cause the observations to
vary. And so astronomers must understand how, given a series of dis-
crepant measurements, they can determine a body’s true position.
But just because oenophiles and scientists share a problem, it doesn’t
mean they can share its solution. Can we identify general character-
istics of random error, or does the character of random error depend
on the context?

One of the first to imply that diverse sets of measurements share
common characteristics was Jakob Bernoulli’s nephew Daniel. In
1777 he likened the random errors in astronomical observation to the
deviations in the flight of an archer’s arrows. In both cases, he rea-
soned, the target—true value of the measured quantity, or the bull’s-
eye —should lie somewhere near the center, and the observed results
should be bunched around it, with more reaching the inner bands
and fewer falling farther from the mark. The law he proposed to
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describe the distribution did not prove to be the correct one, but what
is important is the insight that the distribution of an archer’s errors
might mirror the distribution of errors in astronomical observations.

That the distribution of errors follows some universal law, some-
times called the error law, is the central precept on which the theory
of measurement is based. Its magical implication is that, given that
certain very common conditions are satisfied, any determination of a
true value based on measured values can be solved employing a sin-
gle mathematical analysis. When such a universal law is employed,
the problem of determining the true position of a heavenly body
based on a set of astronomers’ measurements is equivalent to that of
determining the position of a bull’s-eye given only the arrow holes or
a wine’s “quality” given a series of ratings. That is the reason mathe-
matical statistics is a coherent subject rather than merely a bag of
tricks: whether your repeated measurements are aimed at determin-
ing the position of Jupiter at 4 .M. on Christmas Day or the weight of
a loat of raisin bread coming off an assembly line, the distribution of
errors is the same.

This doesn’t mean random error is the only kind of error that can
affect measurement. If half a group of wine critics liked only red
wines and the other half only white wines but they all otherwise
agreed perfectly (and were perfectly consistent), then the ratings
earned by a particular wine would not follow the error law but
instead would consist of two sharp peaks, one due to the red wine
lovers and one due to the white wine lovers. But even in situations
where the applicability of the law may not be obvious, from the point
spreads of pro football games?’ to IQ ratings, the error law often does
apply. Many years ago I got hold of a few thousand registration cards
for a consumer software program a friend had designed for eight- and
nine-year-olds. The software wasn't selling as well as expected. Who
was buying it? After some tabulation I found that the greatest number
of users occurred at age seven, indicating an unwelcome but not
unexpected mismatch. But what was truly striking was that when 1
made a bar graph showing how the number of buyers diminished as
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the buyers’” age strayed from the mean of seven, I found that the
graph took a very familiar shape — that of the error law.

It is one thing to suspect that archers and astronomers, chemists
and marketers, encounter the same error law; it is another to discover
the specific form of that law. Driven by the need to analyze astronom-
ical data, scientists like Daniel Bernoulli and Laplace postulated a
series of flawed candidates in the late eighteenth century. As it turned
out, the correct mathematical function describing the error law—the
bell curve —had been under their noses the whole time. It had been
discovered in London in a different context many decades earlier.

OF THE THREE PEOPLE instrumental in uncovering the impor-
tance of the bell curve, its discoverer is the one who least often gets
the credit. Abraham De Moivre’s breakthrough came in 1733, when
he was in his mid-sixties, and wasn’t made public until his book The
Doctrine of Chances came out in its second edition five years later.
De Moivre was led to the curve while searching for an approxima-
tion to the numbers that inhabit the regions of Pascal’s triangle far
beneath the place where I truncated it, hundreds or thousands of
lines down. In order to prove his version of the law of large numbers,
Jakob Bernoulli had had to grapple with certain properties of the
numbers that appeared in those lines. The numbers can be very
large —for instance, one coefhicient in the 200th row of Pascal’s trian-
gle has fifty-nine digits! In Bernoulli’s day, and indeed in the days
before computers, such numbers were obviously very hard to calcu-
late. That’s why, as I said, Bernoulli proved his law of large numbers
employing various approximations, which diminished the practical
usefulness of his result. With his curve, De Moivre was able to make
far better approximations to the coefficients and therefore greatly
improve on Bernoulli’s estimates.

The approximation De Moivre derived is evident if, as I did for
the registration cards, you represent the numbers in a row of the tri-
angle by the height of the bars on a bar graph. For instance, the three
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numbers in the third line of the triangle are 1, 2, 1. In their bar graph
the first bar rises one unit; the second is twice that height; and the
third is again just one unit. Now look at the five numbers in the fifth
line: 1,4, 6,4, 1. That graph will have five bars, again starting low, ris-
ing to a peak at the center, and then falling off symmetrically. The
coefficients very far down in the triangle lead to bar graphs with very
many bars, but they behave in the same manner. The bar graphs in
the case of the 10th, 100th, and 1,000th lines of Pascal’s triangle are
shown on page 139.

If you draw a curve connecting the tops of all the bars in each bar
graph, it will take on a characteristic shape, a shape approaching that
of a bell. And if you smooth the curve a bit, you can write a mathe-
matical expression for it. That smooth bell curve is more than just a
visualization of the numbers in Pascal’s triangle; it is a means for
obtaining an accurate and easy-to-use estimate of the numbers that
appear in the triangle’s lower lines. This was De Moivre’s discovery.

Today the bell curve is usually called the normal distribution and
sometimes the Gaussian distribution (we’ll see later where that term
originated). The normal distribution is actually not a fixed curve but
a family of curves, in which each depends on two parameters to set its
specific position and shape. The first parameter determines where its
peak is located, which is at 5, 50, and 500 in the graphs on page 139.
The second parameter determines the amount of spread in the curve.
Though it didn’t receive its modern name until 1894, this measure is
called the standard deviation, and it is the theoretical counterpart of
the concept 1 spoke of earlier, the sample standard deviation.
Roughly speaking, it is half the width of the curve at the point at
which the curve is about 60 percent of its maximum height. Today
the importance of the normal distribution stretches far beyond its use
as an approximation to the numbers in Pascal’s triangle. It is, in fact,
the most widespread manner in which data have been found to be
distributed.

When employed to describe the distribution of data, the bell
curve describes how, when you make many observations, most of
them fall around the mean, which is represented by the peak of the
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The bars in the graphs above represent the relative magnitudes of
the entries in the 10th, 100th, and 1,000th rows of Pascal’s triangle
(see page 72). The numbers along the horizontal axis indicate to
which entry the bar refers. By convention, that labeling begins
at 0, rather than 1 (the middle and bottom graphs have been
truncated so that the entries whose bars would have
negligible height are not shown).
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curve. Moreover, as the curve slopes symmetrically downward on
either side, it describes how the number of observations diminishes
equally above and below the mean, at first rather sharply and then
less drastically. In data that follow the normal distribution, about 68
percent (roughly two-thirds) of your observations will fall within
1 standard deviation of the mean, about 95 percent within 2 standard
deviations, and 99.7 percent within 3.

In order to visualize this, have a look at the graph on page 141. In
this table the data marked by squares concern the guesses made by
300 students, each observing a series of 10 coin flips.2® Along the hor-
izontal axis is plotted the number of correct guesses, from 0 to 10.
Along the vertical axis is plotted the number of students who
achieved that number of correct guesses. The curve is bell shaped,
centered at 5 correct guesses, at which point its height corresponds to
about 75 students. The curve falls to about two-thirds of its maximum
height, corresponding to about 51 students, about halfway between 3
and 4 correct guesses on the left and between 6 and 7 on the right. A
bell curve with this magnitude of standard deviation is typical of a
random process such as guessing the result of a coin toss.

The same graph also displays another set of data, marked by cir-
cles. That set describes the performance of 300 mutual fund man-
agers. In this case the horizontal axis represents not correct guesses of
coin flips but the number of years (out of 10) that a manager per-
formed above the group average. Note the similarity! We'll get back
to this in chapter 9.

A good way to get a feeling for how the normal distribution relates
to random error is to consider the process of polling, or sampling.
You may recall the poll I described in chapter 5 regarding the popu-
larity of the mayor of Basel. In that city a certain fraction of voters
approved of the mayor, and a certain fraction disapproved. For the
sake of simplicity we will now assume each was 50 percent. As we
saw, there is a chance that those involved in the poll would not reflect
exactly this 50/50 split. In fact, if N voters were questioned, the
chances that any given number of them would support the mayor are
proportional to the numbers on line N of Pascal’s triangle. And so,
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according to De Moivre’s work, if pollsters poll a large number of vot-
ers, the probabilities of different polling results can be described by
the normal distribution. In other words about 95 percent of the time
the approval rating they observe in their poll will fall within 2 stan-
dard deviations of the true rating, 50 percent. Pollsters use the term
margin of error to describe this uncertainty. When pollsters tell the
media that a poll’s margin of error is plus or minus 5 percent, they
mean that if they were to repeat the poll a large number of times, 19
out of 20 (95 percent) of those times the result would be within 5 per-
cent of the correct answer. (Though pollsters rarely point this out,
that also means, of course, that about 1 time in 20 the result will be
wildly inaccurate.) As a rule of thumb, a sample of 100 yields a mar-
gin of error that is too great for most purposes. A sample of 1,000, on
the other hand, usually yields a margin of error in the ballpark of
3 percent, which for most purposes suffices.

It is important, whenever assessing any kind of survey or poll, to
realize that when it is repeated, we should expect the results to vary.
For example, if in reality 40 percent of registered voters approve of
the way the president is handling his job, it is much more likely that
six independent surveys will report numbers like 37, 39, 39, 40, 42,
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and 42 than it is that all six surveys will agree that the president’s sup-
port stands at 40 percent. (Those six numbers are in fact the results of
six independent polls gauging the president’s job approval in the first
two weeks of September 2006.)2” That’s why, as another rule of
thumb, any variation within the margin of error should be ignored.
But although The New York Times would not run the headline “Jobs
and Wages Increased Modestly at 2 p.m.,” analogous headlines are
common in the reporting of political polls. For example, after the
Republican National Convention in 2004, CNN ran the headline
“Bush Apparently Gets Modest Bounce.”?8 The experts at CNN went
on to explain that “Bush’s convention bounce appeared to be 2 per-
centage points. . . . The percentage of likely voters who said he was
their choice for president rose from 50 right before the convention to
52 immediately afterward.” Only later did the reporter remark that
the poll’s margin of error was plus or minus 3.5 percentage points,
which means that the news flash was essentially meaningless. Appar-
ently the word apparently, in CNN-talk, means “apparently not.”
For many polls a margin of error of more than 5 percent is consid-
ered unacceptable, yet in our everyday lives we make judgments
based on far fewer data points than that. People don’t get to play 100
years of professional basketball, invest in 100 apartment buildings, or
start 100 chocolate-chip-cookie companies. And so when we judge
their success at those enterprises, we judge them on just a few data
points. Should a football team lavish $50 million to lure a guy com-
ing off a single record-breaking year? How likely is it that the stock-
broker who wants your money for a sure thing will repeat her earlier
successes? Does the success of the wealthy inventor of sea monkeys
mean there is a good chance he’ll succeed with his new ideas of invis-
ible goldfish and instant frogs? (For the record, he didn’t.)? When
we observe a success or a failure, we are observing one data point, a
sample from under the bell curve that represents the potentialities
that previously existed. We cannot know whether our single observa-
tion represents the mean or an outlier, an event to bet on or a rare
happening that is not likely to be reproduced. But at a minimum we
ought to be aware that a sample point is just a sample point, and
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rather than accepting it simply as reality, we ought to see it in the
context of the standard deviation or the spread of possibilities that
produced it. The wine might be rated 91, but that number is mean-
ingless if we have no estimate of the variation that would occur if the
identical wine were rated again and again or by someone else. It
might help to know, for instance, that a few years back, when both
The Penguin Good Australian Wine Guide and On Wine’s Australian
Wine Annual reviewed the 1999 vintage of the Mitchelton Black-
wood Park Riesling, the Penguin guide gave the wine five stars out of
five and named it Penguin Best Wine of the Year, while On Wine
rated it at the bottom of all the wines it reviewed, deeming it the
worst vintage produced in a decade.’’ The normal distribution not
only helps us understand such discrepancies, but also has enabled
a myriad of statistical applications widely employed today in both
science and commerce—for example, whenever a drug company
assesses whether the results of a clinical trial are significant, a manu-
facturer assesses whether a sample of parts accurately reflects the pro-
portion of those that are defective, or a marketer decides whether to
act on the results of a research survey.

THE RECOGNITION that the normal distribution describes the dis-
tribution of measurement error came decades after De Moivre’s
work, by that fellow whose name is sometimes attached to the bell
curve, the German mathematician Carl Friedrich Gauss. It was
while working on the problem of planetary motion that Gauss came
to that realization, at least regarding astronomical measurements.
Gauss’s “proof,” however, was, by his own later admission, invalid.?!
Moreover, its far-reaching consequences also eluded him. And so he
slipped the law inconspicuously into a section at the end of a book
called The Theory of the Motion of Heavenly Bodies Moving about the
Sun in Conic Sections. There it may well have died, just another in
the growing pile of abandoned proposals for the error law.

It was Laplace who plucked the normal distribution from obscu-
rity. He encountered Gauss’s work in 1810, soon after he had read a
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memoir to the Académie des Sciences proving a theorem called the
central limit theorem, which says that the probability that the sum of
a large number of independent random factors will take on any given
value is distributed according to the normal distribution. For exam-
ple, suppose you bake 100 loaves of bread, each time following a
recipe that is meant to produce a loaf weighing 1,000 grams. By
chance you will sometimes add a bit more or a bit less flour or milk,
or a bit more or less moisture may escape in the oven. If in the end
each of a myriad of possible causes adds or subtracts a few grams, the
central limit theorem says that the weight of your loaves will vary
according to the normal distribution. Upon reading Gauss’s work,
Laplace immediately realized that he could use it to improve his own
and that his work could provide a better argument than Gauss’s to
support the notion that the normal distribution is indeed the error
law. Laplace rushed to press a short sequel to his memoir on the the-
orem. Today the central limit theorem and the law of large numbers
are the two most famous results of the theory of randomness.

To illustrate how the central limit theorem explains why the nor-
mal distribution is the correct error law, let’s reconsider Daniel
Bernoulli’s example of the archer. I played the role of the archer one
night after a pleasant interlude of wine and adult company, when my
younger son, Nicolai, handed me a bow and arrow and dared me to
shoot an apple off his head. The arrow had a soft foam tip, but still it
seemed reasonable to conduct an analysis of my possible errors and
their likelihood. For obvious reasons I was mainly concerned with
vertical errors. A simple model of the errors is this: Each random
factor—say, a sighting error, the effect of air currents, and so on—
would throw my shot vertically off target, either high or low, with
equal probability. My total error in aim would then be the sum of
my errors. If I was lucky, about half the component errors would de-
flect the arrow upward and halt downward, and my shot would end
up right on target. If I was unlucky (or, more to the point, if my son
was unlucky), the errors would all fall one way and my aim would
be far off, either high or low. The relevant question was, how likely
was it that the errors would cancel each other, or that they would add
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up to their maximum, or that they would take any other value in be-
tween? But that was just a Bernoulli process—like tossing coins and
asking how likely it is that the tosses will result in a certain number
of heads. The answer is described by Pascal’s triangle or, if many
trials are involved, by the normal distribution. And that, in this case,
is precisely what the central limit theorem tells us. (As it turned
out, I missed both apple and son, but did knock over a glass of very
nice cabernet.)

By the 1830s most scientists had come to believe that every mea-
surement is a composite, subject to a great number of sources of devi-
ation and hence to the error law. The error law and the central limit
theorem thus allowed for a new and deeper understanding of data
and their relation to physical reality. In the ensuing century, scholars
interested in human society also grasped these ideas and found to
their surprise that the variation in human characteristics and behav-
ior often displays the same pattern as the error in measurement. And
so they sought to extend the application of the error law from physical
science to a new science of human affairs.
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CHAPTER 8

The Order in Chaos

N THE MID-1960S, some ninety years old and in great need of

money to live on, a Frenchwoman named Jeanne Calment

made a deal with a forty-seven-year-old lawyer: she sold him her
apartment for the price of a low monthly subsistence payment with
the agreement that the payments would stop upon her death, at
which point she would be carried out and he could move in.! The
lawyer must have known that Ms. Calment had already exceeded the
French life expectancy by more than ten years. He may not have
been aware of Bayes’s theory, however, nor known that the relevant
issue was not whether she should be expected to die in minus ten
years but that her life expectancy, given that she had already made it
to ninety, was about six more years.2 Still, he had to feel comfortable
believing that any woman who as a teenager had met Vincent van
Gogh in her father’s shop would soon be joining van Gogh in the
hereafter. (For the record, she found the artist “dirty, badly dressed,
and disagrecable.”)

Ten years later the attorney had presumably found an alternative
dwelling, for Jeanne Calment celebrated her 100th birthday in good
health. And though her life expectancy was then about two years, she
reached her 110th birthday still on the lawyer’s dime. By that point
the attorney had turned sixty-seven. But it was another decade before
the attorney’s long wait came to an end, and it wasn’t the end he
expected. In 1995 the attorney himself died while Jeanne Calment
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lived on. Her day of reckoning finally came on August 4, 1997, at the
age of 122. Her age at death exceeded the lawyer’s age at his death by
forty-five years.

Individual life spans—and lives—are unpredictable, but when
data are collected from groups and analyzed en masse, regular pat-
terns emerge. Suppose you have driven accidentfree for twenty
years. Then one fateful afternoon while youre on vacation in Que-
bec with your spouse and your in-laws, your mother-in-law yells,
“Look out for that moose!” and you swerve into a warning sign that
says essentially the same thing. To you the incident would feel like an
odd and unique event. But as the need for the sign indicates, in an
ensemble of thousands of drivers a certain percentage of drivers can
be counted on to encounter a moose. In fact, a statistical ensemble of
people acting randomly often displays behavior as consistent and pre-
dictable as a group of people pursuing conscious goals. Or as the
philosopher Immanuel Kant wrote in 1784, “Each, according to his
own inclination follows his own purpose, often in opposition to oth-
ers; yet each individual and people, as if following some guiding
thread, go toward a natural but to each of them unknown goal; all
work toward furthering it, even if they would set little store by it if
they did know it.”?

