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Preface

The Traditional Introduction to Statistics

A traditional introduction to statistical thinking and methods is the
two-semester probability and statistics course offered in mathematics
and statistics departments. This traditional course provides an
introduction to calculus-based probability and statistical inference.
The first half of the course is an introduction to probability including
discrete, continuous, and multivariate distributions. The chapters on
functions of random variables and sampling distributions naturally
lead into statistical inference including point estimates and
hypothesis testing, regression models, design of experiments, and
ANOVA models.

Although this traditional course remains popular, there seems to
be little discussion in this course on the application of the inferential
material in modern statistical practice. Although there are benefits in
discussing methods of estimation such as maximum likelihood, and
optimal inference such as a best hypothesis test, the students learn
little about statistical computation and simulation-based inferential
methods. As stated in Cobb (2015), there appears to be a disconnect
between the statistical content we teach and statistical practice.

Developing a New Course

The development of any new statistics course should be consistent
with current thinking of faculty dedicated to teaching statistics at
the undergraduate level. Cobb (2015) argues that we need to deeply
rethink our undergraduate statistics curriculum from the ground up.
Towards this general goal, Cobb (2015) proposes “five imperatives”



that can help the process of creating this new curriculum. These
imperatives are to: (1) flatten prerequisites, (2) seek depth in
understanding fundamental concepts, (3) embrace computation in
statistics, (4) exploit the use of context to motivate statistical
concepts, and (5) implement research-based learning.

Why Bayes?

There are good reasons for introducing the Bayesian perspective at
the calculus-based undergraduate level. First, many people believe
that the Bayesian approach provides a more intuitive and
straightforward introduction than the frequentist approach to
statistical inference. Given that the students are learning probability,
Bayes provides a useful way of using probability to update beliefs
from data. Second, given the large growth of Bayesian applied work
in recent years, it is desirable to introduce the undergraduate
students to some modern Bayesian applications of statistical
methodology. The timing of a Bayesian course is right given the
ready availability of Bayesian instructional material and increasing
amounts of Bayesian computational resources.

We propose that Cobb’s five imperatives can be implemented
through a Bayesian statistics course. Simulation provides an
attractive “flattened prerequisites” strategy in performing inference.
In a Bayesian inferential calculation, one avoids the integration issue
by simulating a large number of values from the posterior
distribution and summarizing this simulated sample. Moreover, by
teaching fundamentals of Bayesian inference of conjugate models
together with simulation-based inference, students gain a deeper
understanding of Bayesian thinking. Familiarity with simulation
methods in the conjugate case prepares students for the use of
simulation algorithms later for more advanced Bayesian models.

One advantage of a Bayes perspective is the opportunity to input
expert opinion by the prior distribution which allows students to
“exploit context” beyond a traditional statistical analysis. This text



introduces strategies for constructing priors when one has substantial
prior information and when one has little prior knowledge.

To further “exploit context”, we introduce one particular Bayesian
success story: the use of hierarchical modeling to simultaneously
estimate parameters from several groups. In many applied statistical
analyses, a common problem is to combine estimates from several
groups, often with certain groups having limited amounts of available
data. Through interesting applications, we introduce hierarchical
modeling as an effective way to achieve partial pooling of the
separate estimates.

Thanks to a number of general-purpose software programs
available for Bayesian MCMC computation (e.g. openBUGS, JAGS,
Nimble, and Stan), students are able to learn and apply more
advanced Bayesian models for complex problems. We believe it is
important to introduce the students to at least one of these programs
which “flattens the prerequisite” of computational experience and
“embraces computation”. The main task in the use of these programs
is the specification of a script defining the Bayesian model, and the
Bayesian fitting is implemented by a single function that inputs the
model description, the data and prior parameters, and any tuning
parameters of the algorithm. By writing the script defining the full
Bayesian model, we believe the students get a deeper understanding
of the sampling and prior components of the model. Moreover, the
use of this software for sophisticated models such as hierarchical
models lowers the bar for students implementing these methods. The
focus of the students’ work is not the computation but rather the
summarization and interpretation of the MCMC output. Students
interested in the nuts and bolts of the MCMC algorithms can further
their learning through directed research or independent study.

Last, we believe all aspects of a Bayesian analysis are
communicated best through interesting case studies. In a good case
study, one describes the background of the study and the inferential
or predictive problems of interest. In a Bayesian applied analysis in
particular, one learns about the construction of the prior to represent



expert opinion, the development of the likelihood, and the use of the
posterior distribution to address the questions of interest. We
therefore propose the inclusion of fully-developed case studies in a
Bayesian course for students’ learning and practice. Based on our
teaching experience, having students work on a course project is the
best way for them to learn, resonating with Cobb’s “teach through
research”.

Audience and Structure of this Text

This text is intended for students with a background in calculus but
not necessarily any experience in programming. Chapters 1 through 6
resemble the material in a traditional probability course, including
foundations, conditional probability, discrete and continuous
distributions, and joint distributions. Simulation-based
approximations are introduced throughout these chapters to get
students exposed to new and complementary ways to understand
probability and probability distributions, as well as programming in
R.

Although there are applications of Bayes’ rule in the probability
chapters, the main Bayesian inferential material begins in Chapters 7
and 8 with a discussion of inferential and prediction methods for a
single binomial proportion and a single normal mean. The
foundational elements of Bayesian inference are described in these
two chapters, including the construction of a subjective prior, the
computation of the likelihood and posterior distributions, and the
summarization of the posterior for different types of inference. Exact
posterior distributions based on conjugacy, and approximation based
on Monte Carlo simulation, are introduced and compared. Predictive
distributions are described both for predicting future data and also
for implementing model checking.

Chapters 9 through 13 are heavily dependent on simulation
algorithms. Chapter 9 provides an overview of Markov Chain Monte
Carlo (MCMC) algorithms with a focus on Gibbs sampling and
Metropolis-Hastings algorithms. We also introduce the Just Another



Gibbs Sampler (JAGS) software, enabling students to gain a deeper
understanding of the sampling and prior components of a Bayesian
model and stay focused on summarization and interpretation of the
MCMC output for communicating their findings.

Chapter 10 describes the fundamentals of hierarchical modeling
where one wishes to combine observations from related groups.
Chapters 11 and 12 illustrate Bayesian inference, prediction, and
model checking for linear and logistic regression models. Chapter 13
describes several interesting case studies motivated by some historical
Bayesian studies and our own research. JAGS is the main software in
these chapters for implementing the MCMC inference.

For the interested reader, there is a wealth of good texts describing
Bayesian modeling at different levels and directed to various
audiences. Berry (1996) is a nice presentation of Bayesian thinking
for an introductory statistics class, and Gelman, et al (2013) and
Hoff (2009) are good descriptions of Bayesian methodology at a
graduate level.

Resources

The following website hosts the datasets and R scripts for all
chapters and maintains a current errata list:

https://monika76five.github.io/ProbBayes/

A special R package, ProbBayes (Albert (2019)), containing all of the
datasets and special functions for the text, is available on GitHub.
The package can be installed by the install_github() function from

the devtools package.

library(devtools)
install_github("bayesball/ProbBayes")

Teaching material, including lecture slides and videos, homework and
labs of an undergraduate Bayesian statistics course taught at one of
the authors’ institutions, is available at:


https://monika76five.github.io/ProbBayes/

https://github.com/monika76five/BayesianStatistics
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1

Probability: A Measurement of
Uncertainty

1.1 Introduction

The magazine Discover once had a special issue on “Life at Risk.” In
an article, Jeffrey Kluger describes the risks of making it through one
day:

Imagine my relief when I made it out of bed alive last Monday
morning. It was touch and go there for a while, but I managed
to scrape through. Getting up was not the only death-defying
act I performed that day. There was shaving, for example; that
was no walk in the park. Then there was showering, followed by
leaving the house and walking to work and spending eight hours
at the office. By the time I finished my day — a day that also
included eating lunch, exercising, going out to dinner, and going
home — I counted myself lucky to have survived in one piece.

Is this writer unusually fearful? No. He has read mortality studies
and concludes “there is not a single thing you can do in an ordinary
day — sleeping included — that isn’t risky enough to be the last thing
you ever do.” In The Book of Risks by Larry Laudan, we learn that



1 out of 2 million people will die from falling out of bed.
1 out of 400 will be injured falling out of bed.
1 out of 77 adults over 35 will have a heart attack this year.

e The average American faces a 1 in 13 risk of suffering some kind
of injury in home that necessitates medical attention.

e 1 out of 7000 will experience a shaving injury requiring medical
attention.

e The average American faces a 1 out of 14 risk of having property
stolen this year.

e 1 out of 32 risk of being the victim of some violent crime.

¢ The annual odds of dying in any kind of motor vehicle accident
is 1 in 5800.

Where do these reported odds come from? They are simply
probabilities calculated from the counts of reported accidents. Since
all of these accidents are possible, that means that there is a risk to
the average American that an accident will happen to him or her.
But fortunately, you need not worry — many of these reported risks
are too small to really take seriously or prod you to change style of
living.

Uncertainty
Everywhere we are surrounded by uncertainty. If you think about
it, there are a number of things that we are unsure about, like

e What is the high temperature next Monday?

¢ How many inches of snow will our town get next January?

e What’s your final grade in this class?

e Will you be living in the same state twenty years from now?
e Who will win the U.S. presidential election in 20247

e Is there life on Mars?

A probability is simply a number between 0 and 1 that measures
the uncertainty of a particular event. Although many events are



uncertain, one possesses different degrees of belief about the truth of
an uncertain event. For example, most of us are pretty certain of the
statement “the sun will rise tomorrow”, and pretty sure that the
statement “the moon is made of green cheese” is false. One thinks of
a probability scale from 0 to 1.

One typically would give the statement “the sun will rise
tomorrow” a probability close to 1, and the statement “the moon is
made of green cheese” a probability close to 0. It is harder to assign
probabilities to uncertain events that have probabilities between 0
and 1. In this chapter, we first get some experience in assigning
probabilities. Then three general ways of thinking about probabilities
will be described.

1.2 The Classical View of a Probability

Suppose that one observes some phenomena (say, the rolls of two
dice) where the outcome is random. Suppose one writes down the list
of all possible outcomes, and one believes that each outcome in the
list has the same probability. Then the probability of each outcome
will be

1
Prob(Out = ) 1.1
ro ( " come) Number of outcomes (D

Let’s illustrate this classical view of probability by a simple
example. Suppose one has a bowl with 4 white and 2 black balls

OOoo o>



and two balls from the bowl are drawn at random. It is assumed that
the balls are drawn without replacement which means that one
doesn’t place a ball back into the bowl after it has been selected.
What are possible outcomes? There are different ways of writing
down the possible outcomes, depending if one decides to distinguish
the balls of the same color.

WAY 1: If one doesn’t distinguish between balls of the same color,
then there are three possible outcomes — essentially one chooses 0

black, 1 black, or 2 black balls.

Outcome 1 O .
Outcome 2 O O
Outcome 3 . .

WAY 2: If one does distinguish between the balls of the same color,
label the balls in the bowl and then write down 15 distinct outcomes
of the experiment of choosing two balls.

O

Outcome 1 (D@ Outcome 6 @ @ Outcome 11 (D o
Outcome 2 @ @ Outcome 7 ® 9 Outcome 12 @ o
Outcome 3 @ @ Outcome 8 @ 9 Outcome 13 @ o
Qutcome 4 @@ Qutcome 9 @ o Outcome 14 o
Outcome 5 @ @ Outcome 10 @ o Outcome 15 o o



Which is the more appropriate way of listing
outcomes?

To apply the classical view of probability, one has to assume that
the outcomes are all equally likely. In the first list of three outcomes,
one can’t assume that they are equally likely. Since there are more
white than black balls in the basket, it is more likely to choose two
white balls than to choose two black balls. So it is incorrect to say
that the probability of each one of the three possible outcomes is 1/3.
That is, the probabilities of choosing 0 black, 1 black, and 2 blacks
are not equal to 1/3, 1/3, and 1/3.

On the other hand, since one will choosing two balls at random
from the basket, it makes sense that the 15 outcomes in the second
listing (where we assumed the balls distinguishable) are equally
likely. So one applies the classical notion and assigns a probability of
1/15 to each of the possible outcomes. In particular, the probability
of choosing two black balls (which is one of the 15 outcomes) is equal
to 1/15.

1.3 The Frequency View of a Probability

The classical view of probability is helpful only when we can
construct a list of outcomes of the experiment in such a way where
the outcomes are equally likely. The frequency interpretation of
probability can be used in cases where outcomes are equally likely or
not equally likely. This view of probability is appropriate in the
situation where one is able to repeat the random experiment many
times under the same conditions.

Getting out of jail in Monopoly

Suppose someone is playing the popular game Monopoly and she
lands in jail. To get out of jail on the next turn, she either pays $50



or rolls “doubles” when she rolls two fair dice. Doubles means that
the faces on the two dice are the same. If it is relatively unlikely to
roll doubles, then the player may elect to roll two dice instead of
paying $50 to get out of jail.

What is the probability of rolling doubles when she rolls two dice?

In this situation, the frequency notion can be applied to
approximate the probability of rolling doubles. Imagine rolling two
dice many times under similar conditions. Each time two dice are
rolled, we observe whether she rolls doubles or not. Then the
probability of doubles is approximated by the relative frequency

Number of doubles

Number of experiments -

Prob(doubles) ~

R Rolling two dice

The following R code can be used to simulate the rolling of two dice.
The two_rolls() function simulates rolls of a pair of dice and the

replicate() function repeats this process 1000 times and stores the
outcomes in the variable many_ro1ltls.

two_rolls <- function(){
sample(1:6, size = 2, replace = TRUE)

}
many_rolls <- replicate(1000, two_rolls())

The results of the first 50 experiments are shown in Table 1.1. For
each experiment, one records a match (YES) or no match (NO) in
the two numbers that are rolled.

TABLE 1.1

The results of the first 50 experiments of rolling two dice.
Die 1 Die 2 Match? Die 1 Die 2 Match?
3 3 YES 1 6 NO
2 2 YES 2 6 NO




4 6 NO 3 6 NO
6 4 NO 3 1 NO
6 6 YES 6 6 YES
4 5 NO 6 6 YES
4 1 NO 1 5 NO
4 1 NO 1 4 NO
1 2 NO 2 2 YES
5 1 NO 1 3 NO
1 1 YES 5 3 NO
2 6 NO 2 6 NO
3 6 NO 3 5 NO
5 1 NO 3 5 NO
5 3 NO 1 6 NO
3 4 NO 2 5 NO
3 3 YES 2 2 YES
5 5 YES 2 3 NO
4 3 NO 1 5 NO
1 3 NO 2 1 NO
3 2 NO 2 5 NO
5 2 NO 3 1 NO
6 2 NO 2 2 YES
2 6 NO 5 6 NO
1 3 NO 2 3 NO

We see 11 matches (YES results) in the table so
Prob(match) ~ 11/50 = 0.22.

Let’s now roll the two dice 10,000 times with R — this time, 1662
matches are observed, so

Prob(match) ~ 1662/10000 = 0.1662.



Is 0.1662 the actual probability of getting doubles? No, it is still
only an approximation to the actual probability. However, as one
continues to roll dice, the relative frequency

(number of doubles)/(number of experiments)
will approach the actual probability
Prob(doubles).
Here the actual probability of rolling doubles is

Prob(doubles) = 1/6,

which is very close to the relative frequency of doubles that we
obtained by rolling the dice 10,000 times.

In this example, one can show that are 6 X 6 = 36 equally likely
ways of rolling two distinguishable dice and there are exactly six
ways of rolling doubles. So using the -classical viewpoint, the

probability of doubles is 6/36 = 1/6.

1.4 The Subjective View of a Probability

Two ways of thinking about probabilities have been described.

e The classical view. This is a useful way of thinking about
probabilities when one lists all possible outcomes in such a way
that each outcome is equally likely.

e The frequency view. In the situation when one repeats a random
experiment many times under similar conditions, one
approximates a probability of an event by the relative frequency
that the event occurs.

What if one can’t apply these two interpretations of probability?
That is, what if the outcomes of the experiment are not equally



likely, and it is not feasible or possible to repeat the experiment
many times under similar conditions?

In this case, one can rely on a third view of probabilities, the
subjective view. This interpretation is arguably the most general way
of thinking about a probability, since it can be used in a wide variety
of situations.

Suppose one is interested in the probability of the event: “Her team
will win the conference title in basketball next season.”

One can’t use the classical or frequency views to compute this
probability. Why? Suppose there are eight teams in the conference.
Each team is a possible winner of the conference, but these teams are
not equally likely to win — some teams are stronger than the rest. So
the classical approach won’t help in obtaining this probability.

The event of her team winning the conference next year is
essentially a one-time event. Certainly, her team will have the
opportunity to win this conference in future years, but the players on
her team and their opponents will change and it won’t be the same
basketball competition. So one can’t repeat this experiment under
similar conditions, and so the frequency view is not helpful in this
case.

What is a subjective probability in this case? The probability

Prob(Her team will win the conference in basketball next season)

represents the person’s belief in the likelihood that her team will win
the basketball conference next season. If she believes that her school
will have a great team next year and will win most of their
conference games, she would give this probability a value close to 1.
On the other hand, if she thinks that her school will have a relatively
weak team, her probability of this event would be a small number
close to 0. Essentially, this probability is a numerical statement
about the person’s confidence in the truth of this event.
There are two important aspects of a subjective probability.



1. A subjective probability is personal. One person’s belief about
her team winning the basketball conference is likely different
from another person’s belief about the team winning the
conference since the two people have different information.
Perhaps the second person is not interested in basketball and
knows little about the teams and the first person is very
knowledgeable about college basketball. That means that beliefs
about the truth of this event can be different for different people
and so the probabilities for these two would also be different.

2. A subjective probability depends on one’s current information or
knowledge about the event in question. Maybe the first person
originally thinks that this probability is 0.7 since her school had
a good team last year. But when she learns that many of the
star players from last season have graduated, this may change
her knowledge about the team, and she may now assign this
probability a smaller number.

Measuring probabilities subjectively

Although one is used to expressing one’s opinions about uncertain
events, using words like likely, probably, rare, sure, maybe, one
typically is not used to assigning probabilities to quantify one’s
beliefs about these events. To make any kind of measurement, one
needs a tool like a scale or ruler. Likewise, one needs tools to help us
assign probabilities subjectively. Next, a special tool, called a
calibration experiment, will be introduced that will help to determine
one’s subjective probabilities.

A calibration experiment

Consider the event W: “a woman will be President of the United
States in the next 20 years”.

A college student is interested in his subjective probability of W.
This probability is hard to specify precisely since he hasn’t had much



practice doing it. We describe a simple procedure that will help in
measuring this probability.

First consider the following calibration experiment — this is an
experiment where the probabilities of outcomes are clear. One has a
collection of balls, 5 red and 5 white in a box and one ball is selected
at random.

Let B denote the event that the student observes a red ball. Since
each of the ten balls is equally likely to be selected, we think he
would agree that Prob(B) = 5/10 = 0.5.

Now consider the following two bets:

e BET 1 — If W occurs (a women is president in the next 20
years), the student wins $100. Otherwise, the student wins
nothing.

e BET 2 — If B occurs (a red ball is observed in the above
experiment), the student wins $100. Otherwise, the student wins
nothing.

Based on the bet that the student prefers, one can determine an
interval that contains his Prob( W):

(a) If the student prefers BET 1, then his Prob(W) must be
larger than Prob(B) = 0.5 — that is, his Prob( W) must fall
between 0.5 and 1.

(b) If the student prefers BET 2, then his Prob( W) must be
smaller than Prob(B) = 0.5 — that is, his probability of W
must fall between 0 and 0.5.

What the student does next depends on his answer to part (b).

o If his Prob(W) falls in the interval (0, 0.5), then consider the
“balls in box” experiment with 2 red and 8 white balls and he is
interested in the probability of choosing a red ball.

o If instead his Prob( W) falls in the interval (0.5, 1), then consider
the “balls in box” experiment with 8 red and 2 white balls and



he is interested in the probability of choosing a red ball.

Let’s suppose that the student believes Prob(W) falls in the
interval (0.5, 1). Then he would make a judgment between the two
bets

e BET 1 — If W occurs (a women is president in the next 20
years), he wins $100. Otherwise, he wins nothing.

e BET 2 — If B occurs (observe a red ball with a box with 8 red
and 2 white balls), he wins $100. Otherwise, he wins nothing.

The student decides to prefer BET 2, which means that his
probability Prob( W) is smaller than 0.8. Based on the information on
the two comparisons, the student now believes that Prob(W) falls
between 0.5 and 0.8.

In practice, the student will continue to compare BET 1 and BET
2, where the box has a different number of red and white balls. By a
number of comparisons, he will get an accurate measurement at his
probability of W.

1.5 The Sample Space

A sample space lists all possible outcomes of a random experiment.
There are different ways to write down the sample space, depending
on how one thinks about outcomes. Let’s illustrate the variety of
sample spaces by the simple experiment “roll two fair dice.”

FEach die is the usual six-sided object that we are familiar with,
with a number 1, 2, 3, 4, 5, or 6 on each side. Fair dice implies that
each die is constructed such that the six possible numbers are equally
likely to come up when rolled.

What can happen when you roll two dice? The collection of all
outcomes that are possible is the sample space. But there are



different ways of representing the sample space depending on what
“outcome” we are considering.

Roll two fair, indistinguishable dice

First, suppose you are interested in the sum of the numbers on the
two dice. This would be of interest to a gambler playing the casino
game craps. What are the possible sums? After some thought, it
should be clear that the smallest possible sum is 2 (if you roll two
ones) and the largest possible sum is 12 (with two sixes). Also every
whole number between 2 and 12 is a possible sum. So the sample
space, denoted by S, would be

S=1{2,3,4,5, 6,789, 10, 11, 12}.

Suppose instead you wish to record the rolls on each of the two
dice. One possible outcome would be

(4 on one die, 3 on the other die)

or more simply (4, 3). What are the possible outcomes? Table 1.2
displays the 21 possibilities.

TABLE 1.2
The possible outcomes of rolling two fair, indistinguishable dice.

1, 1), 1, 2), 1, 3), 1, 4), (1, 5), (1,6)

2,2), (2, 3), (2,4, 2,5), (2,6)
(3, 3), (3, 4), (3,9), (3,6)

4, 4), 4,5), 4, 6)

G, 5), (5, 6)

(6, 6)

Notice that one is not distinguishing between the two dice in this
list. For example, the outcome (2, 3) was written only once, although
there are two ways for this to happen — either the first die is 2 and
the second die is 3, or the other way around.



Roll two fair, distinguishable dice

Suppose we want to distinguish two dice. Perhaps one die is red and
one die is white. We are considering all possible rolls of both dice.
We illustrate two ways of showing the sample space in this case.

One way of representing possible rolls of two distinct dice is by a
tree diagram shown in Figure 1.1. On the left side of the diagram,
the six possible rolls of the red die are represented by six branches of
a tree. Then,on the right side, the six possible rolls of the white die
are represented by by six smaller branches coming out of each roll of
the red die. A single branch on the left and a single branch on the
right represent one possible outcome of this experiment.
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FIGURE 1.1
Tree diagram representation of the rolls of two dice.



There are alternative ways for representing the outcomes of this
experiment of rolling two distinct dice. Suppose one writes down an
outcome by the ordered pair

(roll on white die, roll on red die).
Then, the possible outcomes are listed in Table 1.3.

TABLE 1.3
The possible outcomes of rolling two fair, distinguishable dice.

(1, 1), (1, 2), (1, 3), (1, 4), (1,5), (1,6)

2, 1), (2,2), (2, 3), (2,4), (2,5), (2,6)
(3, 1), @3, 2), @3, 3), 3, 4), (3,5), (3, 6)
4, 1), 4, 2), (4, 3), 4, 4), 4,5), 4, 6)
G, 1), 5, 2), S, 3), 5, 4), 5, 9), 5, 6)
(6, 1), (6, 2), (6, 3), (6,4), (6,5), (6, 6)

Since these are ordered pairs, the order of the numbers does
matter. The outcome (5, 1) (5 on the red, 1 on the white) is different
from the outcome (1, 5) (1 on the red die and 5 on the white die).

Two representations of the sample space of possible rolls of two
dice have been illustrated. These representations differ by how one
records the outcome of rolling two dice. One either (1) records the
sum of the two dice, (2) records the individual rolls, not
distinguishing the two dice, or (3) records the individual rolls,
distinguishing the two dice.

Which one is the best sample space to use? Actually, all of the
sample spaces shown above are correct. Each sample space represents
all possible outcomes of the experiment of rolling two dice and we
cannot say that one sample space is better than another sample
space. We will see that in particular situations some sample spaces
are more convenient than other sample spaces when one wishes to
assign probabilities. In the current case of rolling two fair dice, the
sample space with distinguishable dice is desirable from the



viewpoint of computing probabilities since the outcomes are equally
likely:.

When recording sample spaces, we can use whatever method we
like. We could use a tree diagram or table or list the outcomes. The
important issue is displaying all possible outcomes in S.

1.6 Assigning Probabilities

When one has a random experiment, the first step is to list all of the
possible outcomes in the sample space. The next step is to assign
numbers, called probabilities, to the different outcomes that reflect
the likelihoods that these outcomes can occur.

To illustrate different assignments of probabilities, suppose a
school girl goes to an ice cream parlor and plans to order a single-dip
ice cream cone. This particular parlor has four different ice cream
flavors. Which flavor will the school girl order?

First, one writes down the sample space in Table 1.4 — the possible
flavors that the school girl can order. Probabilities will be assigned to

these four possible outcomes that reflect a person’s beliefs about her
likes and dislikes.

TABLE 1.4

Writing down the sample space: step 1.
Flavor Vanilla Chocolate Butter Pecan Maple Walnut
Probability

Can our probabilities be any numbers? Not exactly. Here are some
basic facts (or laws) about probabilities:

e Any probability that is assigned must fall between 0 and 1.
e The sum of the probabilities across all outcomes must be equal
to 1.



e An outcome will be assigned a probability of 0 if one is sure that
that outcome will never occur.

e Likewise, if one assigns a probability of 1 to an event, then that
event must occur all the time.

With these facts in mind, consider some possible probability
assignments for the flavor of ice cream that this school girl will order.

Scenario 1

Suppose that the school girl likes to be surprised. She has brought a
hat in which she has placed many slips of paper — 10 slips are labeled
“vanilla”, 10 slips are labeled “chocolate”, and 10 slips are “butter
pecan”, and 10 are “maple walnut”. She makes her ice cream choice
by choosing a slip at random. In this case, each flavor would have a
probability of 10/40 = 1/4 (See Table 1.5).

TABLE 1.5

Writing down the sample space: step 2, scenario 1.
Flavor Vanilla Chocolate Butter Pecan Maple Walnut
Probability 1/4 1/4 1/4 1/4

Scenario 2

Let’s consider a different set of probabilities based on different
assumptions about the school girl’s taste preferences. She knows that
she really doesn’t like “plain” flavors like vanilla or chocolate, and she
really likes ice creams with nut flavors. In this case, we would assign
“vanilla” and “chocolate” each a probability of 0, and assign the two
other flavors probabilities that sum to one.

Table 1.6 displays one possible assignment.

TABLE 1.6
Writing down the sample space: step 1, scenario 2.

Flavor Vanilla Chocolate Butter Pecan Maple Walnut
Probability 0 0 0.7 0.3




Another possible assignment of probabilities that is consistent with
these assumptions is displayed in Table 1.7.

TABLE 1.7

Writing down the sample space: step 2, scenario 2.
Flavor Vanilla Chocolate Butter Pecan Maple Walnut
Probability 0 0 0.2 0.8

Scenario 3

Let’s consider an alternative probability assignment from a different
person’s viewpoint. The worker at the ice cream shop has no idea
what flavor the school girl will order. But the worker has been
working at the shop all day and she has kept a record of how many
cones of each type have been ordered — of 50 cones ordered, 10 are
vanilla, 14 are chocolate, 20 are butter pecan, and 6 are maple
walnut. If she believes that the school girl has similar tastes to the
previous customers, then it would be reasonable to apply the
frequency viewpoint to assign the probabilities as displayed in Table
1.8.

TABLE 1.8

Writing down the sample space: step 2, scenario 3.
Flavor Vanilla Chocolate Butter Pecan Maple Walnut
Probability 10/50 14/50 20/50 6/50

Each of the above probability assignments used a different
viewpoint of probability as described in previous sections. The first
assignment used the classical viewpoint where each of the forty slips
of paper had the same probability of being selected. The second
assignment was an illustration of the subjective view where one’s
assignment was based on one’s opinion about the favorite flavors of
one’s daughter. The last assignment was based on the frequency
viewpoint where the probabilities were estimated from the observed
flavor preferences of 50 previous customers.



1.7 Events and Event Operations

In this chapter, probability has been discussed in an informal way.
Numbers called probabilities are assigned to outcomes in the sample
space such that the sum of the numbers over all outcomes is equal to
one. In this section, we look at probability from a more formal
viewpoint. One defines probability as a function on events that
satisfies three basic laws or axioms. Then all of the important facts
about probabilities, including some facts that have been used above,
can be derived once these three basic axioms are defined.

Suppose that the sample space for our random experiment is S. An
event, represented by a capital letter such as A, is a subset of S.
Events, like sets, can be combined in various ways described as
follows.

e AN B is the event that both A and B occur (the intersection of
the two events).

e AU B is the event that either A or B occur (the union of the
two events).

o A (or A°) is the event that A does not occur (the complement of
the event A).

To illustrate these event operations, suppose one chooses a student
at random from a class and records the month when she or he was
born. The student could have been born during 12 possible months
and the sample space S is the list of these months:

S = {January, February, March, April, May, June, July, August,
September, October, November, December}.

Define the events L that the student is born during the last half of
the year and F' that the student is born during a month that is four
letters long.



L = {July, August, September, October, November, December}.
F = {June, July}.

Various event operations can be illustrated using these events.

e LN F is the event that the student is born during the last half
of the year AND is born in a four-letter month = {July}.

e LUF, in contrast, is the event that the student is EITHER
born during the last half of the year OR born in a four-letter
month = {June, July, August, September, October, November,
December}.

e L (or L° is the event that the student is NOT born during the
last half of the year = {January, February, March, April, May,
June}

1.8 The Three Probability Axioms

Now that a sample space S and events are defined, probabilities are
defined to be numbers assigned to the events. There are three basic
laws or axioms that define probabilities:

e Axiom 1: For any event A, P(A) > 0. That is, all probabilities
are nonnegative values.

e Axiom 2: P(S5) = 1. That is, the probability that you observe
something in the sample space is one.

e Axiom 3: Suppose one has a sequence of events Ay, A, As,...
that are mutually exclusive, which means that for any two
events in the sequence, say A, and A; , the intersection of the
two events is the empty set (i.e. A2 N As=10). Then one finds
the probability of the union of the events by adding the
individual event probabilities:



P(A1UAyU A3U...) = P(A;) 4+ P(As) + P(A3)+. .. (1.2)

Given the three basic axioms, some additional facts about
probabilities can be proven. These additional facts are called
properties — these are not axioms, but rather additional facts that
are derived knowing the axioms. Below several familiar properties
about probabilities are stated and we prove how each property
follows logically from the axioms.

Property 1: If A is a subset of B, that is A € B, then P(A4) < P(B).

This property states that if one has two events, such that one
event is a subset of the other event, then the probability of the first
set cannot exceed the probability of the second. This fact may seem
pretty obvious, but how can one prove this from the axioms?

Proof: The proof begins with a Venn diagram where a set A is a
subset of set B. (See Figure 1.2.)

B

FIGURE 1.2

Two events where one is a subset of the other.

Note that the larger set B can be written as the union of A and
A N B, that is,

B=AU(ANB) (1.3)



Note that A and AN B are mutually exclusive (i.e. they have no
overlap). So one can apply Axiom 3 and write

P(B)=P(A)+ P(ANnB) (1.4)

Also, by Axiom 1, the probability of any event is nonnegative. So the
probability of B is equal to the probability of A plus a nonnegative
number. So this implies

P(B) > P(A) (1.5)

which is what we wish to prove.

Property 2: P(A) < 1.

This is pretty obvious — probabilities certainly cannot be larger
than 1. But how can this property be shown given our known facts
including the axioms and Property 1 that was just proved?

Proof: Actually this property is a consequence of Property 1.
Consider the two events A and the sample space S. Obviously A is a
subset of the sample space — that is,

AcCS (1.6)
So applying Property 1,

P(A) < P(S)=1. (1.7)



It is known that P(S) = 1 from the second Axiom 2. So we have
proved our result.

1.9 The Complement and Addition Properties

There are two additional properties of probabilities that are useful in
computation. Both of these properties will be stated without proof,
but an outline of the proofs will be given in the end-of chapter
exercises. The first property, called the complement property, states
that the probability of the complement of an event is simply one
minus the probability of the event.

Complement property: For an event A,

P(A) =1- P(A). (1.8)

The second property, called the addition property, gives a formula
for the probability of the union of two events.

Addition property: For two events A and B,
P(AUB)=P(A)+ P(B)— P(ANB). (1.9)

Both of these properties are best illustrated by an example. Let’s
revisit the example where one was interested in the birth month of a
student selected from a class. As before, let L represent the event
that the student is born during the last half of the year and F' denote
the event that the student is born during a month that is four letters
long.



There are 12 possible outcomes for the birth month. One can
assume that each month is equally likely to occur, but actually in the
U.S. population, the numbers of births during the different months
do vary. Using data from the births in the U.S. in 1978, Table 1.9
displays the following probabilities for the months. We see that
August is the most likely birth month with a probability of 0.091 and
February (the shortest month) has the smallest probability of 0.075.

TABLE 1.9

Probability table of birth months in the U.S. in 1978.
Month Jan Feb Mar Apr May June
Prob 0.081 0.075 0.083 0.076 0.082 0.081
Month July Aug Sept Oct Nov Dec
Prob 0.088 0.091 0.088 0.087 0.082 0.085

Using this probability table, one finds ...

1. P(L) = P(July, August, September, October, November,
December) = 0.088 + 0.091 + 0.088 + 0.098 + 0.082 + 0.085 =
0.521.

2. P(F) = P(June, July) = 0.081 + 0.088 = 0.169.

Now we are ready to illustrate the two probability properties.

What is the probability the student is not born during the last half
of the year? This can be found by summing the probabilities of the
first six months of the year. It is easier to compute this probability
by noting that the event of interest is the complement of the event L,
and the complement property can be applied to find the probability.

P(L)=1- P(L).

What is the probability the student is either born during the last
six months of the year or a month four letters long? In Figure 1.3,
the sample space S is displayed consisting of the twelve possible birth



months, and the events F' and L are shown by circling the relevant
outcomes. The event F'U L is the union of the two circled events.

S

FIGURE 1.3
Representation of two sets Fand L in birthday example.

Applying the addition property, one finds the probability of F'U L
by adding the probabilities of F and L and subtracting the
probability of the intersection event F'N L :

P(FUL)=P(A) + P(L) - P(FN L)
= 0.521 + 0.169 — 0.088
— 0.602

Looking at Figure 1.3, the formula should make sense. When one
adds the probabilities of the events F' and L, one adds the probability
of the month July twice, and to get the correct answer, one needs to
subtract the outcome (July) common to both F and L.