According to the Federal Highway Administration, for example,
there are about 200 million drivers in the United States.* And accord-
ing to the National Highway Traffic Safety Administration, in one
recent year those drivers drove a total of about 2.86 trillion miles.’
That’s about 14,300 miles per driver. Now suppose everyone in the
country had decided it would be fun to hit that same total again the
following year. Let’s compare two methods that could have been
used to achieve that goal. In method 1 the government institutes a
rationing system employing one of the National Science Founda-
tion’s supercomputing centers to assign personal mileage targets that
meet each of the 200 million motorists” needs while maintaining the
previous annual average of 14,300. In method 2 we tell drivers not
to stress out over it and to drive as much or as little as they please
with no regard to how far they drove the prior year. If Uncle Billy
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Bob, who used to walk to work at the liquor store, decides instead
to log 100,000 miles as a shotgun wholesaler in West Texas, that’s
fine. And if Cousin Jane in Manhattan, who logged most of her
mileage circling the block on street-cleaning days in search of a park-
ing space, gets married and moves to New Jersey, we won’t worry
about that either. Which method would come closer to the target of
14,300 miles per driver? Method 1 is impossible to test, though our
limited experience with gasoline rationing indicates that it probably
wouldn’t work very well. Method 2, on the other hand, was actually
instituted —that is, the following year, drivers drove as much or as lit-
tle as they pleased without attempting to hit any quota. How did they
do? According to the National Highway Traffic Safety Administra-
tion, that year American drivers drove 2.88 trillion miles, or 14,400
miles per person, only 100 miles above target. What’s more, those
200 million drivers also suffered, within less than 200, the same num-
ber of fatalities in both years (42,815 versus 42,643).

We associate randomness with disorder. Yet although the lives of
200 million drivers vary unforeseeably, in the aggregate their behav-
ior could hardly have proved more orderly. Analogous regularities
can be found if we examine how people vote, buy stocks, marry, are
told to get lost, misaddress letters, or sit in traffic on their way to a
meeting they didn’t want to go to in the first place —or if we measure
the length of their legs, the size of their feet, the width of their but-
tocks, or the breadth of their beer bellies. As nineteenth-century sci-
entists dug into newly available social data, wherever they looked, the
chaos of life seemed to produce quantifiable and predictable pat-
terns. But it was not just the regularities that astonished them. It was
also the nature of the variation. Social data, they discovered, often
follow the normal distribution.

That the variation in human characteristics and behavior is dis-
tributed like the error in an archer’s aim led some nineteenth-century
scientists to study the targets toward which the arrows of human exis-
tence are aimed. More important, they sought to understand the
social and physical causes that sometimes move the target. And so
the field of mathematical statistics, developed to aid scientists in data
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analysis, flourished in a far different realm: the study of the nature of
society.

StartisticiaNs have been analyzing life’s data at least since the
eleventh century, when William the Conqueror commissioned what
was, in effect, the first national census. William began his rule in
1035, at age seven, when he succeeded his father as duke of Nor-
mandy. As his moniker implies, Duke William II liked to conquer,
and in 1066 he invaded England. By Christmas Day he was able to
give himself the present of being crowned king. His swift victory left
him with a little problem: whom exactly had he conquered, and
more important, how much could he tax his new subjects? To answer
those questions, he sent inspectors into every part of England to note
the size, ownership, and resources of each parcel of land.® To make
sure they got it right, he sent a second set of inspectors to duplicate
the effort of the first set. Since taxation was based not on population
but on land and its usage, the inspectors made a valiant effort to
count every ox, cow, and pig but didn’t gather much data about the
people who shoveled their droppings. Even if population data had
been relevant, in medieval times a statistical survey regarding the
most vital statistics about humans—their life spans and diseases—
would have been considered inconsistent with the traditional Chris-
tian concept of death. According to that doctrine, it was wrong to
make death the object of speculation and almost sacrilegious to look
for laws governing it. For whether a person died from a lung infec-
tion, a stomachache, or a rock whose impact exceeded the compres-
sive strength of his skull, the true cause of his or her death was
considered to be simply God’s will. Over the centuries that fatalistic
attitude gradually gave way, yielding to an opposing view, according
to which, by studying the regularities of nature and society, we are
not challenging God’s authority but rather learning about his ways.
A big step in that transformation of views came in the sixteenth
century, when the lord mayor of London ordered the compilation of
weekly “bills of mortality” to account for the christenings and burials
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recorded by parish clerks. For decades the bills were compiled spo-
radically, but in 1603, one of the worst years of the plague, the city
instituted a weekly tally. Theorists on the Continent turned up their
noses at the data-laden mortality bills as peculiarly English and of lit-
tle use. But to one peculiar Englishman, a shopkeeper named John
Graunt, the tallies told a gripping tale.”

Graunt and his friend William Petty have been called the
founders of statistics, a field sometimes considered lowbrow by those
in pure mathematics owing to its focus on mundane practical issues,
and in that sense Graunt in particular makes a fitting founder. For
unlike some of the amateurs who developed probability—Cardano
the doctor, Fermat the jurist, or Bayes the clergyman— Graunt was a
seller of common notions: buttons, thread, needles, and other small
items used in a household. But Graunt wasn’t just a button salesman;
he was a wealthy button salesman, and his wealth afforded him the
leisure to pursue interests having nothing to do with implements for
holding garments together. It also enabled him to befriend some of
the greatest intellectuals of his day, including Petty.

One inference Graunt gleaned from the mortality bills con-
cerned the number of people who starved to death. In 1665 that
number was reported to be 45, only about double the number who
died from execution. In contrast, 4,808 were reported to have died
from consumption, 1,929 from “spotted fever and purples,” 2,614
from “teeth and worms,” and 68,596 from the plague. Why, when
London was “teeming with beggars,” did so few starve? Graunt con-
cluded that the populace must be feeding the hungry. And so he pro-
posed instead that the state provide the food, thereby costing society
nothing while ridding seventeenth-century London streets of their
equivalent of panhandlers and squeegee men. Graunt also weighed
in on the two leading theories of how the plague is spread. One the-
ory held that the illness was transmitted by foul air; the other, that it
was transmitted from person to person. Graunt looked at the week-to-
week records of deaths and concluded that the fluctuations in the
data were too great to be random, as he expected they would be if the
person-to-person theory were correct. On the other hand, since
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weather varies erratically week by week, he considered the fluctuat-
ing data to be consistent with the foul-air theory. As it turned out,
London was not ready for soup kitchens, and Londoners would have
fared better if they had avoided ugly rats rather than foul air, but
Graunt’s great discoveries lay not in his conclusions. They lay instead
in his realization that statistics can provide insights into the system
from which the statistics are derived.

Petty’s work is sometimes considered a harbinger of classical eco-
nomics.® Believing that the strength of the state depends on, and is
reflected by, the number and character of its subjects, Petty employed
statistical reasoning to analyze national issues. Typically his analyses
were made from the point of view of the sovereign and treated mem-
bers of society as objects to be manipulated at will. Regarding the
plague, he pointed out that money should be spent on prevention
because, in saving lives, the realm would preserve part of the consid-
erable investment society made in raising men and women to matu-
rity and therefore would reap a higher return than it would on the
most lucrative of alternative investments. Regarding the Irish, Petty
was not as charitable. He concluded, for example, that the economic
value of an English life was greater than that of an Irish one, so the
wealth of the kingdom would be increased if all Irishmen except a
few cowherds were forcibly relocated to England. As it happened,
Petty owed his own wealth to those same Irish: as a doctor with the
invading British army in the 1650s, he had been given the task of
assessing the spoils and assessed that he could get away with grabbing
a good share for himself, which he did.?

If, as Petty believed, the size and growth of a population reflect the
quality of its government, then the lack of a good method for measur-
ing the size of a population made the assessment of its government
difficult. Graunt’s most famous calculations addressed that issue—in
particular the population of London. From the bills of mortality,
Graunt knew the number of births. Since he had a rough idea of the
fertility rate, he could infer how many women were of childbearing
age. That datum allowed him to guess the total number of families
and, using his own observations of the mean size of a London family,
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thereby estimate the city’s population. He came up with 384,000 —
previously it was believed to be 2 million. Graunt also raised eye-
brows by showing that much of the growth of the city was due to
immigration from outlying areas, not to the slower method of procre-
ation, and that despite the horrors of the plague, the decrease in pop-
ulation due to even the worst epidemic was always made up within
two years. In addition, Graunt is generally credited with publishing
the first “life table,” a systematic arrangement of life-expectancy data
that today is widely employed by organizations—from life insurance
companies to the World Health Organization —that are interested in
knowing how long people live. A life table displays how many people,
in a group of 100, can be expected to survive to any given age. To
Graunt’s data (the column in the table below labeled “London,
16627), I've added columns exhibiting the same data for a few coun-
tries today.!0

Age London, Afghanistan Mozambique China Brazil UK. Germany U.S. France Japan

1662
100 100 100 100 100 100 100 100 100 100
74 85 97 97 99 100 99 100 100 100
16 40 71 82 9% 9 99 99 99 99 100
26 25 67 79 9% 95 99 99 98 99 99
36 16 60 67 95 93 98 98 97 98 99
46 10 52 50 93 90 97 97 95 97 98
56 6 13 39 88 84 94 94 92 93 95
66 3 31 29 78 72 87 87 83 86 89
76 1 16 17 55 51 69 71 66 72 77
86 — 4 5 21 23 37 40 38 46 52
9% — 0 0 2 3 8 8 9 11 17

Graunt'’s life table extended

In 1662, Graunt published his analyses in Natural and Political
Observations . . . upon the Bills of Mortality. The book met with
acclaim. A year later Graunt was elected to the Royal Society. Then,
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in 1666, the Great Fire of London, which burned down a large part
of the city, destroyed his business. To add insult to injury, he was
accused of helping to cause the destruction by giving instructions to
halt the water supply just before the fire started. In truth he had no
athliation with the water company until after the fire. Still, after that
episode, Graunt’s name disappeared from the books of the Royal
Society. Graunt died of jaundice a few years later.

Largely because of Graunt’s work, in 1667 the French fell in line
with the British and revised their legal code to enable surveys like the
bills of mortality. Other European countries followed suit. By the
nineteenth century, statisticians all over Europe were up to their
elbows in government records such as census data— “an avalanche of
numbers.”!! Graunt’s legacy was to demonstrate that inferences
about a population as a whole could be made by carefully examining
a limited sample of data. But though Graunt and others made valiant
efforts to learn from the data through the application of simple logic,
most of the data’s secrets awaited the development of the tools cre-
ated by Gauss, Laplace, and others in the nineteenth and early twen-
tieth centuries.

THE TERM statistics entered the English language from the Ger-
man word Statistik through a 1770 translation of the book Bielfield’s
Elementary Universal Education, which stated that “the science that
is called statistics teaches us what is the political arrangement of all
the modern states in the known world.”12 By 1828 the subject had
evolved such that Noah Webster’s American Dictionary defined sta-
tistics as “a collection of facts respecting the state of society, the con-
dition of the people in a nation or country, their health, longevity,
domestic economy, arts, property and political strength, the state of
their country, &c.”!® The field had embraced the methods of
Laplace, who had sought to extend his mathematical analysis from
planets and stars to issues of everyday life.

The normal distribution describes the manner in which many
phenomena vary around a central value that represents their most
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probable outcome; in his Essai philosophique sur les probabilités,
Laplace argued that this new mathematics could be employed to
assess legal testimony, predict marriage rates, calculate insurance
premiums. But by the final edition of that work, Laplace was in his
sixties, and so it fell to a younger man to develop his ideas. That man
was Adolphe Quételet, born in Ghent, Flanders, on February 22,
1796.14

Quételet did not enter his studies spurred by a keen interest in the
workings of society. His dissertation, which in 1819 earned him the
first doctorate in science awarded by the new university in Ghent,
was on the theory of conic sections, a topic in geometry. His interest
then turned to astronomy, and around 1820 he became active in a
movement to found a new observatory in Brussels, where he had
taken a position. An ambitious man, Quételet apparently saw the
observatory as a step toward establishing a scientific empire. It was an
audacious move, not least because he knew relatively little about
astronomy and virtually nothing about running an observatory. But
he must have been persuasive, because not only did his observatory
receive funding, but he personally received a grant to travel to Paris
for several months to remedy the deficiencies in his knowledge. It
proved a sound investment, for Quételet’s Royal Observatory of Bel-
gium is still in existence today.

In Paris, Quételet was affected in his own way by the disorder of
life, and it pulled him in a completely different direction. His
romance with statistics began when he made the acquaintance of
several great French mathematicians, including Laplace and Joseph
Fourier, and studied statistics and probability with Fourier. In the
end, though he learned how to run an observatory, he fell in love
with a different pursuit, the idea of applying the mathematical tools
of astronomy to social data.

When Quételet returned to Brussels, he began to collect and ana-
lyze demographic data, soon focusing on records of criminal activity
that the French government began to publish in 1827. In Sur
Ihomme et le développement de ses facultés, a two-volume work he
published in 1835, Quételet printed a table of annual murders
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reported in France from 1826 to 1831. The number of murders, he
noted, was relatively constant, as was the proportion of murders com-
mitted each year with guns, swords, knives, canes, stones, instru-
ments for cutting and stabbing, kicks and punches, strangulation,
drowning, and fire.’> Quételet also analyzed mortality according to
age, geography, season, and profession, as well as in hospitals and
prisons. He studied statistics on drunkenness, insanity, and crime.
And he discovered statistical regularities describing suicide by hang-
ing in Paris and the number of marriages between sixty-something
women and twenty-something men in Belgium.

Statisticians had conducted such studies before, but Quételet did
something more with the data: he went beyond examining the aver-
age to scrutinizing the manner in which the data strayed from its
average. Wherever he looked, Quételet found the normal distribu-
tion: in the propensities to crime, marriage, and suicide and in the
height of American Indians and the chest measurements of Scottish
soldiers (he came upon a sample of 5,738 chest measurements in an
old issue of the Edinburgh Medical and Surgical Journal). In the
height of 100,000 young Frenchmen called up for the draft he also
found meaning in a deviation from the normal distribution. In that
data, when the number of conscripts was plotted against their height,
the bell-shaped curve was distorted: too few prospects were just
above five feet two and a compensating surplus was just below that
height. Quételet argued that the difference —about 2,200 extra “short
men” —was due to fraud or, you might say friendly fudging, as those
below five feet two were excused from service.

Decades later the great French mathematician Jules-Henri Poin-
caré employed Quételet’s method to nab a baker who was short-
changing his customers. At first, Poincaré, who made a habit of
picking up a loaf of bread each day, noticed after weighing his loaves
that they averaged about 950 grams instead of the 1,000 grams adver-
tised. He complained to the authorities and afterward received bigger
loaves. Still he had a hunch that something about his bread wasn’t
kosher. And so with the patience only a famous—or at least
tenured —scholar can afford, he carefully weighed his bread every
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day for the next year. Though his bread now averaged closer to 1,000
grams, if the baker had been honestly handing him random loaves,
the number of loaves heavier and lighter than the mean should
have —as | mentioned in chapter 7—diminished following the bell-
shaped pattern of the error law. Instead, Poincaré found that there
were too few light loaves and a surplus of heavy ones. He concluded
that the baker had not ceased baking underweight loaves but instead
was seeking to placate him by always giving him the largest loaf he
had on hand. The police again visited the cheating baker, who was
reportedly appropriately astonished and presumably agreed to
change his ways.1°

Quételet had stumbled on a useful discovery: the patterns of ran-
domness are so reliable that in certain social data their violation can
be taken as evidence of wrongdoing. Today such analyses are applied
to reams of data too large to have been analyzed in Quételet’s time.
In recent years, in fact, such statistical sleuthing has become popular,
creating a new field, called forensic economics, perhaps the most
famous example of which is the statistical study suggesting that com-
panies were backdating their stock option grants. The idea is simple:
companies grant stock options—the right to buy shares later at the
price of the stock on the date of the grant—as an incentive for execu-
tives to improve their firms’ share prices. If the grants are backdated
to times when the shares were especially low, the executives” profits
will be correspondingly high. A clever idea, but when done in secret
it violates securities laws. It also leaves a statistical fingerprint, which
has led to the investigation of such practices at about a dozen major
companies.'” In a less publicized example, Justin Wolfers, an econo-
mist at the Wharton School, found evidence of fraud in the results of
about 70,000 college basketball games.!8

Wolfers discovered the anomaly by comparing Las Vegas book-
makers’ point spreads to the games’ actual outcomes. When one
team is favored, the bookmakers offer point spreads in order to attract
a roughly even number of bets on both competitors. For instance,
suppose the basketball team at Caltech is considered better than the
team at UCLA (for college basketball fans, yes, this was actually true
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in the 1950s). Rather than assigning lopsided odds, bookies could
instead offer an even bet on the game but pay out on a Caltech bet
only if their team beat UCLA by, say, 13 or more points.

Though such point spreads are set by the bookies, they are really
fixed by the mass of bettors because the bookies adjust them to bal-
ance the demand. (Bookies make their money on fees and seek to
have an equal amount of money bet on each side so that they can’t
lose, whatever the outcome.) To measure how well bettors assess two
teams, economists use a number called the forecast error, which is
the difference between the favored team’s margin of victory and the
point spread determined by the marketplace. It may come as no sur-
prise that forecast error, being a type of error, is distributed according
to the normal distribution. Wolfers found that its mean is 0, meaning
that the point spreads don’t tend to either overrate or underrate
teams, and its standard deviation is 10.9 points, meaning that about
two thirds of the time the point spread is within 10.9 points of the
margin of victory. (In a study of professional football games, a similar
result was found, with a mean of 0 and a standard deviation of 13.9
points.)!?

When Wolfers examined the subset of games that involved heavy
favorites, he found something astonishing: there were too few games
in which the heavy favorite won by a little more than the point spread
and an inexplicable surplus of games in which the favorite won by
just less. This was again Quételet’s anomaly. Wolfers’s conclusion,
like Quételet’s and Poincaré’s, was fraud. His analysis went like this: it
is hard for even a top player to ensure that his team will beat a point
spread, but if the team is a heavy favorite, a player, without endanger-
ing his team’s chance of victory, can slack off enough to ensure that
the team does not beat the spread. And so if unscrupulous bettors
wanted to fix games without asking players to risk losing, the result
would be just the distortions Wolfers found. Does Wolfers’s work
prove that in some percentage of college basketball games, players
are taking bribes to shave points? No, but as Wolfers says, “You
shouldn’t have what’s happening on the court reflecting what’s hap-
pening in Las Vegas.” And it is interesting to note that in a recent poll
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by the National Collegiate Athletic Association, 1.5 percent of play-
ers admitted knowing a teammate “who took money for playing
poorly.”20

QUETELET DID NOT PURSUE the forensic applications of his
ideas. He had bigger plans: to employ the normal distribution in
order to illuminate the nature of people and society. If you made
1,000 copies of a statue, he wrote, those copies would vary due to
errors of measurement and workmanship, and that variation would
be governed by the error law. If the variation in people’s physical
traits follows the same law, he reasoned, it must be because we, too,
are imperfect replicas of a prototype. Quételet called that prototype
I'homme moyen, the average man. He felt that a template existed for
human behavior too. The manager of a large department store may
not know whether the spacey new cashier will pocket that half-ounce
bottle of Chanel Allure she was sniffing, but he can count on the pre-
diction that in the retail business, inventory loss runs pretty steadily
from year to year at about 1.6 percent and that consistently about 45
percentto 48 percent of it is due to employee theft.2! Crime, Quételet
wrote, is “like a budget that is paid with frightening regularity.”?2
Quételet recognized that 'homme moyen would be different for
different cultures and that it could change with changing social con-
ditions. In fact, it is the study of those changes and their causes that
was Quételet’s greatest ambition. “Man is born, grows up, and dies
according to certain laws,” he wrote, and those laws “have never been
studied.”? Newton became the father of modern physics by recogniz-
ing and formulating a set of universal laws. Modeling himself after
Newton, Quételet desired to create a new “social physics” describing
the laws of human behavior. In Quételet’s analogy, just as an object,
if undisturbed, continues in its state of motion, so the mass behavior
of people, if social conditions remain unchanged, remains constant.
And just as Newton described how physical forces deflect an object
from its straight path, so Quételet sought laws of human behavior
describing how social forces transtorm the characteristics of society.
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For example, Quételet thought that vast inequalities of wealth and
great fluctuations in prices were responsible for crime and social
unrest and that a steady level of crime represented a state of equilib-
rium, which would change with changes in the underlying causes. A
vivid example of such a change in social equilibrium occurred in the
months after the attacks of September 11, 2001, when travelers,
afraid to take airplanes, suddenly switched to cars. Their fear trans-
lated into about 1,000 more highway fatalities in that period than in
the same period the year before —hidden casualties of the September
11 attack.?

But to believe that a social physics exists is one thing, and to
define one is another. In a true science, Quételet realized, theories
could be explored by placing people in a great number of experimen-
tal situations and measuring their behavior. Since that is not possible,
he concluded that social science is more like astronomy than physics,
with insights deduced from passive observation. And so, seeking to
uncover the laws of social physics, he studied the temporal and cul-
tural variation in ’homme moyen.

Quételet’s ideas were well received, especially in France and
Great Britain. One physiologist even collected urine from a railroad-
station urinal frequented by people of many nationalities in order to
determine the properties of the “average European urine.”? In
Britain, Quételet’s most enthusiastic disciple was a wealthy chess
player and historian named Henry Thomas Buckle, best known for
an ambitious multivolume book called History of Civilization in En-
gland. Unfortunately, in 1861, when he was forty, Buckle caught
typhus while traveling in Damascus. Offered the services of a local
physician, he refused because the man was French, and so he died.
Buckle hadn’t finished his treatise. But he did complete the initial
two volumes, the first of which presented history from a statistical
point of view. It was based on the work of Quételet and was an instant
success. Read throughout Europe, it was translated into French, Ger-
man, and Russian. Darwin read it; Alfred Russel Wallace read it;
Dostoyevsky read it twice.20

Despite the book’s popularity, the verdict of history is that
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Quételet’'s mathematics proved more sensible than his social physics.
For one thing, not all that happens in society, especially in the finan-
cial realm, is governed by the normal distribution. For example, if
film revenue were normally distributed, most films would earn near
some average amount, and two-thirds of all film revenue would fall
within a standard deviation of that number. But in the film business,
20 percent of the movies bring in 80 percent of the revenue. Such
hit-driven businesses, though thoroughly unpredictable, follow a far
different distribution, one for which the concepts of mean and stan-
dard deviation have no meaning because there is no “typical” perfor-
mance, and megahit outliers, which in an ordinary business might
occur only once every few centuries, happen every few years.?”

More important than his ignoring other probability distributions,
though, is Quételet’s failure to make much progress in uncovering
the laws and forces he sought. So in the end his direct impact on the
social sciences proved modest, yet his legacy is both undeniable and
far-reaching. It lies not in the social sciences but in the “hard” sci-
ences, where his approach to understanding the order in large num-
bers of random events inspired many scholars and spawned
revolutionary work that transformed the manner of thinking in both
biology and physics.

IT was CHARLES DARWIN’S FIRST COUSIN who introduced
statistical thinking to biology. A man of leisure, Francis Galton had
entered Trinity College, Cambridge, in 1840.28 He first studied med-
icine but then followed Darwin’s advice and changed his field to
mathematics. He was twenty-two when his father died and he inher-
ited a substantial sum. Never needing to work for a living, he became
an amateur scientist. His obsession was measurement. He measured
the size of people’s heads, noses, and limbs, the number of times peo-
ple fidgeted while listening to lectures, and the degree of attractive-
ness of girls he passed on the street (London girls scored highest;
Aberdeen, lowest). He measured the characteristics of people’s finger-
prints, an endeavor that led to the adoption of fingerprint identifica-
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tion by Scotland Yard in 1901. He even measured the life spans of
sovereigns and clergymen, which, being similar to the life spans of
people in other professions, led him to conclude that prayer brought
no benefit.

In his 1869 book, Hereditary Genius, Galton wrote that the frac-
tion of the population in any given range of heights must be nearly
uniform over time and that the normal distribution governs height
and every other physical feature: circumference of the head, size of
the brain, weight of the gray matter, number of brain fibers, and so
on. But Galton didn’t stop there. He believed that human character,
too, is determined by heredity and, like people’s physical features,
obeys in some manner the normal distribution. And so, according to
Galton, men are not “of equal value, as social units, equally capable
of voting, and the rest.”? Instead, he asserted, about 250 out of every
1 million men inherit exceptional ability in some area and as a result
become eminent in their field. (As, in his day, women did not gener-
ally work, he did not make a similar analysis of them.) Galton
founded a new field of study based on those ideas, calling it eugenics,
from the Greek words eu (good) and genos (birth). Over the years,
eugenics has meant many different things to many different people.
The term and some of his ideas were adopted by the Nazis, but there
is no evidence that Galton would have approved of the Germans’
murderous schemes. His hope, rather, was to find a way to improve
the condition of humankind through selective breeding.

Much of chapter 9 is devoted to understanding the reasons Gal-
ton’s simple cause-and-effect interpretation of success is so seductive.
But we'll see in chapter 10 that because of the myriad of foreseeable
and chance obstacles that must be overcome to complete a task of
any complexity, the connection between ability and accomplish-
ment is far less direct than anything that can possibly be explained by
Galton’s ideas. In fact, in recent years psychologists have found that
the ability to persist in the face of obstacles is at least as important a
factor in success as talent.’? That’s why experts often speak of the
“ten-year rule,” meaning that it takes at least a decade of hard work,
practice, and striving to become highly successtul in most endeavors.
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It might seem daunting to think that effort and chance, as much as
innate talent, are what counts. But I find it encouraging because,
while our genetic makeup is out of our control, our degree of effort is
up to us. And the effects of chance, too, can be controlled to the
extent that by committing ourselves to repeated attempts, we can
increase our odds of success.

Whatever the pros and cons of eugenics, Galton’s studies of inher-
itance led him to discover two mathematical concepts that are cen-
tral to modern statistics. One came to him in 1875, after he
distributed packets of sweet pea pods to seven friends. Each friend
received seeds of uniform size and weight and returned to Galton the
seeds of the successive generations. On measuring them, Galton
noticed that the median diameter of the offspring of large seeds was
less than that of the parents, whereas the median diameter of the off-
spring of small seeds was greater than that of the parents. Later,
employing data he obtained from a laboratory he had set up in Lon-
don, he noticed the same effect in the height of human parents and
children. He dubbed the phenomenon—that in linked measure-
ments, if one measured quantity is far from its mean, the other will be
closer to its mean—regression toward the mean.

Galton soon realized that processes that did not exhibit regression
toward the mean would eventually go out of control. For example,
suppose the sons of tall fathers would on average be as tall as their
fathers. Since heights vary, some sons would be taller. Now imagine
the next generation, and suppose the sons of the taller sons, grand-
sons of the original men, were also on average as tall as their fathers.
Some of them, too, would have to be taller than their fathers. In this
way, as generation followed generation, the tallest humans would be
ever taller. Because of regression toward the mean, that does not hap-
pen. The same can be said of innate intelligence, artistic talent, or
the ability to hit a golf ball. And so very tall parents should not expect
their children to be as tall, very brilliant parents should not expect
their children to be as brilliant, and the Picassos and Tiger Woodses
of this world should not expect their children to match their accom-
plishments. On the other hand, very short parents can expect taller
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offspring, and those of us who are not brilliant or can’t paint have rea-
sonable hope that our deficiencies will be improved upon in the next
generation.

At his laboratory, Galton attracted subjects through advertise-
ments and then subjected them to a series of measurements of
height, weight, even the dimensions of certain bones. His goal was to
find a method for predicting the measurements of children based on
those of their parents. One of Galton’s plots showed parents” heights
versus the heights of their offspring. If, say, those heights were always
equal, the graph would be a neat line rising at 45 degrees. If that rela-
tionship held on average but individual data points varied, then the
data would show some scatter above and below that line. Galton’s
graphs thus exhibited visually not just the general relationship
between the heights of parent and offspring but also the degree to
which the relationship holds. That was Galton’s other major contri-
bution to statistics: defining a mathematical index describing the
consistency of such relationships. He called it the coefficient of cor-
relation.

The coefficient of correlation is a number between —1 and 1; if it
is near £1, it indicates that two variables are linearly related; a coefh-
cient of 0 means there is no relation. For example, if data revealed
that by eating the latest McDonald’s 1,000-calorie meal once a week,
people gained 10 pounds a year and by eating it twice a week they
gained 20 pounds, and so on, the correlation coefficient would be 1.
If for some reason everyone were to instead lose those amounts of
weight, the correlation coefficient would be —1. And if the weight
gain and loss were all over the map and didn’t depend on meal con-
sumption, the coefficient would be 0. Today correlation coefficients
are among the most widely employed concepts in statistics. They are
used to assess such relationships as those between the number of cig-
arettes smoked and the incidence of cancer, the distance of stars from
Farth and the speed with which they are moving away from our
planet, and the scores students achieve on standardized tests and the
income of the students” families.

Galton’s work was significant not just for its direct importance but
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because it inspired much of the statistical work done in the decades
that followed, in which the field of statistics grew rapidly and
matured. One of the most important of these advances was made by
Karl Pearson, a disciple of Galton’s. Farlier in this chapter, I men-
tioned many types of data that are distributed according to the nor-
mal distribution. But with a finite set of data the fitis never perfect. In
the early days of statistics, scientists sometimes determined whether
data were normally distributed simply by graphing them and observ-
ing the shape of the resulting curve. But how do you quantify the
accuracy of the fit? Pearson invented a method, called the chi-square
test, by which you can determine whether a set of data actually con-
forms to the distribution you believe it conforms to. He demonstrated
his test in Monte Carlo in July 1892, performing a kind of rigorous
repeat of Jagger’s work.3! In Pearson’s test, as in Jagger’s, the numbers
that came up on a roulette wheel did not follow the distribution they
would have followed if the wheel had produced random results. In
another test, Pearson examined how many 5s and 6s came up in
26,306 tosses of twelve dice. He found that the distribution was not
one you'd see in a chance experiment with fair dice—that is, in an
experiment in which the probability of a 5 or a 6 on one roll were 1 in
3, or 0.3333. But it was consistent if the probability of a 5> or a 6 were
0.3377 —that is, if the dice were skewed. In the case of the roulette
wheel the game may have been rigged, but the dice were probably
biased owing to variations in manufacturing, which my friend Moshe
emphasized are always present.

Today chi-square tests are widely employed. Suppose, for
instance, that instead of testing dice, you wish to test three cereal
boxes for their consumer appeal. If consumers have no preference,
you would expect about 1 in 3 of those polled to vote for each box. As
we've seen, the actual results will rarely be distributed so evenly.
Employing the chi-square test, you can determine how likely it is that
the winning box received more votes due to consumer preference
rather than to chance. Similarly, suppose researchers at a pharma-
ceutical company perform an experiment in which they test two
treatments used in preventing acute transplant rejection. They can
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use a chi-square test to determine whether there is a statistically sig-
nificant difference between the results. Or suppose that before open-
ing a new outlet, the CFO of a rental car company expects that
25 percent of the company’s customers will request subcompact cars,
50 percent will want compacts, and 12.5 percent each will ask for
cars in the midsize and “other” categories. When the data begin to
come in, a chi-square test can help the CFO quickly decide whether
his assumption was correct or the new site is atypical and the com-
pany would do well to alter the mix.

Through Galton, Quételet’s work infused the biological sciences.
But Quételet also helped spur a revolution in the physical sciences:
both James Clerk Maxwell and Ludwig Boltzmann, two of the
founders of statistical physics, drew inspiration from Quételet’s theo-
ries. (Like Darwin and Dostoyevsky, they read of them in Buckle’s
book.) After all, if the chests of 5,738 Scottish soldiers distribute
themselves nicely along the curve of the normal distribution and the
average yearly mileage of 200 million drivers can vary by as little as
100 miles from year to year, it doesn’t take an Einstein to guess that
the 10 septillion or so molecules in a liter of gas might exhibit some
interesting regularities. But actually it did take an Einstein to finally
convince the scientific world of the need for that new approach to
physics. Albert Einstein did it in 1905, the same year in which he
published his first work on relativity. And though hardly known in
popular culture, Einstein’s 1905 paper on statistical physics proved
equally revolutionary. In the scientific literature, in fact, it would
become his most cited work.?

EINSTEIN’S 1905 WORK on statistical physics was aimed at
explaining a phenomenon called Brownian motion. The process was
named for Robert Brown, botanist, world expert in microscopy, and
the person credited with writing the first clear description of the cell
nucleus. Brown’s goal in life, pursued with relentless energy, was to
discover through his observations the source of the life force, a myste-
rious influence believed in his day to endow something with the
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property of being alive. In that quest, Brown was doomed to failure,
but one day in June 1827, he thought he had succeeded.

Peering through his lens, Brown noted that the granules inside
the pollen grains he was observing seemed to be moving.?* Though a
source of life, pollen is not itself a living being. Yet as long as Brown
stared, the movement never ceased, as if the granules possessed some
mysterious energy. This was not intentioned movement; it seemed,
in fact, to be completely random. With great excitement, Brown con-
cluded at first that he had bagged his quarry, for what could this
energy be but the energy that powers life itself?

In a string of experiments he performed assiduously over the next
month, Brown observed the same kind of movement when suspend-
ing in water, and sometimes in gin, as wide a variety of organic parti-
cles as he could get his hands on: decomposing fibers of veal, spider’s
web “blackened with London dust,” even his own mucus. Then, in
a deathblow to his wishful interpretation of the discovery, Brown
also observed the motion when looking at inorganic particles—of
asbestos, copper, bismuth, antimony, and manganese. He knew then
that the movement he was observing was unrelated to the issue of
life. The true cause of Brownian motion would prove to be the same
force that compelled the regularities in human behavior that
Quételet had noted —not a physical force but an apparent force aris-
ing from the patterns of randomness. Unfortunately, Brown did not
live to see this explanation of the phenomenon he observed.