Special Note: Is it possible to simply add the probabilities of two
events, say A and B, to get the probability of the union AU B?
Suppose the sets A and B are mutually exclusive which means they
have no outcomes in common. In this special case, AN B = (),
P(ANB) =0 and P(AU B) = P(A) + P(B). For example, suppose
one is interested in probability that the student is born in the last
half the year (event L) or in May (event M). Here, it is not possible
to be born in the last half of the year and in May so LN M = (. In
this case, P(LU M) = P(L) + P(M) = 0.521 + 0.082 = 0.603.

1.10 Exercises

1. Probability Viewpoints

In the following problems, indicate if the given probability is

found using the classical viewpoint, the frequency viewpoint, or

the subjective viewpoint.

(a) Joe is doing well in school this semester — he is 90% sure
that will receive As in all his classes.

(b) Two hundred raffle tickets are sold and one ticket is a
winner. Someone purchased one ticket and the probability
that her ticket is the winner is 1,/200.

(c) Suppose that 30% of all college women are playing an
intercollegiate sport. If we contact one college woman at
random, the chance that she plays a sport is 0.3.

(d) Two Polish statisticians in 2002 were questioning if the new
Belgium Euro coin was indeed fair. They had their students
flip the Belgium Euro 250 times, and 140 came up heads.

(e) Many people are afraid of flying. But over the decade 1987-
96, the death risk per flight on a US domestic jet has been
1 in 7 million.

(f) In a roulette wheel, there are 38 slots numbered 0, 00, 1, ...,
36. There are 18 ways of spinning an odd number, so the



probability of spinning an odd is 18/38.

2. Probability Viewpoints
In the following problems, indicate if the given probability is
found using the classical viewpoint, the frequency viewpoint, or
the subjective viewpoint.

(a)
(b)

The probability that the spinner lands in the region A is
1/4.

The meteorologist states that the probability of rain
tomorrow is 0.5. You think it is more likely to rain and you
think the chance of rain is 3/4.

(c) A football fan is 100% certain that his high school football

(d)

team will win their game on Friday.

Jennifer attends a party, where a prize is given to the
person holding a raffle ticket with a specific number. If
there are eight people at the party, the chance that Jennifer
wins the prize is 1/8.

(e) What is the chance that you will pass an English class? You

learn that the professor passes 70% of the students and you
think you are typical in ability among those attending the
class.

(f) If you toss a plastic cup in the air, what is the probability

that it lands with the open side up? You toss the cup 50
times and it lands open side up 32 times, so you
approximate the probability by 32/50

3. Equally Likely Outcomes
For the following experiments, a list of possible outcomes is
given. Decide if one can assume that the outcomes are equally



likely. If the equally likely assumption is not appropriate, explain

which outcomes are more likely than others.

(a) A bowl contains six marbles of which two are red, three are
white, and one is black. One marble is selected at random
from the bowl and the color is observed.

Outcomes: {red, white, black}
(b) You observe the gender of a baby born today at your local
hospital.

Outcomes: {male, female}
(¢) Your school’s football team is playing the top rated school
in the country.

Outcomes: {your team wins, your team loses}

(d) A bag contains 50 slips of paper, Ten slips are assigned to
each category numbered 1 through 5. You choose a slip at
random from the bag and notice the number on the slip.
Outcomes: {1, 2, 3, 4, 5}

4. Equally Likely Outcomes

For the following experiments, a list of possible outcomes is

given. Decide if one can assume that the outcomes are equally

likely. If the equally likely assumption is not appropriate, explain
which outcomes are more likely than others.

(a) You wait at a bus stop for a bus. From experience, you
know that you wait, on average, 8 minutes for this bus to
arrive.

Outcomes: {wait less than 10 minutes, wait more than 10
minutes}

(b) You roll two dice and observe the sum of the numbers.
Outcomes: {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

(¢) You get a grade for an English course in college.
Outcomes: {A, B, C, D, F}

(d) You interview a person at random at your college and ask
for his or her age.

Outcomes: {17 to 20 years, 21 to 25 years, over 25 years}



5. Flipping a Coin
Suppose you flip a fair coin until you observe heads. You repeat
this experiment many times, keeping track of the number of flips
it takes to observe heads. Here are the numbers of flips for 30

experiments.
1 3 1 2 1 1 2 6 1 2
1 1 1 1 3 2 1 1 2 1
5 2 1 7 3 3 3 1 2 3

(a) Approximate the probability that it takes you exactly two
flips to observe heads.

(b) Approximate the probability that it takes more than two
flips to observe heads.

(c) What is the most likely number of flips?

6. Driving to Work
You drive to work 20 days, keeping track of the commuting time
(in minutes) for each trip. Here are the twenty measurements.

25.4, 27.8, 26.8, 24.1, 245, 23.0, 2715, 243, 28.4, 29.0
29.4, 24.9, 26.3, 23.5, 28.3, 27.8, 294, 25.7, 243, 242

(a) Approximate the probability that it takes you under 25
minutes to drive to work.

(b) Approximate the probability it takes between 25 and 28
minutes to drive to work.

(c) Suppose one day it takes you 23 minutes to get to work.
Would you consider this unusual? Why?

7. A Person Sent to Mars

Consider your subjective probability P(M) where M is the event

that the United States will send a person to Mars in the next

twenty years.

(a) Let B denote the event that you select a red ball from a box
of five red and five white balls. Consider the two bets



e BET 1 — If M occurs (United States will send a person
to Mars in the next 20 years), you win $100. Otherwise,
you win nothing.

e BET 2 — If B occurs (you observe a red ball in the
above experiment), you win $100. Otherwise, you win
nothing.

Circle the bet that you prefer.

(b) Let B represent choosing red from a box of 7 red and 3
white balls. Again compare BET 1 with BET 2 — which bet
do you prefer?

(c) Let B represent choosing red from a box of 3 red and 7
white balls. Again compare BET 1 with BET 2 — which bet
do you prefer?

(d) Based on your answers to (a), (b), (c¢), circle the interval of
values that contain your subjective probability P(M).

8. In What State Will You Live in the Future?
Consider your subjective probability P(S) where S is the event
that at age 60 you will be living in the same state as you
currently live.

(a) Let B denote the event that you select a red ball from a box
of five red and five white balls. Consider the two bets

e BET 1 — If S occurs (you live in the same state at age
60), you win $100. Otherwise, you win nothing.

e BET 2 — If B occurs (you observe a red ball in the
above experiment), you win $100. Otherwise, you win
nothing.

Circle the bet that you prefer.

(b) Let B represent choosing red from a box of 7 red and 3
white balls. Again compare BET 1 with BET 2 — which bet
do you prefer?

(c) Let B represent choosing red from a box of 3 red and 7
white balls. Again compare BET 1 with BET 2 — which bet
do you prefer?



(d) Based on your answers to (a), (b), (c), circle the interval of
values that contain your subjective probability P(.5)

9. Frequency of Vowels in Huckleberry Finn
Suppose you choose a page at random from the book
Huckleberry Finn by Mark Twain and find the first vowel on the
page.
(a) If you believe it is equally likely to find any one of the five
possible vowels, fill in the probabilities of the vowels below.

Vowel a e 1 0 u

Probability

(b) Based on your knowledge about the relative use of the
different vowels, assign probabilities to the vowels.

Vowel a e 1 0 u

Probability

(¢) Do you think it is appropriate to apply the classical
viewpoint to probability in this example? (Compare your
answers to parts a and b.)

(d) On each of the first fifty pages of Huckleberry Finn, your
author found the first five vowels. Here is a table of
frequencies of the five vowels:

Vowel a e i o u
Frequency 61 63 34 70 22
Probability

Use this data to find approximate probabilities for the
vowels.
10. Purchasing Boxes of Cereal



Suppose a cereal box contains one of four different posters
denoted A, B, C, and D. You purchase four boxes of cereal and
you count the number of posters (among A, B, C, D) that you
do not have. The possible number of “missing posters” is 0, 1, 2,
and 3.

(a) Assign probabilities if you believe the outcomes are equally
likely.

Number of missing posters 0 1 2 3

Probability

(b) Assign probabilities if you believe that the outcomes 0 and
1 are most likely to happen.

Number of missing posters 0 1 2 3

Probability

(¢) Suppose you purchase many groups of four cereals, and for
each purchase, you record the number of missing posters.
The number of missing posters for 20 purchases is displayed
below. For example, in the first purchase, you had 1 missing
poster, in the second purchase, you also had 1 missing

poster, and so on.
1, 1,1, 2,1, 1, 06, 0, 2, 1,
2,1, 3,1, 2,1, 0, 1, 1, 1

Using these data, assign probabilities.

Number of missing posters 0 1 2 3

Probability

(d) Based on your work in part c, is it reasonable to assume
that the four outcomes are equally likely? Why?
11. Writing Sample Spaces
For the following random experiments, give an appropriate
sample space for the random experiment. You can use any



method (a list, a tree diagram, a two-way table) to represent the
possible outcomes.

(a) You simultaneously toss a coin and roll a die.

(b) Construct a word from the five letters a, a, e, e, s.

(c) Suppose a person lives at point 0 and each second she
randomly takes a step to the right or a step to the left. You
observe the person’s location after four steps.

(d) In the first round of next year’s baseball playoff, the two
teams, say the Phillies and the Diamondbacks play in a
best-of-five series where the first team to win three games
wins the playoff.

(e) A couple decides to have children until a boy is born.

(f) A roulette game is played with a wheel with 38 slots
numbered 0, 00, 1, ..., 36. Suppose you place a $10 bet that
an even number (not 0) will come up in the wheel. The
wheel is spun.

(f) Suppose three batters, Marlon, Jimmy, and Bobby, come to
bat during one inning of a baseball game. Each batter can
either get a hit, walk, or get out.

12. Writing Sample Spaces
For the following random experiments, give an appropriate
sample space for the random experiment. You can use any
method (a list, a tree diagram, a two-way table) to represent the
possible outcomes.

(a) You toss three coins.

(b) You spin the spinner (shown below) three times.

e
(¢) When you are buying a car, you have a choice of three
colors, two different engine sizes, and whether or not to



13.

14.

have a CD player. You make each choice completely at
random and go to the dealership to pick up your new car.

(d) Five horses, Lucky, Best Girl, Stripes, Solid, and Jokester
compete in a race. You record the horses that win, place,
and show (finish first, second, and third) in the race.

(e) You and a friend each think of a whole number between 0
and 9.

(f) On your computer, you have a playlist of 4 songs denoted
by a, b, ¢, d. You play them in a random order.

(f) Suppose a basketball player takes a “one-and-one” foul shot.
(This means that he attempts one shot and if the first shot
is successful, he gets to attempt a second shot.)

Writing Sample Spaces

For the following random experiments, give an appropriate
sample space for the random experiment. You can use any
method (a list, a tree diagram, a two-way table) to represent the
possible outcomes.

(a) Your school plays four football games in a month.

(b) You call a “random” household in your city and record the
number of hours that the TV was on that day.

(¢) You talk to an Ohio resident who has recently received her
college degree. How many years did she go to college?

(d) The political party of our next elected U.S. President.

() The age of our next President when he or she is
inaugurated.

(f) The year a human will next land on the moon.

Writing Sample Spaces

For the following random experiments, give an appropriate

sample space for the random experiment. You can use any

method (a list, a tree diagram, a two-way table) to represent the
possible outcomes.

(a) The time you arrive at your first class on Monday that
begins at 8:30 AM.



(b) You throw a ball in the air and record how high it is
thrown (in feet).
c) Your cost of textbooks next semester.
d) The number of children you will have.
You take a five question true/false test.
You drive on the major street in your town and pass
through four traffic lights.
15. Probability Assignments
Give reasonable assignments of probabilities based on the given
information.
() In the United States, there were 4.058 million babies born in
the year 2000 and 1.98 million were girls. Assign
probabilities to the possible genders of your next child.

Gender Boy Girl

Probability

(b) Next year, your school will be playing your neighboring
school in football. Your neighboring school is a strong
favorite to win the game.

Winner of Game Your school Your neighboring school

Probability

(¢) You have an unusual die that shows 1 on two sides, 2 on
two sides, and 3 and 4 on the remaining two sides.

Roll 1 2 3 4 5 6
Probability

16. Probability Assignments
Based on the given information, decide if the stated probabilities
are reasonable. If they are not, explain how they should be
changed.



(a)

(b)

Suppose you play two games of chess with a chess master.
You can either win 0 games, 1 game, or 2 games, so the
probability of each outcome is equal to 1/3.

Suppose 10% of cars in a car show are Corvettes and you
know that red is the most popular Corvette color. So the
chance that a randomly chosen car is a red Corvette must
be larger than 10.

(¢c) In a Florida community, you are told that 30% of the

(d)

residents play golf, 20% play tennis, and 40% of the
residents play golf and tennis.

Suppose you are told that 10% of the students in a
particular class get A, 20% get B, 20% get C, and 20% get
D. That means that 30% must fail the class.

17. Finding the Right Key
Suppose your key chain has five keys, one of which will open up
your front door of your apartment. One night, you randomly try
keys until the right one is found.
Here are the possible numbers of keys you will try until you get
the right one:

(a)

(b)

1 key, 2 keys, 3 keys, 4 keys, 5 keys

Circle the outcome that you think is most likely to occur.
1 key, 2 keys, 3 keys, 4 keys, 5 keys

Circle the outcome that you think is least likely to occur.

1 key, 2 keys, 3 keys, 4 keys, 5 keys

(c) Based on your answers to parts a and b, assign probabilities

to the six possible outcomes.

Outcome 1 key 2 keys 3 keys 4 keys 5 keys

Probability

18. Playing Roulette



One night in Reno, you play roulette five times. Each game you
bet $5 — if you win, you win $10; otherwise, you lose your $5.
You start the evening with $25. Here are the possible amounts of
money you will have after playing the five games.

$0, $10, $20, $30, $40, $50 .

(a) Circle the outcome that you think is most likely to occur.
$0, $10, $20, $30, $40, $50

(b) Circle the outcome that you think is least likely to occur.
$0, $10, $20, $30, $40, $50

(c) Based on your answers to parts a and b, assign probabilities
to the six possible outcomes.

Outcome $0 $10 $20 $30 $40 $50
Probability

19. Cost of Your Next Car
Consider the cost of the next new car you will purchase in the
future. There are five possibilities:
o Cheapest: the car will cost less than $5000.
o Cheaper: the car will cost between $5000 and $10,000.
o Moderate: the car will cost between $10,000 and $20,000.
o Expensive: the car will cost between $20,000 and $30,000.
o Really expensive: the car will cost over $30,0000.
(a) Circle the outcome that you think is most likely to occur.
cheapest, cheaper, moderate, expensive, really expensive
(b) Circle the outcome that you think is least likely to occur.
cheapest, cheaper, moderate, expensive, really expensive
(c) Based on your answers to parts a and b, assign probabilities
to the five possible outcomes.



Outcome cheapest cheaper moderate expensive really

expensive

Probability

20. Flipping a Coin
Suppose you flip a coin twice. There are four possible outcomes
(H stands for heads and T stands for tails).

HH, HT, TH, TT
(a) Circle the outcome that you think is most likely to occur.
HH, HT, TH, TT
(b) Circle the outcome that you think is least likely to occur.
HH, HT, TH, TT

(c) Based on your answers to parts a and b, assign probabilities
to the four possible outcomes.

Outcome HH HT TH T

Probability

21. Playing Songs in Your iPod
Suppose you play three songs, one each by Jewell (J), Madonna
(M), and Plumb (P) in a random order.
(a) Write down all possible ordering of the three songs.
(b) Let M = event that the Madonna song is played first and B
= event that the Madonna song is played before the Jewell
song. Find P(M) and P(B).
(c) Write down the outcomes in the event M N B and find the
probability P(M N B).
(c) By use of the complement property, find P(B).
(d) By use of the addition property, find P(M U B).
22. Student of the Day



23.

24.

Suppose that students at a local high school are distributed by
grade level and gender in Table 1.10.

TABLE 1.10
Table of grade level and gender.
Freshmen Sophomores Juniors Seniors TOTAL
Male 25 30 24 19 98
Female 20 32 28 15 95
TOTAL 45 62 52 34 193

Suppose that a student is chosen at random from the school to
be the “student of the day”. Let F' = event that student is a
freshman, J = event that student is a junior, and M = event
that student is a male.

(a) Find the probability P(F').

(b) Are events F and J mutually exclusive. Why?

(c¢) Find P(FU J).

(d) Find P(F N M).

(e) Find P(FUM).

Proving Properties of Probabilities

Given the three probability axioms and the properties already
proved, prove the complement property P(A) =1— P(A). An
outline of the proof is written below.

(a) Write the sample space S as the union of the sets A and A.
(b) Apply Axiom 3.

(c) Apply Axiom 2.

Proving Properties of Probabilities

Given the three probability axioms and the properties already
proved, prove the addition property
P(AUB) = P(A)+ P(B) — P(AN B). A Venn diagram and an
outline of the proof are written below.



(a) Write the set AU B as the union of three sets that are
mutually exclusive.

(b) Apply Axiom 2 to write P(AU B) as the sum of three
terms.

(c) Write the set A as the union of two mutually exclusive sets.

(d) Apply Axiom 2 to write P(A) as the sum of two terms.

(e) By writing the set B as the union of two mutually exclusive
sets and applying Axiom 2, write P(B) as the sum of two
terms.

(f) By making appropriate substitutions to the expression in
part b, one obtains the desired result.
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Counting Methods

2.1 Introduction: Rolling Dice, Yahtzee, and Roulette

Dice are one of the oldest randomization devices known to man.
Egyptian tombs, dated from 2000 BC, were found containing dice
and there is some evidence of dice in archaeological excavations
dating back to 6000 BC. It is interesting to note that dice appeared
to be invented independently by many ancient cultures across the
world. In ancient times, the result of a die throw was not just
considered luck, but determined by gods. So casting dice was often
used as a way of making decisions such as choosing rulers or dividing
inheritances. The Roman goddess, Fortuna, daughter of Zeus was
believed to bring good or bad luck to individuals.

The Game of Yahtzee

In the 19th and 20th centuries, standard six-sided dice became a
basic component of many commercial board games that were
developed. One of the most current popular games is Yahtzee that is
played  with  five dice. @ The Hasbro game company
(http://www.hasbro.com) presents the history of the game. Yahtzee
was invented by a wealthy Canadian couple to play aboard their
yacht. This “yacht” game was popular among the couple’s friends,


http://www.hasbro.com/

who wanted copies of the game for themselves. The couple
approached Mr. Edwin Lowe, who made a fortune selling bingo
games, about marketing the game. Mr. Lowe’s initial attempts to sell
the game of Yahtzee by placing ads were not successful. Lowe
thought that the game had to be played to be appreciated and he
hosted a number of Yahtzee parties and the game became very
successful. The Milton Bradley company acquired the E. S. Lowe
Company and Yahtzee in 1973 and currently more than 50 million
games are sold annually.

The Casino Game of Roulette

Roulette is one of the most popular casino games. The name roulette
is derived from the French word meaning small wheel. Although the
origin of the game is not clear, it became very popular during the
18th century when Prince Charles introduced gambling to Monaco to
alleviate the country’s financial problems. The game was brought to
America in the early part of the 19th century and is currently
featured in all casinos. In addition, roulette is a popular game among
people who like to game online.

The American version of the game discussed in this book varies
slightly from the European version. The American roulette wheel
contains 38 pockets, numbers 1 through 36 plus zero plus double
zero. The wheel is spun and a small metal ball comes to rest in one
of the 38 pockets.

Players will place chips on particular locations on a roulette table,
predicting where the ball will land when after the wheel is spun and
the ball comes to a stop. The dealer places a mark on the winning
number. The players who have bet on the winning number are
rewarded while the players who bet on losing numbers lose their
chips to the casino.




2.2 Equally Likely Outcomes

Assume one writes the sample space in such a way that the outcomes
are equally likely. Then, applying the classical interpretation, the
probability of each outcome will be

1

Number of outcomes

Prob(Outcome) = .1)

If one is interested in the probability of some event, then the
probability is given by

Number of outcomes in event

Prob(Event) = 2.2)

Number of outcomes

This simple formula should be used with caution. To illustrate the
use (and misuse) of this formula, suppose one has a box containing
five balls of which three are red, one is blue, and one is white. One
selects three balls without replacement from the box — what is the
probability that all red balls are chosen?

Let’s consider two representations of the sample space of this
experiment.

Sample space 1: Suppose one does not distinguish between balls of
the same color and does not care about the order in which the balls
are selected. Then if R, B, W denote choosing a red, blue, and white
ball respectively, then there are four possible outcomes:

S; = {(R,R,R),(R, R, B),(R,R,W), (R, B,W)}.

If these outcomes in S; are assumed equally likely, then the
probability of choosing all red balls is



1
Prob(all reds) = 1

Sample space 2: Suppose instead that one distinguishes the balls of
the same color, so the balls in the box are denoted by R1, R2, R3, B,
W. Then one writes down ten possible outcomes

S, = {(R1, R2, R3), (R1, R2, B), (R, R2, W), (R1, R3, B), (R1, R3,
W), (R2, R3, B), (R2, R3, W), (R1, B, W), (R2, B, W), (R3, B,
W)}.

If one assumes these outcomes are equally likely, then the
probability of choosing all reds is

Prob(all reds) = —.
( ) =10

If one compares the answers, one sees an obvious problem since
one obtains two different answers for the probability of choosing all
reds. What is going on? The problem is that the outcomes in the
first sample space S; are not equally likely. In particular, the chance

of choosing three reds (R, R, R) is smaller than the chance of
choosing a red, blue and white (R, B, W) — there is only one way of
selecting three reds, but there are three ways of selecting exactly one
red. On the other hand, the outcomes in sample space S, are equally

likely since one was careful to distinguish the five balls in the box,
and it is reasonable that any three of the five balls has the same
chance of being selected.

From this example, a couple of things have been learned. First,
when one writes down a sample space, one should think carefully
about the assumption that outcomes are equally likely. Second, when
one has an experiment with duplicate items (like three red balls), it
may be preferable to distinguish the items when one writes down the
sample space and computes probabilities.

R Sampling From a Box



One simulates this experiment on R by first creating a vector box
with the ball colors, and then using the sample() function to sample
three balls from the vector. The argument size = 3 indicates that a
sample of 3 is chosen, and the argument replace = FALSE ensures
that the sampling is done without replacement. In this particular
simulation, one observes a red, blue, and red ball in our sample.

box <- c("red", "red", "red", "blue", "white")
sample(box, size = 3, replace = FALSE)
[1] Ilredll llb'Luell llredll

2.3 The Multiplication Counting Rule

To apply the equally likely recipe for computing probabilities, one
needs some methods for counting the number of outcomes in the
sample space and the number of outcomes in the event. Here we
illustrate a basic counting rule called the multiplication rule.

Suppose you are dining at your favorite restaurant. Your dinner
consists of an appetizer, an entrée, and a dessert. You can either
choose soup, fruit cup, or quesadillas for your appetizer, you have the
choice of chicken, beef, fish, or lamb for your entrée, and you can
have either pie or ice cream for your dessert. We first use a tree
diagram to write down all of your possible dinners, in Figure 2.1.
The first set of branches shows the appetizers, the next set of
branches the entrées, and the last set of branches the desserts.
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FIGURE 2.1
Tree diagram of possible dinners.

Note that there are 3 possible appetizers, 4 possible entrées, and 2
possible desserts. For each appetizer, there are 4 possible entrées, and
so there are 3 x 4 = 12 possible choices of appetizer and entrée.
Using similar reasoning, for each combination of appetizer and
entrée, there are 2 possible desserts, and so the total number of
complete dinners would be

Number of dinners = 3 x 4 x 2 = 24.

The above dining example illustrates a general counting rule that we
call the multiplication rule.



Multiplication Rule: Suppose one is performing a task that
consists of k steps. One performs the first step in n; ways, the second

step in ny ways, the third step in ng ways, and so on. Then the

number of ways of completing the task, denoted by n, is the product
of the different ways of doing the k steps, or

n=mn1 XngX...XNg. (2.3)

2.4 Permutations

Suppose one places six songs, Song A, Song B, Song C, Song D, Song
E, and Song F' in one’s playlist on the streaming service. The songs
are played in a random order and one listens to the first three songs.
How many different selections of three songs can one hear? In this
example, one is assuming that the order that the songs are played is
important. So hearing the selections

Song A, Song B, Song C

in that order will be considered different from hearing the selections
in the sequence

Song C, Song B, Song A.

An outcome such as this is called a permutation or arrangement of 3
out of the 6 songs. One represents possible permutations by a set of
three blanks, where songs are placed in the blanks.

Ist Song 2nd Song 3rd Song

One computes the number of permutations as follows:



1. First, it is known that 6 possible songs can be played first. One
places this number in the first blank above.

6 S
Ist Song 2nd Song 3rd Song

2. If one places a particular song, say Song A, in the first slot,
there are 5 possible songs in the second position. One places this
number in the second blank.

6 5
Ist Song 2nd Song 3rd Song

By use of the multiplication rule, there are 6 x 5 = 30 ways of
placing two songs in the first two slots.

3. Continuing in the same way, one sees that there are 4 ways of

putting a song in the third slot and completing the list of three

songs.
6 5 4
Ist Song 2nd Song 3rd Song

Again using the multiplication rule, we see that the number of
possible permutations of six songs in the three positions is

6 x5 x4=120.

A second basic counting rule has just been illustrated.

Permutations Rule: If one has n objects (all distinguishable), then
the number of ways to arrange r of them, called the number of
permutations, is

Pr=nx(n—1)x...x(n—r). (2.4)



In this example, n = 6 and r = 3, and If three songs are played in
one’s playlist, each of the 120 possible permutations will be equally
likely to occur. So the probability of any single permutation, say

Song A, Song D, Song B

is equal to 1/120.

Suppose one listens to all six songs on the playlist. How many
possible orders are there? In this case, one is interested in finding the
number of ways of arranging the entire set of 6 objects. Here n = 6
and r = 6 and, applying the permutation rule formula, the number of
permutations is

6Ps =mn! =6 x 5 x 4x...x1 = T720.

One uses the special symbol n!, pronounced ‘“n factorial”’, to denote
the product of the integers from 1 to n. So the number of ways of
arranging n distinct objects is

nPrn=nl=nxn-1)x(n—-2)x...x1L (2.5)

R Simulating a Permutation
To illustrate simulating a permutation, define a function
permutation() with arguments d and Size. Inside the function, the

sample() function takes a sample of size Size without replacement
from the vector d and the str_flatten() function creates a single
string with the arrangement of the size values. To use this function,
a vector songs is defined containing the names of the six songs. One
applies the permutation() function with arguments songs and 3 and
the simulated arrangement of songs is F, D, and F.

permutation <- function(d, Size)({
str_flatten(sample(d, size=Size),
collapse =" ")



}

songs <- c("song A", "Song B", "Song C", "Song D",
"Song E", "Song F")

permutation(songs, Size = 3)

[1] "Song F Song D Song E"

2.5 Combinations

Suppose one has a box with five balls — three are white and two are
black. One first shakes up the box and then removes two balls
without replacement, i.e. once one takes a ball out, one does not
return it to the box before the second ball is taken out.

0J€

To make it easier to talk about outcomes, the five balls have been
labelled from 1 to 5. Remember one is choosing two balls from the
box and an outcome is the numbers of the two balls that one selects.
When one lists possible outcomes, one should decide if it matters
how one orders the selection of balls. That is, if one chooses ball 1
and then ball 2, is that different than choosing ball 2 and then ball
17

One could say that order is important — so choosing ball 1 then
ball 2 is a different outcome from ball 2 then ball 1. But in this type
of selection problem, it is common practice not to consider the order

@ e choose 2
5




of the selection. Then all that matters is the collection of two balls
that we select. In this case, one calls the resulting outcome a
combination.

When order does not matter, there are 10 possible pairs of balls
that one can select. These outcomes or combinations are written
below — this list represents a sample space for this random
experiment.

Outcome 1 @ @ Outcome 6

4
Outcome 2 @ @ Outcome 7 e
Outcome 3 @ @ Outcome 8 o

Outcome 4 @ o Outcome 9 @ o
Outcome 5 @ o Outcome 10 o e

There is a simple formula for counting the number of outcomes in

LWEO

this situation.

Combinations Rule: Suppose one has n objects and one wishes to
take a subset of size r from the group of objects without regards to
order. Then the number of subsets or combinations is given by the
formula

n n!
number of combinations = ( ) = —. (2.6)

where k! stands for k factorial Kl = kx (k- 1) x (k- 2) x ... x 1. You
might have seen another notation(:f) when people talk about



combinations. This notation is pronounced “n choose r”’, and it is the
same as ().

Let’s try the formula in our example to see if it agrees with our
number. In our setting, one has n = 5 balls and one is selecting a
subset of size r = 2 from the box of balls. Using n = 5 and r = 2 in
the formula, one obtains

5\ 5! 5 x4x3Ix2x1 _120_10

2)  25-2) [2x1]x[3x2x1] 12 7
that agrees with our earlier answer of 10 outcomes in the sample
space.

R Simulating Combinations
To illustrate combinations, define a vector Numbers containing the

integers from 1 to 5. The R function combn() generates all
combinations of a set of a specific size. The matrix all_combo is
displayed which contains all combinations of size 2 from Numbers.

Numbers <- c(1, 2, 3, 4, 5)
all_combo <- t(combn(Numbers, 2))
all_combo

[,1] [,2]
1

A WWNNNRERRERE
GO brhOoObb,wWObr,WN

Below the function sample() is used to simulate random rows of
the matrix all_combo and a frequency table of the ten possible
combinations is displayed. Note that the frequencies for the ten



possible combinations are similar since these outcomes are equally
likely.

N <- nrow(all_combo)
df <- data.frame(Iter = 1:500,

Balls = all_combo[sample(N, size = 500,
replace = TRUE), ])
df %>% group_by(Balls.1, Balls.2) %>% count()
Balls.1 Balls.2 n

<dbl1> <dbl> <int>
57
45
46
51
41

53
46
51

60

50

CQOWoo~NOULhWNE
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Number of subsets

Suppose one has a group of n objects and one is interested in the
total number of subsets of this group. Then this total number is

2= (3) (et

The formula 2" is found by noticing there are two possibilities for
each object — either the object is in the subset or it is not — and then
applying the multiplication rule. The right hand side of the equation
is derived by first counting the number of subsets of size 0, of size 1,
of size 2, and so on, and then adding all of these subset numbers to
get the total number.



Counting the number of pizzas

To illustrate the combinations rule, consider a situation where one is
interested in ordering a pizza and there are six possible toppings.
How many toppings can there be in the pizza? Since there are six
possible toppings, one can either have 0, 1, 2, 3, 4, 5, or 6 toppings
on our pizza. Using combinations rule formula,

(a) There are (g) pizzas that have no toppings.

(b) There are (?) pizzas that have exactly one topping.

(¢) There are (g) pizzas that have two toppings.

To compute the total number of different pizzas, one continues in
this fashion and the total number of possible pizzas is

v (o) () G6) () + () () (6)

The reader can confirm that N = 2 6 — 64.

2.6 Arrangements of Non-Distinct Objects

First let’s use a simple example to review the two basic counting
rules that we have discussed. Suppose one is making up silly words
from the letters ccan’ ccbn’ 440777 “d”, ccen’ ccf777 like

bacedf, decabf, eabcfd

How many silly words can one make up? Here one has n = 6 objects.
Using the permutation rule, the number of possible permutations is

6! =6 x5 x4x...x1.

To illustrate the second counting rule, suppose one has six letters
“a”, “b”, “c”, “d”, “e”, “t”, and one is going to choose three of the letters
to construct a three-letter word. One cannot choose the same letter



twice and the order in which one chooses the letters is not important.
In this case, one is interested in the number of combinations —
applying our combination rule with n = 6 and k£ = 3, the number of
ways of choosing three letters from six is equal to

6\ 6!
3/ 3131°

Now, consider a different arrangement problem. Suppose one
randomly arranges the four triangles and five squares as shown
below.

JAVAVAVANIE

What is the chance that the first and last locations are occupied
by triangles? This is an arrangement problem with one difference —
the objects are not all distinct — one cannot distinguish the four
triangles or the five squares. So one cannot use the earlier
permutations rule that assumes the objects are distinguishable. How
can one count the number of possible arrangements? It turns out
that the combinations rule is useful here. (Surprising, but true.)

To think about possible arrangements, suppose one writes down a
list of nine slots and an arrangement is constructed by placing the
triangles and the squares in the nine slots. It is helpful to label the
slots with the numbers 1 through 9.

12 3 4 5 6 7 8 9

One constructs an arrangement in two steps. First, place the four
triangles in four slots, and then place the squares in the remaining
slots. How many ways can one put the triangles in the slots? First
note that one can specify a placement by the numbers of the slots

that are used. For example, one could place the triangles in slots 1, 3,
4, and 8.
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1T 2 3 4 5 6 7 8 9

Or one could place the four triangles in slots 2, 5, 7, and 8.

£ AN A WA

12 3 4 5 © 7 8 9

One specifies an arrangement by choosing four locations from the
slot locations {1, 2, 3, 4, 5, 6, 7, 8, 9}. How many ways can this be
done? One knows that the number of ways of selecting four objects
(here labels of locations) from a group of nine objects is

(Z) - 4!(99—:4)! — 126.

So there are 126 ways of choosing the four locations for the triangles.
Once the triangles have been placed, one finishes the arrangement by
putting in the squares. But there is only one way of doing this. For
example, if one places triangles in slots 2, 5, 6, 7, then the squares
must go in slots 1, 3, 4, 8, 9. So applying the multiplication rule, the
number of ways of arranging four triangles and five squares is 126 x 1
= 126.
A new counting rule has been derived:

Permutations Rule for Non-Distinct Objects: The number of
permutations of n non-distinct objects where r are of one type and n
— r are of a second type is

(n) B n!
r)  rln—r)’ *9)



Recall the question of interest: Suppose four triangles and five
squares are randomly arranged. What is the chance that the first and
last locations are occupied by triangles?

It has already been shown that there are 126 ways of mixing up
four triangles and five squares. Each possible arrangement is equally
likely and has a chance of 1/126 of occurring.

To find the probability, one needs to count the number of ways of
arranging the triangles and squares so that the first and last
positions are filled with triangles.

/N A

1 2 3 4 5 6 7 8 9

If one places triangles in slots 1 and 9 (and there is only one way
of doing that), then one is free to arrange the remaining two triangles
and five squares in slots {2, 3, 4, 5, 6, 7, 8, 9}. By use of the new
arrangements formula, the number of ways of doing this is

and so the probability the first and last slots are filled with triangles
is equal to 21/126.