The groundwork for the understanding of Brownian motion was
laid in the decades that followed Brown’s work, by Boltzmann,
Maxwell, and others. Inspired by Quételet, they created the new field
of statistical physics, employing the mathematical edifice of probabil-
ity and statistics to explain how the properties of fluids arise from the
movement of the (then hypothetical) atoms that make them up.
Their ideas did not catch on for several more decades, however.
Some scientists had mathematical issues with the theory. Others
objected because at the time no one had ever seen an atom and no
one believed anyone ever would. But most physicists are practical,
and so the most important roadblock to acceptance was that
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although the theory reproduced some laws that were known, it made
few new predictions. And so matters stood until 1905, when long
after Maxwell was dead and shortly before a despondent Boltzmann
would commit suicide, Finstein employed the nascent theory to
explain in great numerical detail the precise mechanism of Brownian
motion.>* The necessity of a statistical approach to physics would
never again be in doubt, and the idea that matter is made of atoms
and molecules would prove to be the basis of most modern technol-
ogy and one of the most important ideas in the history of physics.
The random motion of molecules in a fluid can be viewed, as
we’ll note in chapter 10, as a metaphor for our own paths through
life, and so it is worthwhile to take a little time to give Einstein’s work
a closer look. According to the atomic picture, the fundamental
motion of water molecules is chaotic. The molecules fly first this
way, then that, moving in a straight line only until deflected by an
encounter with one of their sisters. As mentioned in the Prologue,
this type of path—in which at various points the direction changes
randomly—is often called a drunkard’s walk, for reasons obvious to
anyone who has ever enjoyed a few too many martinis (more sober
mathematicians and scientists sometimes call it a random walk). If
particles that float in a liquid are, as atomic theory predicts, con-
stantly and randomly bombarded by the molecules of the liquid, one
might expect them to jiggle this way and that owing to the collisions.
But there are two problems with that picture of Brownian motion:
first, the molecules are far too light to budge the visible floating parti-
cles; second, molecular collisions occur far more frequently than the
observed jiggles. Part of Einstein’s genius was to realize that those two
problems cancel each other out: though the collisions occur very fre-
quently, because the molecules are so light, those frequent isolated
collisions have no visible effect. It is only when pure luck occasion-
ally leads to a lopsided preponderance of hits from some particular
direction —the molecular analogue of Roger Maris’s record year in
baseball —that a noticeable jiggle occurs. When Einstein did the
math, he found that despite the chaos on the microscopic level, there
was a predictable relationship between factors such as the size, num-
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ber, and speed of the molecules and the observable frequency and
magnitude of the jiggling. Einstein had, for the first time, connected
new and measurable consequences to statistical physics. That might
sound like a largely technical achievement, but on the contrary, it
represented the triumph of a great principle: that much of the order
we perceive in nature belies an invisible underlying disorder and
hence can be understood only through the rules of randomness. As
Einstein wrote, “It is a magnificent feeling to recognize the unity of a
complex of phenomena which appear to be things quite apart from
the direct visible truth.”®

In Einstein’s mathematical analysis the normal distribution again
played a central role, reaching a new place of glory in the history of
science. The drunkard’s walk, too, became established as one of the
most fundamental —and soon one of the most studied — processes in
nature. For as scientists in all fields began to accept the statistical
approach as legitimate, they recognized the thumbprints of the
drunkard’s walk in virtually all areas of study—in the foraging of mos-
quitoes through cleared African jungle, in the chemistry of nylon, in
the formation of plastics, in the motion of free quantum particles, in
the movement of stock prices, even in the evolution of intelligence
over eons of time. We'll examine the effects of randomness on our
own paths through life in chapter 10. But as we're about to see,
though in random variation there are orderly patterns, patterns are
not always meaningful. And as important as it is to recognize the
meaning when it is there, it is equally important not to extract mean-
ing when it is not there. Avoiding the illusion of meaning in random
patterns is a difficult task. It is the subject of the following chapter.
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CHAPTER ¢

[1lusions of Patterns
and Patterns of Illusion

N 1848 TWO TEENAGE GIRLS, Margaret and Kate Fox, heard
ILlnexplailled noises, like knocking or the moving of furniture.

Their house, it happened, had a reputation for being haunted. As
the story goes,! Kate challenged the source of the noises to repeat the
snap of her fingers and to rap out her age. It rose to both challenges.
Opver the next few days, with their mother’s and some neighbors’ assis-
tance, the sisters worked out a code with which they could communi-
cate with the rapper (no pun intended). They concluded that the
rapping originated with the spirit of a peddler who had been mur-
dered years earlier in the home they now occupied. With that, mod-
ern spiritualism —the belief that the dead can communicate with the
living—was born. By the early 1850s a particular type of spiritual
contact, called table rapping, and its cousins, table moving and table
turning, had become the rage in the United States and Europe. The
enterprise consisted of a group of individuals arranging themselves
around a table, resting their hands upon it, and waiting. In table rap-
ping, after some time passed, a rap would be heard. In table moving
and table turning, after time passed, the table would begin to tilt or
move about, sometimes dragging the sitters along with it. One pic-
tures serious bearded men with jackets reaching their midthigh and
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ardent women in hoop skirts, eyes wide in wonder as their hands fol-
lowed the table this way or that.

Table moving became so popular that in the summer of 1853 sci-
entists began to look into it. One group of physicians noted that dur-
ing the silent sitting period a kind of unconscious consensus seemed
to form about the direction in which the table would move.2 They
found that when they diverted the sitters” attention so that a common
expectation could not form, the table did not move. In another trial
they managed to create a condition in which half the sitters expected
the table to move to the left and half expected it to move to the right,
and again it did not move. They concluded that “the motion was due
to muscular action, mostly exercised unconsciously.” But the defini-
tive investigation was performed by the physicist Michael Faraday,
one of the founders of electromagnetic theory, inventor of the elec-
tric motor, and one of the greatest experimental scientists in history.?
Faraday first discovered that the phenomenon would occur even with
just one subject sitting at the table. Then, enrolling subjects who
were both “very honorable” and accomplished table movers, he con-
ducted a series of ingenious and intricate experiments proving that
the movement of the sitters’” hands preceded that of the table. Fur-
ther, he designed an indicator that alerted the subjects in real time
whenever that was occurring. He found that “as soon as the . . . [indi-
cator]| is placed before the most earnest [subject] . . . the power [of
the illusion] is gone; and this only because the parties are made con-
scious of what they are really doing.”

Faraday concluded, as the doctors had, that the sitters were
unconsciously pulling and pushing the table. The movement proba-
bly began as random fidgeting. Then at some point the sitters per-
ceived in the randomness a pattern. That pattern precipitated a
self-fulfilling expectation as the subjects” hands followed the imag-
ined leadership of the table. The value of his indicator, Faraday
wrote, was thus “the corrective power it possesses over the mind of
the table-turner.”> Human perception, Faraday recognized, is not a
direct consequence of reality but rather an act of imagination.®

Perception requires imagination because the data people en-
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counter in their lives are never complete and always equivocal. For
example, most people consider that the greatest evidence of an event
one can obtain is to see it with their own eyes, and in a court of law
little is held in more esteem than eyewitness testimony. Yet if you
asked to display for a court a video of the same quality as the
unprocessed data captured on the retina of a human eye, the judge
might wonder what you were trying to put over. For one thing, the
view will have a blind spot where the optic nerve attaches to the
retina. Moreover, the only part of our field of vision with good resolu-
tion is a narrow area of about 1 degree of visual angle around the
retina’s center, an area the width of our thumb as it looks when held
at arm’s length. Outside that region, resolution drops off sharply. To
compensate, we constantly move our eyes to bring the sharper region
to bear on different portions of the scene we wish to observe. And so
the pattern of raw data sent to the brain is a shaky, badly pixilated pic-
ture with a hole in it. Fortunately the brain processes the data, com-
bining the input from both eyes, filling in gaps on the assumption
that the visual properties of neighboring locations are similar and
interpolating.” The result—at least until age, injury, disease, or an
excess of mai tais takes its toll —is a happy human being suffering
from the compelling illusion that his or her vision is sharp and clear.

We also use our imagination and take shortcuts to fill gaps in pat-
terns of nonvisual data. As with visual input, we draw conclusions
and make judgments based on uncertain and incomplete informa-
tion, and we conclude, when we are done analyzing the patterns, that
our “picture” is clear and accurate. But is it?

Scientists have moved to protect themselves from identifying false
patterns by developing methods of statistical analysis to decide
whether a set of observations provides good support for a hypothesis
or whether, on the contrary, the apparent support is probably due to
chance. For example, when physicists seek to determine whether the
data from a supercollider is significant, they don’t eyeball their
graphs, looking for bumps that rise above the noise; they apply math-
ematical techniques. One such technique, significance testing, was
developed in the 1920s by R. A. Fisher, one of the greatest statisti-
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cians of the twentieth century (a man also known for his uncontrol-
lable temper and for a feud with his fellow statistics pioneer Karl
Pearson that was so bitter he continued to attack his nemesis long
after Pearson’s death, in 1936).

To illustrate Fisher’s ideas, suppose that a student in a research
study on extrasensory perception predicts the result of some coin
tosses. If in our observations we find that she is almost always right,
we might hypothesize that she is somehow skilled at it, for instance,
through psychic powers. On the other hand, if she is right about half
the time, the data support the hypothesis that she was just guessing.
But what if the data fall somewhere in between or if there isn’t much
data? Where do we draw the line between accepting and reject-
ing the competing hypotheses? This is what significance testing does:
it is a formal procedure for calculating the probability of our hav-
ing observed what we observed if the hypothesis we are testing is true.
If the probability is low, we reject the hypothesis. If it is high, we
accept it.

For example, suppose we are skeptics and hypothesize that the
student cannot accurately predict the results of coin tosses. And sup-
pose that in an experimental trial she predicts the coin tosses cor-
rectly in a certain number of cases. Then the methods we analyzed in
chapter 4 allow us to calculate the probability that she could have
accomplished the predictions by chance alone. If she had guessed
the coin-toss results correctly so often that, say, the probability of her
being that successful by chance alone is only 3 percent, then we
would reject the hypothesis that she was guessing. In the jargon of
significance testing, we would say the significance level of our rejec-
tion is 3 percent, meaning that the chances are at most 3 percent that
by chance the data has led us astray. A 3 percent level of significance
is fairly impressive, and so the media might report the feat as new evi-
dence of the existence of psychic powers. Still, those of us who don’t
believe in psychic powers might remain skeptical.

This example illustrates an important point: even with data signif-
icant at, say, the 3 percent level, if you test 100 nonpsychic people for
psychic abilities—or 100 ineffective drugs for their effectiveness—
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you ought to expect a few people to show up as psychic or a few inef-
fective drugs to show up as effective. That’s one reason political polls
or medical studies, especially small ones, sometimes contradict ear-
lier polls or studies. Still, significance testing and other statistical
methods serve scientists well, especially when they can conduct large-
scale controlled studies. But in everyday life we don’t conduct such
studies, nor do we intuitively apply statistical analysis. Instead, we rely
on gut instinct. When my Viking stove turned out to be a lemon and
by chance an acquaintance told me she’d had the same experience, |
started telling my friends to avoid the brand. When the flight atten-
dants on several United Airlines flights seemed grumpier than those
on other airlines I'd recently flown with, I started avoiding United’s
flights. Not a lot of data there, but my gut instinct identified patterns.

Sometimes those patterns are meaningful. Sometimes they are
not. In either case, the fact that our perception of the patterns of life
is both highly convincing and highly subjective has profound impli-
cations. It implies a kind of relativity, a situation in which, as Faraday
found, reality is in the eye of the beholder. For example, in 2006 The
New England Journal of Medicine published a $12.5 million study of
patients with documented osteoarthritis of the knee. The study
showed that a combination of the nutritional supplements glu-
cosamine and chondroitin is no more effective in relieving arthritis
pain than a placebo. Still, one eminent doctor had a hard time letting
go of his feeling that the supplements were effective and ended his
analysis of the study on a national radio program by reathrming the
possible benefit of the treatment, remarking that, “One of my wife’s
doctors has a cat and she says that this cat cannot get up in the morn-
ing without a little dose of glucosamine and chondroitin sulfate.”®

When we look closely, we find that many of the assumptions of
modern society are based, as table moving is, on shared illusions.
Whereas chapter 8 is concerned with the surprising regularities
exhibited by random events, in what follows, I shall approach the
issue from the opposite direction and examine how events whose pat-
terns appear to have a definite cause may actually be the product of
chance.
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IT 1S HUMAN NATURE to look for patterns and to assign them
meaning when we find them. Kahneman and Tversky analyzed
many of the shortcuts we employ in assessing patterns in data and in
making judgments in the face of uncertainty. They dubbed those
shortcuts heuristics. In general, heuristics are useful, but just as our
manner of processing optical information sometimes leads to optical
illusions, so heuristics sometimes lead to systematic error. Kahneman
and Tversky called such errors biases. We all use heuristics, and we
all suffer from biases. But although optical illusions seldom have
much relevance in our everyday world, cognitive biases play an
important role in human decision making. And so in the late twenti-
eth century a movement sprang up to study how randomness is per-
ceived by the human mind. Researchers concluded that “people
have a very poor conception of randomness; they do not recognize it
when they see it and they cannot produce it when they try,” and
what’s worse, we routinely misjudge the role of chance in our lives
and make decisions that are demonstrably misaligned with our own
best interests.!0

Imagine a sequence of events. The events might be quarterly
earnings or a string of good or bad dates set up through an Internet
dating service. In each case the longer the sequence, or the more
sequences you look at, the greater the probability that you'll find
every pattern imaginable —purely by chance. As a result, a string of
good or bad quarters, or dates, need not have any “cause” at all. The
point was rather starkly illustrated by the mathematician George
Spencer-Brown, who wrote that in a random series of 101,000,007
zeroes and ones, you should expect at least 10 nonoverlapping subse-
quences of 1 million consecutive zeros.!! Imagine the poor fellow
who bumps into one of those strings when attempting to use the ran-
dom numbers for some scientific purpose. His software generates
5 zeros in a row, then 10, then 20, 1,000, 10,000, 100,000, 500,000.
Would he be wrong to send back the program and ask for a refund?
And how would a scientist react upon flipping open a newly pur-

174



Illusions of Patterns and Patterns of Illusion

chased book of random digits only to find that all the digits are zeros?
Spencer-Brown’s point was that there is a difference between a
process being random and the product of that process appearing to
be random. Apple ran into that issue with the random shuffling
method it initially employed in its iPod music players: true random-
ness sometimes produces repetition, but when users heard the same
song or songs by the same artist played back-to-back, they believed
the shuffling wasn’t random. And so the company made the feature
“less random to make it feel more random,” said Apple founder Steve
Jobs.12

One of the earliest speculations about the perception of random
patterns came from the philosopher Hans Reichenbach, who
remarked in 1934 that people untrained in probability would have
dithculty recognizing a random series of events.> Consider the fol-
lowing printout, representing the results of a sequence of 200 tosses
of a coin, with X representing tails and O representing heads: oooo
XXXX000XXX0000XX00X00OXXXOOXX00OXXXXO00X00X0X00000X00X0000
OXXOOXXXOXXOXOXXXXOOOXXOOXXOXOOXXXOOXOOXOXOXXOX000X0X0000XX
XX000OXXOOXOXX000XO0OXXOX00XXO000XOOXXXXO00OXXXO0OXOOOXXXXXX
OOXXX00X00X00000xXxX. It is easy to find patterns in the data—for
instance, the four Os followed by four Xs at the beginning and the
run of six Xs toward the end. According to the mathematics of ran-
domness, such runs are to be expected in 200 random tosses. Yet they
surprise most people. As a result, when instead of representing coin
tosses, strings of Xs and Os represent events that affect our lives, peo-
ple seek meaningful explanations for the pattern. When a string of Xs
represents down days on the stock market, people believe the experts
who explain that the market is jittery. When a string of Os represents
a run of accomplishments by your favorite sports star, announcers
sound convincing when they drone on about the player’s “streaki-
ness.” And when, as we saw earlier, the Xs or Os stood for strings of
failed films made by Paramount and Columbia Pictures, everyone
nodded as the industry rags proclaimed just who did and who did not
have a finger on the pulse of the worldwide movie audience.

Academics and writers have devoted much effort to studying pat-
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terns of random success in the financial markets. There is much evi-
dence, for instance, that the performance of stocks is random—or so
close to being random that in the absence of insider information and
in the presence of a cost to make trades or manage your portfolio, you
can’t profit from any deviations from randomness.!* Nevertheless,
Wall Street has a long tradition of guru analysts, and the average ana-
lyst’s salary, at the end of the 1990s, was about $3 million.!* How do
those analysts do? According to a 1995 study, the eight to twelve most
highly paid “Wall Street superstars” invited by Barron’s to make mar-
ket recommendations at its annual roundtable merely matched the
average market return.'® Studies in 1987 and 1997 found that stocks
recommended by the prognosticators on the television show Wall
$treet Week did much worse, lagging far behind the market.!” And in
a study of 153 newsletters, a researcher at the Harvard Institute of
Economic Research found “no significant evidence of stock-picking
ability.”18

By chance alone, some analysts and mutual funds will always
exhibit impressive patterns of success. And though many studies
show that these past market successes are not good indicators of
future success—that is, that the successes were largely just luck—
most people feel that the recommendations of their stockbrokers or
the expertise of those running mutual funds are worth paying for.
Many people, even intelligent investors, therefore buy funds that
charge exorbitant management fees. In fact, when a group of savvy
students from the Wharton business school were given a hypothetical
$10,000 and prospectuses describing four index funds, each com-
posed in order to mirror the S&P 500, the students overwhelmingly
failed to choose the funds with the lowest fees.! Since paying even
an extra 1 percent per year in fees could, over the years, diminish
your retirement fund by as much as one-third or even one-half, the
savvy students didn’t exhibit very savvy behavior.

Of course, as Spencer-Brown’s example illustrates, if you look
long enough, youre bound to find someone who, through sheer
luck, really has made startlingly successful predictions. For those who
prefer real-world examples to mathematical scenarios involving
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101,000,007 random digits, consider the case of the columnist Leonard
Koppett.2? In 1978, Koppett revealed a system that he claimed could
determine, by the end of January every year, whether the stock mar-
ket would go up or down in that calendar year. His system had cor-
rectly predicted the market, he said, for the past eleven years.?! Of
course, stock-picking systems are easy to identify in hindsight; the
true test is whether they will work in the future. Koppett’s system
passed that test too: judging the market by the Dow Jones Industrial
Average, it worked for eleven straight years, from 1979 through 1989,
got it wrong in 1990, and was correct again every year until 1998. But
although Koppett’s predictions were correct for a streak of eighteen
out of nineteen years, | feel confident in asserting that his streak
involved no skill whatsoever. Why? Because Leonard Koppett was a
columnist for Sporting News, and his system was based on the results
of the Super Bowl, the championship game of professional football.
Whenever the team from the (original) National Football League
won, the stock market, he predicted, would rise. Whenever the team
from the (original) American Football League won, he predicted, the
market would go down. Given that information, few people would
argue that Koppett was anything but lucky. Yet had he had different
credentials—and not revealed his method—he could have been
hailed as the most clever analyst since Charles H. Dow.