R Simulating Arrangements of Non-Distinct Objects

The function permutation() is again wused to simulate a
permutation in this non-distinct object case. A vector objects is
defined containing three x’s and two o0’s, and a single random
permutation is generated by using permutation() with arguments
objects and 5. The replicate() function is used to repeat this
experiment 1000 times and the frequencies of the different
arrangements are displayed. Here the total number of arrangements



is (g) = 10 and as expected, each of the 10 possible arrangements
occurs with approximately the same frequency:.

permutation <- function(d, Size){
str_flatten(sample(d, size=Size),
collapse =" ")
}
objects <- c(’'x’, 'x', 'x", 'o', '0o")
df <- data.frame(Iter = 1:1000,
Arrangement = replicate(1000,
permutation(objects, 5)))
df %>% group_by(Arrangement) %>% count()
Arrangement n
<fct> <int>
0 0 X X X 99
99
109
121
91
109
83
102
82
O X X X 0 0 105

X X O 00O X X X
O O X X0 X XO
X O X O X X 0O X
O X O X X O X X

RPOo~NOODhWNE
X X X X X 0O0O0Oo

Which Rule to Use?

Three important counting rules have been described, the
permutations rule for distinct objects, the combinations rule, and the
permutations rule for non-distinct objects. How can one decide which
rule to apply in a given problem? Here are some tips to help one find
the right rule.

1. Do We Care About Order? If an outcome consists of a
collection of objects, does the order in which one lists the
objects matter? If order does matter, then a permutations rule
may be appropriate. If the order of the objects does not matter,
such as choosing a subset from a larger group, then a
combinations rule is probably more suitable.



2. Are the Objects Distinguishable? There are two
permutation rules, one that applies when all of the objects are
distinguishable, and the second where there are two types of
objects and one cannot distinguish between the objects of each
type.

3. When In Doubt? If the first two tips do not seem helpful, it
may benefit to start writing down a few outcomes in the sample
space. When one looks at different outcomes, one should
recognize if order is important and if the objects are
distinguishable.

2.7 Playing Yahtzee

Yahtzee is a popular game played with five dice. The game is similar
to the card game poker — in both games, one is trying to achieve
desirable patterns in the dice faces or cards, and some types of
patterns are similar in the two games. In this section, some of the
dice patterns in the first roll in Yahtzee are described and the
problem of determining the chances of several of the patterns are
considered.

Outcomes of one roll of five dice

When a player rolls five dice in the game Yahtzee, the most valuable
result is when all of the five dice show the same number such as

2,2,2, 2, 2.

This is called a “Yahtzee” and the player scores 50 points with this
pattern. A second valuable pattern is a “four-of-a-kind’ where you
observe one number appearing four times, such as

3,4, 3, 3, 3.



Table 2.1 gives all of the possible patterns when you roll five dice in
Yahtzee. When one plays the game, some of these patterns are worth
a particular number of points and these points are given in the right
column.

TABLE 2.1
Possible patterns of rolling five dice in Yahtzee.
Pattern Sample of pattern Point value

Yahtzee 4,4, 4,4, 4 50
Four-of-a-kind 6,6,6,4,6
Large straight 2,6,4,5,3 40
Small straight 4,2,1,3,2 30
Full house 5,1,1,5,1 25
Three-of-a-kind 2,2,3,4,2
Two pair 6,3,3,6,2
One pair 4,3,4,1,5
Nothing 1,3,2,5,6

Total number of outcomes

As in the case of two dice, it is useful to distinguish the five dice
when one counts outcomes. One can represent an outcome by placing
a value of individual die rolls (1 through 6) in the six slots.

die 1 die 2 die 3 die 4 die 5

So two possible outcomes are
2,3,4,5, 5and 3, 2, 4, 5, 5.

Each die has 6 possibilities and so, applying the multiplication rule,
the total number of outcomes in the rolls of five dice is

6X6X6X6x6=T776.



Since all of the outcomes are equally likely, we assign a probability of
1/7776 to each outcome.

Probability of a Yahtzee
One represents the Yahtzee roll as the outcome

T, T, T, T, T

where z denotes an arbitrary roll of one die. There are six possible
choices for z, and so the number of possible Yahtzees is 6.

Since each outcome has probability 1/7776, the probability of a
Yahtzee is

PTOb(Yahtzee) — W.

Probability of four-of-a-kind

In the pattern “four of a kind”, one wants to have one number appear
four times and a second number appear once. In other words, one is
interested in counting outcomes of the form

x? x? x? x7y

where the four z’s and the single y can be in different orders. To
apply the multiplication rule, think of writing down a possible “four-
of-a-kind” in three steps.

e Step 1: Choose the number for z (the number that appears four
times).

e Step 2: Next choose the number for the singleton y.

e Step 3: Mix up the orders of the four 2’s and the one .

For example, one chooses the outcome 5, 5, 5, 3, 5 by (1) choosing 5
to be the number that appears four times, (2) choosing 3 as the



number that appears once, and then arranging the digits 5, 5, 5, 5, 3
to get 5, 5, 95, 3, 5.

Next the number of ways of doing each of the three steps is
counted.

e Step 1: There are 6 ways of choosing .

e Step 2: Once z has been chosen, there are 5 ways of choosing the
value for y.

e Step 3: Last, once z and y have been selected, there are (2) =95
ways of mixing up the 2’s and ¥’s.

To find the number of four-of-a-kinds, one uses the multiplication
rule using the number of ways of doing each of the three steps:

Number of ways = 6 x 5 x 5 = 150.

The corresponding probability of four-of-a-kind is

) 150
Prob(four — of —a— kind) = Tt
R Simulating Yahtzee
Some of the Yahtzee probabilities are conveniently approximated
by simulation. In the following, the function four_kind() uses the
sample() function to simulate the rolls of five dice. By tabulating the
roll outcomes (using the table() function), one checks if a four-of-a-

kind is observed — if so, the string “4 kind” is returned, otherwise a
“nothing” is returned.

four_kind <- function()}

rolls <- sample(6, size = 5, replace = TRUE)
ifelse(max(table(rolls) == 4),

"4 kind", "nothing")
}




This Yahtzee experiment is simulated 1000 times by use of the
replicate() function. One sees below that one observed four-of-a-
kind 20 times, so the approximated probability of four-of-a-kind is
16/1000 = 0.016. This agrees closely with the exact probability of
150/7776 = 0.0193.

df <- data.frame(Iter = 1:1000,

Result = replicate(1000, four_kind()))
df %>% group_by(Result) %>% count()
Result n

<fct> <int>

1 4 kind 16

2 nothing 984

2.8 Exercises

1. Constructing a Word
Suppose you select three letters at random from {a, b, ¢, d, e, f}
to form a word.
(a) How many possible words are there?
(b) What is the probability the word you choose is “fad”?
(¢) What is the probability the word you choose contains the
letter “a”?
(d) What is the chance that the first letter in the word is “a”?
(e) What is the probability that the word contains the letters
“d”, “e”, and “f”?
2. Running a Race
There are seven runners in a race — three runners are from Team
A and four runners are from Team B.
(a) Suppose you record which runners finish first, second, and
third. Count the number of possible outcomes of this race.



(b) If the runners all have the same ability, then each of the
outcomes in (a) is equally likely. Find the probability that
Team A runners finish first, second, and third.

(c) Find the probability that the first runner across the finish
line is from Team A.

. Rolling Dice

Suppose you roll three fair dice.

(a) How many possible outcomes are there?

(b) Find the probability you roll three sixes.

(c) Find the probability that all three dice show the same
number.

(d) Find the probability that the sum of the dice is equal to 10.

. Ordering Hash Browns

When you order Waffle House’s world famous hash browns, you

can order them scattered (on the grill), smothered (with onions),

chunked (with ham), topped (with chili), diced (with tomatoes),

and peppered (with peppers). How many ways can you order 5

hash browns at Waflle House?

. Selecting Balls from a Box

A box contains 5 balls — 2 are white, 2 are black, and one is

green. You choose two balls out of the box at random without

replacement.

(a) Write down all possible outcomes of this experiment.
(Assume that the order in which you select the balls is
important.)

(b) Find the probability that you choose two white balls.

(¢) Find the probability you choose two balls of the same color.

(d) Find the probability you choose a white ball second.

. Dividing into Teams

Suppose that ten boys are randomly divided into two teams of

equal size. Find the probability that the three tallest boys are on

the same team.

. Choosing Numbers



Suppose you choose three numbers from the set {1, 2, 3, 4, 5, 6,

7, 8} without replacement.

(a) How many possible choices can you make?

(b) What is the probability you choose exactly two even
numbers?

(¢) What is the probability the three numbers add up to 107

8. Choosing People

Suppose you choose two people from three married couples.

(a) How many selections can you make?

(b) What is the probability the two people you choose are
married to each other?

(¢) What is the probability that the two people are of the same
gender?

9. Football Plays

Suppose a football team has five basic plays, and they will

randomly choose a play on each down.

(a) On three downs, find the probability that the team runs the
same play on each down.

(b) Find the probability the team runs three different plays on
the three downs.

10. Playing the Lottery

In a lottery game, you make a random guess at the winning

three-digit number (each digit can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9).

You win $200 if your guess matches the winning number, $20 if

your guess matches in exactly two positions and $2 if your guess

matches in exactly one position. Find the probabilities of

winning $200, winning $20, and winning $2.

11. Dining at a Restaurant

Suppose you are dining at a Chinese restaurant with the menu

given below. You decide to order a combination meal where you

get to order one soup or appetizer, one entrée (seafood, beef, or

poultry), and a side dish (either fried rice or noodles).



SOUP

HOT AND SOUR SOUP
WONTON SOUP

EGG DROP SOUP

APPETIZERS

EGG ROLL

BARBECUED SPARERIBS
FRIED CHICKEN STRIPS
BUTTERFLY SHRIMP
CRAB RANGOON

SEAFOOD

SHRIMP WITH GARLIC SAUCE
CURRY SHRIMP

KUNG PAO SCALLOPS
FLOWER SHRIMP

SHRIMP WITH PEA PODS

BEEF

KUNG PAO BEEF

HUNAN BEEF

SZECHUAN STYLE BEEF
ORANGE BEEF (HOT & SPICY)

POULTRY

KUNG PAO CHICKEN
HUNAN CHICKEN
CHICKEN WITH DOUBLE
NUTS

CHICKEN WITH GARLIC
SAUCE

CURRY CHICKEN

FRIED RICE

CHICKEN FRIED RICE
BEEF FRIED RICE
SHRIMP FRIED RICE
PORK FRIED RICE
THREE DELIGHT FRIED
RICE

VEGETABLE FRIED RICE

NOODLES/RICE

PAN FRIED NOODLES
MOO SHU PANCAKE
CHOW MEIN NOODLES
STEAMED RICE

(a) How many possible combination meals can you order?

(b) If you are able to go to this restaurant every day,
approximately how many years could you dine there and
order different combination meals?

(c) Suppose that you are allergic to seafood (this includes crab,
shrimp, and scallops). How many different combination

meals can you order?



12.

13.

14.

(d) Suppose your friend orders two different entrées completely
at random. How many possible dinners can she order?
What is the probability the two entrées chosen contain the
same meat?

Ordering Pizza

If you buy a pizza from Papa John’s, you can you order the

following toppings: ham, bacon, pepperoni, Italian sausage,

sausage, beef, anchovies, extra cheese, baby portabella
mushrooms, onions, black olives, Roma tomatoes, green peppers,
jalapefio peppers, banana peppers, pineapple, grilled chicken.

(a) If you have the option of choosing two toppings, how many
different two topping pizzas can you order?

(b) Suppose you want your two toppings to be some meat and
some peppers. How many two-topping pizzas are of this
type?

(¢) If you order a “random” two-topping pizza, what is the
chance that it will have peppers?

(d) If you are able to order at most four toppings, how many
different pizzas can you order?

Mixed Letters

You randomly mix up the letters “s”, “t”, “a”, “t”, “s”.

(a) Find the probability the arrangement spells the word
“stats”.

(b) Find the probability the arrangement starts and ends with
“s”.

Arranging CDs

Suppose you have three Taylor Swift CDs and three Lady Gaga
CDs sitting on a shelf as follows. We assume that you can’t
distinguish the CDs of a given artist.

T.T, T, L, L, L

The CDs are knocked off of the shelf and you place them back
on the shelf completely at random.
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16.

(a) What is the probability that the mixed-up CDs remain in
the same order?

(b) What is the probability that the first and last CDs on the
shelf are both Lady Gaga music?

(¢) What is the probability that the Jewel CDs stay together
on the shelf?

Playing a Lottery Game

The Minnesota State Lottery has a game called Daily 3. A three

digit number is chosen randomly from the set 000, 001, ... , 999

and you win by guessing correctly certain characteristics of this

three digit number. The lottery website lists the following

possible plays such as First Digit, Front Pair, etc. Find the

probability of winning for each play.

First Digit: Pick one number. To win, match the first number

drawn.

Front Pair: Pick 2 numbers. To win, match the first 2 numbers

drawn in exact order

Straight: Pick 3 numbers. To win, match all 3 numbers drawn

in exact order.

3-Way Box: Pick 3 numbers, 2 that are the same. To win,

match all three numbers drawn in any order.

6-Way Box: Pick 3 different numbers. To win, match all 3

numbers drawn in any order.

Booking a Flight

Suppose you are booking a flight to San Francisco on Orbitz. To

save money, you agree to either leave Monday, Tuesday, or

Wednesday, and return on either Friday, Saturday, or Sunday.

Assume that Orbitz randomly assigns you a day to leave and

randomly assigns you a day to return.

(a) What is the probability you leave on Tuesday and return on
Saturday?

(b) What is the chance that your trip will be exactly three days
long?

(¢) What is the most likely trip length in days?



(d) Do you think that the assumptions about Orbitz are

reasonable? Explain.
17. Assigning Grades

A math class of ten students takes an exam.

(a) If the instructor decides to give exam grades of A to two
randomly selected students, how many ways can this be
done?

(b) Of the remaining eight students, three will receive B’s and
the remaining will receive C's. How many ways can this be
done?

(c¢) If the instructor assigns at random, two A’s, three B’s and
five ("s to the ten students, how many ways can this be
done?

(d) Under this grading method, what is the probability that
Jim (the best student in the class) gets an A7

18. Choosing Officers

A club consisting of 8 members has to choose three officers.

(a) How many ways can this be done?

(b) Suppose that the club needs to choose a president, a vice-
president, and a treasurer. How many ways can this be
done?

(c) If the club consists of 4 men and 4 women and the officers
are chosen at random, find the probability the three officers
are all of the same gender.

(d) Find the probability the president and the vice-president
are different genders.

19. Playing Yahtzee

Find the number of ways and the corresponding probabilities of

getting all of the following patterns in Yahtzee. Here are some

hints for the different patterns.

Four of a kind: The pattern here is x, x, X, x, y, where x is the

number that appears four times and y is the number that

appears once.
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21.

Small straight: This roll will either include the numbers 1, 2,
3, 4, the numbers 2, 3, 4, 5, or the numbers 3, 4, 5, 6. If the
numbers 1, 2, 3, 4 are the small straight, then the remaining
number can not be 5 (otherwise it would be a large straight).
Full house: The pattern here is x, x, X, y, y, where x is the
number that appears three times and y is the number that
appears twice.

Three of a kind: The pattern here is x, x, x, y, z, where x is
the number that appears three times, and y and z are the
numbers that appear only once.

One pair: The pattern here is x, x, w, y z, where x is the
number that appears two times, and w, y and z are the numbers
that appear only once.

Nothing: This is the most difficult number to count directly.
Once the number of each of the remaining patterns is found,
then the number of “nothings” can be found by subtracting the
total number of other patterns from the total number of rolls

(7776).

R Exercises

Sampling Letters

The built-in vector letters contains the 26 lower-case letters of

the alphabet.

(a) Using the sample() function, take a sample of 10 letters
without replacement from letters.

(a) Using the sample() function, take a sample of 10 letters
with replacement from letters.

Sampling Letters (continued)

(a) Write a function to take a sample of 10 letters without
replacement from letters.

(b) Add a line in the function so that the function returns the
number of vowels in the sample. (If the sample is stored in
the vector y, then the line of code



sum(y %in% c("a", "e", "i", "o", "u"))
will count the number of vowels in the sample.)

(c) Using the function replicate(), take 50 samples, storing
the number of vowels from the samples in the vector
n_vowels.

(d) Approximate the probability that there are two vowels in
your sample.

22. Simulating Permutations

Suppose a license plate in a particular state consists of two

letters followed by a number (for example, “CD9” and “EE0” are

two possible license plates).

(b) Write a function to simulate a random license plate.

(c) Using the replicate() function to simulate 50 random
license plates.

(d) From the simulated plates, approximate the probability
there is at least one vowel in the license plate.

23. Simulating Yahtzee

(a) Write a function to roll five dice and record by a 1 or 0 if
one observes a large straight.

(b) Use the replicate() function and the function found in
part (a) to approximate the probability of rolling a large
straight.

(¢c) By changing the function in part (a) and using the
replicate() function, approximate the probability of rolling
a small straight.

(d) In a similar fashion, approximate the probability of rolling a
full house.
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Conditional Probability

3.1 Introduction: The Three Card Problem

Suppose one has three cards — one card is blue on both sides, one
card is pink on both sides, and one card is blue on one side and pink
on the other side. Suppose one chooses a card and places it down
showing “blue”. What is the chance that the other side is also blue?

This is an illustration of a famous conditional probability problem.
One is given certain information — here the information is that one
side of the card is blue — and one wishes to determine the probability
that the other side is blue.

Most people think that this probability is 1/2, but actually this is
wrong. The correct answer is demonstrated by simulating this
experiment many times. One can do this simulation by hand, but we
will illustrate this using an R script.

Suppose one thinks of this experiments are first choosing a card,
and then choosing a side from the card. There are three possible
cards, which we call “Blue”, “Pink” and “mixed”. For the blue card,
there are two blue sides; for the pink card, there are two pink sides,
and the “mixed” card has a blue side and a pink side.

R Conditional Probabilities by Simulation



We illustrate using R to perform this simulation. A data frame df
with two variables card and Side is defined. The sample() function

randomly chooses a card and a side by choosing a random row from
the data frame. This experiment was repeated 1000 times and the
table() function is used to classify the outcomes by card and side.

df <- data.frame(Card = c("Blue", "Blue",
"Pink", "Pink",

"Mixed", "Mixed"),

Side = c("Blue", "Blue",

"Pink", "Pink",

IlB'LueII’ IIPinkll))

cards <- df[sample(6, size = 1000, replace = TRUE), ]
table(cards$Card, cards$Side)

Blue Pink

Blue 326 0

Mixed 173 152

Pink © 349

One observed side is blue and we are interested in the probability
of the event “card is blue”. In this experiment, the blue side was
observed 326 + 173 = 499 times — of these, the card was blue 326
times. So the probability the other side is blue is approximated by
326/499 which is close to 2/3. This example illustrates that one’s
intuition can be faulty in figuring out probabilities of the conditional

type.

Selecting Slips of Paper

To illustrate the conditional nature of probabilities, suppose one has
a box that has 6 slips of paper — the slips are labeled with the
numbers 2, 4, 6, 8, 10, and 12. One selects two slips at random from
the box. It is assumed that one is sampling without replacement and
the order that one selects the slips is not important. Then one lists
all of the possible outcomes. Note that since two numbers are chosen
from six, the total number of outcomes will be 4 C; = 15.



S—{(2, 4), (2, 6), (2, 8), (2, 10), (2, 12), (4, 6), (4, 8), (4, 10), (4, 12)
(6, 8), (6, 10), (6, 12), (8, 10), (8, 12), (10, 12)}.

Suppose one is interested in the probability the sum of the
numbers on the two slips is 14 or higher. Assuming that the 15
outcomes listed above are equally likely, one sees there are 9
outcomes where the sum is 14 or higher and so

Prob(sum 14 or higher) = %

Next, suppose one is given some new information about this
experiment — both of the numbers on the slips are single digits.
Given this information, one now has only six possible outcomes. This
new sample space is called the reduced sample space based on the
new information.

5={(2, 4), (2, 6), (2, 8), (4, 6), (4, 8), (6, 8)}

One evaluates the probability Prob(sum is 14 or higher) given that
both of the slip numbers are single digits. Since there is only one way
of obtaining a sum of 14 or higher in our new sample space, one sees

1
Prob(sum 14 or higher) = s

Notation: Suppose that E is our event of interest and H is our new
information. Then one writes the probability of F given the new
information H as Prob(E| H), where the vertical line “/” means
“conditional on” or given the new information. Here it was found

Prob(sum is 14 or higher | both slip numbers are single digits).

How does the probability of “14 or higher” change given the new
information? Initially, the probability of 14 and higher was pretty
high (9/15), but given the new information, the probability dropped
to 1/6. Does this make sense? Yes. If one is told that both numbers



are single digits, then one has drawn small numbers and that would
tend to make the sum of the digits small.

Independent Events

One says that events A and B are independent if the knowledge of
event A does not change the probability of the event B. Using
symbols

P(B| A) = P(B). (3.1)

Rolls of Two Dice

To illustrate the concept of independence, consider an example where
one rolls a red die and a white die. Consider the following three
events:

e S = the sum of the two rolls is 7
e [ — the red die is an even number
e D = the rolls of the two dice are different

Are events S and F independent?

1. First one finds the probability one rolls a sum equal to 7, that is,
P(S). There are 36 outcomes and 6 outcomes results in a sum of
7, so P(S) = 6/36.

2. Next, one finds P(S| FE). Given that the red die is an even
number (event FE), note that there are 18 outcomes where E
occurs. Of these 18 outcomes, there are 3 outcomes where the
sum is equal to 7. So P(S| E) = 3/18.

3. Note P(S| E) = P(S), so events S and F are independent.
Knowing the red die is even does not change one’s probability of
rolling a 7.



Are events S and D independent?

To see if these two events are independent, one computes P(S| D)
and checks if P(S| D) = P(S). One can show that P(S| D) = 6/30.
This probability is not equal to P(S) so S and D are not independent
events.

R Conditional Probabilities by Simulation

One can demonstrate conditional probability by the use of the
filter() function in the dplyr package. To illustrate, a data frame
df is constructed with simulated rolls of two dice — the associated
variables are Rol11_1 and Ro11_2.

df <- data.frame(Roll_1 = sample(6, size = 1000,
replace = TRUE),

Roll_2 = sample(6, size = 1000,

replace = TRUE))

The mutate() function is used to define a new variable Sum that is
the sum of the two rolls. Suppose one is told that the roll of the first
die is greater than 3 — how does that information change the
probabilities for sum? In the following script, the filter() function is
used to restrict die rolls to only the ones where Ro11_1 > 3. Then the
frequencies and corresponding approximate probabilities of different

sums are found on these “restricted” die rolls. For example, one sees
that the probability Prob(Sum = 10|Roll 1 > 3) = 0.164..

df %>%

mutate(Sum = Roll_1 + Roll_2) %>%
filter(Roll_1 > 3) %>%

group_by(Sum) %>%

summarize(Count = n()) %>%
mutate(Probability = Count / sum(Count))
Sum Count Probability

<int> <int> <dbl>

15 20 0.0405



6 55 0.111
7 85 0.172
8 78 0.158
9 89 0.180
10 81 0.164
11 58 0.117
12 28 0.0567
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3.2 In Everyday Life

Generally one’s beliefs about uncertain events can change when new
information is obtained. Conditional probability provides a way to
precisely say how one’s beliefs change. Let’s illustrate this with a
simple example.

Suppose one is interested in estimating the population of
Philadelphia, Pennsylvania in the current year. Consider three
possible events:

e A = Philadelphia’s population is under one million
e B = Philadelphia’s population is between one and two million
e (' = Philadelphia’s population is over two million

If one knows little about Philadelphia, then one probably is not
very knowledgeable about its population. So initially the probabilities
are assigned shown in Table 3.1.

TABLE 3.1

Probabilities of events about Philadelphia’s population, P(Evend I).
Event P Event 1)
under one million 0.3
between one and two million 0.3
over two million 0.4
TOTAL 1.0




One is assigning approximately the same probability to each of the
three events, indicating that they are all equally likely in his or her
mind. These can be viewed as conditional probabilities since they are
conditional on one’s initial information — these probabilities are
denoted by P(Fwvent| I), where I denotes one’s initial information.
Now suppose some new information is provided about Philadelphia’s
population. One is not told the current population, but is told that
in 1990, Philadelphia was the fifth largest city in the country, and
the population of the sixth largest city, San Diego, was 1.1 million in
1990. So this tells one that in 1990, the population of Philadelphia
had to exceed 1.1 million. Now one might not be sure about how the
population of Philadelphia has changed between 1990 and 2020, but
it probably has not changed a significant amount. So one thinks that

e The population of Philadelphia is most likely to be between 1
and 2 million.

e [t is very unlikely that Philadelphia’s population is over 2
million.

e There is a small chance that Philadelphia’s population is under
1 million.

One revises his or her probabilities that reflect these beliefs as shown
in Table 3.2. These probabilities are denoted as P(Ewvent| N), which
are probabilities of these population events conditional on the newer
information N, in Table 3.2.

TABLE 3.2

Probabilities of events about Philadelphia’s population, P(Eventl N).
Event P(Eventl N)
under one million 0.2
between one and two million 0.78
over two million 0.02
TOTAL 1.0




Now, additional information is provided. To find the current
population of Philadelphia, one looks up the census estimated figures
and the population of Philadelphia’s population was reported to be
1,567,872 in 2016. Even though the census number is a few years old,
one doesn’t think that the population has changed much — definitely
not enough to put in a new category of the table. So one’s
probabilities will change again as shown in Table 3.3. We call these
probabilities of events conditional on additional information A.

TABLE 3.3
Probabilities of events about Philadelphia’s population, P(Evend A).
Event P(Eventl A)
under one million 0
between one and two million 1
over two million 0
TOTAL 1.0

All of us actually make many judgments every day based on
uncertainty. For example, we make decisions about the weather based
on information such as the weather report, how it looks outside, and
advice from friends. We make decisions about who we think will win
a sports event based on what we read in the paper, our knowledge of
the teams’ strengths, and discussion with friends. Conditional
probability is simply a way of quantifying our beliefs about uncertain
events given information.

3.3 In a Two-Way Table

It can be easier to think about, and compute conditional

probabilities when they are found from observed counts in a two-way
table.



In Table 3.4, high school athletes in 14 sports are classified with
respect to their sport and their gender. These numbers are recorded
in thousands, so the 454 entry in the Baseball/Softball — Male cell
means that 454,000 males played baseball or softball this year.

TABLE 3.4
Counts of high school athletes, by sport and gender.
Male Female TOTAL

Baseball/Softball 454 373 827
Basketball 541 456 997
Cross Country 192 163 355
Football 1048 1 1049
Gymnastics 2 21 23
Golf 163 62 225
Ice Hockey 35 7 42
Lacrosse 50 39 &9
Soccer 345 301 646
Swimming 95 141 236
Tennis 145 163 308
Track and Field 550 462 1012
Volleyball 39 397 436
Wrestling 240 4 244
TOTAL 3899 2590 6489

Suppose one chooses a high school athlete at random who is
involved in one of these 14 sports. Consider several events

e ['— athlete chosen is female
e S — athlete is a swimmer
e V = athlete plays volleyball

What is the probability that the athlete is female? Of the 6489
(thousand) athletes, 2590 were female, so the probability is

P(F) = 2590/6489 = 0.3991



Likewise, the probability that the randomly chosen athlete is a
swimmer 1S

P(S) = 236/6489 = 0.0364.
and the probability he or she plays volleyball is
P(V) = 436/6489 = 0.0672.

Next, consider the computation of some conditional probabilities.
What is the probability a volleyball player is female? In other words,
conditional on the fact that the athlete plays volleyball, what is the
chance that the athlete is female:

P(F] V).

To find this probability, restrict attention only to the volleyball
players in the table.

Male Female TOTAL
Volleyball 39 397 436

Of the 436 (thousand) volleyball players, 397 are female, so
P(F| V) = 397/436 = 0.9106.

What is the probability a woman athlete is a swimmer? In other
words, if one knows that the athlete is female, what is the
(conditional) probability she is a swimmer, or P(S| F)?

Here since one is given the information that the athlete is female,
one restricts attention to the “Female” column of counts. There are a
total of 2590 (thousand) women who play one of these sports; of
these, 141 are swimmers. So

P(S | F) = 141/2590 = 0.0544.

Are events F' and V independent? One can check this several ways.
Above it was found that the probability a randomly chosen athlete is



a volleyball player is P(V) = 0.0672. Suppose one is told that the
athlete is a female (F). Will that change the probability that she is a
volleyball player? Of the 2590 women, 397 are volleyball players, and
so P(V] F) = 397/2590 = 0.1533, Note that P(V) is different from
P(V] F), that means that the knowledge the athlete is female has
increased one’s probability that the athlete is a volleyball player. So
the two events are not independent.

R Conditional Probabilities in a Two-Way Table

Suppose one has two spinners, each that will record a 1, 2, 3, or 4
with equal probabilities. Suppose the smaller of the two spins is 2 —
what is the probability that the larger spin is equal to 47 One can
answer this question by use of a simulation experiment. First one
constructs a data frame — by two uses of the sample() function, 1000
random spins of the first spinner are stored in Spin_1 and 1000 spins
of the second spinner in Spin_2.

df <- data.frame(Spin_1 = sample(4, size = 1000,
replace = TRUE),

Spin_2 = sample(4, size = 1000,

replace = TRUE))

By use of the mutate() function, one computes the smaller and

larger of the two spins and stores the result in the respective
variables Min and Max. Then one finds a frequency table of the
simulated values of Min and Max.

df %>%

mutate(Min = pmin(Spin_1, Spin_2),
Max = pmax(Spin_1, Spin_2)) %>%
group_by(Min, Max) %>%
summarize(n = n()) %>%

spread(Max, n)

Mln 111 121 131 141



<int> <int> <int> <int> <int>
1 1 58 127 119 129

2 2 NA 67 127 123

3 3 NA NA 63 122

4 4 NA NA NA 65

Since one is told that the smaller of the two spins is equal to 2, one
restricts attention to the row where Min = 2. One observes that Max is

equal to 2, 3, 4 with frequencies 67, 127, and 123. So

12
P(Max spin = 4 | Minspin = 2) = 67 ¢ 1273+ 193 = 0.388.

3.4 Definition and the Multiplication Rule

In this chapter, conditional probabilities have been computed by
considering a reduced sample space. There is a formal definition of
conditional probability that is useful in computing probabilities of
complicated events.

Suppose one has two events A and B where the probability of
event B is positive, that is P(B) > 0. Then the probability of A given
B is defined as the quotient

P(AN B)

P(A|B) = —F 0

(3.2)

How many boys?

To illustrate this conditional probability definition, suppose a couple
has four children. One is told that this couple has at least one boy.
What is the chance that they have two boys?



If one lets L be the event “at least one boy” and B be the event
“have two boys”, one wishes to find P(B| L).

Suppose one represents the genders of the four children (from
youngest to oldest) as a sequence of four letters. For example, the
sequence BBGG means that the first two children were boys and the
last two were girls. If we represent outcomes this way, there are 16
possible outcomes of four births:

BBBB BGBB GBBB GGBB
BBBG BGBG GBBG GGBG
BBGB BGGB GBGB GGGB
BBGG BGGG GBGG GGGG

If one assumes that boys and girls are equally likely (is this really
true?), then each of the outcomes is equally likely and each outcome
is assigned a probability of 1/16. Applying the definition of
conditional probability, one has

P(BNL
P(B|L)= g
P(L)
There are 15 outcomes in the set L, and 6 outcomes where both
events B and L occur. So using the definition

_ 6/16 6

P(B| L) = S
(BIL) 15/16 15

The Multiplication Rule

If one takes the conditional probability definition and multiplies both
sides of the equation by P(B), one obtains the multiplication rule

P(ANnB)=P(B)P(A| B). (3.3)



Choosing balls from a random bowl

The multiplication rule is especially useful for experiments that can
be divided into stages. Suppose one has two bowls — Bowl 1 is filled
with one white and 5 black balls, and Bowl 2 has 4 white and 2 black
balls. One first spins the spinner below that determines which bowl
to select, and then selects one ball from the bowl. What is the chance
the ball one selects is white?

SPINNER
BOWL 1 U
o0
O

BOWL 2 w w

One can demonstrate the multiplication rule by the tree diagram
in Figure 3.1. The first set of branches corresponds to the spinner
result (choose Bowl 1 or choose Bowl 2) and the second set of
branches corresponds to the ball selection.




White Ball

BOWL 1
Black Ball
White Ball
BOWL 2 Black Ball

FIGURE 3.1
Tree diagram of choosing balls from a random bowl, part 1.

One places numbers on the diagram corresponding to the
probabilities that are given in the problem, shown in Figure 3.2.
Since one quarter of the spinner region is “Bowl 1”7, the chance of
choosing Bowl 1 is 1/4 and so the chance of choosing Bowl 2 is 3/4 —
these probabilities are placed at the first set of branches. Also one
knows that if Bowl 1 is selected, the chances of choosing a white ball
and a black ball are respectively 1/6 and 5/6. These conditional
probabilities, P(white | Bowl 1) and P(black | Bowl 2), are placed at
the top set of branches at the second level. Also, if one selects Bowl
2, the conditional probabilities of selecting a white ball and a black
ball are given by P(white | Bowl 2) = 4/6 and P(black | Bowl 2) =
2/6 — these probabilities are placed at the bottom set of branches.



White Ball

1/6

Black Ball
White Ball

BOWL 2 N Black Bal

FIGURE 3.2
Tree diagram of choosing balls from a random bowl, part 2.

Now that the probabilities are assigned on the tree, one uses the
multiplication rule to compute the probabilities of interest:

e What is the probability of selecting Bowl 1 and selecting a white
ball? By the multiplication rule

P(Bowl 1 N white ball)= P(Bowl 1) P(white ball | Bowl 1)
1 1 1

46 24

One is just multiplying probabilities along the top branch of the
tree.

e What is the probability of selecting a white ball? One sees from
the tree that there are two ways of selecting a white depending
on which bowl is selected. One can either (1) select Bowl 1 and
choose a white ball or (2) select Bowl 2 and choose a white ball.
One finds the probability of each of the two outcomes and add
the probabilities to get the answer.



P(white ball)= P(Bowl 1 N white ball) + P(Bowl 2 N white ball)
1 1 3 4 13

— X —+ =X == —.

4 6 4 6 24

R Simulating choosing balls from a random bowl

One simulate this balls and bowl experiment on R. Using the
sample() function, one simulates 1000 choices of the bowl where the
probabilities of choosing Bowl 1 and Bowl 2 are 1/4 and 3/4 and
places the bowl choices in variable Bowl. In a similar fashion, one

simulates 1000 ball selections from Bowl 1 (variable Color_1) and
1000 selections from Bowl 2 (variable color_2). Last, by use of a
single ifelse() function, one lets the ball color be equal to Color_1 if
Bowl 1 is selection, or Color_2 if Bowl 2 is selected.

Bowl <- sample(1:2, size = 1000, replace = TRUE,
prob = c(1, 3) / 4)

Color_1 <- sample(c("white", "black"), size = 1000,
replace = TRUE,

prob = c(1, 5) / 6)

Color_2 <- sample(c("white", "black"), size = 1000,

replace = TRUE,
prob = c(4, 2) / 6)
Color <- ifelse(Bowl == 1, Color_1, Color_2)

By use of the table() function, one categorizes all simulations by
the values of Bowl and Color.

table(Bowl, Color)
Color

Bowl black white
1 197 41

2 265 497

The probability that Bowl 1 was selected and a white ball was
chosen is approximately equal to 41/1000 = 0.41. The chance of



choosing a white ball is approximated by (41+497),/1000 = 0.538.