As a counterpoint to Koppett’s story, consider now the story of a
fellow who does have credentials, a fellow named Bill Miller. For
years, Miller maintained a winning streak that, unlike Koppett’s, was
compared to Joe DiMaggio’s fifty-six-game hitting streak and the
seventy-four consecutive victories by the Jeopardy! quiz-show champ
Ken Jennings. But in at least one respect these comparisons were not
very apt: Miller’s streak earned him each year more than those other
gentlemen’s streaks had earned them in their lifetimes. For Bill
Miller was the sole portfolio manager of Legg Mason Value Trust
Fund, and in each year of his fifteen-year streak his fund beat the port-
folio of equity securities that constitute the Standard & Poor’s 500.

For his accomplishments, Miller was heralded “the Greatest
Money Manager of the 1990s” by Money magazine, “Fund Manager
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of the Decade” by Morningstar, and one of the top thirty most influ-
ential people in investing in 2001, 2003, 2004, 2005, and 2006 by
SmartMoney.?? In the fourteenth year of Miller’s streak, one analyst
was quoted on the CNNMoney Web site as putting the odds of a
fourteen-year streak by chance alone at 372,529 to 1 (more on that
later).23

Academics call the mistaken impression that a random streak is
due to extraordinary performance the hot-hand fallacy. Much of the
work on the hot-hand fallacy has been done in the context of sports
because in sports, performance is easy to define and measure. Also,
the rules of the game are clear and definite, data are plentiful and
public, and situations of interest are replicated repeatedly. Not to
mention that the subject gives academics a way to attend games and
pretend they are working.

Interest in the hot-hand fallacy began around 1985, in particular
with a paper by Tversky and his co-workers that was published in the
journal Cognitive Psychology.?* In that paper, “The Hot Hand in Bas-
ketball: On the Misperception of Random Sequences,” Tversky and
his colleagues investigated reams of basketball statistics. The players’
talent varied, of course. Some made half their shots, some more,
some less. Each player also had occasional hot and cold streaks. The
paper’s authors asked the question, how do the number and length of
the streaks compare with what you would observe if the result of each
shot were determined by a random process? That is, how would
things have turned out if rather than shooting baskets, the players had
tossed coins weighted to reflect their observed shooting percentages?
The researchers found that despite the streaks, the floor shots of the
Philadelphia 76ers, the free throws of the Boston Celtics, and the
experimentally controlled floor shots of the Cornell University men’s
and women’s varsity basketball teams exhibited no evidence of non-
random behavior.

In particular, one direct indicator of “streakiness” is the condi-
tional probability of success (that is, making a basket) if on the prior
attempt the player had achieved success. For a streaky player, the
chance of a success on the heels of a prior success should be higher
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than his or her overall chance of success. But the authors found that
for each player a success following a success was just as likely as a suc-
cess following a failure (that is, a missed basket).

A few years after Tversky’s paper appeared, the Nobel Prize—
winning physicist E. M. Purcell decided to investigate the nature of
streaks in the sport of baseball.?> As I mentioned in chapter 1, he
found, in the words of his Harvard colleague Stephen Jay Gould, that
except for Joe DiMaggio’s fifty-six-game hitting streak, “nothing ever
happened in baseball above and beyond the frequency predicted by
coin-tossing models.” Not even the twenty-one-game losing streak
experienced at the start of the 1988 season by Major League Base-
ball’s Baltimore Orioles. Bad players and teams have longer and
more frequent streaks of failure than great players and great teams,
and great players and great teams have longer and more frequent
streaks of success than lesser players and lesser teams. But that is
because their average failure or success rate is higher, and the higher
the average rate, the longer and more frequent are the streaks that
randomness will produce. To understand these events, you need only
to understand the tossing of coins.

What about Bill Miller’s streak? That a streak like Miller’s could
result from a random process may seem less shocking in light of a few
other statistics. For instance, in 2004 Miller’s fund gained just under
12 percent while the average stock in the S&P gained more than 15
percent.?¢ It might sound like the S&P trounced Miller that year, but
actually he counted 2004 in his “win” column. That is because the
S&P 500 is not the simple average of the prices of the stocks it com-
prises; it is a weighted average in which stocks exert influence propor-
tional to each company’s capitalization. Miller’s fund did worse than
the simple average of S&P stocks but better than that weighted aver-
age. Actually, there were more than thirty twelve-month periods dur-
ing his streak in which he lost to the weighted average, but they
weren’t calendar years, and the streak was based on the intervals from
January 1 to December 31.27 So the streak in a sense was an artificial
one to start with, one that by chance was defined in a manner that

worked for Miller.
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But how can we reconcile these revelations with those 372,529-
to-1 odds against him? In discussing Miller’s streak in 2003, writers
for The Consilient Observer newsletter (published by Credit
Suisse—First Boston) said that “no other fund has ever outperformed
the market for a dozen consecutive years in the last 40 years.” They
raised the question of the probability of a fund’s accomplishing that
by chance and went on to give three estimates of that probability (the
year being 2003, they referred to the chances of a fund’s beating the
market for only twelve consecutive years): 1 in 4,096, 1 in 477,000,
and 1 in 2.2 billion.?8 To paraphrase Einstein, if their estimates were
correct, they would have needed only one. What were the actual
chances? Roughly 3 out of 4, or 75 percent. That’s quite a discrep-
ancy, so I'd better explain.

Those who quoted the low odds were right in one sense: if you
had singled out Bill Miller in particular at the start of 1991 in partic-
ular and calculated the odds that by pure chance the specific person
you selected would beat the market for precisely the next fifteen years,
then those odds would indeed have been astronomically low. You
would have had the same odds against you if you had flipped a coin
once a year for fifteen years with the goal of having it land heads up
each time. But as in the Roger Maris home run analysis, those are not
the relevant odds because there are thousands of mutual fund man-
agers (over 6,000 currently), and there were many fifteen-year peri-
ods in which the feat could have been accomplished. So the relevant
question is, if thousands of people are tossing coins once a year and
have been doing so for decades, what are the chances that one of
them, for some fifteen-year period, will toss all heads? That probabil-
ity is far, far higher than the odds of simply tossing fifteen heads in
a row.

To make this explanation concrete, suppose 1,000 fund man-
agers— certainly an underestimate—had each tossed a coin once a
year starting in 1991 (the year Miller began his streak). After the first
year about half of them would have tossed heads; after two years
about one-quarter of them would have tossed two heads; after the
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third year one-eighth of them would have tossed three heads; and so
on. By then some who had tossed tails would have started to drop out
of the game, but that wouldn'’t affect the analysis because they had
already failed. The chances that, after fifteen years, a particular coin
tosser would have tossed all heads are then 1 in 32,768. But the
chances that someone among the 1,000 who had started tossing coins
in 1991 would have tossed all heads are much higher, about 3 per-
cent. Finally, there is no reason to consider only those who started
tossing coins in 1991 —the fund managers could have started in 1990
or 1970 or any other year in the era of modern mutual funds. Since
the writers for The Consilient Observer used forty years in their discus-
sion, I calculated the odds that by chance some manager in the last
four decades would beat the market each year for some fifteen-year
period. That latitude increased the odds again, to the probability I
quoted earlier, almost 3 out of 4. So rather than being surprised by
Miller’s streak, I would say that if no one had achieved a streak like
Miller’s, you could have legitimately complained that all those
highly paid managers were performing worse than they would have
by blind chance!

I've cited some examples of the hot-hand fallacy in the context of
sports and the financial world. But in all aspects of our lives we
encounter streaks and other peculiar patterns of success and failure.
Sometimes success predominates, sometimes failure. Either way it is
important in our own lives to take the long view and understand that
streaks and other patterns that don’t appear random can indeed hap-
pen by pure chance. It is also important, when assessing others, to
recognize that among a large group of people it would be very odd if
one of them didn't experience a long streak of successes or failures.

No one credited Leonard Koppett for his lopsided successes, and
no one would credit a coin tosser. Many people did credit Bill Miller.
In his case, though the type of analysis I performed seems to have
escaped many of the observers quoted in the media, it is no news to
those who study Wall Street from the academic perspective. For
example, the Nobel Prize-winning economist Merton Miller (no
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relation to Bill) wrote, “If there are 10,000 people looking at the
stocks and trying to pick winners, one in 10,000 is going to score, by
chance alone, and that’s all that’s going on. It's a game, it’s a chance
operation, and people think they are doing something purposeful but
they're really not.”2? We must all draw our own conclusions depend-
ing on the circumstances, but with an understanding of how ran-
domness operates, at least our conclusions need not be naive.

IN THE PRECEDING I've discussed how we can be fooled by the
patterns in random sequences that develop over time. But random
patterns in space can be just as misleading. Scientists know that one
of the clearest ways to reveal the meaning of data is to display them in
some sort of picture or graph. When we see data exhibited in this
manner, meaningful relationships that we would likely have missed
are often made obvious. The cost is that we also sometimes perceive
patterns that in reality have no meaning. Our minds are made that
way —to assimilate data, fill in gaps, and look for patterns. For exam-
ple, look at the following arrangement of grayish squares in the figure
below.

Photo from Frank H. Durgin,
“The Tinkerbell Effect,”
Journal of Consciousness Studies 9,
nos. 5-6 (May to June 2002)
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The image does not literally look like a human being. Yet you can
make enough sense of the pattern that if you saw in person the baby
pictured, you would probably recognize it. And if you hold this book
atarm’s length and squint, you might not even perceive the imperfec-
tions in the image. Now look at this pattern of Xs and Os:

0000XXXX000XXX0000XX00X000XXX00XX000XXXX
000X00XO0XO00000XO0XO00000OXXO0XXXOXXOXOXXXX
000XX00XX0X0O0XXX00X00X0X0XX0X000X0X0000X
XXXO00XX00X0XX0O00X000XX0X00XX0000X00XXXX
0O000XXX0O00X000XXXXXX00XXX00X00X00000XXXX

Here we see rectangular clusters, especially in the corners. I have
put them in boldface. If the Xs and Os represented events of interest,
we might be tempted to wonder if those clusters signified something.
But any meaning we assigned them would be misconceived because
these data are identical to the earlier set of 200 random Xs and Os,
except for the geometric 5-by-40 arrangement and the choice of
which letters to put in boldface.

This very issue drew much attention toward the end of World
War II, when V2 rockets started raining down on London. The rock-
ets were terrifying, traveling at over five times the speed of sound, so
that one heard them approach only after they had hit. Newspapers
soon published maps of the impact sites, which seemed to reveal not
random patterns but purposeful clusters. To some observers the clus-
ters indicated a precision in the control of the rockets’ flight path that,
given the distance the rockets had to travel, suggested that German
technology was much more advanced than anyone had dreamed pos-
sible. Civilians speculated that the areas spared were home to Ger-
man spies. Military leaders worried that the Germans could target
crucial military sites, with devastating consequences.

In 1946 a mathematical analysis of the bombing data was pub-
lished in the Journal of the Institute of Actuaries. Its author, R. D.
Clarke, divided the area of interest into 576 parcels half a kilometer
on each side. Of these, 229 parcels sustained no hits while, despite
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their minuscule size, § parcels had four or five hits. Still, Clarke’s
analysis showed that, like the coin-toss data above, the overall pattern
was consistent with a random distribution.3

Similar issues arise frequently in reports of cancer clusters. If you
divide any city or county into parcels and randomly distribute inci-
dents of cancer, some parcels will receive less than average and some
more. In fact, according to Raymond Richard Neutra, chief of the
Division of Environmental and Occupational Disease Control in
California’s Department of Health, given a typical cancer registry —
a database on local rates for dozens of different cancers—for Califor-
nia’s 5,000 census tracts, you could expect to find 2,750 with statisti-
cally significant but random elevations of some form of cancer.?! And
if you look at a large enough number of such parcels, you'll find
some regions in which cancer occurred at many times the normal
rate.

The picture looks even worse if you draw the parcel boundaries
after the cancers are distributed. What you get then is called the
sharpshooter effect, after the apocryphal fellow who excels in his aim
because he shoots at blank paper and draws the target afterward.
Unfortunately that is how it usually happens in practice: first some
citizens notice neighbors with cancer; then they define the bound-
aries of the area at issue. Thanks to the availability of data on the
Internet, America these days is being scoured for such clusters. Not
surprisingly, they are being found. Yet the development of cancer
requires successive mutations. That means very long exposure and/or
highly concentrated carcinogens. For such clusters of cancer to
develop from environmental causes and show themselves in concert
and before the victims have moved away from the affected area is
quite a long shot. According to Neutra, to produce the kind of cancer
clusters epidemiologists are typically called on to investigate, a popu-
lation would have to be exposed to concentrations of carcinogens
that are usually credible only in patients undergoing chemotherapy
or in some work settings—far greater concentrations than people
receive in contaminated neighborhoods and schools. Nevertheless,
people resist accepting the explanation that the clusters are random
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fluctuations, and so each year state departments of health receive
thousands of residential cancer-cluster reports, which result in the
publication of hundreds of exhaustive analyses, none of which has
convincingly identified an underlying environmental cause. Says
Alan Bender, an epidemiologist with the Minnesota Department of
Health, those studies “are an absolute, total, and complete waste of
taxpayer dollars.”?2

So far in this chapter we have considered some of the ways in
which random patterns can fool us. But psychologists have not con-
tented themselves to merely study and categorize such mispercep-
tions. They have also studied the reasons we fall prey to them. Let’s
now turn our attention to some of those factors.

PEOPLE LIKE TO EXERCISE CONTROL over their environment,
which is why many of the same people who drive a car after consum-
ing half a bottle of scotch will freak out if the airplane they are on
experiences minor turbulence. Our desire to control events is not
without purpose, for a sense of personal control is integral to our self-
concept and sense of self-esteem. In fact, one of the most beneficial
things we can do for ourselves is to look for ways to exercise control
over our lives—or at least to look for ways that help us feel that we do.
The psychologist Bruno Bettelheim observed, for instance, that sur-
vival in Nazi concentration camps “depended on one’s ability to
arrange to preserve some areas of independent action, to keep control
of some important aspects of one’s life despite an environment that
seemed overwhelming.”®? Later studies showed that a prior sense of
helplessness and lack of control is linked to both stress and the onset
of disease. In one study wild rats were suddenly deprived of all con-
trol over their environment. They soon stopped struggling to survive
and died.?* In another study, in a group of subjects who were told
they were going to take a battery of important tests, even the pointless
power to control the order of those tests was found to reduce anxiety
levels.?

One of the pioneers in the psychology of control is the psycholo-
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gist and amateur painter Ellen Langer, now a professor at Harvard.
Years ago, when she was at Yale, Langer and a collaborator studied
the effect of the feeling of control on elderly nursing home patients.?
One group was told they could decide how their rooms would be
arranged and were allowed to choose a plant to care for. Another
group had their rooms set up for them and a plant chosen and tended
to for them. Within weeks the group that exercised control over their
environment achieved higher scores on a predesigned measure of
well-being. Disturbingly, eighteen months later a follow-up study
shocked researchers: the group that was not given control experi-
enced a death rate of 30 percent, whereas the group that was given
control experienced a death rate of only 15 percent.?’

Why is the human need to be in control relevant to a discussion of
random patterns? Because if events are random, we are not in con-
trol, and if we are in control of events, they are not random. There is
therefore a fundamental clash between our need to feel we are in
control and our ability to recognize randomness. That clash is one
of the principal reasons we misinterpret random events. In fact,
inducing people to mistake luck for skill, or pointless actions for
control, is one of the easiest enterprises a research psychologist can
engage in. Ask people to control flashing lights by pressing a dummy
button, and they will believe they are succeeding even though the
lights are flashing at random.?® Show people a circle of lights that
flash at random and tell them that by concentrating they can cause
the flashing to move in a clockwise direction, and they will astonish
themselves with their ability to make it happen. Or have two groups
simultaneously compete in a similar enterprise—one strives for
clockwise motion along the circle, and the other attempts to make
the lights travel counterclockwise —and the two groups will simulta-
neously perceive the lights traveling around the circle in the direc-
tion of their intention.*

Langer showed again and again how the need to feel in control
interferes with the accurate perception of random events. In one of
her studies, participants were found to be more confident of success
when competing against a nervous, awkward rival than when com-
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peting against a confident one even though the card game in which
they competed, and hence their probability of succeeding, was deter-
mined purely by chance.*” In another study she asked a group of
bright and well-educated Yale undergraduates to predict the results of
thirty random coin tosses.*! The experimenters secretly manipulated
the outcomes so that each student was correct exactly half the time.
They also arranged for some of the students to have early streaks of
success. After the coin tosses the researchers quizzed the students in
order to learn how they assessed their guessing ability. Many
answered as if guessing a coin toss were a skill they could cultivate.
One quarter reported that their performance would be hampered by
distraction. Forty percent felt that their performance would improve
with practice. And when asked directly to rate their ability at predict-
ing the tosses, the students who achieved the early streaks of success
rated themselves better at the task than did the others even though
the number of successes was the same for all the subjects.

In another clever experiment, Langer set up a lottery in which
each volunteer received a sports trading card with a player’s picture
on it.*#2 A card identical to one of the distributed cards was placed in a
bag with the understanding that the participant whose card it
matched would be declared the winner. The players were divided
into two groups. Those in one group had been allowed to choose
their card; those in the other had been handed a card at random.
Before the drawing each participant was given the opportunity to sell
his or her card. Obviously, whether participants chose their cards or
were handed them had no effect on their chances of winning. Yet
those who had chosen their own cards demanded more than four
times as much money for them as those selling the randomly
assigned cards.