3.5 The Multiplication Rule under Independence

When two events A and B are independent, then the multiplication
rule takes the simple form

P(AN B) = P(A) x P(B). (34)

Moreover, if one has a sequence of independent events, say A, Ay, - -
-, A, then the probability that all events happen simultaneously is
the product of the probabilities of the individual events

P(Al N A, ﬂ“'ﬂAk) = P(Al) X P(Ag) X oo X P(Ak) (3.5)

By use of the assumption of independent events and multiplying,
one finds probabilities of sophisticated events. We illustrate this in
several examples.

Blood Types of Couples

Americans have the blood types O, A, B, and AB with respectively
proportions 0.45, 0.40, 0.11, and 0.04. Suppose two people in this
group are married.

1. What is the probability that the man has blood type O
and the woman has blood type A7 Let O,; denote the event

that the man has O blood type and Ay, the event that the

woman has A blood type. Since these two people are not related,



it is reasonable to assume that O,;; and Ay, are independent

events. Applying the multiplication rule, the probability the
couple have these two specific blood types is

= (0.45) X (0.40) = 0.18.

. What is the probability the couple have O and A blood
types? This is a different question from the first since we have
no indication which person has which blood type. Either the
man has blood type O and the woman has blood type A, or the
other way around. So the probability of interest is

P(two have A, O types)= P((Oy N Aw) U (Ow N Ayy))
= P(OM M Aw) + P(OW N AM)

One adds the probabilities since Op N Aw and Ow N Ay are
different outcomes. One uses the multiplication rule with the
independence assumption to find the probability:

P(two have A, O types)

P((Oy N Aw) U (Ow N Ay))

P(Oy N Aw) + P(Oy N Ayy)
P(Ou) x P(Aw) + P(Ow) x P(Ay)
(0.45) x (0.40) + (0.45) x (0.40)
0.36.

. What is the probability the man and the woman have
the same blood type? This is a more general question than
the earlier parts since one hasn’t specified the blood types — one
is just interested in the event that the two people have the same
type. There are four possible ways for this to happen: they can
both have type O, they both have type A, they have type B, or
they have type AB. One first finds the probability of each



possible outcome and then sums the outcome probabilities to
obtain the probability of interest. One obtains

P(same type)= P((Op N Ow) U (Ap N Ay )U
(BM N Bw) U (ABW M ABM))
= (0.45)* + (0.40)* + (0.11)* + (0.04)”
= 0.3762.

4. What is the probability the couple have different blood
types? One way of doing this problem is to consider all of the
ways to have different blood types — the two people could have
blood types O and A, types O and B, and so on, and add the
probabilities of the different outcomes. But it is simpler to note
that the event “having different blood types” is the complement
of the event “have the same blood type”. Then using the
complement property of probability,

P(different type)= 1 — P(same type)
=1—-0.3762
= 0.6238.

A Five-Game Playoff

Suppose two baseball teams play in a “best of five” playoff series,
where the first team to win three games wins the series. Suppose the
Yankees play the Angels and one believes that the probability the
Yankees will win a single game is 0.6. If the results of the games are
assumed independent, what is the probability the Yankees win the
series?

This is a more sophisticated problem than the first example, since
there are numerous outcomes of this series of games. The first thing
to note is that the playoff can last three games, four games, or five
games. In listing outcomes, one lets Y and A denote respectively the
single-game outcomes “Yankees win” and “Angels win”. Then a series



result is represented by a sequence of letters. For example, YYAY
means that the Yankees won the first two games, the Angels won the
third game, and the Yankees won the fourth game and the series.
Using this notation, all of the possible outcomes of the five-game
series are written below.

Three games Four games Five games

YYY YYAY, AAYA YYAAY, AAYYA

AAA YAYY, AYAA YAYAY, AYAYA
AYYY, YAAA YAAYY, AYYAA

AYYAY, YAAYA
AYAYY, YAYAA
AAYYY, YYAAA

One is interested in the probability the Yankees win the series. All
of the outcomes above where the Yankees win are underlined. By the
assumption of independence, one finds the probability of a specific
outcome — for example, the probability of the outcome YYAY as

P(YYAY)= (0.6) x (0.6) x (0.4) x (0.6)
— 0.0864.

One finds the probability that the Yankees win the series by finding
the probabilities of each type of Yankees win and adding the outcome

probabilities. The probability of each outcome is written down in
Table 3.5.

TABLE 3.5
Table of probabilities of all Yankees winning outcomes.
Three games Four games Five games
AYYY)=0.216 P(YYAY) =0.0864 A YYAAY) =0.0346
P(YAYY)=0.0864 P(YAYAY) =0.0346
P(AYYY) =.0864 P(YAAYY)=0.0346

PAYYAY) = 0.0346
PIAYAYY) = 0.0346



Three games Four games Five games

PAAYYY) = 0.0346

So the probability of interest is given by

P(Yankees win series)= P(YYY,YYAY YAYY,...)
=0.216 + 3 x 0.864 4+ 6 x 0.0346
= 0.683.

Playing Craps

One of the most popular casino games is craps. Here we describe a
basic version of the game, and we will use the multiplication rule
together with the use of conditional probabilities to find the
probability of winnings.

This game is based on the roll of two dice. One begins by rolling
the dice: if the sum of the dice is 7 or 11, the player wins, and if the
sum is 2, 3, or 12, the player loses. If any other sum of dice is rolled
(that is, 4, 5, 6, 8, 9, 10), this sum is called the “point”. The player
continues rolling two dice until either his point or a 7 are observed —
he wins if he sees his point and loses if he observes a 7. What is the
probability of winning at this game?

(a) On the first roll, the player can win by rolling the sum of 7 or
11, or lose by rolling the sum of 2, 3, or 12. The probabilities of
these five outcomes are placed in Table 3.6.

(b) If the player rolls initially a sum 4, 5, 6, 8, 9 or 10, he keeps
rolling. The probabilities of rolling these sums (of two dice) are
placed in the P(Roll) column of Table 3.7.

(c) Suppose the player initially rolls 4 and this becomes his or her
point. Now the player keep rolling until the point of 4 (player
wins) or a 7 (player loses) are observed. All of the other sums of
two dice are not important. In this case, there are only the
following nine possible outcomes.

(1, 3), (1, 6), (2, 2), (2, 5), (3, 1), (3,4), (4, 3), (5, 2), (6, 1)



Of these nine outcomes, the player wins (point of 4) in three of them
— so the conditional probability P(Win | First Roll is 4) = 3/9. This
value is placed in the P(Win | Roll) column. Using a similar method,
one computes P(Win | First Roll) if the first roll is 5, if the first roll
is 6, ..., the first roll is 10. The secondary roll, the outcome (Win or
Lose), and conditional win probabilities are placed in the P(Win |
Roll ) column in Table 3.8.

(d) Using the multiplication rule, the probability of rolling a 4 first

and then winning is given by

P(Roll = 4 n Win) = P(Roll = 4) P(Win | Roll = 4).

Using a similar calculation, the probabilities P(Roll = 5 n Win),
P(Roll = 6 n Win), P(Roll = 8 n Win), P(Roll = 9 n Win), P(Roll
= 10 n Win) are found by multiplying entries in the P(Roll) and P
(Win | Roll) columns of Table 3.8.

(e) The probability the player wins at craps is the following sum

P(Win)= P(Roll = 7) + P(Roll = 11) + P(Roll = 4 N Win)
+P(Roll = 5N Win) + P(Roll = 6 N Win)
+P(Roll = 8 N Win) + P(Roll = 9 N Win)
+P(Roll = 10 N Win)
4
10

6 2 3 3
~55 5 (a5) (9) * (3) ()
5 5
() (1) = (55) (i) (36 (
3
(5)(5)
= 0.493.
Is craps a fair game? In other words, who has the advantage in this
game: the player or the casino? Since the probability of the player

winning at craps is 0.493, it is not a fair game. But the advantage to
the casino is relatively small.

)+



TABLE 3.6

Probabilities of outcomes with first roll of sum of 7, 11, 2, 3, or 12.

First roll Probability Outcome
7 6/36 Win
11 2/36 Win
2 1/36 Lose
3 2/36 Lose
12 1/36 Lose
TABLE 3.7
Probabilities of outcomes with first roll of sum of 4, 5, 6, 8, 9 or 10, part 1.
First Roll P(Roll) Second Roll Outcome P(Win | Roll)
4 3/36
4 3/36
5 4/36
5 4/36
6 5/36
6 5/36
8 5/36
8 5/36
9 4/36
9 4/36
10 3/36
10 3/36
TABLE 3.8
Probabilities of outcomes with first roll of sum of 4, 5, 6, 8, 9 or 10, part 2.
First Roll P(Roll) Second Roll Outcome P(Win | Roll)
4 3/36 4 Win 3/9
4 3/36 7 Lose
5 4/36 5 Win 4/10
5 4/36 7 Lose
6 5/36 6 Win 5/11




First Roll P(Roll) Second Roll Outcome P(Win | Roll)
6 5/36 7 Lose

8 5/36 8 Win 5/11

8 5/36 7 Lose

9 4/36 9 Win 4/10

9 4/36 7 Lose

10 3/36 10 Win 3/9

10 3/36 7 Lose

3.6 Learning Using Bayes’ Rule

We have seen that probabilities are conditional in that one’s opinion
about an event is dependent on our current state of knowledge. As
we gain new information, our probabilities can change. Bayes’ rule
provides a mechanism for changing our probabilities when we obtain
new data.

Suppose that you are given a blood test for a rare disease. The
proportion of people who currently have this disease is 0.1. The
blood test comes back with two results: positive, which is some
indication that you may have the disease, or negative. It is possible
that the test will give the wrong result. If you have the disease, it
will give a negative reading with probability 0.2. Likewise, it will give
a false positive result with probability 0.2. Suppose that you have a
blood test and the result is positive. Should you be concerned that
you have the disease?

In this example, you are uncertain if you have the rare disease.
There are two possible alternatives: you have the disease, or you
don’t have the disease. Before you have a blood test, you assign
probabilities to “have disease” and “don’t have disease” that reflect
the plausibility of these two models. You think that your chance of
having the disease is similar to the chance of a randomly selected



person from the population. Thus you assign the event “have disease”
a probability of 0.1 By the complement property, this implies that
the event “don’t have disease” has a probability of 1- 0.1 = 0.9.

The new information that one obtains to learn about the different
models is called data. In this example, the data is the result of the
blood test. Here the two possible data results are a positive result
(4+) or a negative result (—). One is given the probabilities of the
observations for each model. If one “has the disease,” the probability
of a + observation is 0.8 and the probability of a — observation is
0.2. Since these are conditional probabilities, one writes

P(+ | disease) = 0.8, P(— | disease) = 0.2.

Likewise, if the result is “don’t have the disease”, the probabilities of
the outcomes are 0.2 and 0.8, respectively. Using symbols, one has

P(+ | no disease) = 0.2, P(— | no disease) = 0.8.

Suppose you take the blood test and the result is positive (+) — what
is the chance you really have the disease? We are interested in
computing the conditional probability

P(disease | +).

This should not be confused with the earlier probability P( +
|disease) that is the probability of getting a positive result if you
have the disease. Here the focus is on the so-called inverse probability
— the probability of having the disease given a positive blood test
result.

We describe the computation of this inverse probability using two
methods. They are essentially two ways of viewing the same
calculation.

Method 1: Using a tree diagram



A person either has or does not have the disease, and given the
person’s disease state, he or she either gets a positive or negative test
result. One represents the outcomes by a tree diagram where the first
set of branches corresponds to the disease states and the second set
of branches corresponds to the blood test results. The branches of
the tree are labelled by the given probabilities, shown in Figure 3.3.

Positive Blood
Test Result
0.8
Have Disease
0.1 0.2
Megative Blood
Test Result
Paositive Blood
Ti
i 0.2 est Result
Don't Have
Dizeasze
0.8
Megative Blood
Test Result

Figure 3.3
Tree diagram of the disease problem.

By the definition of conditional probability,

P(disease N +)

P(disease | +) = P




One finds the numerator P(disease N +) by use of the multiplication
rule:

P(disease N +)= P(disease)P(+ | disease)
= 0.1 x 0.8 = 0.08.

In the tree diagram, one is multiplying probabilities along the
disease/+ branch to find this probability.

To find the denominator P( + ), note that there are two ways of
getting a positive blood test result — either the person has the disease
and gets a positive blood test result, or the person doesn’t have the
disease and gets a positive result. These two outcomes are the
disease/+ and no disease/+ branches of the tree. One finds the
probability by using the multiplication rule to find the probability of
each outcome, and then summing the outcome probabilities:

P(+)= P(disease N +) + P(no disease N +)
= P(disease)P(+ | disease) + P(no disease)P(+ | no disease)
= 0.1 x0.8+0.9x0.2
= 0.26.

So the probability of having the disease, given a positive blood test
result is

P(disease N +)  0.08

P(di = —
(disease | +) P 026

= 0.31.

As one would expect, the new probability of having the disease (0.31)
is larger than the initial probability of having the disease (0.1) since
a positive blood test was observed.

Method 2: Using a Bayes’ box

There is an alternative way of computing the inverse probability
based on a two-way table that classifies people by the disease status



and the blood test result. This is an attractive method since it based
on expected counts rather than probabilities.

Suppose there are 1000 people in the community — one places
“1000’ in the lower right corner of Table 3.9.

TABLE 3.9
Bayes’ box procedure, step 1.

Blood test result

+ - TOTAL
Disease Have disease
status Don’t have disease
TOTAL 1000

One knows that the chance of getting the disease is 10% — so one
expects 10% of the 1000 = 100 people to have the disease and the
remaining 900 people to be disease-free. One places these numbers in
the right column corresponding to “Disease status”, in Table 3.10.

TABLE 3.10
Bayes’ box procedure, step 2.
Blood test result
+ - TOTAL
Disease Have disease 100
status Don’t have disease 900
TOTAL 1000

One knows the test will err with probability 0.2. So if 100 people
have the disease, one expects 20% of 100 = 20 to have a negative test
result and 80 will have a positive result — one places these counts in
the first row of the table. Likewise, if 900 people are disease-free,
then 20% of 900 = 180 will have an incorrect positive result and the
remaining 720 will have a negative result — one places these in the
second row of Table 3.11.



TABLE 3.11
Bayes’ box procedure, step 3.

Blood test result

+ - TOTAL
Disease Have disease 80 20 100
status Don’t have disease 180 720 900
TOTAL 1000

Now one is ready to compute the probability of interest P(disease]
+ ) from the table of counts. Since one is conditioning on the event
-+, one restricts attention to the + column of the table — 260 people
had positive test result. Of these 260, 80 actually had the disease, so

P(disease | +) = —— = 0.31.

Note that, as expected, one obtains the same answer for the inverse
probability.

3.7 R Example: Learning about a Spinner

The pProbBayes package is designed to illustrate Bayesian thinking.
This package is used here to learn about the identity of an unknown
spinner. It is supposed that each spinner is divided in several regions
and the outcomes of the spins are the integers 1, 2, ... and so on.

R A spinner is constructed by specifying a vector of areas of the
spinner regions. For example one spinner is defined with five
outcomes with corresponding areas 2, 1, 2, 1, 2. The spinner_plot()
function will produce the spinner as displayed in Figure 3.4.
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FIGURE 34
A spinner with five outcomes 1, 2, 3, 4, 5 and corresponding areas 2, 1, 2, 1 and 2.

library(ProbBayes)
areas <- c(2, 1, 2, 1, 2)
spinner_plot(areas)

One figures out the probability distribution for the spins from
knowing the areas of the five outcomes. Each region area is divided
by the sum of the areas, obtaining the probabilities as displayed
using the function spinner_probs(). This data frame of probabilities
is stored in the R object p_dist.

(p_dist <- spinner_probs(areas))
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To illustrate Bayes’ rule, suppose there are four spinners, A, B, C,
D defined by the vectors s_reg A, s_reg B, s_reg_C, and s_reg D
pictured in Figure 3.5.

Spinner A Spinner B
Region Region
N
H 2
3
4
Spinner C Spinner D
Region Region

1

2

3
FIGURE 3.5

Four possible spinners in the Bayes’ rule example.

s_reg_A <- c(2, 2, 2, 2)
s_reg B <- c(4, 1, 1, 2)
s_reg_C <- c(2, 4, 2)

s_reg_ D <- c(1, 3, 3, 1)

A box contains four spinners, one of each type. A friend selects one
and holds it behind a curtain. Which spinner is she holding?

The identity of her spinner is called a model. There are four
possible models, the friend could be holding Spinner A, or Spinner B,
or Spinner C, or Spinner D. In R, a data frame is created with a
single variable Model and the names of these spinners are placed in

that column.



(bayes_table <- data.frame(Model=c("Spinner A", "Spinner B",
"Spinner C", "Spinner D")))

Model

1 Spinner
2 Spinner
3 Spinner
4 Spinner

OO w>

One does not know what spinner this person is holding. But one
can assign probabilities to each model that reflect her opinion about
the likelihood of these four spinners. There is no reason to think that
any of the spinners are more or less likely to be chosen so the same
probability of 1/4 is assigned to each model. These probabilities are
called the person’s prior since they reflect her beliefs before observing
any data. It is called a uniform prior since the probabilities are
spread uniformly over the four models. In the data frame, a new
column Prior is added with the values 1/4, 1/4, 1/4, 1/4.

bayes_table$Prior <- rep(1/4, 4)
bayes_table

Model Prior

1 Spinner A 0.25

2 Spinner B 0.25

3 Spinner C 0.25

4 Spinner D 0.25

The prob_plot() function graphs the prior distribution (see Figure
3.6).

prob_plot(bayes_table)
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Prior on the four spinners.

Next, our friend will spin the unknown spinner once — it turns out
to land in Region 1. The next step is to compute the [likelthoods —
these are the probabilities of observing a spin in Region 1 for each of
the four spinners. In other words, the likelihood is the conditional
probability

Prob(Region 1 | Model),

where model is one of the four spinners.

One figures out these likelihoods by looking at the spinners. For
example, look at Spinner A. Region 1 is one quarter of the total area
for Spinner A, so the likelihood for Spinner A is one fourth, or

Prob(Region 1 | Spinner A) = 1/4.

Looking at Spinner B, Region 1 is one half of the total area so its
likelihood is one half. In a similar fashion, one determines the
likelihood for Spinner C'is one fourth and the likelihood for Spinner
D is one eighth. These likelihoods are added to our bayes_table.

bayes_table$Likelihood <- c(1/4, 1/2, 1/4, 1/8)



bayes_tabel

Model Prior Likelihood
1 Spinner A 0.25 0.250
2 Spinner B 0.25 0.500
3 Spinner C 0.25 0.250
4 Spinner D 0.25 0.125

Once the prior probabilities and the likelihoods are found, it is
straightforward to compute the posterior probabilities. Basically,
Bayes’ rule says that the posterior probability of a model is
proportional to the product of the prior probability and the
likelihood. That is,

Prob(model | data) o Prob(model) x Prob(data | model)

Bayesians use the phrase “turn the Bayesian crank” to reflect the
straightforward way of computing posterior probabilities using Bayes’
rule.

An R function bayesian_crank() takes as input a data frame with
variables Prior and Likelihood and outputs a data frame with new
columns Product and Posterior. This function is applied for our
example where we observe “Region 1”7 outcome.

(bayesian_crank(bayes_table) -> bayes_table)
Model Prior Likelihood Product Posterior
1 Spinner A 0.25 0.250 0.06250 0.2222222
2 Spinner B 0.25 0.500 0.12500 0.4444444
3 Spinner C 0.25 0.250 0.06250 0.2222222
4 Spinner D 0.25 0.125 0.03125 0.1111111

For each possible model, the prior probability is multiplied by its
likelihood. After finding the four products, these are changed to
probabilities by dividing each product by the sum of the products.
These are called posterior probabilities since they reflect our new
opinion about the identity of the spinner after observing the spin in
Region 1.



By using the prior_post_plot() function, the prior and posterior

distributions are graphically compared for our spinners, in Figure
3.7.

prior_post_plot(bayes_table)
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FIGURE 3.7
Prior and posterior distributions on the four spinners.

These calculations can be viewed from a learning perspective.
Initially, one had no reason to favor any spinner and each of the four
spinners was given the same prior probability of 0.25. Now after
observing one spin in Region 1, the person’s opinions have changed.
Now the most likely spinner behind the curtain is Spinner B since it
has a posterior probability of 0.44. In contrast, it is unlikely that
Spinner D has been spun since its new probability is only 0.11.




3.8 Exercises

1. Flipping Coins
Suppose you flip a fair coin four times. The 16 possible outcomes
of this experiment are shown below.

HHHH HHHT HHTT HHTH
HTHH HTHT HTTT HTTH
THHH THHT THTT THTH
TTHH TTHT TTTT TTTH

(a) Let A denote the event that you flip exactly three heads.
Find the probability of A.

(b) Suppose you are given the information N that at least two
heads are flipped. Circle the possible outcomes in the
reduced sample space based on knowing that event N is
true.

(c) Using the reduced sample space, find the conditional
probability P(A| N).

(d) Compare P(A) computed in part a with P(A| N) computed
in part (c). Based on this comparison, are events A and N
independent? Why?

2. Choosing a Committee

Suppose you randomly choose three people from the group {Sue,

Ellen, Jill, Bob, Joe, John} to be on a committee. Below we

have listed all possible committees of size three:

{Sue, Ellen, Jill} {Sue, Ellen, Bob} {Sue, Ellen, Joe}
{Sue, Jill, Bob} {Sue, Jill, Joe} {Sue, Jill, John}
{Sue, Bob, John} {Sue, Joe, John} {Ellen, Jill, Bob}
{Ellen, Jill, John} {Ellen, Bob, Joe} {Ellen, Bob, John}
{Jill, Bob, Joe} {Jill, Bob, John} {Jill, Joe, John}
{Sue, Ellen, John} {Sue, Bob, Joe} {Ellen, Jill, Joe}

{Ellen, Joe, John} {Bob, Joe, John}




(a) Find the probability of the event A that exactly two women
are in the committee (Sue, Ellen, and Jill are women; Bob,
Joe, and John are men).

(b) Suppose you are told that Jill is on the committee— call this
event J. Circle the possible outcomes in the reduced sample
space if we know that J is true.

(c) Compute the conditional probability P(A| J).

(d) Based on your computations in parts (a) and (c), are events
A and J independent?

(e) Let F denote the event that more women are on the
committee than men. Find P(F).

(f) Suppose you are given the information S that all three
people on the committee are of the same gender. Find P(F]
S).

(g) Based on your computations in parts (e) and (f), are events
F and S independent?

3. Arranging Letters
Suppose you randomly arrange the letters a, s, s, t, t. You used
a computer to do this arranging 200 times and below lists all of
the possible “words” that came up. There were 30 distinct
arrangements.

asstt astst astts atsst atsts attss
sastt satst satts ssatt sstat sstta
stast stats stsat ststa sttas sttsa
tasst tasts tatss tsast tsats tssat

tssta tstas tstsa ttass ttsas ttssa

(a) Assuming each possible arrangement is equally likely, what
is the probability that the word formed is “stats”?

(b) What is the probability that the word formed begins and
ends with an “s”?

(c) Suppose you are told that the word formed starts with “s” —
write down all of the possible words in the reduced sample



space.
(d) Given that the word begins with “s”, what is the probability
the word is “stats”?
4. Rolling Two Dice
Suppose two dice are rolled.
(a) Suppose you are told that the sum of the dice is equal to 7.
Write down the six possible outcomes.
(b) Given the sum of the dice is equal to 7, find the probability
the largest die roll is 6.
(c) Suppose you are told that the two dice have different
numbers. Write down the possible outcomes.
(d) If the two dice have different numbers, what is the
probability the largest die roll is 67
5. Choosing Sport Balls
Suppose you have a bin in your garage with three sports balls —
four are footballs, three are basketballs, and two are tennis balls.
Suppose you take three balls from the bin — you count the
number of footballs and the number of basketballs. The first
time this is done, the following balls were selected:

basketball, basketball, football,

so the number of footballs selected was 1 and the number of
basketballs selected was 2. We repeat this sampling experiment
1000 times, each time recording the number of footballs and
basketballs we select. Table 3.12 summarizes the results of the
1000 experiments.

TABLE 3.12
Summaries of 1000 experiments of choosing sport balls.
Number of Basketballs Total
0 1 2 3
0 13 66 64 34 177
Numbers of 1 49 198 169 0 416
Footballs 2 118 180 0 0 298




Number of Basketballs Total

0 1 2 3
3 109 0 0 0 109
Total 289 444 233 34 1000

Let F|, denote that event that you have chosen exactly one

football and B; the event that you chose exactly one basketball

from the bin.

(a) Find P(F;) and P(B).

(b) Find P(Fy| By).

(¢) Find P(By| F}).

(d) From your calculations above, explain why F; and B, are
not independent events.

. Rating Movies

On the Internet Movie Database (www.imdb.com), people are

given the opportunity to rate movies on a scale from 1 to 10.

Table 3.13 shows the ratings of the movie “Sleepless in Seattle”
for men and women who visited the website.

TABLE 3.13
Movie ratings of “Sleepless in Seattle”, by gender.
8,9,10 5,6,7 1,2,3,4
Rating (High) (Medium) (Low) TOTAL
Males 2217 3649 754 6620
Females 1059 835 178 2072
TOTAL 3276 4484 932 8692

(a) Suppose you choose at random a person who is interested in
rating this movie on the website. Find the probability that
the person gives this movie a high rating between 8 and 10
— that is, P(H).

(b) Find the conditional probabilities P(H| M) and P(H| F),
where M and F are the events that a man and a woman


http://www.imdb.com/

rated the movie, respectively.

(c) Interpret the conditional probabilities in part (b) — does this
particular movie appeal to one gender?

(d) Table 3.14 below shows the ratings of the movie “Die Hard”
for men and women who visited the website. Answer
questions (a), (b), and (c) for this movie.

TABLE 3.14
Movie ratings of “Die Hard”, by gender.
8,9,10 5,6,7 1,2,3,4
Rating (High) (Medium) (Low) TOTAL
Males 16197 6737 882 24016
Females 1720 1243 258 3221
TOTAL 17917 8180 1140 27237

. Rating Movies (continued)

The Internet Movie Database also breaks down the movie

ratings by the age of the reviewer. For the movie “Sleepless in

Seattle”, Table 3.15 classifies the reviewers by age and their

rating.

(a) Find the probability that a reviewer gives this movie a high
rating — that is, find P(H).

(b) Define a “young adult” (YA) as a person between the ages
of 18 and 29, and a “senior” (S) as a person 45 or older.
Compute P(H| YA) and P(H| S).

(d) Based on your computations in parts (a) and (b), are
“giving a high rating” and “age of rater” independent events?
If not, explain how the probability of giving a high rating
depends on age.

TABLE 3.15
Movie ratings of “Sleepless in Seattle”, by age.
8,9,10 5,6,7 1,2,34
Rating (High) (Medium) (Low) TOTAL

under 18 74 76 16 166



8,9,10 5,6,7 1,2,3.4

18-29 1793 2623 555 4971
30-44 886 1280 272 2438
45+ 438 300 60 798
TOTAL 3191 4279 903 8373

8. Family Planning

Suppose a family plans to have children until they have two

boys. Suppose there are two events of interest, A = event that

they have at least five children and B = event that the first child

born is male. Assuming that each child is equally likely to be a

boy or girl, and genders of different children born are

independent, then this process of building a family was
simulated 1000 times. The results of the simulation are displayed

in Table 3.16.

(a) Use the table to find P(A).

(b) Find P(A| B) and decide if events A and B are
independent.

(c) Suppose another family plans to continue to have children
until they have at least one of each gender. Table 3.17
shows simulated results of 1000 families of this type . Again
find P(A), P(A| B) and decide if events A and B are
independent.

TABLE 3.16
Simulation results of family planning: two boys.

Gender of First Born

Female Male TOTAL
2 0 247 247
Number of 3 125 138 263
Children 4 126 58 184
D or more 250 o6 306

TOTAL 501 499 1000




TABLE 3.17
Simulation results of family planning: each gender.

Gender of First Born

Female Male TOTAL
2 235 261 496
Number of 3 106 152 258
Children 4 71 63 134
D or more 50 62 112
TOTAL 462 538 1000

9. Conditional Nature of Probability For each of the following
problems
o Make a guess at the probabilities of the three events based
on your current knowledge.
o Ask a friend about this problem. Based on his or her
opinion about the event, make new probability assignments.
o Do some research on the Internet to learn about the right
answer to the question. Make new probability assignments
based on your new information.
(a) What is the area of Pennsylvania?
Initial probabilities:

Event under 30,000 sq between 30,000 and 50,000 sq over 50,000 sq
miles miles miles

Probability

Probabilities after talking with a friend:

Event under 30,000 sq between 30,000 and 50,000 sq over 50,000 sq
miles miles miles

Probability

Probabilities after doing research on the Internet.



Event under 30,000 sq between 30,000 and 50,000 sq over 50,000 sq
miles miles miles

Probability

(b) Robin Williams has appeared in how many movies?
Probabilities after talking with a friend:

Event Under 15 Between 16 and 30 Over 30
Probability

Probabilities after doing research on the Internet.

Event Under 15 Between 16 and 30 Over 30
Probability

Probabilities after doing research on the Internet.

Event Under 15 Between 16 and 30 Over 30
Probability

10. Conditional Nature of Probability
For each of the following problems
o Make a guess at the probabilities of the three events based
on your current knowledge.
o Ask a friend about this problem. Based on his or her
opinion about the event, make new probability assignments.
o Do some research on the Internet to learn about the right
answer to the question. Make new probability assignments
based on your new information.
(a) How many plays did Shakespeare write?
Initial probabilities:

Event Under 30 Between 31 and 50 Over 50

Probability




Probabilities after talking with a friend:

Event Under 30 Between 31 and 50 Over 50
Probability

Probabilities after doing research on the Internet.

Event Under 30 Between 31 and 50 Over 50
Probability

(b) What is the average temperature in Melbourne, Australia
in June?
Initial probabilities:

Event Under 400 Between 40° and 60° Over 600
Probability

Probabilities after talking with a friend:

Event Under 40o Between 40c and 60o Over 60o
Probability

Probabilities after doing research on the Internet.

Event Under 40 Between 40 and 60 Over 60
Probability

11. Picnic Misery
Twenty boys went on a picnic. 5 got sunburned, 8 got bitten by
mosquitoes, and 10 got home without mishap. What is the
probability that the mosquitoes ignored a sunburned boy? What
is the probability that a bitten boy was also burned?

12. A Mall Survey



13.

14.

15.

Suppose 30 people are surveyed at a local mall. Half of the 10

men surveyed approve the upcoming school levy and a total of

17 people do not approve of the levy. Based on the survey data,

(a) What is the probability a woman is in favor of the levy?

(b) If the person is in favor of the levy, what is the probability
the person is a woman?

Drawing Tickets

Have 12 tickets numbered from 1 to 12. Two tickets are drawn,

one after the other, without replacement.

(a) Find the probability that both numbers are even.

(b) Find the probability both numbers are odd.

(¢) Find the probability one number is even and one is odd.

Testing for Steroids

Suppose that 20% of all baseball players are currently on

steroids. You plan on giving a random player a test, but the test

is not perfectly reliable. If the player is truly on steroids, he will

test negative (for steroids) with probability 0.1. Likewise, if the

player is not on steroids, he will get a positive test result with

probability 0.1.

(a) What is the probability the player is on steroids and will
test negative?

(b) If you give a player a test, what is the probability he will
test positive?

(c) If the test result is positive, what is the probability the
player is on steroids?

Preparing for the SAT

Suppose a student has a choice of enrolling (or not) in an

expensive program to prepare for taking the SAT exam. The

chance that she enrolls in this class is 0.3. If she takes the

program, the chance that she will do well on the SAT exam is

0.8. On the other hand, if she does not take the prep program,

the chance that she will do well on the SAT is only 0.4. Let E

denote the event “enrolls in the class” and W denote the event

“does well on the SAT exam”.



16.

17.

18.

19.

20.

(a) Find P(W] E).

(b) Find P(ENW).

(c) Find P(E| W), that is, the probability that she took the
class given that she did well on the test.

Working Off-Campus

At a college campus, 33% of the students are freshmen and 25%

are seniors. Also, 13% of the freshmen work over 10 hours ofl-

campus, and 37% of the seniors work over 10 hours off-campus.

(a) Suppose you sample a student who is either a freshman and
senior. Find the probability she works over 10 hours off-
campus.

(b) If this person does work over 10 hours off campus, find the
probability she is a senior.

Flipping Coins

You flip a coin three times. Let A be the event that a head

occurs on the first flip and B is the event that (exactly) one

head occurs. Are A and B independent?

A Two-headed Coin?

One coin in a collection of 65 has two heads. Suppose you choose

a coin at random from the collection — you toss it 6 times and

observe all heads. What is the probability it was the two-headed

coin?

Smoking and Gender

Suppose the proportion of female students at your school is 60%.

Also you know that 26% of the male students smoke and only

16% of the female students smoke. Suppose you randomly select

a student.

(a) Find the probability the student is a male smoker.

(b) Find the probability the student smokes.

(c) If the student smokes, what is the probability the student is
female?

Choosing until You Select a Red

Suppose you have a box with 4 green and 2 red balls. You select

balls from the box one at a time until you get a red, or until you



21.

22.

23.

24.

25.

select three balls. If you do not select a red on the first draw,

find the probability that you will select three balls.

Mutually Exclusive and Independence

Suppose that two events A and B are mutually exclusive. Are

they independent events?

Blood Type of Couples

Consider the example where Americans have the blood types O,

A, B, AB with proportions .45, .40, .11, 04. If two people are

married

(a) Find the probability both people have blood type A.

(b) Find the probability the couple have A and B blood types.

(c) Find the probability neither person has an A type.

Five-Game Playoffs

Consider the “best of five” playoff series between the Yankees

and the Indians. We assume the probability the Yankees win a

single game is 0.6.

(a) Find the probability the Yankees win in three games.

(b) Find the probability the series lasts exactly three games.

(c) Find the probability the series lasts five games and no team
wins more than one game in a row.

Computer and Video Games

The Entertainment Software Association reports that of all

computer and video games sold, 53% are rated E (Everyone),

30% are rated T (Teen), and 16% are rated M (Mature).

Suppose three customers each purchase a game at a local store.

Assume that the software choices for the customers can be

regarded as independent events.

(a) Find the probability that all three customers buy games
that are rated FE.

(b) Find the probability that exactly one customer purchases
an M rated game.

(c) Find the probability that the customers purchase games
with the same rating.

Washer and Dryer Repair



26.

27.

28.

Suppose you purchase a washer and dryer from a particular

manufacturer. From reading a consumer magazine, you know

that 20% of the washers and 10% of the dryers will need some

repair during the warranty period.

(a) Find the probability that both the dryer and washer will
need repair during the warranty period.

(b) Find the probability that exactly one of the machines will
need repair.

(¢) Find the probability that neither machine will need repair.

Basketball Shooting

In a basketball game, a player has a “one and one” opportunity

at the free-throw line. If she misses the first shot, she is done. If

instead she makes the first shot, she will have an opportunity to

make a second shot. From past data, you know that the

probability this player will make a single free-throw shot is 0.7.

(a) Find the probability the player only takes a single free-
throw.

(b) Find the probability the player makes two shots.

(c) Find the probability the player makes the first shot and
misses the second.

Playing Roulette

You play the game of roulette in Reno. Each game you always

bet on “red” and the chance that you win is 18/38. Suppose you

play the game four times.

(a) Find the probability you win in all games.

(b) Find the probability you win in the first and third games,
and lose in the second and fourth games.

(c) Find the probability you win in exactly two of the four
games.

Is a Die Fair?

Suppose a friend is about to roll a die. The die either is the

usual “fair” type or it is a “special”’ type that has two sides

showing 1, two sides showing 2, and two sides showing 3. You



29.

30.

believe that the die is the fair type with probability 0.9. Your

friend rolls the die and you observe a 1.

(a) Find the probability that a 1 is rolled.

(b) If you observe a 1, what is the probability your friend was
rolling the fair die?

How Many Fish?
You are interested in learning about the number of fish in the
pond in your back yard. It is a small pond, so you do not expect
many fish to live in it. In fact, you believe that the number of
fish in the pond is equally likely to be 1, 2, 3, or 4. To learn
about the number of fish, you will perform a capture-recapture
experiment. You first catch one of the fish, tag it, and return it
to the pond. After a period of time, you catch another fish and
observe that it is tagged and this fish is also tossed back into the
pond.

(a) There are two stages of this experiment. At the first stage
you have 1, 2, 3, or 4 fish in the pond, and at the second
stage, you observe either a tagged or not-tagged fish. Draw
a tree diagram to represent this experiment, and label the
branches of the tree with the given probabilities.

(b) Find the probability of getting a tagged fish.

(c¢) If you find a tagged fish, find the probability there was
exactly 1 fish in the pond. Also find the probabilities of
exactly 2 fish, 3 fish, and 4 fish in the pond.

Shopping at the Mall
Suppose that you are shopping in a large mall in a metropolitan
area. The people who shop at this mall either live downtown or
in the suburbs. Recently a market research firm surveyed mall
shoppers — from this survey, they believe that 70% of the
shoppers live in the suburbs and 30% live downtown. You know
that there is a relationship between a person’s political affiliation
and where he or she lives. You know that 40% of the adults who
live in the suburbs are registered Democrats and 80% of the
downtown residents are Democrats.



(a) If you let T = event that shopper lives downtown, S =
event that shopper lives in the suburbs and D = event that
shopper is a Democrat, write down the probabilities given
in the above paragraph.

(b) Suppose you interview a random shopper. Find the
probability that the shopper is a Democrat.

(c¢) If your shopper is a Democrat, find the probability he or
she lives in the suburbs.

31. What Bag?
Suppose that you have two bags in your closet. The white bag
contains four white balls and the mixed bag contains two white
and two black balls. The closet is dark and you just grab one
bag out at random and select a ball. The ball you choose can
either be white or black.

(a) Suppose there are 1000 hypothetical bags in your closet. By
use the Bayes’ box shown below, classify the 1000 bags by
the type “white” and ‘mixed” and the ball color observed.

Ball color observed
White Black TOTAL
Bag White
type Mixed
TOTAL 1000

(b) Using the Bayes’ box, find the probability that you observe
a white ball.

(c¢) If you observe a white ball, find the probability that you
were selecting from the white bag.

R‘Exercises

32. Conditional Probability
Suppose you have two spinners — one spinner is equally likely to
land on the numbers 1, 2, 3, and the second spinner is equally



likely to land on 1, 2, 3, 4, 5.

(a) Using two applications of the sample() function, create a
data frame containing 1000 random spins from the first
spinner and 1000 random spins from the second spinner.

(b) Use the filter() function to take a subset of the data
frame created in part (a), keeping only the rows where the
sum of spins is fewer than 5.

(c) Using the output from part (b), approximate the
probability the first spin is equal to 1 given that the sum of
spins is fewer than 5.

(d) By wuse of the filter() function, approximate the
probability the sum of spins is fewer than 5 given that the
first spin is equal to 1.

33. Rolling a Random Die

Suppose you spin a spinner that is equally likely to land on the

values 1, 2, 3, 4. If the spinner lands on 1, then you roll a fair

die; otherwise (if the spinner lands on 2, 3, 4), you roll a

weighted die where an even roll is twice as likely as an odd roll.

(a) Create a data frame where Spin contains 1000 spins from
the random spinner, Diel contains 1000 rolls from the fair
die and Die2 contains 1000 rolls from the biased die.

(b) By use of the ifelse() function, define a new variable Die
representing the roll of the “random” die, where the
outcome depends on the value of the spinner.

(c) Find the probability the random die roll is equal to 3.



4

Discrete Distributions

4.1 Introduction: The Hat Check Problem

Some time ago, it was common for men to wear hats when they went out for
dinner. When a man entered a restaurant, he would give his hat to an attendant
who would keep the hat in a room until his departure. Suppose the attendant
gets confused and returns hats in some random fashion to the departing men.
What is the chance that no man receives his personal hat? How many hats, on
average, will be returned to the right owners?

This is a famous “matching” probability problem. To start thinking about this
problem, it is helpful to start with some simple cases. Suppose only one man
checks his hat at the restaurant. Then obviously this man will get his hat back.
Then the probability of “no one receives the right hat” is 0, and the average
number of hats returned will be equal to 1.

Let n denote the number of men who enter the restaurant. The case n = 1 was
considered above. What if n = 27 If the two men are Barry and Bobby, then
there are two possibilities shown in Table 4.1. These two outcomes are equally
likely, so the probability of no match is 1/2. Half the time there will be 2 matches
and half the time there will be 0 matches, and so the average number of matches
will be 1.

TABLE 4.1
Possibilities of the hat check problem when n=2.
Barry receives Bobby receives of matching hats
1. Barry’s hat Bobby’s hat 2
2. Bobby’s hat Barry’s hat 0

What if we have n = 3 men that we’ll call Barry, Bobby, and Jack. Then there
are 3! = 6 ways of returning hats to men, listed in Table 4.2. Again these



outcomes are equally likely, so the probability of no match is 2/6. One can show
that the average number of matches is again 1.

TABLE 4.2
Possibilities of the hat check problem when n = 3.
Barry receives Bobby receives Jack receives # of matching hats
1. Barry’s hat Bobby’s hat Jack’s hat 3
2. Barry’s hat Jack’s hat Bobby’s hat 1
3. Bobby’s hat Barry’s hat Jack’s hat 1
4. Bobby’s hat Jack’s hat Barry’s hat 0
5. Jack’s hat Barry’s hat Bobby’s hat 0
6. Jack’s hat Bobby’s hat Barry’s hat 1

What happens if there are a large number of hats checked? It turns out that the
probability of no matches is given by

Prob(no matches) = —,

e
where e is the special irrational number 2.718. Also it is interesting that the
average number of matches for any value of n is given by

Average number of matches = 1.

The reader will get the opportunity of exploring this famous problem by
simulation in the end-of-chapter exercises.

4.2 Random Variable and Probability Distribution

Suppose that Peter and Paul play a simple coin game. A coin is tossed. If the
coin lands heads, then Peter receives $2 from Paul; otherwise Peter has to pay $2
to Paul. The game is played for a total of five coin flips. After the five flips, what
is Peter’s net gain (in dollars)?

The answer depends on the results of the coin flips. There are two possible
outcomes of each coin flip (heads or tails) and, by applying the multiplication
rule, there are 2° = 32 possibilities for the five flips. The 32 possible outcomes are
written below.



HHHHH HTHHH THHHH TTHHH

HHHHT HTHHT THHHT TTHHT
HHHTH HTHTH THHTH TTHTH
HHHTT HTHTT THHTT TTHTT
HHTHH HTTHH THTHH TTTHH
HHTHT HTTHT THTHT TTTHT
HHTTH HTTTH THTTH TTTTH
HHTTT HTTIT THTTT TTTTT

For each possible outcome of the flips, say HTHHT, there will be a
corresponding net gain for Peter. For this outcome, Peter won three times and
lost twice, so his net gain is 3(2) — 2(2) = 2 dollars. The net gain is an example of
a random variable — this is simply a number that is assigned to each outcome of
the random experiment.

Generally, a capital letter will be used to represent a random variable — here
the capital letter G' denotes Peter’s gain in this experiment. For each of the 32
outcomes, one can assign a value of G — this is done in Table 4.3.

TABLE 4.3

The 32 outcomes and value of G in the 5 coin flips problem.
HHHHH, G=10 HTHHH, G=6 THHHH, G=6 TTHHH, G=2
HHHHT, G=6 HTHHT, G=2 THHHT, G=2 TTHHT, G=-2
HHHTH, G=6 HTHTH, G=2 THHTH, G=2 TTHTH, G=-2
HHHTT, G=2 HTHTT, G=-2 THHTT, G=-2 TTHTT, G=-6
HHTHH, G=6 HTTHH, G=2 THTHH, G=2 TTTHH, G=-2
HHTHT, G=2 HTTHT, G=-2 THTHT, G=-2 TTTHT, G=-6
HHTTH, G=2 HTTTH, G=-2 THTTH, G=-2 TTTTH, G=-6
HHTTT, G=-2 HTTTT, G=-6 THTTT, G=-6 TTTTT, G=-10

It is seen from the table that the possible gains for Peter are -10, -6, -2, 2, 6,
and 10 dollars. One is interested in the probability that Peter will get each
possible gain. To do this, one puts all of the possible values of the random
variable in Table 4.4. Although a capital letter will be used to denote a random
variable, a small letter will denote a specific value of the random variable. So g¢
refers to one specific value of the gain G, and P(G = g) refers to the
corresponding probability.

TABLE 4.4
Table of gain, number of outcomes, and corresponding probability, step 1.

Gain g (dollars) Number of outcomes PG=g)

-10




Gain g (dollars) Number of outcomes PG=g)

What is the probability that Peter gains $6 in this game? Looking at the table
of outcomes, one sees that Peter won $6 in five of the outcomes. Since there are
32 possible outcomes of the five flips, and each outcome has the same probability,
one sees that the probability of Peter winning $6 is 5/32.

This process is continued for all of the possible values of G. In Table 4.5, one
places the number of outcomes for each value and the corresponding probability.
This is an example of a probability distribution for G — This is simply a list of all
possible values for a random variable together with the associated probabilities.

TABLE 4.5
Table of gain, number of outcomes, and corresponding probability, step 2.
Gain g (dollars) Number of outcomes PG=g
-10 1 1/32
-6 5 5/32
-2 10 10/32
2 10 10/32
6 5 5/32
10 1 1/32

Probability distribution

In general, suppose X is a discrete random variable. This type of random variable
only assigns probability to a discrete set of values. In other words, the support of
X is a set of discrete values. The function f(z) is a probability mass function
(pmf) for X if the function satisfies two properties.

(1) f(x) =0 for each possible value x of X
) >, flx)=1

The table of values of the gain G and the associated probabilities f{g) = P(G =
g) do satisfy these two properties. Each of the assigned probabilities is positive, so
property (1) is satisfied. If one sums the assigned probabilities, one finds



10 10 5 1

1 5
PG=g)= — 4 > 424 =2
Zg:( =gty tatygtagta =t

and so property (2) is satisfied.

A probability distribution is a listing of the values of X together with the
associated values of the pmf. One graphically displays this probability
distribution with a bar graph. One places all of the values of G on the horizontal
axis, marks off a probability scale on the vertical scale, and then draws vertical
lines on the graph corresponding to the pmf values.

Figure 4.1 visually shows that it is most likely for Peter to finish with a net
gain of +2 or —2 dollars. Also note the symmetry of the graph — the graph looks
the same way on either side of 0. This symmetry about 0 indicates that this game
is fair. We will shortly discuss a way of summarizing this probability distribution
that confirms that this is indeed a fair game.
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FIGURE 4.1
Probability distribution of the net gains for Peter in the Peter-Paul game.

R Simulating the Peter-Paul Game

It is straightforward to simulate this game in R. A function one_play() is written
which will play the game one time. The sample() function is used to flip a coin
five times and the function returns the net gain for Paul.

one_play <- function(){
f]_ipS <- Sample(C("H", IITII),



size = 5,
replace = TRUE)

2 * sum(flips == "H") -
2 * sum(flips == "T")
¥

The replicate() function is used to simulate 1000 plays of the game and the
net gains for all plays are stored in the vector G. If one constructs a bar graph of
the net gains, it will resemble the graph of the probability distribution of G
showed in Figure 4.1.

G <- replicate(1000, one_play())

4.3 Summarizing a Probability Distribution

Once we have constructed a probability distribution — like was one above— it is
convenient to use this to find probabilities.

What is the chance that Peter will win at least $5 in this game? Looking at the
probability table, ones sees that winning “at least $5” includes the possible values

G=6and G=10

One finds the probability of interest by adding the probabilities of the individual
values.

P(G > 5)= P(G=6or G=10)

= P(G = 6) + P(G = 10)

_5+1 6

32 32

What is the probability Peter wins money in this game? Peter wins money if

the gain G is positive and this corresponds to the values G = 2, 6, 10. By adding
up the probabilities of these three values, one sees the probability that Peter wins
money is

P(Peter wins)= P(G > 0)
= P(G =2) + P(G = 6) + P(G = 10)
_10+5+1 1

32 2"



It is easy to compute the probability Peter loses money — also 1/2. Since the
probability Peter wins in the game is the same as the probability he loses, the
game is clearly fair.

When one has a distribution of data, it is helpful to summarize the data with a
single number, such as median or mean, to get some understanding about a
typical data value. In a similar fashion, it is helpful to compute an “average” of a
probability distribution — this will give us some feeling about typical or
representative values of the random variable when one observes it repeated times.

A common measure of “average” is the mean or expected value of X, denoted
or E(X). The mean (or expected value) is found by

1. Computing the product of a value of X and the corresponding value of the
pmf flz) = P(X = z) for all values of X.
2. Summing the products.

In other words, one finds the mean by the formula
H= Z z f(z)- @4.1)
x

The computation of the mean for the Peter-Paul game is illustrated in Table
4.6. For each value of the gain G, the value is multiplied by the associated
probability — the products are given in the rightmost column of the table. Then
the products are added — one sees that the mean of G'is u = 0.

TABLE 4.6
Calculation of the mean for the Peter-Paul game.
g RG=g) gxXPG=g)
-10 1/32 -10/32
-6 5/32 -30/32
-2 10/32 —-20/32
2 10/32 20/32
6 5/32 30/32
10 1/32 10/32
SUM 1 0

How does one interpret a mean value of 07 Actually it is interesting to note
that G = 0 is not a possible outcome of the game — that is, Peter cannot break
even when this game is played. But if Peter and Paul play this game a large



number of times, then the value u= 0 represents (approximately) the mean
winnings of Peter in all of these games.

R Simulating the Peter-Paul Game (continued)

The functions sample() and replicate() were earlier illustrated to simulate this
game 1000 times in R. Peter’s winnings in the different games are stored in the
vector G. Here is a display of Peter’s winnings in the first 100 games:

G[1:100]
[1] 6 -6 -6 -2 -6 2 6 -2 -6 -6 -10 -6
[13] -2 2 -2 210 6 2 -2 -6 6 -2 -2
[25] -2 -2 -2 210 2 -2 -2 6 -2 2 2
[37] 6 2 -2 -6 -6 2 -6 -2 2 -6 -10 -6
[49] 26 6 6 2 -2 -2 -2 2 -6 -2 2
[61] 2 -2 6 -26 626 -6 626
[73] -6 -2 22626 -2 -10 -6 2 -6
[85] 6 2 -2 -2 6 -6 -6 -2 -10 -2 -10 -6

[97] -2 10 6 -2

One approximates the mean winning u by finding the sample mean G of the
winning values in the 1000 simulated games.

mean(G)
[1] -0.0748

This value is approximately equal to the mean of G, u= 0. If Peter was able to
play this game for a much larger number of games, then one would see that his
average winning would be very close to u = 0.

4.4 Standard Deviation of a Probability Distribution

Consider two dice — one we will call the “fair die” and the other one will be called
the “loaded die”. The fair die is the familiar one where each possible number (1
through 6) has the same chance of being rolled. The loaded die is designed in a
special way that 3’s or 4’s are relatively likely to occur, and the remaining
numbers (1, 2, 5, and 6) are unlikely to occur. Table 4.7 gives the probabilities of
the possible rolls for both dice.



TABLE 4.7
Probabilities of the possible rolls for a fair die and a loaded die.

Fair Die Loaded Die

Roll Probability Roll Probability
1 1/6 1 1/12

2 1/6 2 1/12

3 1/6 3 1/3

4 1/6 4 1/3

5 1/6 5 1/12

6 1/6 6 1/12

How can one distinguish the fair and loaded dice? An obvious way is to roll
each a number of times and see if we can distinguish the patterns of rolls that we
get. One first rolls the fair die 20 times with the results

3,3,5,6,6,1,2,1,4,3,2,5,6,4,2,5, 6,1, 2,3 (mean 3.5)
Next one rolls the loaded die 20 times with the results

3,2,1,4,4,1,4,3,3,3,1,3,3,5, 3,3, 3,6, 3,4 (mean 3.1)
Figure 4.2 displays dotplots of 50 rolls from each of the two dice.
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FIGURE 4.2
Dotplots of rolls from fair and loaded dice.

What doe one see? For the fair die, the rolls appear to be evenly spread out
among the six possible numbers. In contrast, the rolls for the loaded die tend to
concentrate on the values and 3 and 4, and the remaining numbers were less
likely to occur.

Can one compute a summary value to contrast the probability distributions for
the fair and loaded dice? One summary number for a random variable has already
been discussed, the mean p. This number represents the average outcome for the
random variable when one performs the experiment many times.

Suppose the mean is computed for each of the two probability distributions.
For the fair die, the mean is given by

prarpie= (1)(3) + (2)(3) + B)(3) + (W(3) + G)(5) + O)(3)
= 3.5,
and for the loaded die the mean is given by
proavic= (1(15) + (2)(55) + B)(3) + @(5) + B)(55) + 6)(55)

= 3.5.

The means of the two probability distributions are the same — this means that
one will tend to get the same average roll when the fair die and the loaded die are
rolled many times.

But one knows from our rolling data that the two probability distributions are
different. For the loaded die, it is more likely to roll 3’s or 4’s. In other words, for
the loaded die, it is more likely to roll a number close to the mean value p = 3.5.

The standard deviation of a random variable X, denoted by the Greek letter o,
measures how close the random variable is to the mean p. It is called a standard
deviation since it represents an “average” (or standard) distance (or deviation)
from the mean u. This standard deviation, denoted o is defined as follows:

o= \/Zu(z - p)?P(X = 2). @)

To find the standard deviation o for a random variable, one first computes (for
all values of X) the difference (or deviation) of z from the mean value u. Next,
one squares each of the differences, and finds the average squared deviation by



multiplying each squared deviation by the corresponding value of the pmf and
summing the products. The standard deviation o is the square root of the average
squared deviation.

Tables 4.8 and 4.9 illustrate the computation of the standard deviation for the
roll of the fair die and for the roll of the loaded die, where R denotes the roll
random variable.

TABLE 4.8

Computation of the standard deviation 0y, pje for the fair die.
r r—u (r—,u)2><P(R=F)
1 1-35=-25 (-2.5)2 % (1/6)
2 2-35=-15 (= 1.5)2 % (1/6)
3 3-35=-05 (=0.5)2 x (1/6)
4 4-35=05 (0.5)2 x (1/6)
5 5-35=15 (1.5)% x (1/6)
6 6-3.5=25 2.5)% x (1/6)
SOM 2917

TABLE 4.9

Computation of the standard deviation o] p4ded Dje for the loaded die.
r r-p (r-w?x AR =1
1 1-35=-25 (-2.5)2x (1/12)
2 2-35=-15 (= 1.5)2 % (1/12)
3 3-35=-05 (=0.52 x (1/3)
4 4-35=05 0.5)2 x (1/3)
5 5-35=15 (1.5)% x (1/12)
6 6-3.5=25 (2.5)% x (1/12)
SUM 1.583

OFairDie = V2.917 = 1.71
OlLoadedDie = V 1.583 = 1.26

It is seen from our calculations that

O FairDie = 17]—7 O LoadedDie = 1.26



What does this mean? Since the loaded die roll has a smaller standard deviation,
this means that the roll of the loaded die tends to be closer to the mean (3.5)
than for the fair die. When one rolls the loaded die many times, one will notice a
smaller spread or variation in the rolls than when one rolls the fair die many
times.

R Simulating Rolls of Fair and Loaded Dice

One illustrates the difference in distributions of rolls of fair and loaded dice by
an R simulation. The probabilities of 100 rolls of each of the two types of dice are
stored in the vectors diel and die2. Two applications of the sample() function are
used to simulated rolls — the rolls for the fair and loaded dice are stored in the
vectors rolls1 and rolls2. respectively.

diel <- c(1, 1, 1, 1, 1, 1) / 6
die2 <- c(1, 1, 4, 4, 1, 1) / 12
rollsl <- sample(1:6, prob = diel,

size = 100,

replace = TRUE)

rolls2 <- sample(1:6, prob = die2,
size = 100,

replace = TRUE)

One approximates the means and standard deviations for the probability
distributions by computing sample means and sample standard deviations of the
simulated rolls.

c(mean(rollsl), sd(rollsl))
[1] 3.340000 1.585779
c(mean(rolls2), sd(rolls2))
[1] 3.280000 1.246055

Note that both types of dice display similar means, but the loaded die displays
a smaller standard deviation than the fair die.

Interpreting the standard deviation for a bell-shaped distribution

Once one has computed a standard deviation ¢ for a random variable, how can
one use this summary measure? One use of o was illustrated in the dice example
above. The probabilities for the roll of the loaded die were more concentrated
about the mean than the probabilities for the roll of the fair die, and that
resulted in a smaller value of o for the roll of the loaded die.



The standard deviation has an attractive interpretation when the probability
distribution of the random variable is bell-shaped. When the probability
distribution has the following shape:

then approximately

e the probability that X falls within one standard deviation of the mean is
0.68.

e the probability that X falls within two standard deviations of the mean is
0.95.
Mathematically, one writes,

e Prob(p— o< X < u+ o) ~0.68

e Prob(u—-20< X < pu+ 20)=0.95

R Simulating Rolls of Ten Dice

To illustrate this interpretation of the standard deviation, suppose ten fair dice
are rolled and the sum of the numbers appearing on the dice is recorded. It is
easy to simulate this experiment in R using the following script. The function
rol110() will roll 10 dice, the function replicate() repeats the experiment for
1000 trials, and the variable sum_rolls contains the sum of the rolls from the
experiments.

roll10 <- function(){
sum(sample(1:6, size = 10, replace = TRUE))

sum_rolls <- replicate(1000, roll10())

A histogram of the results from 1000 trials of this experiment is shown in
Figure 4.3.
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FIGURE 4.3
Histogram of the sum of ten dice in 1000 simulated trials.

Note that the shape of this histogram is approximately bell shaped about the
value 35. Since this histogram is a reflection of the probability distribution of the
sum of the rolls of ten dice, this means that the shape of the probability
distribution for the sum will also be bell-shaped.

For this problem, it can be shown (as an end-of-chapter exercise) that the mean
and standard deviation for the sum of the rolls of ten fair dice are respectively

p =35 o=>54.
Applying our rule, the probability that the sum falls between

u—oand p+ o,or 35 - 5.4 = 29.6 and 35 + 5.4 = 404

is approximately 0.68, and the probability that the sum of the rolls falls
between

u—20and p+ 20, or 35 — 2(5.4) = 24.2 and 35 + 2 (5.4) = 45.8

is approximately 0.95.

R Simulating Rolls of Ten Dice (continued)

To see if these are accurate probability computations, return to our simulation
of this experiment and see how often the sum of the ten rolls fell within the above
limits. Recall that the simulation sums were stored in the vector sum_rolls.



Below the proportions of sums of ten rolls that fall between 29.6 and 40.4, and
between 24.2 and 45.8, are computed.

sum(sum_rolls > 29.6 & sum_rolls < 40.4) / 1000
[1] 0.702
sum(sum_rolls > 24.2 & sum_rolls < 45.8) / 1000
[1] ©.955

One sees that the proportions of values that fall within these limits are 0.702 and
0.955, respectively. Since these proportions are close to the numbers 0.68 and
0.95, we see in this example that this rule is pretty accurate.

4.5 Coin-Tossing Distributions

Introduction: A Galton Board

A Galton board is a physical device for simulating a special type of random
experiment. It was named after the famous scientist Sir Francis Galton who lived
from 1822 to 1911. Galton is noted for a wide range of achievements in the areas
of meteorology, genetics, psychology, and statistics. The Galton board consists of
a set of pegs laid out in the configuration shown in Figure 4.4 — one peg is in the
top row, two pegs are in the second row, three pegs in the third row, and so on.
A ball is placed above the top peg. When the ball is dropped and hits a peg, it is
equally likely to fall left or right. We are interested in the location of the ball
after striking five pegs — as shown in the figure, the ball can land in locations 0,
1,2, 3,4, or 5.

®
0 1 2 3 4 5

FIGURE 4.4
Illustration of a Galton board.



Figure 4.5 shows the path of four balls that fall through a Galton board. The
chances of falling in the locations follow a special probability distribution that has
a strong connection with a simple coin-tossing experiment.
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FIGURE 4.5
Illustration of the path of four balls falling through a Galton board.

Consider the following random experiment. One takes a quarter and flip it ten
times, recording the number of heads one gets. There are four special
characteristics of this simple coin-tossing experiment.

1. One is doing the same thing (flip the coin) ten times. We will call an
individual coin flip a trial, and so our experiment consists of ten identical
trials.

2. On each trial, there are two possible outcomes, heads or tails.

3. In addition, the probability of flipping heads on any trial is 1/2.

4. The results of different trials are independent. This means that the
probability of heads, say, on the fourth flip, does not depend on what
happened on the first three flips.

One is interested in the number of heads one gets — this number will be
referred to X. In particular, one is interested in the probability of getting five
heads, or Prob(X = 5).

In this section, one will see that this binomial probability model applies to
many different random phenomena in the real world. Probability computations
for the binomial and the closely related negative binomial models will be
discussed and the usefulness of these models in representing the variation in real-
life experiments will be illustrated.



4.5.1 Binomial probabilities

Let’s return to our experiment where a quarter is flipped ten times, recording X,
the number of heads. One is interested in the probability of flipping exactly five
heads, that is, Prob(X = 5). To compute this probability, one first has to think of
possible outcomes in this experiment. Suppose one records if each flip is heads
(H) or tails (7). Then one possible outcome with ten flips is

Trial 1 2 3 4 5 6 7 8 9 10
Result H H T T H T T H H T

Another possible outcome is TTHHTHTHHH. The sample space consists of all
possible ordered listings of ten letters, where each letter is either an H or a T.

Next, consider computing the probability of a single outcome of ten flips such
as the HHTTHHTHHT sequence shown above. The probability of this outcome is
written as

P(“H on toss 1”7 AND “H on toss 2” AND ... AND “T on toss 107).

Using the fact that outcomes on different trials are independent, this
probability is written as the product

P(H on toss 1)x P(H on toss 2) x... x P(T on toss 10).

Since the probability of heads (or tails) on a given trial is 1/2, one has

1 1 1 1\"

Actually, the probability of any outcome (sequence of ten letters with H's or T7s)
in this experiment is equal to (%)10.

Let’s return to our original question — what is the probability that one gets
exactly five heads? If one thinks of the individual outcomes of the ten trials, then
one will see that there are many ways to get five heads. For example, one could

observe
HHHHHTTTTT or HHHHTTTTTH or HHHTTTTTHH

In each of the three outcomes, note that the number of heads is five. How many
outcomes (like the ones shown above) will result in exactly five heads? As before,
label the outcomes of the individual flips by the trial number:

Trial 1 2 3 4 5 6 7 8 9 10

Outcome




If five heads are observed, then one wishes to place five H’s in the ten slots
above. In the outcome HHHHHTTTTT, the heads occur in trials 1, 2, 3, 4, 5,
and in the outcome HHHTTTTTHH, the heads occur in trials 1, 2, 3, 9, and 10.
If one observes exactly 5 heads, then one must choose five numbers from the
possible trial numbers 1, 2, ..., 10 to place the five H’s. There are (150) ways of
choosing these trial numbers. Note that the order in which one chooses the trial
numbers is not important. Since there are ways of getting exactly five heads, and

- 10
each outcome has probability (%) , one sees that

Prob(X = 5) — <150) (%) " 024

From the complement property, one sees that the Prob(five heads are not
tossed) = 1 — 0.246 = 0.754. It is interesting to note that although one expects to
get five heads when flipping a coin ten times, it is actually much more likely not
to flip five heads than to flip five heads.

Binomial experiments

Although the coin tossing experiment described above seems pretty artificial,
many random experiments share the same basic properties as coin tossing.
Consider the following binomial experiment:

1. One repeats the same basic task or trial many times — let the number of
trials be denoted by n.

2. On each trial, there are two possible outcomes, which are called “success” or
“failure”. One could call the two outcomes “black” and “white”, or “0” or “1”,
but they are usually called success and failure.

3. The probability of a success, denoted by p, is the same for each trial.

4. The results of outcomes from different trials are independent.

Here are some examples of binomial experiments.
Example: A sample survey. Suppose the Gallup organization is interested in
estimating the proportion of adults in the United States who use the popular
auction website eBay. They take a random sample of 100 adults and 45 say that
they use eBay. In this story, we see that

1. The results of this survey can be considered to be a sequence of 100 trials
where one trial is asking a particular adult if he or she uses eBay.

2. There are two possible responses to the survey question — either the adult
says “yes” (he or she uses eBay) or “no” (he or she doesn’t use eBay).



3.

Suppose the proportion of all adults that use eBay is p. Then the probability
that the adult says “yes” will be p.

4. If the sampling is done randomly, then the chance that one person says “yes”

will not depend on the answers of the people who were previously asked.
This means that the responses of different adults to the question can be
regarded as independent events.

Example: A baseball hitter’s performance during a game. Suppose you
are going to a baseball game and your favorite player comes to bat five times
during the game. This particular player is a pretty good hitter and his batting
average is about 0.300. You are interested in the number of hits he will get in the
game. This can also be considered a binomial experiment:

1.

The player will come to bat five times — these five at-bats can be considered
the five trials of the experiment (n = 5).

. At each at-bat, there are two outcomes of interest — either the player gets a

hit or he doesn’t get a hit.

. Since the player’s batting average is 0.300, the probability that he will get a

hit in a single at-bat is p = 0.300.

. It is reasonable to assume that the results of the different at-bats are

independent. That means that the chance that the player will get a hit in his
fifth at-bat will be unrelated to his performance in the first four at-bats. We
note that this is a debatable assumption, especially if you believe that a
player can have a hot-hand.

Example: Sampling without replacement. Suppose a committee of four will
be chosen at random from a group of five women and five men. You are interested
in the number of women that will be in the committee. Is this a binomial

experiment?

1. If one thinks of selecting this committee one person at a time, then one can

think this experiment as four trials (corresponding to selecting the four
people).

. On each trial, there are two possible outcomes — either one selects a woman

or a man. At this point, things are looking good — this may be a binomial
experiment. But...

. Is the probability of choosing a woman the same for each trial? For the first

pick, the chance of picking a woman is 5/10. But once this first person has
been chosen, the probability of choosing a woman is not 5/10 — it will be
either 4/9 or 5/9 depending on the outcome of the first trial. So the



probability of a “success” is not the same for all trials, so this violates the
third property of a binomial experiment.

4. Likewise, in this experiment, the outcomes of the trials are not independent.
The probability of choosing a woman on the fourth trial is dependent on who
was selected in the first three trials, so again the binomial assumption is
violated.

4.5.2 Binomial computations

A binomial experiment is defined by two numbers
n = the number of trials, and
p = probability of a “success” on a single trial.

If one recognizes an experiment as being binomial, then all one needs to know is n
and p to determine probabilities for the number of successes X. Using the same
argument as was made in the coin-tossing example, one can show that the
probability of x successes in a binomial experiment is given by

PX=xz)= (Z)px(l —p)" " k==z...,n. 4.3)

Let’s illustrate using this formula for a few examples.

Example: A baseball hitter’s performance during a game (revisited).
Remember our baseball player with a true batting average of 0.300 is coming to
bat five times during a game. What is the probability that he gets exactly two
hits? It was shown earlier that this was a binomial experiment. Since the player
has five opportunities, the number of trials is n = 5. If one regards a success as
getting a hit, the probability of success on a single trial is p = 0.3. The random
variable X is the number of hits of the player during this game. Using the
formula, the probability of exactly two hits is

P(X =2) = (2) (0.3)%(1 — 0.4)°"% = 0.3087.

What is the probability that the player gets at least one hit? To do this
problem, one first constructs the collection of binomial probabilities for n = 5
trials and probability of success p = 0.3. Table 4.10 shows all possible values of X



(0, 1, 2, 3, 4, 5) and the associated probabilities found using the binomial
formula.

TABLE 4.10
Possible values and associated probabilities for the baseball hitter.
X PAX=x)
0 0.168
1 0.360
2 0.309
3 0.132
4 0.029
5 0.002

One is interested in the probability that the player gets at least one hit or P(X
> 1). “At least one hit” means that X can be 1, 2, 3, 4, or 5. To find this one
simply sums the probabilities of X between 1 and 5:

P(X>1)=P(X =1,2,3,4,5) = 0.360 + 0.309 + 0.132 + 0.029 + 0.002 = 0.832.

There is a simpler way of doing this computation using the complement property
of probability. We note that if the player does not get at least one hit, then he
was hitless in the game (that is, X = 0). Using the complement property

P(X>1)=1-P(X=0)=1—0.168 = 0.832.

R Binomial Calculations

By use of the dbinom() and pbinom() functions in R, one can perform
probability calculations for any binomial distribution. In our baseball example the
number of hits X is binomial with sample size 5 and probability of success p =
0.3. In the following R script a data frame is constructed with the possible values
of the number of hits x, and the function dbinom() with arguments size and prob
used to compute the binomial probabilities:

data.frame(x = 0:5) %>%
mutate(Probability = dbinom(x, size = 5, prob = .3))
X Probability

10 0.16807
2 1 0.36015
3 2 0.30870
4 3 0.13230
5 4 0.02835
6 5 0.00243




The function pbinom() will compute cumulative probabilities of the form P(X <
z). For example, to find the probability that number of hits X is 2 or less, P(X <
2):

pbinom(2, size = 5, prob = .3)
[1] ©.83692

One computes the probability P(X > 2) by finding the cumulative probability
P(X < 1), and subtracting the result from 1:

1 - pbinom(1, size =5, prob = .3)
[1] ©.47178

R Simulating Binomial Experiments
One conveniently simulates outcomes from binomial experiments by use of the
rbinom() function. The arguments to this function are the number of simulated
draws, the number of binomial trials size and the probability of success prob. To
illustrate, consider the baseball hitter who is coming to bat 5 times in a game
where the probability of a hit on each at-bat is 0.3. One simulates the number of
hits in 50 games by using arguments 50, size = 5 and prob = 0.3.