The subjects in Langer’s experiments “knew,” at least intellectu-
ally, that the enterprises in which they were engaging were random.
When questioned, for example, none of the participants in the
trading-card lottery said they believed that being allowed to choose
their card had influenced their probability of winning. Yet they had
behaved as if it had. Or as Langer wrote, “While people may pay lip
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service to the concept of chance, they behave as though chance
events are subject to control.”#

In real life the role of randomness is far less obvious than it was in
Langer’s experiments, and we are much more invested in the out-
comes and our ability to influence them. And so in real life it is even
more difficult to resist the illusion of control.

One manifestation of that illusion occurs when an organization
experiences a period of improvement or failure and then readily
attributes it not to the myriad of circumstances constituting the state
of the organization as a whole and to luck but to the person at the top.
That’s especially obvious in sports, where, as I mentioned in the Pro-
logue, if the players have a bad year or two, it is the coach who gets
fired. In major corporations, in which operations are large and com-
plex and to a great extent affected by unpredictable market forces, the
causal connection between brilliance at the top and company perfor-
mance is even less direct and the efficacy of reactionary firings is no
greater than it is in sports. Researchers at Columbia University and
Harvard, for example, recently studied a large number of corpora-
tions whose bylaws made them vulnerable to shareholders” demands
that they respond to rough periods by changing management.** They
found that in the three years after the firing there was no improve-
ment, on average, in operating performance (a measure of earnings).
No matter what the differences in ability among the CEOs, they
were swamped by the effect of the uncontrollable elements of the sys-
tem, just as the differences among musicians might become unap-
parent in a radio broadcast with sufficient noise and static. Yet
in determining compensation, corporate boards of directors often
behave as if the CEO is the only one who matters.

Research has shown that the illusion of control over chance
events is enhanced in financial, sports, and especially, business situa-
tions when the outcome of a chance task is preceded by a period of
strategizing (those endless meetings), when performance of the task
requires active involvement (those long hours at the office), or when
competition is present (this never happens, right?). The first step in
battling the illusion of control is to be aware of it. But even then it is
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dithcult, for, as we shall see in the following pages, once we think we
see a pattern, we do not easily let go of our perception.

Suppose [ tell you that I have made up a rule for the construction
of a sequence of three numbers and that the sequence 2, 4, 6 satisfies
my rule. Can you guess the rule? A single set of three numbers is not
a lot to go on, so let’s pretend that if you present me with other
sequences of three numbers, I will tell you whether or not they satisty
my rule. Please take a moment to think up some three-number
sequences to test—the advantage of reading a book over interacting
in person is that in the book the author can display infinite patience.

Now that you have pondered your strategy, I can say that if you are
like most people, the sequences you present will look something like
4,6,80r 8, 10, 12 or 20, 24, 30. Yes, those sequences obey my rule.
So what’s the rule? Most people, after presenting a handful of such
test cases, will grow confident and conclude that the rule is that the
sequence must consist of increasing even numbers. But actually my
rule was simply that the series must consist of increasing numbers.
The sequence 1, 2, 3, for example, would have fit; there was no need
for the numbers to be even. Would the sequences you thought of
have revealed this?

When we are in the grasp of an illusion—or, for that matter,
whenever we have a new idea—instead of searching for ways to prove
our ideas wrong, we usually attempt to prove them correct. Psycholo-
gists call this the confirmation bias, and it presents a major impedi-
ment to our ability to break free from the misinterpretation of
randomness. In the example above, most people immediately recog-
nize that the sequence consists of increasing even numbers. Then,
seeking to confirm their guess, they try out many more sequences of
that type. But very few find the answer the fast way—through the
attempt to falsify their idea by testing a sequence that includes an odd
number.* As philosopher Francis Bacon put it in 1620, “the human
understanding, once it has adopted an opinion, collects any
instances that confirm it, and though the contrary instances may be
more numerous and more weighty, it either does not notice them or
else rejects them, in order that this opinion will remain unshaken.”
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To make matters worse, not only do we preferentially seek evi-
dence to confirm our preconceived notions, but we also interpret
ambiguous evidence in favor of our ideas. This can be a big problem
because data are often ambiguous, so by ignoring some patterns and
emphasizing others, our clever brains can reinforce their beliefs even
in the absence of convincing data. For instance, if we conclude,
based on flimsy evidence, that a new neighbor is unfriendly, then any
future actions that might be interpreted in that light stand out in our
minds, and those that don’t are easily forgotten. Or if we believe in a
politician, then when she achieves good results, we credit her, and
when she fails, we blame circumstances or the other party, either way
reinforcing our initial ideas.

In one study that illustrated the effect rather vividly, researchers
gathered a group of undergraduates, some of whom supported the
death penalty and some of whom were against it.#’ The researchers
then provided all the students with the same set of academic studies
on the efficacy of capital punishment. Half the studies supported the
idea that the death penalty has a deterrent effect; the other half con-
tradicted that idea. The researchers also gave the subjects clues hint-
ing at the weak points in each of the studies. Afterward the
undergraduates were asked to rate the quality of the studies individu-
ally and whether and how strongly their attitudes about the death
penalty were affected by their reading. The participants gave higher
ratings to the studies that confirmed their initial point of view even
when the studies on both sides had supposedly been carried out by
the same method. And in the end, though everyone had read all the
same studies, both those who initially supported the death penalty
and those who initially opposed it reported that reading the studies
had strengthened their beliefs. Rather than convincing anyone, the
data polarized the group. Thus even random patterns can be inter-
preted as compelling evidence if they relate to our preconceived
notions.

The confirmation bias has many unfortunate consequences in
the real world. When a teacher initially believes that one student is
smarter than another, he selectively focuses on evidence that tends to
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confirm the hypothesis.* When an employer interviews a prospec-
tive candidate, the employer typically forms a quick first impression
and spends the rest of the interview seeking information that supports
it.* When counselors in clinical settings are advised ahead of time
that an interviewee is combative, they tend to conclude that he is
even if the interviewee is no more combative than the average per-
son.”” And when people interpret the behavior of someone who is a
member of a minority, they interpret it in the context of preconceived
stereotypes.’!

The human brain has evolved to be very efficient at pattern recog-
nition, but as the confirmation bias shows, we are focused on finding
and confirming patterns rather than minimizing our false conclu-
sions. Yet we needn’t be pessimists, for it is possible to overcome our
prejudices. It is a start simply to realize that chance events, too, pro-
duce patterns. It is another great step if we learn to question our per-
ceptions and our theories. Finally, we should learn to spend as much
time looking for evidence that we are wrong as we spend searching
for reasons we are correct.

Our journey through randomness is now almost at its end. We
began with simple rules and went on to learn how they reflect them-
selves in complex systems. How great is the role of chance in that
most important complex system of all —our personal destiny? That’s
a difhcult question, one that has infused much of what we have con-
sidered thus far. And though I can’t hope to answer it fully, I do hope
to shed light on it. My conclusion is evident from the following chap-
ter’s title, which is the same as that of this book: “The Drunkard’s
Walk.”
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CHAPTER 10

The Drunkard’s Walk

N 1814, near the height of the great successes of Newtonian
physics, Pierre-Simon de Laplace wrote:

If an intelligence, at a given instant, knew all the forces that
animate nature and the position of each constituent being; if,
moreover, this intelligence were sufficiently great to submit
these data to analysis, it could embrace in the same formula
the movements of the greatest bodies in the universe and those
of the smallest atoms: to this intelligence nothing would be
uncertain, and the future, as the past, would be present to its
eyes.!

Laplace was expressing a view called determinism: the idea that the
state of the world at the present determines precisely the manner in
which the future will unfold.

In everyday life, determinism implies a world in which our per-
sonal qualities and the properties of any given situation or environ-
ment lead directly and unequivocally to precise consequences. That
is an orderly world, one in which everything can be foreseen, com-
puted, predicted. But for Laplace’s dream to hold true, several condi-
tions must be met. First, the laws of nature must dictate a definite
future, and we must know those laws. Second, we must have access to
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data that completely describe the system of interest, allowing no
unforeseen influences. Finally, we must have sufficient intelligence
or computing power to be able to decide what, given the data about
the present, the laws say the future will hold. In this book we've
examined many concepts that aid our understanding of random phe-
nomena. Along the way we've gained insight into a variety of specific
life situations. Yet there remains the big picture, the question of how
much randomness contributes to where we are in life and how well
we can predict where we are going.

In the study of human affairs from the late Renaissance to the Vie-
torian era, many scholars shared Laplace’s belief in determinism.
They felt as Galton did that our path in life is strictly determined by
our personal qualities, or like Quételet they believed that the future
of society is predictable. Often they were inspired by the success of
Newtonian physics and believed that human behavior could be fore-
told as reliably as other phenomena in nature. It seemed reasonable
to them that the future events of the everyday world should be as
rigidly determined by the present state of affairs as are the orbits of
the planets.

In the 1960s a meteorologist named Edward Lorenz sought to
employ the newest technology of his day—a primitive computer—to
carry out Laplace’s program in the limited realm of the weather. That
is, if Lorenz supplied his noisy machine with data on the atmo-
spheric conditions of his idealized earth at some given time, it would
employ the known laws of meteorology to calculate and print out
rows of numbers representing the weather conditions at future times.

One day, Lorenz decided he wanted to extend a particular simula-
tion further into the future. Instead of repeating the entire calcula-
tion, he decided to take a shortcut by beginning the calculation
midway through. To accomplish that, he employed as initial condi-
tions data printed out in the earlier simulation. He expected the com-
puter to regenerate the remainder of the previous simulation and
then carry it further. But instead he noticed something strange: the
weather had evolved differently. Rather than duplicating the end of
the previous simulation, the new one diverged wildly. He soon recog-
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nized why: in the computer’s memory the data were stored to six dec-
imal places, but in the printout they were quoted to only three. As a
result, the data he had supplied were a tiny bit off. A number like
0.293416, for example, would have appeared simply as 0.293.

Scientists usually assume that if the initial conditions of a system
are altered slightly, the evolution of that system, too, will be altered
slightly. After all, the satellites that collect weather data can measure
parameters to only two or three decimal places, and so they cannot
even track a difference as tiny as that between 0.293416 and 0.293.
But Lorenz found that such small differences led to massive changes
in the result.? The phenomenon was dubbed the butterfly effect,
based on the implication that atmospheric changes so small they
could have been caused by a butterfly flapping its wings can have a
large effect on subsequent global weather patterns. That notion
might sound absurd—the equivalent of the extra cup of coffee you
sip one morning leading to profound changes in your life. But actu-
ally that does happen—for instance, if the extra time you spent
caused you to cross paths with your future wife at the train station or
to miss being hit by a car that sped through a red light. In fact,
Lorenz’s story is itself an example of the butterfly effect, for if he
hadn’t taken the minor decision to extend his calculation employing
the shortcut, he would not have discovered the butterfly effect, a dis-
covery which sparked a whole new field of mathematics. When we
look back in detail on the major events of our lives, it is not uncom-
mon to be able to identify such seemingly inconsequential random
events that led to big changes.

Determinism in human affairs fails to meet the requirements for
predictability alluded to by Laplace for several reasons. First, as far as
we know, society is not governed by definite and fundamental laws in
the way physics is. Instead, people’s behavior is not only unpre-
dictable, but as Kahneman and Tversky repeatedly showed, also
often irrational (in the sense that we act against our best interests).
Second, even if we could uncover the laws of human affairs, as
Quételet attempted to do, it is impossible to precisely know or control
the circumstances of life. That is, like Lorenz, we cannot obtain the
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precise data necessary for making predictions. And third, human
affairs are so complex that it is doubtful we could carry out the neces-
sary calculations even if we understood the laws and possessed the
data. As a result, determinism is a poor model for the human experi-
ence. Or as the Nobel laureate Max Born wrote, “Chance is a more
fundamental conception than causality.”

In the scientific study of random processes the drunkard’s walk is
the archetype. In our lives it also provides an apt model, for like the
granules of pollen floating in the Brownian fluid, were continually
nudged in this direction and then that one by random events. As a
result, although statistical regularities can be found in social data, the
future of particular individuals is impossible to predict, and for our
particular achievements, our jobs, our friends, our finances, we all
owe more to chance than many people realize. On the following
pages, I shall argue, furthermore, that in all except the simplest real-
life endeavors unforeseeable or unpredictable forces cannot be
avoided, and moreover those random forces and our reactions to
them account for much of what constitutes our particular path in life.
I will begin my argument by exploring an apparent contradiction to
that idea: if the future is really chaotic and unpredictable, why, after
events have occurred, does it often seem as if we should have been
able to foresee them?

IN THE FALL OF 1941, a few months before the Japanese attack on
Pearl Harbor, an agent in Tokyo sent a spy in Honolulu an alarming
request.* The request was intercepted and sent to the Office of Naval
Intelligence. It wended its way through the bureaucracy, reaching
Washington in decoded and translated form on October 9. The mes-
sage requested the Japanese agent in Honolulu to divide Pearl Har-
bor into five areas and to make reports on ships in the harbor with
reference to those areas. Of special interest were battleships, destroy-
ers, and aircraft carriers, as well as information regarding the anchor-
ing of more than one ship at a single dock. Some weeks later another
curious incident occurred: U.S. monitors lost track of radio commu-
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nications from all known carriers in the first and second Japanese
fleets, losing with it all knowledge of their whereabouts. Then in
early December the Combat Intelligence Unit of the Fourteenth
Naval District in Hawaii reported that the Japanese had changed
their call signs for the second time in a month. Call signs, such as
WOCBS or KNPR, are designations identifying the source of a radio
transmission. In wartime they reveal the identity of a source not only
to friend but also to foe, so they are periodically altered. The Japanese
had a habit of changing them every six months or more. To change
them twice in thirty days was considered a “step in preparing for
active operations on a large scale.” The change made identification
of the whereabouts of Japanese carriers and submarines in the ensu-
ing days difficult, further confusing the issue of the radio silence.

Two days later messages sent to Japanese diplomatic and consular
posts at Hong Kong, Singapore, Batavia, Manila, Washington, and
London were intercepted and decoded. They called for the diplo-
mats to destroy most of their codes and ciphers immediately and to
burn all other important confidential and secret documents. Around
that time the FBI also intercepted a telephone call from a cook at the
Japanese consulate in Hawaii to someone in Honolulu reporting in
great excitement that the officials there were burning all major docu-
ments. The assistant head of the main unit of army intelligence,
Lieutenant Colonel George W. Bicknell, brought one of the inter-
cepted messages to his boss as he was preparing to go to dinner with
the head of the army’s Hawaiian Department. It was late afternoon
on Saturday, December 6, the day before the attack. Bicknell’s
higher-up took five minutes to consider the message, then dismissed
it and went to eat. With events so foreboding when considered in
hindsight, why hadn’t anyone privy to this information seen the
attack coming?

In any complex string of events in which each event unfolds with
some element of uncertainty, there is a fundamental asymmetry
between past and future. This asymmetry has been the subject of sci-
entific study ever since Boltzmann made his statistical analysis of the
molecular processes responsible for the properties of fluids (see chap-
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ter 8). Imagine, for example, a dye molecule floating in a glass of
water. The molecule will, like one of Brown’s granules, follow a
drunkard’s walk. But even that aimless movement makes progress in
some direction. If you wait three hours, for example, the molecule
will typically have traveled about an inch from where it started. Sup-
pose that at some point the molecule moves to a position of signifi-
cance and so finally attracts our attention. As many did after Pearl
Harbor, we might look for the reason why that unexpected event
occurred. Now suppose we dig into the molecule’s past. Suppose, in
fact, we trace the record of all its collisions. We will indeed discover
how first this bump from a water molecule and then that one pro-
pelled the dye molecule on its zigzag path from there to here. In
hindsight, in other words, we can clearly explain why the past of the
dye molecule developed as it did. But the water contains many other
water molecules that could have been the ones that interacted with
the dye molecule. To predict the dye molecule’s path beforehand
would have therefore required us to calculate the paths and mutual
interactions of all those potentially important water molecules. That
would have involved an almost unimaginable number of mathemati-
cal calculations, far greater in scope and difficulty than the list of col-
lisions needed to understand the past. In other words, the movement
of the dye molecule was virtually impossible to predict before the fact
even though it was relatively easy to understand afterward.

That fundamental asymmetry is why in day-to-day life the past
often seems obvious even when we could not have predicted it. It’s
why weather forecasters can tell you the reasons why three days ago
the cold front moved like this and yesterday the warm front moved
like that, causing it to rain on your romantic garden wedding, but the
same forecasters are much less successful at knowing how the fronts
will behave three days hence and at providing the warning you would
have needed to get that big tent ready. Or consider a game of chess.
Unlike card games, chess involves no explicit random element. And
yet there is uncertainty because neither player knows for sure what
his or her opponent will do next. If the players are expert, at most
points in the game it may be possible to see a few moves into the
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future; if you look out any further, the uncertainty will compound,
and no one will be able to say with any confidence exactly how the
game will turn out. On the other hand, looking back, it is usually easy
to say why each player made the moves he or she made. This again is
a probabilistic process whose future is difficult to predict but whose
past is easy to understand.

The same thing is true of the stock market. Consider, for instance,
the performance of mutual funds. As I mentioned in chapter 9, it is
common, when choosing a mutual fund, to look at past performance.
Indeed, it is easy to find nice, orderly patterns when looking back.
Here, for example, is a graph of the performance of 800 mutual fund
managers over the five-year period, 1991-1995.
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Fund Manager’s Relative Rank

Performance versus ranking of the top mutual funds
in the five-year period 1991-1995.

On the vertical axis are plotted the funds’ gains or losses relative to
the average fund of the group. In other words, a return of 0 percent
means the fund’s performance was average for this five-year period.
On the horizontal axis is plotted the managers’ relative rank, from the
number-1 performer to the number-800 performer. To look up the
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performance of, say, the 100th most successtul mutual fund manager
in the given five-year period, you find the point on the graph corre-
sponding to the spot labeled 100 on the horizontal axis.