(hits <- rbinom(50, size = 5, prob = 0.3))
[1] 31 11111122213321131301

[23] 333022221121 0012321323
[45] 200111

table(hits)

hits

0123

6 20 13 11

By use of the table() function, we tally the outcomes. Here this player got
exactly one hit in a game in 20 games, so the approximate probability that X = 1
is equal to 20/50 = 0.4.

4.5.3 Mean and standard deviation of a binomial

There are simple formulas for the mean and variance for a binomial random
variable. First let X; denote the result of the first binomial trial where



1 if we observe a success
X; = . )
0 if we observe a failure

In the end-of-chapter exercises, the reader will be asked to show that the mean
and variance of X; are given by

E(X1) =p, Var(X1) =p(1—p).

If Xi,..., X, represent the results of the n binomial trials, then the binomial
random variable X can be written as

X =X1+...+X,.
Using this representation, the mean and variance of X are given by
E(X) =E(X1)+...+E(X,), Var(X) =Var(X1)+...+Var(X,).

The result about the variance is a consequence of the fact that the results of
different trials of a binomial experiment are independent. Using this result and
the previous result on the mean and variance of an individual trial outcome, we
obtain

BE(X) =p+...+p=np, (4.4)
and
Var(X) =p(1—p)+...+p(1 — p) = np(1 — p). (4.5)

To illustrate these formulas, recall the first example where X denoted the
number of heads when a fair coin is flipped 10 times. Here the number of trials
and probability of success are given by n = 10 and p = 0.5. The expected number
of heads would be

E(X)=10(0.5) =5
and the variance of the number of heads would be
V(X) =10(0.5)(1 — 0.5) = 2.5.

R Simulating Binomial Experiments (continued)



In our baseball example, the number of successes X were simulated in 50
binomial experiments where n = 5 and p = 0.3. The mean and standard
deviation of X are given by up = 5 (0.3) = 1.5 and o = 4/5(.3)(1 —.3) = 1.02.
One approximates the mean and standard deviation by finding the sample mean
and standard deviation from the simulated values of X. Below one sees that these
approximate values agree closely with the exact values of 1 and o.

hits <- rbinom(50, size = 5, prob = 0.3)
mean(hits)

[1] 1.58

sd(hits)

[1] 0.9707981

4.5.4 Negative binomial experiments

The 2004 baseball season was exciting since particular players had the
opportunity to break single-season records. Let’s focus on Ichiro Suzuki of the
Seattle Mariners who had the opportunity to break the season record for the
most hits that was set by George Sisler in 1920. Sisler’s record was 257 hits and
Suzuki had 255 hits before the Mariners’ game on September 30. Was it likely
that Suzuki would tie Sisler’s record during this particular game?

One can approximate this process as a coin-tossing experiment. When Suzuki
comes to bat, there are two relevant outcomes: either he will get a hit, or he will
get an out. Note that other batting plays such as a walk or sacrifice bunt that
don’t result in a hit or an out are ignored. Assume the probability that he gets a
hit on a single at-bat is p = 0.372 (his 2004 batting average) and one assumes
(for simplicity) that the outcomes on different at-bats are independent.

Suzuki needs two more hits to tie the record. How many at-bats will it take
him to get two hits?

This is not a binomial experiment since the number of trials is not fixed.
Instead the number of successes (hits) is fixed in advance and the number of
trials to achieve this is random. Consider

Y = number of at-bats to get two hits.

One is interested in probabilities about the number of bats Y.

It should be obvious that Y has be at least 2 (he needs at least 2 at-bats to get
2 hits), but Y could be 3, 4, 5, etc. Let’s find the probability that ¥ = 5.

First we know that the second hit must have occurred in the fifth trial (since
Y=5). Also it is known that there must have been one hit and three outs in the



first four trials — there are (i) ways of arranging the H’s and the O’s in these
trials.

H

p. J
.

H, 3 O's

Also the probability of each possible outcome is p?(1 — p)3, where p is the
probability of a hit. So the probability that it takes 5 trials to observe 2 hits is

Py =)= (})a -

Since p = 0.372 in this case, we get
4 2 3
P(Y =5)= 1 0.372%(1 — 0.372)° = 0.1371.

A general negative binomial experiment is described as follows:

¢ One has a sequence of independent trials where each trial can be a success

(S) or a failure.
e The probability of a success on a single trial is p.
e The experiment is continued until one observes r successes, and Y = number

of trials one observes.

The probability that it takes y trials to observe r successes is

—1
P(Y=y) = (i{_ 1)pr(1—p)y_r,y:r,r+1,r—|—2,... (4.6)

Let’s use this formula in our baseball example where r = 2 and p = 0.372.
Table 4.11 gives the probabilities for the number of at-bats y = 2, 3, ..., 9.

TABLE 4.11
Probability distribution for the number of at-bats for Suzuki to get two additional hits.

y HAY=y)




2 .1384
3 1738
4 .1637
5 1371
6 .1076
7 .0811
8 .0594
9 .0426

Note that it is most likely that Suzuki will only need three at-bats to get his
two additional hits, but the probability of three at-bats is only 17%. Actually
each of the values 2, 3, 4, 5, and 6 have probabilities exceeding 10%. There is a
significant probability that Suzuki will take a large number of bats — by adding
the probabilities in Table 4.11, we see that the probability that Y is at most 9 is
0.904, so the probability that Y exceeds 9 is 1 - 0.904 = 0.096.

For a negative binomial experiment where Y is the number of trials needed to
observe r successes, one can show that the mean value is

E(Y) = 4.7)

r
p.

For the baseball example, » = 2 and p = 0.372, so the expected number of at-bats
to get two hits would be E(Y) = 2/0.372 = 5.4. It is interesting to note that
although Y = 3 is the most probable value, Suzuki would average over 5 at-bats
to get 2 hits in many repetitions of this random experiment.

R Negative Binomial Calculations and Simulations

The R functions dnbinom() and rnbinom() can be used to compute probabilities
and simulate from negative binomial distributions. One small complication is that
these functions define the random variable to be the number of failures (instead
of the total number of trials) until the r~th success.

To illustrate the use of these functions, consider our baseball example where X
is the number of at-bats for Suzuki to get r = 2 hits where the probability of a
hit on a single at-bat is p = 0.372. The probability P(X = 5) is the same as the
probability P(Y = 3) where Y is the number of failures until the second success.
Using the function dnbinom(), one computes P(Y = 3)

dnbinom(3, size = 2, prob = .372)



[1] 0.137096

which is equivalent to the probability that X = 5 computed earlier. Also,
rnbinom() can be used to simulate negative binomial experiments. For example,
one can simulate the number of failures until the second success for 10

experiments as follows.

rnbinom(10, size = 2, prob = .372)
[1] 41231321501

It is interesting to note that Suzuki had 15 outs until the second success for one

of these experiments.

4.6 Exercises

1. Coin-tossing Game
In the Peter-Paul coin-tossing game described in the text, let the random

variable X be the number of times Paul is in the lead. For example, if the
coin tosses are HTHHT, Paul’s running winnings are $-2, 0, $2, $4, $2, and
the number of times he is in the lead is X = 4.

HHHHH HTHHH THHHH TTHHH
HHHHT HTHHT THHHT TTHHT
HHHTH HTHTH THHTH TTHTH
HHHTT HTHTT THHTT TTHTT
HHTHH HTTHH THTHH TTTHH
HHTHT HTTHT THTHT TTTHT
HHTTH HTTTH THTTH TTTTH
HHTTT HTTTT THTTT TTTTT

(a) Find the probability distribution for X.
(b) Construct a graph of the pmf for X.
(¢) What is the most likely value of X?

(d) Find the probability that X > 2.

2. Sampling Without Replacement
Suppose you choose two coins from a box with two nickels and three

quarters. Let X denote the number of nickels you draw.



(a) Write out all possible 10 outcomes of this experiment.
(b) Find the probability distribution for X.
(c) What is the most likely value of X7
(d) Find the probability that X > 1.

3. Shooting Free Throws
Suppose you watch your favorite basketball player attempt five free throw
shots during a game. You know that the chance that he is successful on a
single shot is 0.5, so that the possible sequences of successes (S) and misses
(M) shown below are equally likely. Suppose you measure the number of runs
X where a run is defined to be a streak of S’s or M’s. For example, in the
sequence MMSSM, there are three runs (one run of two misses, one run of
two successes, and one run of one miss).

SSSSS SMSSS MSSSS MMSSS
SSSSM SMSSM MSSSM MMSSM
SSSMS SMSMS MSSMS MMSMS
SSSMM SMSMM MSSMM MMSMM
SSMSS SMMSS MSMSS MMMSS
SSMSM SMMSM MSMSM MMMSM
SSMMS SMMMS MSMMS MMMMS
SSMMM SMMMM MSMMM MMMMM

(a) Find the probability distribution for X.
(b) Construct a graph of the pmf for X.
(c) What is the most likely number of runs in the sequence?
(d) Find the probability that you have at most 2 runs in the sequence.
4. Rolling Two Dice
Suppose you roll two dice and you keep track of the larger of the two rolls
which we denote by X. For example, if you roll a 4 and a 5, then X = 5.
(a) Find the probability distribution for X.
(b) Construct a graph of the pmf for X.
(¢) What is the most likely value of X?
(d) Find the probability that X is either 5 or 6.
5. Spinning a Spinner
Let X denote the number you get when you spin the spinner shown below.



(a) Find the probability distribution for X.
(b) Find the probability that X > 2 .
(c) Find the mean and standard deviation of X.

6. Rolling Four Dice

Suppose you are asked to roll four dice and record the sum X. A lazy student
thinks this is too much work. As a shortcut, he decides to roll only two dice,
record the sum of the dice, and then double the result — call this random
variable Y.

The probability distributions of X and Y are shown in Tables 4.12 and 4.13.
The distribution of X was obtained by simulating the rolls of four dice for

one million trials.

TABLE 4.12
Probability distribution of X.
X P X=xXx) X PAX=xXx)
4 0.001 15 0.108
5 0.003 16 0.096
6 0.008 17 0.080
7 0.016 18 0.062
8 0.027 19 0.043
9 0.044 20 0.027
10 0.062 21 0.015
11 0.080 22 0.008
12 0.097 23 0.003
13 0.108 24 0.001
14 0.113
TABLE 4.13
Probability distribution of Y.
y Y =y) y AY=y)




y AY=y) y Y=y
4 0.028 16 0.139

6 0.056 18 0.111

8 0.083 20 0.083

10 0.111 12 0.056

12 0.139 14 0.028

14 0.167

(a) Compute the mean and standard deviation of the probability
distributions of X and Y.

(b) Plot the probability distributions of X and Y on the same graph.

(¢) Compare and contrast the two probability distributions. How are the
distributions similar? How are they different? How would you respond to
the lazy student who thinks that doubling a two-dice result is equivalent
to finding the sum of four fair dice?

7. Running a Marathon Race
Suppose three runners from college A and four runners from college B are
participating in a marathon race. Suppose that all seven runners have equal
abilities and so all possible orders of finish of the seven runners are equally
likely. For example, one possible order of finish is AAABBBB where the three
A runners finish first, second, and third. Let X denote the finish position of
the best runner from college A.

(a) Find the probability distribution of X.

(b) Find the probability that X is at most 2.

(c) Find the average finish of the best runner from college A.

8. Choosing a Slip from a Random Box
Suppose you roll a die. If the die roll is 1 or 2, you choose a slip from box 1;
otherwise you choose a slip from box 2. Let Y denote the number on the slip.

(a) Find the probability distribution for Y.

(b) Find the probability that Y is between 2 to 4.

9. A Random Walk
Suppose that a person starts at location 0 on the number line and each
minute he is equally likely to take a step to the left and to the right. Let Y
denote the person’s location after four steps.

(a) Find the probability distribution for Y.

(b) Find the probability that he is at least two steps away from his start
after four steps.

(c) Suppose there is some gravitational pull towards the 0 (home) location.
Then if he is currently at a negative location, the probability he will
take a positive step is 0.7, and likewise if he is at a positive location, the



10.

11.

12.

probability he takes a negative step is 0.7. If he is at point 0, he is
equally likely to take a negative or positive step. Find the probability
distribution of Y.

(d) Compare the two probability distributions in parts (a) and (c) using the
mean and standard deviation.

Selecting a Prize from a Bag

Suppose you select a prize (with replacement) from a bag that contains three

prizes — one worth $1, one worth $5, and one worth $10. You have three
opportunities to select a prize and you get to keep the largest prize of the
three you select. Let X denote the value of the prize you keep.

(a) Find the probability distribution of X.

(b) Find the probability you win more than $1.

(¢) Find your expected winning.

Playing Roulette

Suppose you place a single $5 bet on three numbers (the Trio Bet) in

roulette that has a payoff odds of 11 to 1. Let X denote your payoff. Recall
that if you win you receive 11 times your betting amount plus your $5 bet; if
you lose, your payoff is nothing.

(a) Find the probability distribution for X.

(b) Find the mean of X. On average, how much money do you lose in a
single $5 bet?

(¢) Consider placing $5 instead on a Five Number Bet that pays at 6 to 1.
Find the probability distribution for the payoff Y for this bet. Compute
the mean of Y. How does this average payoff compare with the average
payoff for the Trio Bet?

(d) Find the standard deviation of the payoffs for X and Y. Which bet has
the larger standard deviation? Interpret what it means to have a large
standard deviation.

Sum of Independent Random Variables

Suppose you have k random variables Xj,..., X;. Each random variable has a

mean g and a standard deviation o. Suppose the random variables are

independent — this means that the probability that one variable, say takes a

value will not be affected by the values of the other random variables. In this
case, it can be shown that the mean and standard deviation of the sum § =

X, + ... + X, will have mean FE(S) = ku and standard deviation

SD(S) = Vko.

(a) It has been shown that if X denotes the roll of a single die, then the
mean and standard deviation of X are given by y = 3.5 and o = 1.71.
Suppose you roll 10 dice and the outcomes of these dice are represented



by Xj,..., Xjo. Using the above result, find the mean and standard
deviation of the sum of these 10 rolls.

(b) Suppose you spin the spinner pictured here five times and record the
sum of the five spins 5. Find the mean and standard deviation of S.
[Hint: First you need to find the mean and standard deviation of X, a
single spin of the spinner. Then you can apply the above result.|

13. Selecting a Coin from a Box
Suppose you select a coin from a box containing 3 nickels, 2 dimes and one
quarter. Let X represent the value of the coin.
(a) Find the probability distribution of X.
(b) Find the mean and standard deviation of X.
(c) Suppose that your instructor will give you twice the value of the coin
that you select, so your profit is ¥ = 2 X. Make intelligent guesses at
the mean and standard deviation of Y.
(d) Check your guesses by actually computing the mean and standard
deviation of Y.
(e) This is an illustration of a general result. If X has mean p and standard
deviation cand Y = ¢ X where c is a positive constant, then the mean of
Y is equal to and the standard deviation of Y is equal to
14. How Many Tries to Open the Door?
You have a ring with four keys, one of which will open your door. Suppose
you try the keys in a random order until you open the door. Let X denote
the number of wrong keys you try before you find the right one. It can be
shown that X has the following distribution.

PX=x)
1/4
1/4
1/4
1/4

w N = Of X




(a) Find the mean and standard deviation of X.

(b) Suppose you record instead Y, the total number of keys you try. Note
that Y = X + 1. Find the probability distribution for ¥ and the mean
and standard deviation.

(c) This is an illustration of a general result. If X has mean u and standard
deviation o and Y = X + ¢ for some constant ¢, then the mean of Y is
equal to and the standard deviation of Y is equal to

15. The Hat Check Problem

Consider the hat check problem described in Section 4.1. Consider the special

case where n = 4 men are checking their hats. If the names of the four men

are represented by the initials A, B, C, D, then you can represent the hats
given to these four men by the arrangements ABCD, ABDC, and so on.

(a) Write down the 24 possible arrangements and find the probability
distribution for X, the number of matches.

(b) Find the probability of no matches.

(¢) Find the expected number of matches.

16. Binomial Experiments

Is each random process described below a binomial experiment? If it is, give

values of n and p. Otherwise, explain why it is not binomial.

(a) Roll a die 20 times and count the number of sixes you roll.

(b) There is a room of 10 women and 10 men — you choose five people from
the room without replacement and count the number of women you
choose.

(c) Same process as part (b) but you sample with replacement instead of
without replacement.

(d) You flip a coin repeatedly until you observe 3 heads.

(e) The spinner below is spun 50 times — you count the number of spins in
the black region.

17. Binomial and Negative Binomial Experiments
Each of the random processes below is a binomial experiment, a negative
binomial experiment, or neither. If the process is binomial, give values of n



and p, and if the process is negative binomial, give values of r and p.

(a) Suppose that 30% of students at a college regularly commute to school.
You sample 15 students and record the number of commuters.

(b) Same scenario as part (a). You continue to sample students until you
find two commuters and record the number of students sampled.

(c) Suppose that a restaurant offers apple and orange juice. From past
experience, the restaurant knows that 30% of the breakfast customers
order apple juice, 50% order orange juice, and 20% order no juice. One
morning, the restaurant has 30 customers and the numbers ordering
apple juice, orange juice, and no juice are recorded.

(d) Same scenario as part (c). The restaurant only records the number
ordering orange juice out of the first 30 customers.

(e) Same scenario as part (c). The restaurant counts the number of
customers that order breakfast until exactly three order apple juice.

(f) Same scenario as part (c). Suppose that from past experience, the
restaurant knows that 40% of the breakfast bills will exceed $10. Of the
first 30 breakfast bills, the number of bills exceeding $10 is observed.

18. Shooting Free Throws

Suppose that Michael Jordan makes 80% of his free throws. Assume he takes

10 free shots during one game.

(a) What is the most likely number of shots he will make?

(b) Find the probability that he makes at least 8 shots.

(c) Find the probability he makes more than 5 shots.

19. Purchasing Audio CDs
Suppose you know that 20% of the audio CD’s sold in China are defective.
You travel to China and you purchase 20 CD’s on your trip.

(a) What is the probability that at least one CD in your purchase is
defective?

(b) What is the probability that between 4 and 7 CD’s are defective?

(¢c) Compute the “average” number of defectives in your purchase.

20. Rolling Five Dice

Suppose you roll five dice and count the number of 1’s you get.

(a) Find the probability you roll exactly two 1’s. Perform an exact
calculation.

(b) Find the probability all the dice are 1’s. Perform an exact calculation.

(c) Find the probability you roll at least two 1’s. Perform an exact
calculation.

21. Choosing Socks from a Drawer
Suppose a drawer contains 10 socks, of which 4 are brown. We select 5 socks
from the drawer with replacement.
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24.
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27.

(a) Find the probability two of the five selected are brown.

(b) Find the probability we choose more brown than non-brown.

(¢) How many brown socks do we expect to select?

(d) Does the answer to part (a) change if we select socks from the drawer
without replacement? Explain.

Choosing Socks from a Drawer

Suppose that we select socks from the drawer with replacement until we see

two that are brown.

(a) Find the probability that it takes us four selections.

(b) Find the probability it takes more than 2 selections.

(¢) How many selections do we expect to make?

Sampling Voters

In your local town, suppose that 60% of the residents are supportive of a

school levy that will be on the ballot in the next election. You take a random

sample of 15 residents.

(a) Find the probability that a majority of the sample support the levy.

(b) How many residents in the sample do you expect will support the levy?

(¢) If you sample the residents one at a time, find the probability that it
will take you five residents to find three that support the levy.

Taking a True/False Test

Suppose you take a true/false test with twenty questions and you guess at

the answers.

(a) Find the probability you pass the test assuming that passing is 60% or
higher correct.

(b) Find the probability you get a B or higher where B is 80% correct.

(C) If you get an 80% on this test, is it reasonable to assume that you were
guessing? Explain.

Bernoulli Experiment

Let X; denote the result of one binomial trial, where X; = 1 if you observe a

success and X; = 0 if you observe a failure. Find the mean and variance of

X;.

Rolling a Die

Suppose we roll a die until we observe a 6. This is a special case of a negative

binomial experiment where r = 1 and p = 1/6. When we are interested in

the number of trials until the first success, this is a geometric experiment and

Y is a geometric random variable.

(a) Find the probability that it takes you 4 rolls to get a 6.

(b) Find the probability that it takes you more than 2 rolls to get a 6.

(¢) How many rolls do you need, on average, to get a 67

Heights of Male Freshmen
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Suppose that one third of male freshmen entering a college are over 6 feet
tall. Four men are randomly assigned to a dorm room. Let X denote the
number of men in this room that are under 6 feet tall. You can ignore the
fact that the actual sampling of men is done without replacement.

(a) Assuming X has a binomial distribution, what is a “success” and give
values of n and p.

(b) What is the most likely value of X? What is the probability of this
value?

(c) Find the probability that at least three men in this room will be under 6
feet tall.

Basketball Shooting

Suppose a basketball player is practicing shots from the free-throw line. She

hasn’t been playing for a while and she becomes more skillful in making

shots as she is practicing. Let X represent the number of shots she makes in

50 attempts. Explain why the binomial distribution should not be used in

finding probabilities about X.

Collecting Posters from Cereal Boxes

Suppose that a cereal box contains one of four posters and you are interested

in collecting a complete set. You first purchase one box of cereal and find

poster #1.

(a) Let X, denote the number of boxes you need to purchase to find a
different poster than #1. Find the expected value of X,.

(b) Once you have found your second poster, say #2, let X; denote the
number of boxes you need to find a different poster than #1 or #2.
Find the expected value of Xj.

(c) Once you have collected posters #1, #2, #3, let X, denote the number
of boxes you need to purchase to get poster #4. Find the expected value
of X,.

(d) How many posters do you need, on average, to get a complete set of
four?

Baseball Hitting

In baseball, it is important for a batter to get “on-base” and batters are rated

in terms of their on-base percentage. In the 2004 baseball season, Bobby

Abreu of the Philadelphia Phillies had 705 “plate appearances” or

opportunities to bat. Suppose we divide his plate appearances into groups of

five — we record the number of times Abreu was on-base for plate
appearances 1 through 5, for 6 through 10, for 11 through 15, and so on. If
we let X denote the number of times on-base for five plate appearances, then

we observe the following counts for X:



X

0 1 2 3 4 5 Total

Count 10 29 44 40 15 3 141

To help understand this table, note that the count for X = 1 is 29 — this
means there were 29 periods where Abreu was on-base exactly one time. The
count for X = 2 is 44 — this means that for 44 periods Abreu was on-base
two times.

Since each outcome is either a success or failure, where success is getting on-
base, one wonders if the variation in these data can be explained by a
binomial distribution.

X

0 1 2 3 4 5 TOTAL

AX=x)

Expected

Count

(a)

Find the probabilities for a binomial distribution with n = 5 and p =
0.443. This value of p is Abreu’s on-base rate for the entire 2004
baseball season. Place these probabilities in the P(X = z) row of the
table.

Multiply the probabilities you found in part (a) by 141, the number of
periods in the 2004 season. Place these numbers in the Expected Count
row of the table. These represent the expected number of times Abreu
would have 0, 1, 2, .., 5 times on-base if the probabilities followed a
binomial distribution.

(c) Compare the expected counts with the actual observed counts in the

first table. Does a binomial distribution provide a good description of
these data?

31. Graphs of Binomial Distributions
Figure 4.6 shows the binomial distributions with n = 20 and p = 0.5 (above)
and n = 20 and p = 0.2 (below).
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FIGURE 4.6
Histograms of two binomial distributions.

Recall in Section 4.4 that if a probability distribution is approximately bell-

shaped, then approximately 68% of the probability falls within one standard

deviation of the mean.

(a) For the binomial distribution with n = 20 and p = 0.5, find the mean u
and standard deviation ¢ and compute the interval (u - o, u + 0).

(b) Find the exact probability that X falls in the interval (u — o, p + 0).

(c) Repeat parts (a) and (b) for the binomial distribution n = 20 and p =
0.2.

(d) For which distribution was the 68% rule more accurate? Does that make
sense based on the shapes of the two distributions?

Guessing on a Test

Students in a statistics class were given a five-question baseball trivia quiz.

On each question, the students had to choose one of two possible answers.

The number correct X was recorded for each student — a count table of the

values of X are shown below.

X=x Count P X=x) Expected
0 0
1 3
2 4
3 7
4 6
5 1

(a) Suppose the students know little about baseball and so they are
guessing on each question. If this is true, find the probability



distribution of the number correct X.
(b) Using this distribution, find the probability of each value of X and place
these probabilities in the above table.
(c) By multiplying these probabilities by the number of students (21), find
the expected number of students for each value of X.
(d) Compare your expected counts with the actual counts — does a binomial
distribution seem like a reasonable assumption in this example?
33. Playing Roulette
Suppose you play the game roulette 20 times. For each game, you place a
Trio Bet on three numbers and you win with probability 3/38.
(a) Find the probability you win the game exactly two times.
(b) Find the probability that you are winless in the 20 games.
(c) Find the probability you win at least once.
(d) How many games do you expect to win?
34. The Galton Board
Consider the Galton board described in Section 4.5. A ball is placed above
the first peg and dropped. When it strikes a peg, it is equally likely to fall
left or right. The location at the bottom X is equal to the number of times
that the ball falls right.
(a) Explain why X has a binomial distribution and give the values of n and
.
(b) Find P(X = 2).
(c) Find the probability the ball falls to the right of the location “1”.
(d) Suppose that we change the experiment so that the probability of falling
right is equal to 1/4. Explain how this changes the binomial experiment
and find P(X = 2).
35. Drug Testing
In a New York Times article “Facing Questions, Rodriguez Raises More?”
(February 21, 2008), Major League Baseball is said to have a drug-testing
policy where 600 tests are randomly given to a group of 1200 professional
ballplayers. Alex Rodriguez claimed one season that he received five random
tests.
(a) If every player is equally likely to receive a single random blood test,
what is the probability that Rodriguez gets tested?
(b) If X represents the number of tests administered to Rodriguez among
the 600 tests, then explain why X has a binomial distribution and give
the values of n and p.
(¢c) Compute the probability that Rodriguez receives exactly one test.
(d) Recall Rodriguez’s claim that he received five random tests. Compute
the probability of this event.
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(e) You should find the probability computed in part (d) to be very small. If
Rodriguez is indeed telling the truth, what do you think about the
randomness of the drug-testing policy?

R Exercises

Peter-Paul Game

(a) Implement the Peter-Paul game simulation as described in the text,
storing 1000 values of the gain variable in the R variable G.

(b) Use the simulated values to estimate the probability P(G > 2).

(c) Estimate the standard deviation of G from the simulated values.

The Hat Check Problem (continued)

Suppose that n = 10 men are checking their hats. It would be too tedious to

write down all 10! = 3, 628, 800 possible arrangements of hats, but it is

straightforward to design a simulation experiment for this problem.

(a) Write a function to mix up the integers 1 through 10 and returning the
number of matches.

(b) Using the function written in part (a), simulate this experiment 1000
times. Approximate the probability of no matches and the expected
number of matches. Compare your answers with the “large sample”
answers given in the introduction to this chapter.

A Random Walk (continued)

Suppose that a person starts at location 0 on the number line and each

minute he is equally likely to take a step to the left and to the right. Let Y

denote the person’s location after four steps.

(a) Write a function to implement one random walk, returning the person’s
location after four steps.

(b) By use of the replicate() function, simulate this random walk for 1000
iterations. Summarize the simulated locations by a mean and standard
deviation.

(c) Make an adjustment to your function so that if the person is currently
at a negative location, the probability he will take a positive step is 0.7,
and likewise if he is at a positive location, the probability he takes a
negative step is 0.7. (If he is at point 0, he is equally likely to take a
negative or positive step.) Simulate this adjusted random walk 1000
iterations. Compute the mean and standard deviation of this new
random walk and compare to the values computed in part (b).

Dice Rolls

(a) Construct a data frame with variables roll1, roll2, ..., rolls, each
containing 1000 simulated rolls of a fair die.



(b) Using the function pmax() as shown below, define a new variable Max
that is equal to the maximum among the five rolls for each of the 1000

iterations.

Max <- pmax(rolll, roll2, roll3, roll4, roll5)

(c) Estimate the probability that the maximum roll is equal to 6.
(d) Estimate the mean and standard deviation of the maximum roll.
40. Binomial Experiments
(a) Suppose 25 percent of the students are commuters. You take a survey of
12 students and count X the number of commuters. Simulate 1000
surveys using the function rbinom(), storing the number of commuters

in these 1000 samples.
(b) Approximate the probability that exactly 3 people in your sample are

commuters.
(¢) Compute the sample mean and standard deviation of the simulated

values and compare with the exact values of the mean u and standard

deviation o.
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Continuous Distributions

5.1 Introduction: A Baseball Spinner Game

The baseball board game All-Star Baseball has been honored as one of the fifty
most influential board games of all time according to the Wikipedia Encyclopedia
(http://en.wikipedia.org). This game is based on a collection of spinner cards,
where one card represents the possible batting accomplishments for a single player.
The game is played by placing a card on a spinner and a spin determines the
batting result for that player.

A spinner card is constructed by use of the statistics collected for a player during
a particular season. To illustrate this process, the table below shows the batting
statistics for the famous player Mickey Mantle for the 1956 baseball season. When
Mantle comes to bat, that is called a plate appearance (PA) — we see from the
table that he had 632 plate appearances this season. There were several events
possible when Mantle came to bat — he could get a single (1B), a double (2B), a
triple (3B), or a home run (HR). Also he could walk (BB), strike out (SO), or get
other type of out.

PA 1B 2B 3B HR BB SO Other OUTS
632 109 22 5 52 99 112 233

The probability of each type of event can be found by dividing each count by the
number of plate appearances. Each probability is converted to an angle on the
spinner by multiplying each probability by the total number of degrees (360). From
these degree measurements, a spinner is constructed, displayed in Figure 5.1, where
the area of each wedge of the circle is proportional to the probability of that event
occurring. A single plate appearance of Mickey Mantle can be simulated by
spinning the spinner and observing the batting event.


http://en.wikipedia.org/
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FIGURE 5.1
Spinner constructed based on Mantle’s statistics.
PA 1B 2B 3B HR BB SO Other OUTS
632 109 22 5 52 99 112 233
Probability 0.172 0.035 0.008 0.082 0.157 0.177 0.369
Degrees in spinner 62 13 3 30 57 64 133

The binomial described in Chapter 4 is an example of a discrete random variable
which takes on only values in a list, such as {0, 1,..., 10}. How can one think about
probabilities where the random variable is not discrete? As a simple example,
consider the experiment of spinning the spinner in Figure 5.2 where the random
variable X is the recorded location. Here X is a continuous random variable that
can take on any value between 0 and 100.

100/0

75 25

90

FIGURE 5.2
A spinner with continuous random outcomes.



In this chapter, probabilities for a continuous random variable will be shown to
be represented by means of a smooth curve where the probability that X falls in a
given interval is equal to an area under the curve. Through a series of examples, we
will illustrate probability calculations for this type of random variables.

5.2 The Uniform Distribution

Consider the spinner experiment described in Section 5.1 where the location of the
spinner X can be any number between 0 and 100. Our computer simulated
spinning this spinner 20 times with the following results (rounded to the nearest
tenth):

95.0 23.1 60.7 48.6 89.1 76.2 45.6 1.9 93.5 91.7
82.1 44.5 61.5 79.2 922 73.8 17.6 40.6 41.0 89.4

A histogram of these values of X is shown in the Figure 5.3.
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FIGURE 5.3
Histogram of 20 simulated values of a spinner.

Although one thinks that any spin between 0 and 100 is equally likely to occur,
there does not appear to be any obvious shape of this histogram. But the spinner
was only spun 20 times. Let’s try spinning 1000 times— a histogram of the spins is
shown in Figure 5.4.
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FIGURE 5.4
Histogram of 1000 simulated values of the spinner.

Note that since there is a large sample of values, a small interval width was
chosen for each bin in the histogram. Now a clearer shape in the histogram can be
seen — although there is variation in the bar heights, the general shape of the
histogram seems to be pretty flat or uniform over the entire interval of possible
values of X between 0 and 100.

Suppose one was able to spin the spinner a large number of times. If one does
this, then the shape of the histogram looks close to the uniform density shown in
Figure 5.5.

0 75 50 75 100
Spin

FIGURE 5.5
Shape of the histogram for a large number of simulated values of the spinner.

When the random variable X is continuous, such as the case of the spinner result
here, then one represents probabilities by means of a smooth curve that is called a
density curve; more formally, a probability density curve. How does one find



probabilities? When X is continuous, then probabilities are represented by areas
under the density curve.

As a simple example, what is the chance that the spinner result falls between 0
and 1007 Since the scale of the spinner is from 0 to 100, one knows that all spins
must fall in this interval, so the probability of X landing in (0, 100) is 1. This
probability is represented by the total area under the flat line between 0 and 100.
Since the area of this rectangle is given by height times base, and the base is equal
to 100, the height of this density curve must be 1/100 = 0.01. This is the value
that should replace the “?” in Figure 5.5. In this case, one says that the spinner
result has a uniform distribution and the curve is a uniform density.

By means of similar area computations, one finds other probabilities about the
spinner location X.

1. What is the probability the spin falls between 20 and 607 That is, what is
P(20 < X < 60)?

This probability is equal to the shaded area under the uniform density
between 20 and 60. See Figure 5.6. Using again the formula for the area of a
rectangle, the base is 60 — 20 = 40 and the height is 0.01, so

P(20 < X < 60) = 40(0.01) = 0.4.

2. What is the probability the spin is greater than 807 That is, what is P(X >
80)7 Figure 5.7 shows the area that needs to be computed to find this
probability. Note that the area under the curve only between the values 80
and 100 is shaded, since X cannot be larger than 100. Again by finding the
area of the shaded rectangle, we see that P(X > 80) = 20 (0.01) = 0.2.

P(20 < X < 60)

I

Density

0.005-

0.000-

Spin



FIGURE 5.6
Tllustration of finding the probability of P(20 < X < 60).

P(X > 80)
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FIGURE 5.7
Illustration of finding the probability of P(X > 80).

R Simulating from a Uniform Density
The R function runif() is helpful for simulating from a uniform density. The
arguments are the number of simulations and the minimum and maximum value of

the support of the density. Below 50 values of a random spinner are simulated that
fall uniformly on the interval from 0 to 50. The histogram in Figure 5.8 graphs

these simulated spins with the uniform density drawn on top.
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FIGURE 5.8
Histogram of 50 simulated uniform values.



spins <- runif(50, min = 0, max = 50)

5.3 Probability Density: Waiting for a Bus

Consider a random experiment where a continuous random variable X is observed
such as the location of the spinner in Section 5.2. Define the support of X to be the
set of possible values for X. For example, the support of X for the spinner example
is the interval (0, 100). To describe probabilities about X, a density function
denoted by f(z) is defined. Any function f will not work — one requires that f satisfy
two properties:

Property 1. The probability density f must be nonnegative which means that

f(z) > 0,for all z. (5.1)

Property 2. The total area under the probability density curve f must be equal to
1. Mathematically,

/_ f(z)dx = 1. (5.2)

To illustrate a probability density, suppose that a professor has a class that
meets three times a week. To get to class, the professor walks and waits for a bus
to go to school. From past experience, the professor knows that she can wait any
time between 0 and 10 minutes for the bus, and she knows that each waiting time
between 0 and 10 minutes is equally likely.

For a given week, what’s the chance that her longest wait will be under 7
minutes?

Let W denote her longest waiting time for the week. One can show that the
density for W is given by

3w?
=Y 0<w< 10.
flw) = {55970 <@

This density for this longest waiting time is shown in Figure 5.9.
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FIGURE 5.9
Density curve for the longest waiting time W.

Before we go any further, we should check if this is indeed a legitimate
probability density:

1. Note from the graph that the density does not take on negative values, so the
first property is satisfied.

2. Second, for it to be a probability density, the entire area under the curve must
be equal to 1. One can check this by finding the integral of the density
between 0 and 10 (the region where the density is positive):

[P o O,
o 1000 1000 1000 1000

The entire area under the curve is indeed equal to 1, so f is a legitimate
probability density. Now that fis known to be a probability density, one can use it
to find probabilities. To find the probability that this longest waiting time is less
than 7 minutes, P(W < 7), one wishes to compute the area under the density curve
between 0 and 7, as shown in Figure 5.10.
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FIGURE 5.10
Density curve for the longest waiting time W, and AW < 7).

This is equivalent to the integral
7 2
3w
—d
/O 1000 %

and, by evaluating this, one obtains the probability

7 2 3 3 3
/—3“’ dw = 2|7 — T Y s
. 1000 1000 1° = 1000 1000

Suppose one is interested in the probability that the longest waiting time is
between 6 and 8 minutes. This is represented by the shaded area in Figure 5.11.
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FIGURE 5.11
Density curve for the longest waiting time W, and P(6 < W< 8).

To compute this area, one finds the integral of the density between 6 and &:
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R Simulating Waiting Times
Recall that the waiting time variable W was defined as the longest waiting time
for the week where each of the separate waiting times has a uniform distribution

from 0 to 10 minutes. By simulating the process, one simulates values of W. By use
of three applications of runif() one simulates 1000 waiting times for Monday,

Wednesday, and Friday. The pmax() function is used to simulate the longest waiting

time for each group of waiting times.

wait_monday <- runif (1000, min = 0, max = 10)

wait_wednesday <- runif (1000, min = 0, max = 10)

wait_friday <- runif(1000, min = 0, max = 10)
longest_wait <- pmax(wait_monday,
wait_wednesday,

wait_friday)

Figure 5.12 shows 1000 simulated values of W and the density function 3u?/1000
is drawn on top. It appears that the histogram is a good match to the actual

density function.
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FIGURE 5.12
Histogram of 1000 simulated values of W with the density function drawn on top.

5.4 The Cumulative Distribution Function



To find any probability about the maximum waiting time, one computes an area
under the curve that is equivalent to integrating the density curve over a region.
But there is a basic function that can be computed at the beginning that will

simplify these probability computations.
Choose an arbitrary point x — the cumulative distribution function at z, or cdf

for short, is the probability that W is less than or equal to z:
T
F(z) =P(W <z)= / f(w)dw. (5.3)
—00

Here suppose one chooses a value of z in the interval (0, 10). Then F(z) would be
the area under the density curve between 0 and z shown in Figure 5.13.
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FIGURE 5.13
Iustration of the cumulative density function.

Writing this area as an integral, one computes F(z) as

3w? w? x3

F(a:):P(Wga:):/ B = Y e
o 1000 1000

"~ 1000
This formula is valid for any value of x in the interval (0, 10).
In fact, F(z) is defined for all values of x on the real line.

e If z is a value smaller than or equal to 0, then we see from the figure that the
probability that W is smaller than z is equal to 0. So F(z) = 0 for z < 0.



e On the other hand, if x is greater than or equal to 10, then the probability
that W is smaller than zis 1. So F(z) = 1 for z > 10.

Putting all together, one sees that the cdf F'is given by

[0, x <0
F(z) =1 2%/1000, 0< z < 10
-1, x > 10,
illustrated in Figure 5.14.
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FIGURE 5.14
The cumulative density function, F{(x), of the bus waiting example.

Finding probabilities using the CDF

Once we have computed the cdf function F, probabilities are found simply by
evaluating F' at different points. Fortunately, no additional integration is needed.

For example, to find the probability that the maximum waiting time W is less
than equal to 6 minutes, one just computes F(6) = P(W < 6) = 63/1000 = 0.216
which is shown in Figure 5.15.



1,00~
Finding F(6) = P(W <= 6)

& 050-

]

0.25-

o001 ________d____,aagfffifw

0

-1
Waiting Time
FIGURE 5.15
The cumulative density function F(x) and evaluation of F{6) = AW < 6).

To compute the probability that the maximum waiting time exceeds 8 minutes,
first note that “exceeding 8 minutes” is the complement event to “less than or equal
to 8 minutes”, and so

83
PW>8)=1-PW<8=1-FB8)=1—-— —— =0.488.
1000
Likewise, if one is interested in the chance that the waiting time W falls between 2
and 4, represent the probability as the difference of two “less-than” probabilities,
and then subtract the two values of F.

43 23

= 7000 1000 _ O0%6

P(2<W <4)=P(W < 4)— P(W < 2) = F(4) — F(2)

R Computing Probabilities by Simulation

For the waiting for a bus example, the variable longest_wait contains 1000
simulated values of our longest waiting time. This sample is used to compute
approximate probabilities. To illustrate, to find the probability that the longest
wait exceeds 8 minutes, one finds the proportion of simulated values of W that
exceeds 8.

mean( longest_wait > 8)
[1] 0.502




In a similar fashion one approximates the probability that a longest waiting time
falls between 6 and 10 minutes.

mean(longest_wait > 6 & longest_wait < 10)
[1] ©.798

5.5 Summarizing a Continuous Random Variable

Mean and standard deviation

One is interested in summarizing a continuous random variable. Natural summaries
are given by the mean y and the standard deviation o, where these quantities are
defined in a similar manner as for a discrete random variable, with the exception
that summations are replaced by integrals.

The mean p, or equivalently the expected value of X, is given by

p=E(X) = /_OO zf(z)dw. (5.4)

o0

Just as in the discrete random variable case, there is an attractive interpretation of
u. If one is able to observe a large number of values of X, then p will be
approximately equal to the sample mean X of these random values of X.

To define the spread of the values of X, one first computes the average squared
deviation about the mean, the variance,

o0

0’ =Var(X) = BE(X — p)* = / (z — p)*f(z)dz. (55)

—0o0

The standard deviation of X, o, is defined to be the square root of the variance.
Let’s illustrate the computation of the mean and standard deviation for the bus
waiting time problem. Using the definition of f, one gets that the mean is equal to

_/10 3.’132 q
#= 1, “\ 1000 )"



Performing the integration, one gets

10 2 4 4
3 3 3(10
,uz/ o 2 )dz = — ‘(1)0: (10) = T7.5.
0 1000 4000 1000
On, the average, one expects the longest wait in a week to be 7.5 minutes.
The computation of the variance is a bit more tedious, but straightforward.

10 2
3z
2 _ —_ 2 e
o —/0 (x —p) (1000>dm 3.75.

So the standard deviation of X is o0 = \/3.75 =1.94.

R Computing the Mean and Standard Deviation by Simulation

Earlier, we demonstrated simulating 1000 values of the longest waiting time W.
To check the computations of the mean u and standard deviation o, one computes
the sample mean and standard deviation of the simulated values.

mean( longest_wait)
[1] 7.581979
sd(longest_wait)
[1] 1.878144

One sees that these empirical values are close approximations to the exact values
u="7.5and o= 194

Percentiles

Another useful summary of a continuous random variable is a percentile. The 70th
percentile, for example, is the value of X, call it x, such that 70% of the probability
is to the left, shown in Figure 5.16. That is, the 70th percentile, call it z,,, satisfies
the equation
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FIGURE 5.16
Illustration of the 70th percentile.

Since one recognizes the left hand side of the equation as equivalent to the cdf F
(which already has been computed as 23/1000), the equation is written as

F(:L‘m) = 0.70,
that is,
3
Lo
1000 0.70

To find the 70th percentile, the above equation is solved for z,, — after some

algebra, we get

T70 — \/3 700 = 8.88.

This means that approximately 70% of the longest waiting times will be shorter
than 8.88 minutes over a duration of many weeks.

R Computing Percentiles by Simulation

For the waiting for a bus example, the variable longest_wait contains 1000

simulated values of our longest waiting time. This sample is used to compute
approximate percentiles by computing sample percentiles of the simulated values.
For example, by use of the quantile() function, one finds that the 10th and 90th

percentiles of W are approximately 4.80 and 9.66 minutes.



guantile(longest_wait, c(0.1, 0.9))
10\% 90\%
4.,798759 9.661885

The probability a longest waiting time is between 4.79 and 9.66 minutes is
approximately 0.80.

5.6 Normal Distribution

Normal probability curve

One of the most popular races in the United States is marathon, a grueling 26-mile
run. Most people are familiar with the Boston Marathon that is held in Boston,
Massachusetts every April. But other cities in the U.S. hold yearly marathons.
Here we look at data collected from Grandma’s Marathon that is held in Duluth,
Minnesota every June.

In the year 2003, there were 2515 women who completed Grandma’s Marathon.
The completion times in minutes for all of these women can be downloaded from
the marathon’s website. A histogram of these times, measured in minutes, is shown
in Figure 5.17.

=
- “‘I
J-:me i 350
FIGURE 5.17

Histogram of women’s completion times in the Grandma’s Marathon.

Note that these measured times have a bell shape. Figure 5.18 superimposes a
normal curve on top of this histogram. Note that this curve is a pretty good match



to the histogram. In fact, data like this marathon time data that are measurements

are often well approximated by a normal curve.
300 350
FIGURE 5.18

Histogram of women’s completion times in the Grandma’s Marathon, with a normal curve on top.
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A normal density curve has the general form

1 - 2
f(z) = exp{—(m2—2'u)}, —00 < x < 00. (5.6)
V2o o

This density curve is described by two parameters — the mean p and the standard
deviation 0. The mean pu is the center of the curve. Looking at the normal curve
above, one sees that the curve is centered about 270 minutes — actually the mean
of the normal curve is ¢ = 274. The number o, the standard deviation, describes
the spread of the curve. Here the normal curve standard deviation is o = 43. If one
knows the mean and standard deviation of the normal curve, one can make
reasonable predictions where the majority of times of the women runners will fall.

Early use of the Normal curve

The famous normal curve was independently discovered by several scientists.
Abraham De Moivre in the 18th century showed that a binomial probability for a
large number of trials n could be approximated by a normal curve. Pierre Simon
Laplace and Carl Friedrich Gauss also made important discoveries about this
curve. By the 19th century, it was believed by some scientists such as Adolphe
Quetelet that the normal curve would represent the distribution of any group of



homogeneous measurements. To illustrate his thinking, Quetelet considered the
frequency measurements for the chest circumference measurements (in inches) for
5738 Scottish soldiers taken from the FEdinburgh Medical and Surgical Journal
(1817). A histogram of the chest measurements is shown in Figure 5.19. Quetelet’s
beliefs were a bit incorrect — any group of measurements will not necessarily be
normal-shaped. However, it is generally true that a distribution of physical
measurements from a homogeneous group, say heights of American women or foot
lengths of Chinese men will generally have this bell shape.
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FIGURE 5.19
Histogram of chest circumference measurements of Scottish soldiers.

In the previous sections of this chapter, the notion of a continuous random
variable was introduced. Here the normal curve is introduced that is a popular
model for representing the distribution of a measurement random variable. Also it
will be seen that the normal curve is helpful for computing binomial probabilities
and for representing the distributions of means taken from a random sample.

Computing normal probabilities

Suppose that the normal density with p = 274 minutes and o= 43 minutes
represents the distribution of women racing times. Say one is interested in the
probability that a runner completes the race less than 4 hours or 240 minutes. One
computes this probability by finding an area under the normal curve. Specifically,
as indicated in Figure 5.20, this probability is the area under the curve for all
times less than 240 minutes.
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FIGURE 5.20
Normal density with g = 274 and o= 43, with illustration of the area under the curve less than 240 (minutes).

R Normal Probability Calculations

One expresses this area as the integral

240 2
P(X < 240) = exp{—%—zu)}daz
—o0 V2mo o

but unfortunately one cannot integrate this function analytically (as was done for a
uniform density) to find the probability. Instead one finds this area by use of the R
pnorm() function in R. This function is used for three examples, illustrating the

computation of three types of areas.

Returning to our example, recall that the marathon times were approximately

normally distributed with mean p = 274 and standard deviation o = 43.

1. Finding a “less than” area. Suppose one is interested in the probability

that a woman marathon runner completes the race in under 240 minutes.
That is, one wishes to find P(X < 240) which is the area under the normal
curve to the left of 240. The function value pnorm(x, m, s) gives the value of

the cdf of a normal random variable with mean y = a and o0 = s evaluated at

the value z. For our example, the mean and standard deviation are given by

274 and 43, respectively, so the desired probability is given by

pnorm(240, 274, 43)
[1] 0.2145602




2. Finding a “between two values” area. Suppose one is interested in
computing the probability that a marathon runner completes a race between
two values, such as P(230 < X < 280), shown in Figure 5.21.

One writes this probability as the difference of two “less than” probabilities:

P(230 < X < 280) = P(X < 280) — P(X < 230)
— F(280) — F(230),

where F(z) is the cdf of a Normal(274, 43) random variable evaluated at z.
Therefore, by use of the pnorm() function, this probability is equal to
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FIGURE 5.21

Normal density with y = 274 and o= 43, with illustration of the area under the curve between 230 and 280
(minutes).

pnorm(280, 274, 43) - pnorm(230, 274, 43)
[1] 0.4023928

3. Finding a ‘“greater than” area. Last, sometimes one will be interested in
the probability that X is greater than some value, such as P(X > 300), the
probability a runner takes more than 300 minutes to complete the race, shown
in Figure 5.22.

This probability is found by the complement property of probability, that

P(X > 300) =1— P(X < 300)
—1— F(300).



Therefore, one uses the pnorm() function to compute the probability that X is
smaller than 300, and then subtract the answer from 1.
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FIGURE 5.22
Normal density with u = 274 and o= 43, with illustration of the area under the curve greater than 300

(minutes).

1 - pnorm(300, 274, 43)
[1] 0.2727054

Computing Normal percentiles

In the marathon completion times example, we were interested in computing a
probability that was equivalent to finding an area under the normal curve. A
different problem is to compute a percentile of the distribution. In the marathon
example, suppose that t-shirts will be given away to the runners who get the 25%
fastest times. How fast does a runner need to run the race to get a t-shirt?

Here one wishes to compute the 25th percentile of the distribution of times. This
is a time, call it zy5, such that 25% of all times are smaller than zy5. This is shown

graphically in Figure 5.23.
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FIGURE 5.23
Normal density with g = 274 and o= 43, with illustration of the 25th percentile.

Equivalently, we wish to find the value zy5 such that
P(X S 3325) == F($25) = 0.25.

R Calculating Normal Percentiles

Percentiles of a normal curve are conveniently computed in R by use of the
gnorm() function. Specifically, gnorm(p, m, s) gives the percentile of a Normal(m,
s) curve corresponding to a “left area” of p. In our example, the value of p is 0.25,
and so the 25th percentile of the running times (with mean 274 minutes and
standard deviation 43 minutes) is computed to be

gnorm(0.25, 274, 43)
[1] 244.9969

This means one needs to run faster (fewer than 245.0 minutes) to get a t-shirt in
this competition.

Suppose one needs to complete the race faster than 10% of the runners to be
invited to run in the race the following year. How fast does one need to run? If one
wishes to have a 10% of the times to be larger than one’s time, this means that
90% of the times will be smaller than one’s time. That is, one wishes to find the
90th percentile, zq, of the normal distribution, shown in Figure 5.24.
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FIGURE 5.24
Normal density with u =274 and o= 43, with illustration of the 90th percentile.

gnorm(0.90, 274, 43)
[1] 329.1067

So 329 minutes is the time to beat if one wishes to be invited to participate in
next year’s race.

5.7 Binomial Probabilities and the Normal Curve

The normal curve is useful for modeling batches of data, especially when one is
collecting measurements of some process. But the normal curve actually has a
more important justification. We will explore several important results about the
pattern of binomial probabilities and sample means and we will find these results
useful in our introduction to statistical inference.

First, consider different shapes of binomial distributions. Suppose that half of
one’s student body is female and one plans on taking a sample survey of n students
to learn if they are interested in using a new recreational sports complex that is
proposed. Let X denote the number of females in the sample. Assuming a random
sample is chosen, it is known that X will be distributed binomial with parameters
n and p = 1/2. What is the shape of the binomial probabilities? Figure 5.25
displays the binomial probabilities for sample sizes n = 10, 20, 50, and 100.
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FIGURE 5.25

Binomial probabilities for sample sizes n= 10, 20, 50, and 100, and success probability p = 1/2.

What does one notice about these probability graphs? First, note that each
distribution is symmetric about the mean p = n p. But, more interesting, the
shape of the distribution seems to resemble a normal curve as the number of trials
n increases.

Perhaps this pattern happens since one started with a binomial distribution with
p = 0.5 and one would not see this behavior if a different value of p was used.
Suppose that only 10% of all students would use the new facility and let X denote
the number of students in your sample who say they would use the facility. The
random variable X would be distributed binomial with parameters n and p = 0.1.
Figure 5.26 shows the probability distributions again for the sample sizes n = 10,
20, 50, and 100. As one might expect the shapes of the probabilities for n=10 are
not very normal-shaped — the distribution is skewed right. But, note that as n
increases, the probabilities become more normal-shaped and the normal curve
seems to be a good match for n = 100.
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Binomial probabilities for sample sizes n= 10, 20, 50, and 100, and success probability p = 0.1.

Figures 5.25 and 5.26 illustrate a basic result: if one has a binomial random
variable X with n trials and probability of success p, then, as the number of trials
n approaches infinity, the distribution of the standardized score

X —np
L= — (5.7)
np(1l — p)

approaches a standard normal random variable, that is a normal distribution with
mean 0 and standard deviation 1. This is a very useful result. It means, that for a
large number of trials, one can approximate a binomial random variable X by a
normal random variable with mean and standard deviation

p=mnp, oc=4/np(l—p). (5.8)

This approximation result can be illustrated with our student survey example.
Suppose that 10% of the student body would use the new recreational sports



complex. One takes a random sample of 100 students — what’s the probability
that 5 or fewer students in the sample would use the new facility?

The random variable X in this problem is the number of students in the sample
that would use the facility. This random variable has a binomial distribution with
n = 100 and p = 0.1 that is pictured as a histogram in Figure 5.27. By the
approximation result, this distribution is approximated by a normal curve with yu =
100 (0.1) = 10 and o = 4/100(0.1)(0.9) = 3. This normal curve is placed on top of
the probability histogram in Figure 5.27 — note that it is a pretty good fit to the
histogram.
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FIGURE 5.27
Histogram of binomial probabilities with the approximated normal curve on top.

R Binomial Computations Using a Normal Curve

One is interested in the probability that at most 5 students use the facility, that is,
P(X < 5). This probability is approximated by the area under a Normal(10, 3)
curve between X = 0 and X = 5. Using the R pnorm() function, we compute this

normal curve area to be

pnorm(5, 10, 3) - pnorm(©, 10, 3)
[1] 0.04736129

In this case, one can also find this probability exactly by a calculator or
computer program that computes binomial probabilities. Using the pbinom()
function, we find the probability that X is at most 5 is



pbinom(5, size = 100, prob = 0.10)
[1] 0.05757689

Normal approximation gives a similar answer to the exact binomial computation.

5.8 Sampling Distribution of the Mean

We have seen that binomial probabilities are well-approximated by a normal curve
when the number of trials is large. There is a more general result about the shape
of sample means that are taken from any population.

To begin our discussion about the sampling behavior of means, suppose one has
a jar filled with a variety of candies of different weights. One is interested in
learning about the mean weight of a candy in the jar. One could obtain the mean
weight by measuring the weight for every single candy in the jar, and then finding
the mean of these measurements. But that could be a lot of work. Instead of
weighing all of the candies, suppose one selects a random sample of 10 candies
from the jar and finds the mean of the weights of these 10 candies. What has one
learned about the mean weight of all candies from this sample information?

To answer this type of question, one assumes he or she knows the weights of all
candies in the jar and examines the pattern of means obtained after taking random
samples from the jar.

The group of items (here, candies) of interest is called the population. Assume
first that one knows the population — that is, we know exactly the weights of all
candies in the jar. There are five types of candies — Table 5.1 gives the weight of
each type of candy (in grams) and the proportion of candies of that type.

TABLE 5.1
Weights (in grams) and proportions of 5 types of candies.
Weight Proportion

fruity square 2 0.15
milk maid 5 0.35
jelly nougat 8 0.20
caramel 14 0.15
candy bars 18 0.15

Let X denote the weight of a randomly selected candy from the jar. Note that X
is a discrete random variable with the probability distribution given in Table 5.1.
This distribution is summarized by computing a mean p and a standard deviation



0. The reader can verify in the end-of-chapter exercises that p = 8.4500 and o =
5.3617. So if one was really able to weigh each candy in the jar, one would find the
mean weight to be 8.45 gm.

Suppose a random sample of 10 candies is selected with replacement from the jar

and the mean is computed. Note that this is called the sample mean X to
distinguish it from the population mean pu.

R Sampling Candies

This sampling can be simulated using the following R code. The distribution of
candies is stored in the vectors weights and proportion. By use of the sample()
function, one obtains the following candy weights:

weights <- c¢(2, 5, 8, 14, 18)

proportion <- c(.15, .35, .2, .15, .15)

sample(weights, size = 10, prob = proportion, replace = TRUE)
[1] 585 14 5 18 8 18 5 8

One computes the sample mean

X=(5+8+5+14+5+18+8+18+5+8)/10 = 9.4 gm.

Suppose this process is repeated two more times — in the second sample, one

obtains X= 6.9 gm and in the third sample, one obtains X= 8.8 gm. The three
sample mean values are plotted in Figure 5.28.
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FIGURE 5.28

Graph of 3 sample means from 10 randomly selected candies.

Suppose that one continues to take random samples of 10 candies from the jar
and plot the values of the sample means on a graph — one obtains the sampling



distribution of the mean X, shown in Figure 5.29.
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FIGURE 5.29
Histogram of the sampling distribution of the mean X.

Note that there is an interesting pattern of these sample means — they appear to
have a normal shape. This motivates an amazing result, called the Central Limit
Theorem, about the pattern of sample means. If one takes sample means from any
population with mean u and standard deviation o, then the sampling distribution
of the means (for large enough sample size) will be approximately normally
distributed with mean and standard deviation

E(X) = p, SD(X) = % 59)

Let’s illustrate this result for our candy example. Recall that the population of
candy weights had a mean and standard deviation given by p = 8.45 and o = 5.36,
respectively. If one takes samples of size n = 10, then, by this result, the sample
mean X will be approximately normally distributed where

i} . 5.6
E(X) =845, SD(X)=—— = 1.69.
V10

This normal curve is drawn on top of the histogram of sample means, shown in
Figure 5.30.
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Histogram of the sampling distribution of the mean X, with approximated normal curve on top.
There are two important points to mention about this result.

1. First the expected value of the sample means, E(X) , is equal to the
population mean p. When one takes a random sample, it is possible that the
sample mean X is far away from the population mean u. But, if one takes
many random samples, then, on the average, the sample mean will be close to
the population mean.

2. Second, note that the spread of the sample means, as measured by the
standard deviation, is equal to o/+/n. Since the spread of the population is o,
note that the spread of the sample means will be smaller than the spread of
the population. Moreover, if one takes random samples of a larger size, then
the spread of the sample means will decrease.

The second point can be illustrated in the context of our candy example. Above,
we selected random samples of size n = 10 and computed the sample means.
Suppose instead one selected repeated samples of size n = 25 from the candy jar —
how does the sampling distribution of means change?

Using R, one can simulate the process of taking samples of size 25 — histograms
of the sample means are shown in Figure 5.31. By the Central Limit Theorem, the
sample means will be approximately normal-shaped with mean and standard
deviation
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Histogram of the sampling distribution of the mean X, with sample sizes n= 10 and n = 25.

Comparing the n = 10 sample means with the n = 25 sample means in Figure
5.31, what’s the difference? Both sets of sample means are normally distributed
with an average equal to the population mean. But the n = 25 sample means have
a smaller spread — this means that as you take bigger samples, the sample mean X
is more likely to be close to the population mean u. The simulation is left as an
end-of-chapter exercise.

The Central Limit Theorem works for any population

We illustrate the Central Limit Theorem for a second example where the
population has a distinctive non-normal shape. At one university, many of the
students’ hometowns are within 40 miles of the school. There also are a large
number of students whose homes are between 80-120 miles of the university. Given
the population of “distances of home” of all students, it is interesting to see what
happens when we take random samples from this population.

If we let X denote “distance from home”, imagine that the population of
distances is described by the continuous density curve in Figure 5.32. Two humps
can be seen in this density — these correspond to the large number of students
whose homes are in the ranges 0 to 40 miles and 70 to 130 miles. Suppose the
mean and standard deviation of this population are given by p = 60 miles and o =
41.6 miles, respectively.
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FIGURE 5.32
Density curve of the population of distances.

Now imagine that one takes a random sample of n students from this population
and computes the sample mean from this sample. For example, suppose one takes
a random sample of 20 students and collect the distances from home from these
students — once one has collected the 20 distances, one computes the sample mean

X. Here are two samples and the values of X :

Sample 1:
102 22 23 24 114 102 114 102 22 19
88 31 30 100 111 1605 165 17 100 21
xbar =67.6 mi.

Sample 2:
12 127 33 34 73 19 111 99 16 20
22 16 24 62 22 76 91 115 117 93
xbar =59.1 mi.

If this sampling process is repeated many times, what will the distribution of
sample means look like? Also, what is the effect of the sample size n? To answer
this question, one can let the computer simulate repeated samples of sizes n = 1, n
= 2, n=2>5, and n = 20. The histograms in Figure 5.33 show the distributions of

sample means for the four sample sizes.
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As one might expect, if samples of size 1 are selected, our sample means look
just like the original population. If samples of size 2 are selected, then the sample
means have a funny three-hump distribution. But, note as one takes samples of
larger sizes, the sampling distribution of means looks more like a normal curve.
This is what one expects from the Central Limit Theorem result — no matter what
the population shape, the distribution of the sample means will be approximately
normal if the sample size is large enough.

What is the distribution of the sample means when we take samples of size n =
20?7 One just applies the Central Limit Theorem result. The sample means will be
approximately normal with mean and standard deviation

— — g
E(X)=up, SD(X) = Tn (5.10)

Since one knows the mean and standard deviation of the population and the
sample size, one just substitute these quantities and obtains

416
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E(X) = 60, SD(X) 9.3,

These results can be used to answer some questions.



1. What is the probability that a student’s distance from home is

between 40 and 60 miles?
Actually this is a difficult question to answer exactly, since one does not know
the exact shape of the population. But, looking at the graph of the
population, one sees that the curve takes on very small values between 40 and
60 miles. So this probability is close to zero — very few students live between
40 and 60 miles from our school.

2. What is the probability that, if one takes a sample of 20 students,

the mean distance from home for these 20 students is between 40
and 60 miles?
This is a different question than the first one. This question is asking about
the chance that the sample mean falls between 40 and 60 miles. Since the
sampling distribution of X is approximately normal with mean 60 and
standard deviation 9.3, one can compute this by using R. Using the pnorm()
function, one obtains

pnorm(60, 60, 9.3) - pnorm(40, 60, 9.3)
[1] ©.4842436

It is interesting to note that although it is unlikely for students to live between
40 and 60 miles from the school, it is pretty likely for the sample mean for a
group of 20 students to fall between 40 and 60 miles.

3. What is the probability that the mean distance exceeds 100 miles?
Here one wants to find the probability that X is greater than 100, that is
P(X > 100). Using R, one computes

1 - pnorm(100, 60, 9.3)
[[1] 8.498565e-06

This probability is essentially zero, which means that it is highly unlikely that
a sample mean of 20 student distances will exceed 100 miles.

5.9 Exercises

1. Waiting at a ATM Machine
You are waiting at your local ATM machine and as usual, you are waiting in a
line. Suppose you know that your waiting time can be between 0 to 5 minutes



and any value between 0 and 5 minutes is equally likely.
(a) The graph below shows the density function for X, the waiting time.
What is the height of this function?

2 3
X = Wailing Time

(b) Find the probability you wait more than 2 minutes.
(c¢) Find the probability you wait between 2 and 3 minutes.

2. Morning Wake-Up
Suppose you wake up at a random time in the morning between 6 am and 12
pm.

(a) Find the probability you wake up before 11 am.

(b) Find the probability you wake up between 8 and 10 am.

(c) What is an “average” or typical time you will wake up? Explain how you
computed this number.
(d) Find the standard deviation of the time.

3. The Median Waiting Time
In the “waiting for a bus” example in Section 5.3, suppose that you record the
median time 7' (in minutes) that you wait for the bus on the three days. The
density function for this median time is given by

6t(10 — ¢t
P P Sl R T
1000

(a) Draw a graph of this density function.
(b) Find the probability that the median time is between 5 and 7 minutes.
(c¢) Find the cdf F(t) for all values of ¢.
(d) Using the cdf you found in part c, find the probability the median time is
over 6 minutes.
(e) Find the 75% percentile of your median waiting time.
4. The Sum of Two Spins



Suppose you spin two spinners, where the location of the arrow for each
spinner is equally likely to fall between 0 and 10.

10/0
SPINNER 1

7.5 25

5

10/0
SPINNER 2

7.5 25

5

If you let § be the sum of the two spins, it can be shown that the density

function of S is given by

s/100,
f(s) = {(20 — 5)/100,

and shown by the figure below.
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(a) Check that this function satisfies the two properties of a probability

density function.

(b) Find the probability the sum of the two spins is smaller than 5.

(c¢) Find the cdf function F.

(d) Using the cdf function, find the probability the sum of spins falls between

8 and 12.

(e) Using the cdf function, find the probability the sum of spins exceeds 12.

5. Salaries for Professional Basketball Players
Let X denote the salary (in millions of dollars) of a professional basketball
player. A reasonable density function for X is given by



shown by the figure below.
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(a) What proportion of basketball players earn more than 1 million dollars?
(b) What proportion of players earn between 1 and 2 million dollars?

(c¢) Find the cdf function.

(d) Using the cdf function, find the probability a player earns less than one-

half a million dollars.
(e) Find the “average” salary of a NBA player.
6. Grading on a Curve

Suppose the grades on a math test are distributed according to the curve.

T

f(w):m

,0 <z < 100.
(a) Draw a graph of this density curve.
(b) Find the mean grade on this test.
(¢) What proportion of students who take this test get a grade of 90 or
higher?
(d) What proportion of students get a C grade, where C is defined to be
between 70 and 807
(e) Is this test harder or easier than the test grades in your statistics class?
Explain.
7. Time to Clean Your Room
Suppose the time that it takes you to clean your room (in hours) is a random
variable X with the cdf function given below. A graph of the cdf is also shown.



[0, z<0
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(a) Find the probability you can clean your room in under one hour.

(b) Find the probability it takes you over one and a half hour to clean your
room?

(c) Using the graph, find a value M such that it is equally likely that X is
smaller than M and X is larger than M. [Hint: M is the 50th percentile of
X|

8. Time to Complete a Race
Suppose a group of children are running a race. The times (in minutes) that
the children complete the race can be described by the density function

)2
f(m):#’3<x<6'

(a) Graph this density function.
(b) Looking at your graph, is it more common to have a slow time (near 6
minutes) or a fast time (near 3 minutes)?

(c¢) Find the probability a child completes the race in under 4 minutes.
(d) Find the probability that a child’s time exceeds 5 1/2 minutes.
(e) Find the median running time.

9. Spinning a Random Spinner
Suppose you flip a coin. If the coin lands heads, you spin a spinner that is
equally likely to fall at any point in the interval (0, 4). If the coin lands tails,
you spin a different spinner that lands at any point in the interval (2, 6). If X
denotes your spin, the density function for X is graphed below.
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(a) Check that this graphed function is indeed a probability density.
(b) Find the probability that X is greater than 5.
(c¢) Find the probability that X falls between 1 and 3.

10. Lifetimes of Light Bulbs
Suppose that a company is interested in the amount of time that a particular
type of light bulb will last until it burns out. After sampling the lifetimes for a
large group of light bulbs, it is decided that the lifetime X (in hours) is well-
described by the exponential distribution of the form

1
flz) = ——e 210 z > 0.

The cdf for X is drawn below.

1.00-
0.75-

20,50+

X

In addition, the cdf is computed for some values of X in the following table.



X Ax) X Rx)

0 180 0.8347
30 0.2592 210 0.8775
60 0.4512 240 0.9093
90 0.5934 270 0.9328
120 0.6988 300 0.9502
150 0.7769

(a) Find the probability that a lifetime of a bulb will be less than 90 hours.
(b) Find the probability the lifetime is between 120 and 180 hours.
(c) From the table, approximate the median lifetime.
(d) Approximate the 95th percentile.
11. Locations of Dart Throws
Suppose you throw a dart at a circular target such that the dart is equally
likely to land in any location on the target. The locations for a large number
of dart throws are shown in the figure below.
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Let X denote the distance of a throw from the bulls eye. It can be shown
that the density function of X has the form

f(m)zg,o<x<2.

(a) Find the probability your throw lands within a distance of 1 unit from
the target.
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(b) Find the probability your throw lands between .5 and 1.5 units from the
target.

(c) If you threw the dart many times at the target, find your average distance
from the target.

Heights of Men

Suppose heights of American men are approximately normally distributed

with mean 70 inches and standard deviation 4 inches.

(a) What proportion of men is between 68 and 74 inches?

(b) What proportion of men is taller than 6 feet?

(c) Find the 90th percentile of heights.

Test Scores

Test scores in a precalculus test are approximately normally distributed with

mean 75 and standard deviation 10. If you choose a student at random from

this class

(a) What is the probability he or she gets an A (over 90)7

(b) What is the probability he or she gets a C (between 70 and 80)7

(c) What is the letter grade of the lower quartile of the scores?

Body Temperatures

The normal body temperature was measured for 130 subjects in an article

published in the Journal of the American Medical Association. These body

temperatures are approximately normally distributed with mean u = 98.2

degrees and standard deviation o= 0.73.

(a) Most people believe that the mean body temperature of healthy
individuals is 98.6 degrees, but actually the mean body temperature is
less than 98.6. What proportion of healthy individuals have body
temperatures less than 98.67

(b) Suppose a person has a body temperature of 96 degrees. What is the
probability of having a temperature less than or equal to 96 degrees?
Based on this computation, would you say that a temperature of 96
degrees is unusual? Why?

(c) Suppose that a doctor diagnoses a person as sick if his or her body
temperature is above the 95th percentile of the temperature of “healthy”
individuals. Find this body temperature that will give a sick diagnosis.

Baseball Batting Averages

Batting averages of baseball players can be well approximated by a normal

curve. The figure below displays the batting averages of players during the

2003 baseball season with at least 300 at-bats (opportunities to hit). The

mean and standard deviation of the matching normal curve shown in the

figure are p = 0.274 and o = 0.027, respectively.
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(a) If you choose a baseball player at random, find the probability his batting
average is over 0.300. (This is a useful benchmark for a “good” batting
average.)