Any analyst, no doubt, could give a number of convincing reasons
why the top managers represented here succeeded, why the bot-
tom ones failed, and why the curve should take this shape. And
whether or not we take the time to follow such analyses in detail,
few are the investors who would choose a fund that has performed
10 percent below average in the past five years over a fund that has
done 10 percent better than average. It is easy, looking at the past, to
construct such nice graphs and neat explanations, but this logical
picture of events is just an illusion of hindsight with little relevance
for predicting future events. In the graph on page 200, for exam-
ple, I compare how the same funds, still ranked in order of their
performance in the initial five-year period, performed in the next five-
year period. In other words, I maintain the ranking based on the
period 1991-1995, but display the return the funds achieved in
1996-2000. If the past were a good indication of the future, the funds
I considered in the period 1991-1995 would have had more or less
the same relative performance in 1996-2000. That is, if the winners
(at the left of the graph) continued to do better than the others, and
the losers (at the right) worse, this graph should be nearly identical to
the last. Instead, as we can see, the order of the past dissolves when
extrapolated to the future, and the graph ends up looking like ran-
dom noise.

People systematically fail to see the role of chance in the success
of ventures and in the success of people like the equity-fund manager
Bill Miller. And we unreasonably believe that the mistakes of the past
must be consequences of ignorance or incompetence and could
have been remedied by further study and improved insight. That’s
why, for example, in spring 2007, when the stock of Merrill Lynch
was trading around $95 a share, its CEO E. Stanley O’Neal could be
celebrated as the risk-taking genius responsible, and in the fall of
2007, after the credit market collapsed, derided as the risk-taking
cowboy responsible —and promptly fired. We afford automatic re-
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How the top funds in 1991-1995 performed in 1996-2000.

spect to superstar business moguls, politicians, and actors and to any-
one flying around in a private jet, as if their accomplishments must
reflect unique qualities not shared by those forced to eat commercial-
airline food. And we place too much confidence in the overly precise
predictions of people—political pundits, financial experts, business
consultants—who claim a track record demonstrating expertise.
One large publishing company I'm familiar with went to great
pains to develop one-year, three-year, and five-year plans for its edu-
cational software division. There were high-paid consultants, lengthy
marketing meetings, late-night financial-analysis sessions, long off-
site afternoon powwows. In the end, hunches were turned into for-
mulas claiming the precision of several decimal places, and wild
guesses were codified as likely outcomes. When in the first year cer-
tain products didnt sell as well as expected or others sold better than
projected, reasons were found and the appropriate employees
blamed or credited as if the initial expectations had been meaning-
ful. The next year saw a series of unforeseen price wars started by two
competitors. The year after that the market for educational software
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collapsed. As the uncertainty compounded, the three-year plan never
had a chance to succeed. And the five-year plan, polished and precise
as a diamond, was spared any comparison with performance, for by
then virtually everyone in the division had moved on to greener
pastures.

Historians, whose profession is to study the past, are as wary as sci-
entists of the idea that events unfold in a manner that can be pre-
dicted. In fact, in the study of history the illusion of inevitability has
such serious consequences that it is one of the few things that both
conservative and socialist historians can agree on. The socialist histo-
rian Richard Henry Tawney, for example, put it like this: “Historians
give an appearance of inevitability . . . by dragging into prominence
the forces which have triumphed and thrusting into the background
those which they have swallowed up.”> And the historian Roberta
Wohlstetter, who received the Presidential Medal of Freedom from
Ronald Reagan, said it this way: “After the event, of course, a signal is
always crystal clear; we can now see what disaster it was signaling. . . .
But before the event it is obscure and pregnant with conflicting
meanings.”®

In some sense this idea is encapsulated in the cliché that hind-
sight is always 20/20, but people often behave as if the adage weren’t
true. In government, for example, a should-have-known-it blame
game is played after every tragedy. In the case of Pearl Harbor (and
the September 11 attacks) the events leading up to the attack, when
we look back at them, certainly seem to point in an obvious direc-
tion. Yet as with the dye molecule, the weather, or the chess game, if
you start well before the fact and trace events forward, the feeling
of inevitability quickly dissolves. For one thing, in addition to the
intelligence reports I quoted, there was a huge amount of useless
intelligence, with each week bringing new reams of sometimes
alarming or mysterious messages and transcripts that would later
prove misleading or insignificant. And even if we focused on the
reports that hindsight tells us were important, before the attack there
existed for each of those reports a reasonable alternative explanation
that did not point toward a surprise attack on Pearl Harbor. For exam-
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ple, the request to divide Pearl Harbor into five areas was similar in
style to other requests that had gone to Japanese agents in Panama,
Vancouver, San Francisco, and Portland, Oregon. The loss of radio
contact was also not unheard of and had in the past often meant
simply that the warships were in home waters and communicating
via telegraphic landlines. Moreover, even if you believed a broaden-
ing of the war was impending, many signs pointed toward an attack
elsewhere —in the Philippines, on the Thai peninsula, or on Guam,
for example. There were not, to be sure, as many red herrings as
water molecules encountered by a molecule of dye, but there were
enough to obscure a clear vision of the future.

After Pearl Harbor seven committees of the U.S. Congress delved
into the process of discovering why the military had missed all the
“signs” of a coming attack. Army Chief of Staff General George Mar-
shall, for one, drew heavy criticism for a May 1941 memo to Presi-
dent Roosevelt in which he wrote that “the Island of Oahu, due to its
fortification, its garrison and its physical characteristic, is believed to
be the strongest fortress in the world” and reassured the president
that, in case of attack, enemy forces would be intercepted “within
200 miles of their objective . . . by all types of bombardment.” Gen-
eral Marshall was no fool, but neither did he have a crystal ball. The
study of randomness tells us that the crystal ball view of events is pos-
sible, unfortunately, only after they happen. And so we believe we
know why a film did well, a candidate won an election, a storm hit, a
stock went down, a soccer team lost, a new product failed, or a disease
took a turn for the worse, but such expertise is empty in the sense that
it is of little use in predicting when a film will do well, a candidate
will win an election, a storm will hit, a stock will go down, a soccer
team will lose, a new product will fail, or a disease will take a turn for
the worse.

It is easy to concoct stories explaining the past or to become confi-
dent about dubious scenarios for the future. That there are traps in
such endeavors doesn’t mean we should not undertake them. But we
can work to immunize ourselves against our errors of intuition. We
can learn to view both explanations and prophecies with skepticism.
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We can focus on the ability to react to events rather than relying on
the ability to predict them, on qualities like flexibility, confidence,
courage, and perseverance. And we can place more importance on
our direct impressions of people than on their well-trumpeted past
accomplishments. In these ways we can resist forming judgments in
our automatic deterministic framework.

IN MARCH 1979 another famously unanticipated chain of events
occurred, this one at a nuclear power plant in Pennsylvania.” It
resulted in a partial meltdown of the core, in which the nuclear reac-
tion occurs, threatening to release into the environment an alarming
dose of radiation. The mishap began when a cup or so of water
emerged through a leaky seal from a water filter called a polisher.
The leaked water entered a pneumatic system that drives some of the
plant’s instruments, tripping two valves. The tripped valves shut
down the flow of cold water to the plant’s steam generator—the sys-
tem responsible for removing the heat generated by the nuclear reac-
tion in the core. An emergency water pump then came on, but a
valve in each of its two pipes had been left in a closed position after
maintenance two days earlier. The pumps therefore were pumping
water uselessly toward a dead end. Moreover, a pressure-relief valve
also failed, as did a gauge in the control room that ought to have
shown that the valve was not working.

Viewed separately, each of the failures was of a type considered
both commonplace and acceptable. Polisher problems were not
unusual at the plant, nor were they normally very serious; with hun-
dreds of valves regularly being opened or closed in a nuclear power
plant, leaving some valves in the wrong position was not considered
rare or alarming; and the pressure-relief valve was known to be some-
what unreliable and had failed at times without major consequences
in at least eleven other power plants. Yet strung together, these fail-
ures make the plant seem as if it had been run by the Keystone Kops.
And so after the incident at Three Mile Island came many investiga-
tions and much laying of blame, as well as a very different conse-

203



THE DRUNKARD’'S WALK

quence. That string of events spurred Yale sociologist Charles Perrow
to create a new theory of accidents, in which is codified the central
argument of this chapter: in complex systems (among which I count
our lives) we should expect that minor factors we can usually ignore
will by chance sometimes cause major incidents.®

In his theory Perrow recognized that modern systems are made up
of thousands of parts, including fallible human decision makers,
which interrelate in ways that are, like Laplace’s atoms, impossible to
track and anticipate individually. Yet one can bet on the fact that just
as atoms executing a drunkard’s walk will eventually get somewhere,
so too will accidents eventually occur. Called normal accident the-
ory, Perrow’s doctrine describes how that happens—how accidents
can occur without clear causes, without those glaring errors and
incompetent villains sought by corporate or government commis-
sions. But although normal accident theory is a theory of why,
inevitably, things sometimes go wrong, it could also be flipped
around to explain why, inevitably, they sometimes go right. For in a
complex undertaking, no matter how many times we fail, if we keep
trying, there is often a good chance we will eventually succeed. In
fact, economists like W. Brian Arthur argue that a concurrence of
minor factors can even lead companies with no particular edge to
come to dominate their competitors. “In the real world,” he wrote, “if
several similar-sized firms entered a market together, small fortuitous
events—unexpected orders, chance meetings with buyers, manage-
rial whims—would help determine which ones received early sales
and, over time, which came to dominate. Economic activity
is ... [determined] by individual transactions that are too small to
foresee, and these small ‘random’ events could [ac]cumulate and
become magnified by positive feedbacks over time.”

The same phenomenon has been noticed by researchers in soci-
ology. One group, for example, studied the buying habits of con-
sumers in what sociologists call the cultural industries—books, film,
art, music. The conventional marketing wisdom in those fields is that
success is achieved by anticipating consumer preference. In this view
the most productive way for executives to spend their time is to study
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what it is about the likes of Stephen King, Madonna, or Bruce Willis
that appeals to so many fans. They study the past and, as I've just
argued, have no trouble extracting reasons for whatever success they
are attempting to explain. They then try to replicate it.

That is the deterministic view of the marketplace, a view in which
it is mainly the intrinsic qualities of the person or the product that
governs success. But there is another way to look at it, a nondetermin-
istic view. In this view there are many high-quality but unknown
books, singers, actors, and what makes one or another come to stand
out is largely a conspiracy of random and minor factors—that is, luck.
In this view the traditional executives are just spinning their wheels.

Thanks to the Internet, this idea has been tested. The researchers
who tested it focused on the music market, in which Internet sales
are coming to dominate. For their study they recruited 14,341 partic-
ipants who were asked to listen to, rate, and if they desired, download
48 songs by bands they had not heard of.!” Some of the participants
were also allowed to view data on the popularity of each song—that
is, on how many fellow participants had downloaded it. These partic-
ipants were divided into eight separate “worlds” and could see only
the data on downloads of people in their own world. All the artists in
all the worlds began with zero downloads, after which each world
evolved independently. There was also a ninth group of participants,
who were not shown any data. The researchers employed the popu-
larity of the songs in this latter group of insulated listeners to define
the “intrinsic quality” of each song—that is, its appeal in the absence
of external influence.

If the deterministic view of the world were true, the same songs
ought to have dominated in each of the eight worlds, and the popu-
larity rankings in those worlds ought to have agreed with the intrinsic
quality as determined by the isolated individuals. But the researchers
found exactly the opposite: the popularity of individual songs varied
widely among the different worlds, and different songs of similar
intrinsic quality also varied widely in their popularity. For example, a
song called “Lockdown” by a band called 52metro ranked twenty-six
out of forty-eight in intrinsic quality but was the number-1 song in
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one world and the number-40 song in another. In this experiment, as
one song or another by chance got an early edge in downloads, its
seeming popularity influenced future shoppers. It’s a phenomenon
that is well-known in the movie industry: moviegoers will report lik-
ing a movie more when they hear beforchand how good it is. In
this example, small chance influences created a snowball effect and
made a huge difference in the future of the song. Again, it’s the but-
terfly effect.

In our lives, too, we can see through the microscope of close
scrutiny that many major events would have turned out differently
were it not for the random confluence of minor factors, people we've
met by chance, job opportunities that randomly came our way. For
example, consider the actor who, for seven years starting in the late
1970s, lived in a fifth-floor walk-up on Forty-ninth Street in Manhat-
tan, struggling to make a name for himself. He worked off-Broadway,
sometimes far off, and in television commercials, taking all the steps
he could to get noticed, build a career, and earn the money to eat an
occasional hanger steak in a restaurant without having to duck out
before the check arrived. And like many other wannabes, no matter
how hard this aspiring actor worked to get the right parts, make the
right career choices, and excel in his trade, his most reliable role
remained the one he played in his other career—as a bartender.
Then one day in the summer of 1984 he flew to Los Angeles, either
to attend the Olympics (if you believe his publicist) or to visit a girl-
friend (if you believe The New York Times). Whichever account is
accurate, one thing is clear: the decision to visit the West Coast had
little to do with acting and much to do with love, or at least the love
of sports. Yet it proved to be the best career decision he ever made,
most likely the best decision of his life.

The actor’s name is Bruce Willis, and while he was in Los Ange-
les, an agent suggested he go on a few television auditions.!! One was
for a show in its final stages of casting. The producers already had a
list of finalists in mind, but in Hollywood nothing is final until the
ink on the contract is dry and the litigation has ended. Willis got his
audition and landed the role —that of David Addison, the male lead
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paired with Cybill Shepherd in a new ABC offering called Moon-
lighting.

It might be tempting to believe that Willis was the obvious choice
over Mr. X, the fellow at the top of the list when the newcomer
arrived, and that the rest is, as they say, history. Since in hindsight we
know that Moonlighting and Willis became huge successes, it is hard
to imagine the assemblage of Hollywood decision makers, upon see-
ing Willis, doing anything but lighting up stogies as they celebrated
their brilliant discovery and put to flame their now-outmoded list of
finalists. But what really happened at the casting session is more like
what you get when you send your kids out for a single gallon of ice
cream and two want strawberry while the third demands triple-
chocolate-fudge brownie. The network executives fought for Mr. X,
their judgment being that Willis did not look like a serious lead.
Glenn Caron, Moonlighting’s executive producer, argued for Willis.
It is easy, looking back, to dismiss the network executives as ignorant
buffoons. In my experience, television producers often do, especially
when the executives are out of earshot. But before we make that
choice, consider this: television viewers at first agreed with the execu-
tives’ mediocre assessment. Moonlighting debuted in March 1985 to
low ratings and continued with a mediocre performance through the
rest of its first season. Only in the second season did viewers change
their minds and the show become a major hit. Willis’s appeal and his
success were apparently unforeseeable until, of course, he suddenly
became a star. One might at this point chalk up the story to crazy
Hollywood, but Willis’s drunkard’s walk to success is not at all
unusual. A path punctuated by random impacts and unintended
consequences is the path of many successtul people, not only in their
careers but also in their loves, hobbies, and friendships. In fact, it is
more the rule than the exception.

[ was watching late-night television recently when another star,
though not one from the entertainment world, appeared for an inter-
view. His name is Bill Gates. Though the interviewer is known for his
sarcastic approach, toward Gates he seemed unusually deferential.
Even the audience seemed to ogle Gates. The reason, of course, is
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that for thirteen years straight Gates was named the richest man in
the world by Forbes magazine. In fact, since founding Microsoft,
Gates has earned more than $100 a second. And so when he was
asked about his vision for interactive television, everyone waited with
great anticipation to hear what he had to say. But his answer was ordi-
nary, no more creative, ingenious, or insightful than anything I've
heard from a dozen other computer professionals. Which brings us
to this question: does Gates earn $100 per second because he is god-
like, or is he godlike because he earns $100 per second?

In August 1980, when a group of IBM employees working on a
secret project to build a personal computer flew to Seattle to meet
with the young computer entrepreneur, Bill Gates was running a
small company and IBM needed a program, called an operating sys-
tem, for its planned “home computer.” Recollections of the ensuing
events vary, but the gist goes like this:!? Gates said he couldn’t pro-
vide the operating system and referred the IBM people to a famed
programmer named Gary Kildall at Digital Research Inc. The talks
between IBM and Kildall did not go well. For one thing, when IBM
showed up at DRI’s offices, Kildall’s then wife, the company’s busi-
ness manager, refused to sign IBM’s nondisclosure agreement. The
IBM emissaries called again, and that time Kildall did meet with
them. No one knows exactly what transpired in that meeting, but if
an informal deal was made, it didn’t stick. Around that time one of
the IBM employees, Jack Sams, saw Gates again. They both knew of
another operating system that was available, a system that was,
depending on whom you ask, based on or inspired by Kildall’s.
According to Sams, Gates said, “Do you want to get . . . [that operat-
ing system|, or do you want me to?” Sams, apparently not appreciat-
ing the implications, said, “By all means, you get it.” Gates did, for
$50,000 (or, by some accounts, a bit more), made a few changes, and
renamed it DOS (disk operating system). IBM, apparently with little
faith in the potential of its new idea, licensed DOS from Gates for a
low per-copy royalty fee, letting Gates retain the rights. DOS was no
better—and many, including most computer professionals, would
claim far worse —than, say, Apple’s Macintosh operating system. But
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the growing base of IBM users encouraged software developers to
write for DOS, thereby encouraging prospective users to buy IBM
machines, a circumstance that in turn encouraged software develop-
ers to write for DOS. In other words, as W. Brian Arthur would say,
people bought DOS because people were buying DOS. In the fluid
world of computer entrepreneurs, Gates became the molecule that
broke from the pack. But had it not been for Kildall’s uncooperative-
ness, IBM’s lack of vision, or the second encounter between Sams
and Gates, despite whatever visionary or business acumen Gates pos-
sesses, he might have become just another software entrepreneur
rather than the richest man in the world, and that is probably why his
vision seems like that of just that—another software entrepreneur.

Our society can be quick to make wealthy people into heroes and
poor ones into goats. That's why the real estate mogul Donald
Trump, whose Plaza Hotel went bankrupt and whose casino empire
went bankrupt twice (a shareholder who invested $10,000 in his
casino company in 1994 would thirteen years later have come away
with $636),13 nevertheless dared to star in a wildly successful televi-
sion program in which he judged the business acumen of aspiring
young people.

Obviously it can be a mistake to assign brilliance in proportion to
wealth. We cannot see a person’s potential, only his or her results, so
we often misjudge people by thinking that the results must reflect the
person. The normal accident theory of life shows not that the con-
nection between actions and rewards is random but that random
influences are as important as our qualities and actions.

On an emotional level many people resist the idea that random
influences are important even if, on an intellectual level, they under-
stand that they are. If people underestimate the role of chance in the
careers of moguls, do they also downplay its role in the lives of the
least successful? In the 1960s that question inspired the social psy-
chologist Melvin Lerner to look into society’s negative attitudes
toward the poor.!* Realizing that “few people would engage in
extended activity if they believed that there were a random connec-
tion between what they did and the rewards they received,”” Lerner

209



THE DRUNKARD’'S WALK

concluded that “for the sake of their own sanity,” people overestimate
the degree to which ability can be inferred from success.!® We are
inclined, that is, to see movie stars as more talented than aspiring
movie stars and to think that the richest people in the world must also
be the smartest.

WE MIGHT NOT THINK we judge people according to their
income or outward signs of success, but even when we know for a fact
that a person’s salary is completely random, many people cannot
avoid making the intuitive judgment that salary is correlated with
worth. Melvin Lerner examined that issue by arranging for subjects
to sit in a small darkened auditorium facing a one-way mirror.!” From
their seats these observers could gaze into a small well-lit room con-
taining a table and two chairs. The observers were led to believe that
two workers, Tom and Bill, would soon enter the room and work
together for fifteen minutes unscrambling anagrams. The curtains in
front of the viewing window were then closed, and Lerner told the
observers that he would keep the curtains shut because the experi-
ment would go better if they could hear but not see the workers, so
that they would not be influenced by their appearance. He also told
them that because his funds were limited, he could pay only one of
the workers, who would be chosen at random. As Lerner left the
room, an assistant threw a switch that began to play an audiotape.
The observers believed they were listening in as Tom and Bill
entered the room behind the curtain and began their work. Actually
they were listening to a recording of Tom and Bill reading a fixed
script, which had been constructed such that, by various objective
measures, each of them appeared to be equally adept and successtul
at his task. Afterward the observers, not knowing this, were asked to
rate Tom and Bill on their effort, creativity, and success. When Tom
was selected to receive the payment, about 90 percent of the
observers rated him as having made the greater contribution. When
Bill was selected, about 70 percent of the observers rated him higher.
Despite Tom and Bill’s equivalent performance and the observers’
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knowledge that the pay was randomly assigned, the observers per-
ceived the worker who got paid as being better than the one who had
worked for nothing. Alas, as all of those who dress for success know,
we are all too easily fooled by the money someone earns.

A series of related studies investigated the same effect from the
point of view of the workers themselves.!8 Everyone knows that bosses
with the right social and academic credentials and a nice title and
salary have at times put a higher value on their own ideas than on
those of their underlings. Researchers wondered, will people who
earn more money purely by chance behave the same way? Does
even unearned “success” instill a feeling of superiority? To find out,
pairs of volunteers were asked to cooperate on various pointless tasks.
In one task, for instance, a black-and-white image was briefly dis-
played and the subjects had to decide whether the top or the bottom
of the image contained a greater proportion of white. Before each
task began, one of the subjects was randomly chosen to receive
considerably more pay for participating than the other. When that
information was not made available, the subjects cooperated pretty
harmoniously. But when they knew how much they each were get-
ting paid, the higher-paid subjects exhibited more resistance to input
from their partners than the lower-paid ones. Even random differ-
ences in pay lead to the backward inference of differences in skill and
hence to the development of unequal influence. It’s an element of
personal and office dynamics that cannot be ignored.

But it is the other side of the question that was closer to the origi-
nal motivation for Lerner’s work. With a colleague, Lerner asked
whether people are inclined to feel that those who are not successtul
or who suffer deserve their fate.!? In that study small groups of female
college students gathered in a waiting room. After a few minutes one
was selected and led out. That student, whom I will call the victim,
was not really a test subject but had been planted in the room by the
experimenters. The remaining subjects were told that they would
observe the victim working at a learning task and that each time she
made an incorrect response, she would receive an electric shock.
The experimenter adjusted some knobs said to control the shock lev-
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els, and then a video monitor was turned on. The subjects watched as
the victim entered an adjoining room, was strapped to a “shock appa-
ratus,” and then attempted to learn pairs of nonsense syllables.

During the task the victim received several apparently painful
electric shocks for her incorrect responses. She reacted with exclama-
tions of pain and suffering. In reality the victim was acting, and what
played on the monitor was a prerecorded tape. At first, as expected,
most of the observers reported being extremely upset by their peer’s
unjust suffering. But as the experiment continued, their sympathy for
the victim began to erode. Eventually the observers, powerless to
help, instead began to denigrate the victim. The more the victim suf-
fered, the lower their opinion of her became. As Lerner had pre-
dicted, the observers had a need to understand the situation in terms
of cause and effect. To be certain that some other dynamic wasn’t
really at work, the experiment was repeated with other groups of
subjects, who were told that the victim would be well compensated
for her pain. In other words, these subjects believed that the victim
was being “fairly” treated but were otherwise exposed to the same
scenario. Those observers did not develop a tendency to think poorly
of the victim. We unfortunately seem to be unconsciously biased
against those in society who come out on the bottom.

We miss the effects of randomness in life because when we assess
the world, we tend to see what we expect to see. We in effect define
degree of talent by degree of success and then reinforce our feelings
of causality by noting the correlation. That’s why although there is
sometimes little difference in ability between a wildly successful per-
son and one who is not as successful, there is usually a big difference
in how they are viewed. Before Moonlighting, if you were told by the
young bartender Bruce Willis that he hoped to become a film star,
you would not have thought, gee, I sure am lucky to have this chance
to chat one-on-one with a charismatic future celebrity, but rather you
would have thought something more along the lines of yeah, well, for
now just make sure not to overdo it on the vermouth. The day after the
show became a hit, however, everyone suddenly viewed Bruce Willis
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as a star, a guy who has that something special it takes to capture
viewers” hearts and imagination.

The power of expectations was dramatically illustrated in a bold
experiment conducted years ago by the psychologist David L. Rosen-
han.?’ In that study each of eight “pseudopatients” made an appoint-
ment at one of a variety of hospitals and then showed up at the
admissions office complaining that they were hearing strange voices.
The pseudopatients were a varied group: three psychologists, a psy-
chiatrist, a pediatrician, a student, a painter, and a housewife. Other
than alleging that single symptom and reporting false names and
vocations, they all described their lives with complete honesty. Con-
fident in the clockwork operation of our mental health system, some
of the subjects later reported having feared that their obvious sanity
would be immediately sniffed out, causing great embarrassment on
their part. They needn’t have worried. All but one were admitted to
the hospital with a diagnosis of schizophrenia. The remaining patient
was admitted with a diagnosis of manic-depressive psychosis.

Upon admission, they all ceased simulating any symptoms of
abnormality and reported that the voices were gone. Then, as previ-
ously instructed by Rosenhan, they waited for the staff to notice that
they were not, in fact, insane. None of the staff noticed. Instead, the
hospital workers interpreted the pseudopatients” behavior through
the lens of insanity. When one patient was observed writing in his
diary, it was noted in the nursing record that “patient engages in writ-
ing behavior,” identifying the writing as a sign of mental illness.
When another patient had an outburst while being mistreated by an
attendant, the behavior was also assumed to be part of the patient’s
pathology. Even the act of arriving at the cafeteria before it opened
for lunch was seen as a symptom of insanity. Other patients, un-
impressed by formal medical diagnoses, would regularly challenge
the pseudopatients with comments like “You're not crazy. You're a
journalist . . . youre checking up on the hospital.” The pseudopa-
tients’ doctors, however, wrote notes like “This white 39-year-
old male . . . manifests a long history of considerable ambivalence
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in close relationships, which begins in early childhood. A warm
relationship with his mother cools during adolescence. A distant rela-
tionship with his father is described as being very intense.”

The good news is that despite their suspicious habits of writing
and showing up early for lunch, the pseudopatients were judged not
to be a danger to themselves or others and released after an average
stay of nineteen days. The hospitals never detected the ruse and,
when later informed of what had gone on, denied that such a sce-
nario could be possible.

If it is easy to fall victim to expectations, it is also easy to exploit
them. That is why struggling people in Hollywood work hard to look
as though they are not struggling, why doctors wear white coats and
place all manner of certificates and degrees on their office walls, why
used-car salesmen would rather repair blemishes on the outside of a
car than sink money into engine work, and why teachers will, on
average, give a higher grade to a homework assignment turned in by
an “excellent” student than to identical work turned in by a “weak”
one.”! Marketers also know this and design ad campaigns to create
and then exploit our expectations. One arena in which that was done
very effectively is the vodka market. Vodka is a neutral spirit, distilled,
according to the U.S. government definition, “as to be without dis-
tinctive character, aroma, taste or color.” Most American vodkas orig-
inate, therefore, not with passionate, flannel-shirted men like those
who create wines, but with corporate giants like the agrochemical
supplier Archer Daniels Midland. And the job of the vodka distiller is
not to nurture an aging process that imparts finely nuanced flavor but
to take the 190-proof industrial swill such suppliers provide, add
water, and subtract as much of the taste as possible. Through massive
image-building campaigns, however, vodka producers have managed
to create very strong expectations of difference. As a result, people
believe that this liquor, which by its very definition is without a dis-
tinctive character, actually varies greatly from brand to brand. More-
over, they are willing to pay large amounts of money based on those
differences. Lest I be dismissed as a tasteless boor, I wish to point out
that there is a way to test my ravings. You could line up a series of vod-
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kas and a series of vodka sophisticates and perform a blind tasting. As
it happens, The New York Times did just that.22 And without their
labels, fancy vodkas like Grey Goose and Ketel One didn't fare so
well. Compared with conventional wisdom, in fact, the results
appeared random. Moreover, of the twenty-one vodkas tasted, it was
the cheap bar brand, Smirnoff, that came out at the top of the list.
Our assessment of the world would be quite different if all our judg-
ments could be insulated from expectation and based only on rele-
vant data.

A FEW YEARS AGO The Sunday Times of London conducted an
experiment. Its editors submitted typewritten manuscripts of the
opening chapters of two novels that had won the Booker Prize —one
of the world’s most prestigious and most influential awards for con-
temporary fiction—to twenty major publishers and agents.?* One of
the novels was In a Free State by V. S. Naipaul, who won the Nobel
Prize for Literature; the other was Holiday by Stanley Middleton.
One can safely assume that each of the recipients of the manuscripts
would have heaped praise on the highly lauded novels had they
known what they were reading. But the submissions were made as if
they were the work of aspiring authors, and none of the publishers or
agents appeared to recognize them. How did the highly successtul
works fare? All but one of the replies were rejections. The exception
was an expression of interest in Middleton’s novel by a London liter-
ary agent. The same agent wrote of Naipaul’s book, “We . . . thought
it was quite original. In the end though I'm afraid we just weren’t
quite enthusiastic enough to be able to offer to take things further.”
The author Stephen King unwittingly conducted a similar exper-
iment when, worried that the public would not accept his books as
quickly as he could churn them out, he wrote a series of novels under
the pseudonym Richard Bachman. Sales figures indicated that even
Stephen King, without the name, is no Stephen King. (Sales picked
up considerably after word of the author’s true identity finally got
out.) Sadly, one experiment King did not perform was the opposite:
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to swathe wonderful unpublished manuscripts by struggling writers
in covers naming him as the author. But if even Stephen King, with-
out the name, is no Stephen King, then the rest of us, when our cre-
ative work receives a less-than-Kingly reception, might take comfort
in knowing that the differences in quality might not be as great as
some people would have us believe.

Years ago at Caltech, I had an office around the corner from the
office of a physicist named John Schwarz. He was getting little recog-
nition and had suffered a decade of ridicule as he almost single-
handedly kept alive a discredited theory, called string theory, which
predicted that space has many more dimensions than the three we
observe. Then one day he and a co-worker made a technical break-
through, and for reasons that need not concern us here, suddenly the
extra dimensions sounded more acceptable. String theory has been
the hottest thing in physics ever since. Today John is considered one
of the brilliant elder statesmen of physics, yet had he let the years of
obscurity get to him, he would have been a testament to Thomas
Edison’s observation that “many of life’s failures are people who did
not realize how close they were to success when they gave up.”*

Another physicist I knew had a story that was strikingly similar to
John’s. He was, coincidentally, John’s PhD adviser at the University
of California, Berkeley. Considered one of the most brilliant scien-
tists of his generation, this physicist was a leader in an area of research
called S-matrix theory. Like John, he was stubbornly persistent and
continued to work on his theory for years after others had given up.
But unlike John, he did not succeed. And because of his lack of suc-
cess he ended his career with many people thinking him a crackpot.
But in my opinion both he and John were brilliant physicists with the
courage to work—with no promise of an imminent breakthrough—
on a theory that had gone out of style. And just as authors should be
judged by their writing and not their books’ sales, so physicists—and
all who strive to achieve —should be judged more by their abilities
than by their success.

The cord that tethers ability to success is both loose and elastic. It
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is easy to see fine qualities in successful books or to see unpublished
manuscripts, inexpensive vodkas, or people struggling in any field as
somehow lacking. It is easy to believe that ideas that worked were
good ideas, that plans that succeeded were well designed, and that
ideas and plans that did not were ill conceived. And it is easy to make
heroes out of the most successful and to glance with disdain at the
least. But ability does not guarantee achievement, nor is achieve-
ment proportional to ability. And so it is important to always keep in
mind the other term in the equation—the role of chance.

It is no tragedy to think of the most successful people in any field
as superheroes. But it is a tragedy when a belief in the judgment of
experts or the marketplace rather than a belief in ourselves causes us
to give up, as John Kennedy Toole did when he committed suicide
after publishers repeatedly rejected his manuscript for the posthu-
mously best-selling Confederacy of Dunces. And so when tempted to
judge someone by his or her degree of success, I like to remind
myself that were they to start over, Stephen King might be only a
Richard Bachman and V. S. Naipaul just another struggling author,
and somewhere out there roam the equals of Bill Gates and Bruce
Willis and Roger Maris who are not rich and famous, equals on
whom Fortune did not bestow the right breakthrough product or TV
show or year. What I've learned, above all, is to keep marching for-
ward because the best news is that since chance does play a role, one
important factor in success is under our control: the number of at
bats, the number of chances taken, the number of opportunities
seized. For even a coin weighted toward failure will sometimes land
on success. Or as the IBM pioneer Thomas Watson said, “If you want
to succeed, double your failure rate.”

[ have tried in this book to present the basic concepts of random-
ness, to illustrate how they apply to human affairs, and to present my
view that its effects are largely overlooked in our interpretations of
events and in our expectations and decisions. It may come as an
epiphany merely to recognize the ubiquitous role of random
processes in our lives; the true power of the theory of random
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processes, however, lies in the fact that once we understand the
nature of random processes, we can alter the way we perceive the
events that happen around us.

The psychologist David Rosenhan wrote that “once a person is
abnormal, all of his other behaviors and characteristics are colored by
that label.”?> The same applies for stardom, for many other labels of
success, and for those of failure. We judge people and initiatives by
their results, and we expect events to happen for good, understand-
able reasons. But our clear visions of inevitability are often only illu-
sions. | wrote this book in the belief that we can reorganize our
thinking in the face of uncertainty. We can improve our skill at deci-
sion making and tame some of the biases that lead us to make poor
judgments and poor choices. We can seek to understand people’s
qualities or the qualities of a situation quite apart from the results
they attain, and we can learn to judge decisions by the spectrum of
potential outcomes they might have produced rather than by the par-
ticular result that actually occurred.

My mother always warned me not to think I could predict or con-
trol the future. She once related the incident that converted her to
that belief. It concerned her sister, Sabina, of whom she still often
speaks although it has been over sixty-five years since she last saw her.
Sabina was seventeen. My mother, who idolized her as younger sib-
lings sometimes do their older siblings, was fifteen. The Nazis had
invaded Poland, and my father, from the poor section of town, had
joined the underground and, as I said earlier, eventually ended up in
Buchenwald. My mother, who didn’t know him then, came from the
wealthy part of town and ended up in a forced-labor camp. There she
was given the job of nurse’s aide and took care of patients suffering
from typhus. Food was scarce, and random death was always near. To
help protect my mother from the ever-present dangers, Sabina
agreed to a plan. She had a friend who was a member of the Jewish
police, a group, generally despised by the inmates, who carried out
the Germans’ commands and helped keep order in the camp.
Sabina’s friend had offered to marry her—a marriage in name only—
so that Sabina might obtain the protections that his position afforded.
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Sabina, thinking those protections would extend to my mother,
agreed. For a while it worked. Then something happened, and the
Nazis soured on the Jewish police. They sent a number of officers to
the gas chambers, along with their spouses—including Sabina’s hus-
band and Sabina herself. My mother has lived now for many more
years without Sabina than she had lived with her, but Sabina’s death
still haunts her. My mother worries that when she is gone, there will
no longer be any trace that Sabina ever existed. To her this story
shows that it is pointless to make plans. I do not agree. I believe it is
important to plan, if we do so with our eyes open. But more impor-
tant, my mother’s experience has taught me that we ought to identify
and appreciate the good luck that we have and recognize the random
events that contribute to our success. It has taught me, too, to accept
the chance events that may cause us grief. Most of all it has taught
me to appreciate the absence of bad luck, the absence of events that
might have brought us down, and the absence of the disease, war,
famine, and accident that have not—or have not yet—befallen us.
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