(b) Find the probability this player has a batting average between 0.200 and
0.250.

(c) A baseball player is said to hit below the Mendoza line (named for weak-
hitting baseball player Minnie Mendoza) if his batting average is under
0.200. Given our model, find the probability that a player hits below the
Mendoza line.

(d) Suppose that a player has an incentive clause in his contract that states
that he will earn an additional $1 million if his batting average is in the
top 15%. How well does the player have to hit to get this additional
salary?

Emergency Calls

Suppose that the AAA reports that the average time it takes to respond to an
emergency call on the highway is 25 minutes. Assume that the times to
respond to emergency calls are approximately normally distributed with mean
25 minutes and standard deviation 4 minutes.

(a) If your car gets stuck on a highway and you call the AAA for help, find
the probability that it will take longer than 30 minutes to get help.

(b) Find the probability that you’ll wait between 20 and 30 minutes for help.

(c) Find a time such that you are 90% sure that the wait will be smaller than
this number.

Buying a Battery for your iPod

Suppose you need to buy a new battery for your iPod. Brand A lasts an
average of 11 hours and Brand B lasts an average of 12 hours. You plan on
using your iPod for 8 hours on a trip and you want to choose the battery that
is most likely to last 8 hours (that is, have a life that is least as long as 8
hours).
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(a) Based on this information, can you decide which battery to purchase?
Why or why not?

(b) Suppose that the battery lives for Brand A are normally distributed with
mean 11 hours and standard deviation 1.5 hours, and the battery lives for
Brand B are normally distributed with mean 12 hours and standard 2
hours. Compute the probability that each battery will last at least 8
hours.

(¢) On the basis of this calculation in part (b), which battery should you
purchase?

Lengths of Pregnancies

It is known that the lengths of completed pregnancies are approximately

normally distributed with mean 266 days and standard deviation 16 days.

(a) What is the probability a pregnancy will last more than 270 days?

(b) Find an interval that will contain the middle 50% of the pregnancy
lengths.

(c) Suppose a doctor wishes to tell a mother that he is 90% confident that
the pregnancy will be shorter than z days. Find the value of z.

Attendances at Baseball Games

Attendances for home page of the Cleveland Indians for a recent baseball

season can be approximated by a normal curve with mean p = 24,667 and

standard deviation o = 6144.

Consider the attendance for one randomly selected game during the 2006
season.

(a) Find the probability the attendance exceeds 30,000.

(b) Find the probability the attendance is between 20,000 and 30,000.

(c) Suppose that the attendance at one game in the following season is
12,000. Based on the normal curve, compute the probability that the
attendance is at most 12,000. Based on this computation, is this
attendance unusual? Why?

Coin Flipping

Suppose you flip a fair coin 1000 times.

(a) How many heads do you expect to get?

(b) Find the probability that the number of heads is between 480 and 520.

(¢) Suppose your friend gets 550 heads. What is the probability of getting at
least 550 heads? Do you believe that your friend’s coin really was fair?
Explain.

Use of Online Banking Services

Suppose that a newspaper article claims that 80% of adults currently use

online banking services. You wonder if the proportion of adults who use online
banking services in your community, p, is actually this large. You take a
sample of 100 adults and 70 tell you they use online banking.



(a) If the newspaper article is accurate, find the probability that 70 or fewer
of your sample would use on-line banking.
(b) Based on your computation, is there sufficient evidence to suggest that
less than 80% of your community use online banking services? Explain.
22. Time to Complete a Race
Suppose a group of children are running a race. The times (in minutes) that
the children complete the race can be described by the density function

_4t-3)

f(z) 51 , 3 < x <6.
A graph of this density is shown below. The mean and standard deviation of

this density are given by 4.83 and 0.84 minutes, respectively.
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(a) Suppose 25 students run this race and you find the mean completion
time. Find the probability that the mean time exceeds 5 minutes.
(b) Find an interval that you are 90% confident contains the mean
completion time for the 25 students.
23. Snowfall Accumulation
Your local meteorologist has collected data on snowfall for the past 100 years.
Based on these data, you are told that the amount of snowfall in January is
approximately normally distributed with mean 15 inches and standard
deviation 4 inches.
(a) Find the probability you get more than 20 inches of snow this year.
(b) In the next 10 years, find the probability that the average snowfall (for
these 10 years) will exceed 20 inches.
24. Total Waiting Time at a Bank
You are waiting to be served at your bank. From past experience, you know
that your time to be served has a uniform distribution between 0 and 10
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minutes.

(a) Find the mean and standard deviation of your waiting time.

(b) The Central Limit Theorem can be also stated in terms of the sum of
random variables. If the random variables Xj,..., X, represent a random
sample drawn from a population with mean p and standard deviation o,
then the sum of random variables S = Z?:l X;, for large sample size n,
will be approximately normally distributed with mean nu and standard
deviation 4/no. Suppose you wait every day at the bank for a period of
30 days. Use the version of the Central Limit Theorem to find the
probability that your total waiting time will exceed three hours.

Total Errors in Check Recording

Suppose you record the amount of a written check to the nearest dollar. It is

reasonable to assume that the error between the actual check amount and the

written amount has a uniform distribution between —0.50 and +0.50.

(a) Find the mean and standard deviation of one error.

(b) Suppose you write 100 checks in a single month and S denotes the total
error in recording these checks. Find the probability that S is smaller
than $5. (Use the version of the Central Limit Theorem described in
Exercise 5.)

(¢) Find an interval of the form ( - ¢, ¢) so that P( — ¢ < § < ¢) = 0.95.

Distribution of Measurements

Suppose that a group of measurements is approximately normally distributed

with mean p and standard deviation o.

(a) Find the probability that a measurement falls within one standard
deviation of the mean.

(b) Is it likely that you collect a measurement that is larger than u + 30 ?
Explain.

(c) Find an interval that contains the middle 50% of the measurements.

Salaries of Professional Football Players

Suppose you learn that the mean salary of all professional football players this

season is 7 million dollars with a standard deviation of 2 million dollars.

(a) Do you believe that the distribution of salaries is approximately normally
distributed? If your answer is no, sketch a plausible distribution for the
salaries.

(b) From your graph, find an approximate probability that a salary is smaller
than 6 million dollars.

(c) Suppose you take a random sample of 30 salaries. Find the probability
that the mean salary for this sample is smaller than 6 million dollars.

Weights of Candies



In the candy bowl example, the probability distribution of the candy weight X
is given in the following table.

X PAX=x)
fruity square 2 0.15
milk maid 5 0.35
jelly nougat 8 0.20
caramel 14 0.15
candy bars 18 0.15

Verify by calculation that the mean and standard deviation of X are given
by p = 8.4500 and o = 5.3617, respectively.
29. Sleeping Times
Suppose sleeping times of college students are approximately normally
distributed. You are told that 25% of students sleep less than 6.5 hours and
25% of students sleep longer than 8 hours. Given this information, determine
the mean and standard deviation of the normal distribution.

R Exercises

30. A Continuous Spinner
Suppose you spin a spinner where all values from 0 to 100 are equally likely.
(a) Write down the density function for X, one spin from this spinner.
(b) Use the following command to simulate 1000 values from this uniform
distribution and store the values in the vector spinner:

spinner <- runif(1000, min = 0, max = 100)

(c¢) Construct a histogram of the simulated spins.
(d) Use the simulated spins to approximate the probability P(X > 70).
31. Simulating a Normal Distribution

Suppose monthly snowfalls in Rochester, New York are normally distributed

with mean 25 inches and standard deviation 10 inches.

(a) Using the rnorm() function, simulate snowfalls for 1000 hypothetical
months in Rochester.

(b) Construct a graph of these snowfall amounts.

(c) Approximate from the simulated values the probability that a snowfall
falls in the interval (20, 30). Compare your answer with the exact
probability found using the pnorm() function.
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(d) From the simulated values, find an interval that contains the middle 80%
of the snowfalls. Compare your answer with the exact interval found
using the gnorm() function.

Waiting for a Bus

In the example, the amount of time that one waits for a bus has a uniform
distribution from 0 to 10 minutes. One waits for a bus on Monday, Wednesday,
and Friday and records the minimum of the three waiting times.

(a) Write a program to simulate 1000 values of this minimum waiting time.
(b) One can show that the minimum waiting time Y has density given by

f(y) i(10 —y)?, 0<y<10.

~ 1000

Compare a histogram of simulated values from (a) with this density function

to confirm that you have indeed simulated from the correct distribution.

Weights of Candies (continued)

Suppose one takes a sample of 10 candies from the distribution of candy

weights shown in Exercise (28).

(a) Write a function to take a random sample of 10 candies from the bowl
and return the sample mean X.

(b) Use the replicate() function to repeat this process for 1000 iterations —
store the sample means in the vector xbars.

(c) Construct a histogram of the sample means and comment on its shape.
Also find the mean and standard deviation of the sample means.

(d) Repeat this exercise using samples of size n = 25. Are there any changes
in the mean and standard deviation of the sample means?

Spins and the Central Limit Theorem

Suppose you are spinning a spinner with equally likely outcomes 1, 2, 3, 4, 5.

X represents a single spin from this spinner.

(a) Find the mean p and standard deviation o of X.

(b) Write a function to simulate 10 spins from this spinner and compute the
sample mean X.

(¢) Simulate 1000 samples of 10 spins, obtaining a vector of sample means.

(d) Construct a histogram of the sample means and comment on its shape.
Also find the mean and standard deviation of the sample means.

(e) Check your calculations in part (d) by finding the exact mean and
standard deviation of the sample mean X.
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Joint Probability Distributions

6.1 Introduction

In Chapters 4 and 5, the focus was on probability distributions for a single
random variable. For example, in Chapter 4, the number of successes in a
binomial experiment was explored and in Chapter 5, several popular
distributions for a continuous random variable were considered. In addition, in
introducing the Central Limit Theorem, the approximate distribution of a
sample mean X was described when a sample of independent observations Xj,
..., X,, is taken from a common distribution.

In this chapter, examples of the general situation will be described where
several random variables, e.g. X and Y, are observed. The joint probability
mass function (discrete case) and the joint density (continuous case) are used
to compute probabilities involving X and Y.

6.2 Joint Probability Mass Function: Sampling from a Box

To begin the discussion of two random variables, we start with a familiar
example. Suppose one has a box of ten balls — four are white, three are red,
and three are black. One selects five balls out of the box without replacement
and counts the number of white and red balls in the sample. What is the
probability one observes two white and two red balls in the sample?

This probability can be found using ideas from previous chapters.



1. First, one thinks the total number of ways of selecting five balls with
replacement from a box of ten balls. One assumes the balls are distinct
and one does not care about the order that one selects the balls, so the
total number of outcomes is

10
N = = 252.
(5)

2. Next, one thinks about the number of ways of selecting two white and two
red balls. One does this in steps — first select the white balls, then select
the red balls, and then select the one remaining black ball. Note that five
balls are selected, so exactly one of the balls must be black. Since the box

has four white balls, the number of ways of choose two white is <3) = 6.

Of the three red balls, one wants to choose two — the number of ways of
doing that is (g
one black ball is (i) = 3. So the total number of ways of choosing two

white, two red, and one black ball is the product

BRGRHRERE

3. Each one of the (150) = 252 possible outcomes of five balls is equally likely
to be chosen. Of these outcomes, 54 resulted in two white and two red

) = 3. Last, the number of ways of choosing the remaining

balls, so the probability of choosing two white and two red balls is

54

P(2 white and 2 red) = 255

Here the probability of choosing a specific number of white and red balls has
been found. To do this calculation for other outcomes, it is convenient to define
two random variables

X = number of red balls selected, ¥ = number of white balls selected.

Based on what was found,

4
P(X:2,Y:2):25—52.

Joint probability mass function



Suppose this calculation is done for every possible pair of values of X and Y.
The table of probabilities is given in Table 6.1.

TABLE 6.1
Joint pmf for (X, Y) for balls in box example.
Y = # of White
X = # of Red 0 1 2 3 4
0 0 0 6/252 12/252 3/252
1 0 12/252 54/252 36,252 3/252
2 3/252 36/252 54/252 12/252 0
3 3/252 12/252 6/252 0 0

This table is called the joint probability mass function (pmf) flz, y) of (X,
Y). As for any probability distribution, one requires that each of the
probability values are nonnegative and the sum of the probabilities over all
values of X and Y is one. That is, the function f(z, y) satisfies two properties:

1. flz, y) 2 0, for all z, y
2. X, flz, y) =1

It is clear from Table 6.1 that all of the probabilities are nonnegative and the
reader can confirm that the sum of the probabilities is equal to one.

Using Table 6.1, one sees that some particular pairs (z, y) are not possible as
flz, y) = 0. For example, f(0, 1) = 0 which means that it is not possible to
observe 0 red balls and 1 white ball in the sample. Note that five balls were
sampled, and if one only observed one red or white ball, that means that one
must have sampled 5 — 1 = 4 black balls which is not possible.

One finds probabilities of any event involving X and Y by summing
probabilities from Table 6.1.

1. What is P(X = Y), the probability that one samples the same
number of red and white balls? By the table, one sees that this is
possible only when X =1, Y=1or X = 2, Y = 2. So the probability

12 54 66

PX=Y)=f(1,1)+ f(2,2) = 550 + 555 253

2. What is P(X > Y), the probability one samples more red balls
than white balls? From the table, one identifies the outcomes where X
> Y, and then sums the corresponding probabilities.
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R Simulating sampling from a box

The variable box is a vector containing the colors of the ten balls in the box.
The function one_rep() simulates drawing five balls from the box and
computing the number of red balls and number of white balls.

box <- c("white", "white", "white", "white",
llredII, Ilred", Ilredll,

"black", "black", "black")

one_rep <- function(){

balls <- sample(box, size = 5, replace = FALSE)

X <- sum(balls == "red")
Y <- sum(balls == "white")
c(X, Y)

3

Using the replicate() function, one simulates this sampling process 1000
times, storing the outcomes in the data frame results with variable names X
and Y. Using the table() function, one classifies all outcomes with respect to
the two wvariables. By dividing the observed counts by the number of
simulations, one obtains approximate probabilities similar to the exact
probabilities shown in Table 6.1.

results <- data.frame(t(replicate(1000, one_rep())))
names(results) <- c("X", "Y")

table(results$X, results$y) / 1000

01234

0O 0.000 0.000 0.022 0.055 0.011

1 0.000 0.036 0.214 0.154 0.013

2 0.009 0.138 0.226 0.037 0.000

3 0.009 0.048 0.028 0.000 0.000

Marginal probability functions

Once a joint probability mass function for (X, Y) has been constructed, one
finds probabilities for one of the two variables. In our balls example, suppose
one wants to find the probability that exactly three red balls are chosen, that is



P(X = 3). This probability is found by summing values of the pmf flz, y)
where x = 3 and y can be any possible value of the random variable Y, that is,

P(X=3) =Y B3

3 12 6
%52 T 23 T 32
21
— 252
This operation is done for each of the possible values of X — the marginal
probability mass function of X, fy() is defined as follows:

fx(z) = Zf(m,y). (6.1)

One finds this marginal pmf of X from Table 6.1 by summing the joint
probabilities for each row of the table. The marginal pmf is displayed in Table
6.2. Note that a marginal pmf is a legitimate probability function in that the
values are nonnegative and the probabilities sum to one.

TABLE 6.2

Marginal pmf for X in the balls example.
X x(x)
0 21/252
1 105/252
2 105/252
3 21/252

One can also find the marginal pmf of Y, denoted by fy{), by a similar

operation — for a fixed value of ¥ = y one sums over all of the possible values
of X.

fr(y) = Zf(a?,y)- (6.2)



For example, if one wants to find fy{2) = P(Y = 2) in our example, one

sums the joint probabilities in Table 6.1 over the rows in the column where Y
= 2. One obtains the probability:

fY(2) = Zf(xa 2)

__ 6 54 54 6
=23 T 22 T 252 + 32
_ 120

252 °

By repeating this exercise for each value of Y, one obtains the marginal pmf
displayed in Table 6.3.

TABLE 6.3

Marginal pmf for Y'in the balls example.
y y(y)
0 6/252
1 60/252
2 120/252
3 60/252
4 6/252

Conditional probability mass functions

In Chapter 3, the conditional probability of an event A was defined given
knowledge of another event B. Moving back to the sampling balls from a box
example, suppose one is told that exactly two red balls are sampled, that is X
= 2 — how does that information change the probabilities about the number of
white balls Y7

In this example, one is interested in finding P(Y = y| X = 2). Using the
definition of conditional probability, one has

P(Y=y|X=2) =022

_ f2y)
- fx(2)

For example, the probability of observing two white balls given that we have
two red balls is equal to



P(Y=2,X=2)
P(X=2)

_ f(2,2)

T fx(2)

_54/252 54

~ 105/252 ~ 105 °

PY=2|X=2) =

Suppose this calculation is repeated for all possible values of Y — one obtains
the values displayed in Table 6.4.

These probabilities represent the conditional pmf for Y conditional on X = 2.
This conditional pmf is just like any other probability distribution in that the
values are nonnegative and they sum to one. To illustrate using this
distribution, suppose one is told that two red balls are selected (that is, X = 2)
and one wants to find the probability that more than one white ball is chosen.
This probability is given by

PY>1[X=2) =31 frix(y| X=2)

= frix(2 | X =2)+ fyx(3 [ X =2)
_ 54 12 _ 66
= 105 T 105 — T05°

TABLE 6.4
Conditional pmf for Y given X = sin the balls example.
y n x( X=2)
0 3/105
1 36/105
2 54/105
3 12/105

In general, the conditional probability mass function of Y conditional on X =
z, denoted by fy .4 x(y| ), is defined to be

f(z,y)

fX—(x), if fX(LU) > 0. (6.3)

frix(y|z) =

R Simulating sampling from a box

Recall that the data frame results contains the simulated outcomes for 1000
selections of balls from the box. By filtering on the value X = 2 and tabulating



the values of Y, one is simulating from the conditional pmf of Y conditional on
X = 2. Note that the relative frequencies displayed below are approximately
equal to the exact probabilities shown in Table 6.2.

results %>%

filter(X == 2) %>%
group_by(Y) %>%
summarize(N = n()) %>%
mutate(P = N / sum(N))
Y N P

<int> <int> <dbl>

109 0.0220

2 1 138 0.337

3 2 226 0.551

4 3 37 0.0902

6.3 Multinomial Experiments

Suppose one rolls the usual six-sided die where one side shows 1, two sides
show 2, and three sides show 3. One rolls this die ten times — what is the
chance that one will observe three 1’s and five 2’s?

This situation resembles the coin-tossing experiment described in Chapter 4.
One is repeating the same process, that is rolling the die, repeated times, and
one regards the individual die results as independent outcomes. The difference
is that the coin-tossing experiment had only two possible outcomes on a single
trial, and here there are three outcomes on a single die roll, 1, 2, and 3.

Suppose a random experiment consists of a sequence of n independent trials
where there are k possible outcomes on a single trial where k£ > 2. Denote the

possible outcomes as 1, 2, ..., k, and let p;, py,..., p, denote the associated
probabilities. If X, X,, ..., X} denote the number of 1s, 2s, ..., ks observed in
the n trials, the vector of outcomes X = (X;, Xy,..., X,,) has a multinomial

distribution with sample size n and vector of probabilities p = (py, Doy---s Dj)-

In our example, each die roll has k£ = 3 possible outcomes and the associated
vector of probabilities is p = (1/6, 2/6, 3/6). The number of observed 1’s, 2’s,
3’s in n = 10 trials, X = (X, X5, X3) has a multinomial distribution with
parameters n and p.

By generalizing the arguments made in Chapter 4, one can show that the
probability that X; = xy,..., X; = z;, has the general form



f(z1,...,xk)
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where z; = 0, 1, 2,..., j = 1,... k and Z?:l T;=mn.

This formula can be used to compute a probability for our example. One has
n = 10 trials and the outcome three 1’s and five 2’s is equivalent to the
outcome X; = 3, Xy = 5. The number of 3’s X3 is not random since we know

that X; + X, + X3 = 10. The probability vector is p = (1/6, 2/6, 3/6). By
substituting in the formula, we have

10! 1\%/2\°/3\?
s () () (2) ()

R By use of the factorial() function in R, we compute this probability to
be 0.012.

factorial(10) / (factorial(3) * factorial(5) * factorial(2)) *
+(1/6) A3 * (2/6)1r5%*(3/6) N2
[1] 0.01200274

Other probabilities can be found by summing the joint multinomial pmf over
sets of interest. For example, suppose one is interested in computing the
probability that the number of 1’s exceeds the number of 2’s in our ten dice
rolls. One is interested in the probability P(X; > X5) which is given by

10! 1\®/2\%/ 3\ 0=
P(X1>X2):Z(3!5!2!)<E> (E) <E> ’
T1>T9

where one is summing over all of the outcomes (z;, 25) where z; > ,.

Marginal distributions

One attractive feature of the multinomial distribution is that the marginal
distributions have familiar functional forms. In the dice roll example, suppose
one is interested only in Xj, the number of 1’s in ten rolls of our die. One

obtains the marginal probability distribution of X; directly by summing out



the other variables from the joint pmf of X; and X,. For example, one finds,
say P(X; = 2), by summing the joint probability values over all (z;, z,) pairs
where z; = 2:

P(Xl = 2) = Z f(ml,a:Q).

x2,21+22<10

In this computation, it is important to recognize that the sum of rolls of 1 and
2, 1; + 7, cannot exceed the number of trials n = 10.

A more intuitive way to obtain a marginal distribution relies on the previous
knowledge of binomial distributions. In each die roll, suppose one records if one
gets a one or not. Then X;, the number of ones in n trials, will be binomial

distributed with parameters n and p = 1/6. Using a similar argument, X,, the
number of twos in n trials, will be binomial with n trials and p = 2/6.

Conditional distributions

One applies the knowledge about marginal distributions to compute
conditional distributions in the multinomial situation. Suppose that one is
given that X, = 3 in n = 10 trials. What can one say about the probabilities of

X7

One wuses the conditional pmf definition to compute the conditional
probability P(X; = z| X, = 3). First, it is helpful to think about possible
values for Xj. Since one has n = 10 rolls of the die and we know that we
observe X, = 3 (three twos), the possible values of X; can be 0, 1, ..., 7. For
these values, we have

P(Xl = CIZ,XQ = 3)
P(X, = 3)

P(X1:III|X2:3):

The numerator is the multinomial probability and since X, has a marginal

binomial distribution, the denominator is a binomial probability. Making the
substitutions, one has

)()103:3
)"

PXi=z|X,=3) =

(i) (3)°(
(9)(2)°(1 -

ca|to SN

After some simplification, one obtains
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which is a binomial distribution with 7 trials and probability of success 1/4.

An alternative way to figure out the conditional distribution is based on an
intuitive argument. One is told there are three 2’s in 10 rolls of the die. The
results of the remaining 10 — 3 = 7 trials are unknown where the possible
outcomes are 1 and 3 with probabilities proportional to 1/6 and 3/6. So X; will
be binomial with 7 trials and success probability equal to (1/6)/(1/6 + 3/6) =
1/4.

R Simulating Multinomial experiments

The function sim_die_rolls() will simulate 10 rolls of the special weighted die.
The sample() function draws values of 1, 2, 3 with replacement where the
respective probabilities are 1/6, 2/6, and 3/6. The outputs are values of X, X,
and Xj.

sim_die_rolls <- function(){
rolls <- sample(1:3, size = 10,
replace = TRUE,
prob = c(1, 2, 3) / 6)

c(sum(rolls == 1),
sum(rolls == 2),
sum(rolls == 3))

¥

Using the replicate() function, one simulates the Multinomial experiment
for 5000 iterations. The outcomes are placed in a data frame with variable
names X1, X2 and X3.

results <- data.frame(t(replicate (5000,
sim_die_rolls())))

names(results) <- c("Xx1", "X2", "X3")
head(results)

X1 X2 X3

45
73
4 4
45
55
2 7

Ok~ WNRE
RPORLrNOR



Given this simulated output, one can compute many different probabilities of
interest. For example, suppose one is interested in P(X; + X, < 5). One

approximates this probability by simulation by finding the proportion of
simulated pairs (x1, x2) where X1 + X2 < 5.

results %>%

summarize(P = sum(X1l + X2 < 5) / 5000)
P

1 0.3774

Suppose one is interested in finding the mean of the distribution of X;
conditional on X, = 3. The filter() function is used to choose only the
Multinomial results where x2 = 3 and the summarize() function finds the mean
of X1 among these results. One estimates E(X;| X, = 3) ~ 1.79193. Note that it
was found earlier that the conditional distribution of X; conditional on Xy, = 3

is binomial(7, 1/4) with mean 7 (1/4) which is consistent with the simulation-
based calculation.

results %>%

filter(X2 == 3) %>%
summarize(X1_M = mean(X1))
X1_M

1 1.79193

6.4 Joint Density Functions

One can also describe probabilities when the two variables X and Y are
continuous. As a simple example, suppose that one randomly chooses two
points X and Y on the interval (0, 2) where X < Y. One defines the joint
probability density function or joint pdf of X and Y to be the function

%,O<w<y<2;

0, elsewhere.

flz,y) = {



This joint pdf is viewed as a plane of constant height over the set of points
(z, y) where 0 < z < y < 2. This region of points in the plane is shown in
Figure 6.1.

2.0

1.5~

0.5

0.0-
0.0 0.5 10 1.5 20

FIGURE 6.1
Region where the joint pdf f(x, y) is positive in the “choose two points” example.

In the one variable situation in Chapter 5, a function fis a legitimate density
function or pdf if it is nonnegative over the real line and the total area under
the curve is equal t to one. Similarly for two variables, any function flz, y) is
considered a pdf if it satisfies two properties:

1. Density is nonnegative over the whole plane:

f(z,y) >0, for all z,y. (6.5)

2. The total volume under the density is equal to one:

J] 1@ wizay=1. 66

One can check that the pdf in our example is indeed a legitimate pdf. It is
pretty obvious that the density that was defined is nonnegative, but it is less
clear that the integral of the density is equal to one. Since the density is a



plane of constant height, one computes this double integral geometrically.
Using the familiar “one half base times height” argument, the area of the
triangle in the plane is (1/2) (2) (2) = 2 and since the pdf has constant height
of 1/2, the volume under the surface is equal to 2 (1/2) = 1.

Probabilities about X and Y are found by finding volumes under the pdf
surface. For example, suppose one wants to find the probability that the sum of
locations X + Y > 3, that is P(X + Y > 3). The region in the (z, y) plane of
interest is first identified, and then one finds the volume under the joint pdf
over this region. In Figure 6.2, the region where z + y > 3 has been shaded.
The probability P(X + Y > 3) is the volume under the pdf over this region.
Applying a geometric argument, one notes that the area of the shaded region is
1/4, and so the probability of interest is (1/4)(1/2) = 1/8. One also finds this
probability by integrating the joint pdf over the region as follows:

PX+Y<3) = f12'5 f3y_y f(z,y)dzdy

2
= f1.5 f3y—y %dmdy

2 2y-3
1.5 2 d
_ -3y |2
_ 2 1.5
— 1
= 3.
2.0-
15
== 1.0
0.5+
0.0-
0.0 0.5 10 15 20

X
FIGURE 6.2
Shaded region where x + y > 3 in the “choose two points” example.

Marginal probability density functions



Given a joint pdf f(z, y) that describes probabilities of two continuous variables
X and Y, one summarizes probabilities about each variable individually by the
computation of marginal pdfs. The marginal pdf of X, fy(x), is obtained by

integrating out y from the joint pdf.
fs@) = [ f@v)dy @)

In a similar fashion, one defines the marginal pdf of Y by integrating out x
from the joint pdf.

fr(z) = / f(z,y)dz. (6.8)

Let’s illustrate the computation of marginal pdfs for our example. One has
to be careful about the limits of the integration due to the dependence between
x and y in the support of the joint density. Looking back at Figure 6.1, one sees
that if the value of z is fixed, then the limits for y go from x to 2. So the
marginal density of X is given by

fx(@) = [f(z,y)dy
= [, 3dy
=2 0<z<2.

By a similar calculation, one can verify that the marginal density of Y is equal
to

Yy
frly) =3, 0<y<2

Conditional probability density functions

Once a joint pdf f(z, y) has been defined, one can also define conditional pdfs.
In our example, suppose one is told that the first random location is equal to X
= 1.5. What has one learned about the value of the second random variable Y?

To answer this question, one defines the notion of a conditional pdf. The
conditional pdf of the random variable Y given the value X = z is defined as



the quotient

f(z,y)

fY|X(y | X =2z)=

In our example one is given that X = 1.5. Looking at Figure 6.1, one sees that
when X = 1.5, the only possible values of Y are between 1.5 and 2. By
substituting the values of flz, y) and fx(z), one obtains

frix(y| X =15) = 1050
__1/2
= [-15)/2
=2 15<y<2.

In other words, the conditional density for Y when X = 1.5 is uniform from 1.5
to 2.

A conditional pdf is a legitimate density function, so the integral of the pdf
over all values y is equal to one. We use this density to compute conditional
probabilities. For example, if X = 1.5, what is the probability that Y is greater
than 1.77 This probability is the conditional probability P(Y > 1.7| X = 1.5)
that is equal to an integral over the conditional density fy; x(y| 1.5):

P(Y>17|X=15) = 7 frix(y| 1.5)dy

= f12.7 2dy
= 0.6.

Turn the random variables around

Above, we looked at the pdf of Y conditional on a value of X. One can also
consider a pdf of X conditional on a value of Y. Returning to our example,
suppose that one learns that Y, the larger random variable on the interval is
equal to 0.8. In this case, what would one expect for the random variable X7

This question is answered in two steps — one first finds the conditional pdf of
X conditional on Y = 0.8. Then once this conditional pdf is found, one finds
the mean of this distribution.

The conditional pdf of X given the value Y = y is defined as the quotient



f(z,y)

fxiy(z | Y =y) = 0

, if fy(y) > 0. (6.10)

Looking back at Figure 6.1, one sees that if ¥ = 0.8, the possible values of X
are from 0 to 0.8. Over these values the conditional pdf of X is given by

z,0.8
leY(w 10.8) = ;Ef(O-S))

_ _1/2
— 0.8/2

=1.25, 0 <z < 0.8.

So if one knows that Y = 0.8, then the conditional pdf for X is Uniform on (0,
0.8).
To find the “expected” value of X knowing that Y = 0.8, one finds the mean
of this distribution.
0.8
E(X|Y =08) = [, zfxy(z]0.8)dz
= [P r1.25dz

= (0.8)%/2 x 1.25 = 0.4.

6.5 Independence and Measuring Association

As a second example, suppose one has two random variables (X, Y) that have
the joint density

c+y 0<z<1l,0<y<I;
0, elsewhere.

flz,y) = {

This density is positive over the unit square, but the value of the density
increases in X (for fixed y) and also in Y (for fixed z). Figure 6.3 displays a
graph of this joint pdf — the density is a section of a plane that reaches its
maximum value at the point (1, 1).



FIGURE 6.3
Three dimensional display of the pdf of f(x, y) = x + y defined over the unit square.

From this density, one computes the marginal pdfs of X and Y. For example,
the marginal density of X is given by

1
fx(x) = [y = +ydy
=z+ 4, 0<z <Ll

Similarly, one can show that the marginal density of Y is given by
fry) =y+ 5 for 0 < y< 1

Independence

Two random variables X and Y are said to be independent if the joint pdf
factors into a product of their marginal densities, that is

flz,y) = fx(z)fr(y). (6.11)

for all values of X and Y. Are X and Y independent in our example? Since we
have computed the marginal densities, we look at the product

1

Fr(@) o) = @+ 5)w+ 5)

which is clearly not equal to the joint pdf flz, y) = = + y for values of z and y
in the unit square. So X and Y are not independent in this example.



Measuring association by covariance

In the situation like this one where two random variables are not independent,
it is desirable to measure the association pattern. A standard measure of
association is the covariance defined as the expectation

Cov(X,Y) =E(X — pux)Y — py))

(6.12)
= [[(z — px)(y — py) f(z, y)dady.
For computational purposes, one writes the covariance as
CO’U(X, Y) = E(XY) — UXUY
(6.13)

= [[(zy) f(z,y)dzdy — pxpy.

For our example, one computes the expectation E(XY) from the joint
density:

E(XY) fo fo zy)(z + y)dzdy

=4+ 4dy
1

3"

One can compute that the means of X and Y are given by uy = 7/12 and uy =
7/12, respectively. So then the covariance of X and Y is given by

Cou(X,Y) = E(XY) - pxpy

=3~ (1) (5)
_lel‘

It can be difficult to interpret a covariance value since it depends on the
scale of the support of the X and Y variables. One standardizes this measure of
association by dividing by the standard deviations of X and Y resulting in the
correlation measure g:



_ Cov(X,Y)

ox0y

(6.14)

In a separate calculation one can find the variances of X and Y to be
0% = 11/144 and 0% = 11/144. Then the correlation is given by

. —1/144
p= V/11/144./11/144

—L
11

It can be shown that the value of the correlation g falls in the interval ( — 1, 1)
where a value of ¢ = -1 or ¢ = 1 indicates that Y is a linear function of X with
probability 1. Here the correlation value is a small negative value indicating
weak negative association between X and Y.

6.6 Flipping a Random Coin: The Beta-Binomial Distribution

Suppose one has a box of coins where the coin probabilities vary. If one selects
a coin from the box, p, the probability the coin lands heads follows the
distribution

= 5(1-p)% 0<p<1,
9(p) 3(6,6)19( D) p

where B(6, 6) is the beta function, which will be more thoroughly discussed in
Chapter 7. This density is plotted in Figure 6.4. A couple of things to notice
about this density. First, the density has a significant height over a range of
plausible values of the probability — this reflects the idea that we are really
unsure about the chance of observing a heads when flipped. Second, the
density is symmetric about p = 0.5, which means that the coin is equally likely
to be biased towards heads or biased towards tails.
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FIGURE 6.4
Beta(6, 6) density representing the distribution of probabilities of heads for a large collection of random
coins.

One next flips this “random” coin 20 times. Denote the outcome of this
experiment by the random variable Y which is equal to the count of heads. If
we are given a value of the probability p, then Y has a binomial distribution
with n = 20 trials and success probability p. This probability function is
actually the conditional probability of observing y heads given a value of the
probability p:

20 B
flylp) = (y)Py(l—p)20 v y=0,1,...,20.

Given the density of p and the conditional density of Y conditional on p, one
computes the joint density by the product

) = @) = [gigr -] [(2)pa - po]

= 369 (2;])?“5(1 —p)¥ ¥ 0<p<1l,y=0,1,...,20.

This beta-binomial density is a mixed density in the sense that one variable (p)
is continuous and one (Y) is discrete. This will not create any problems in the
computation of marginal or conditional distributions, but one should be careful
to understand the support of each random variable.

R Simulating from the beta-binomial distribution



Using R it is straightforward to simulate a sample of (p, y) values from the
Beta-Binomial distribution. Using the rbeta() function, one takes a random
sample of 500 draws from the beta(6, 6) distribution. Then for each probability
value p, one uses the rbinom() function to simulate the number of heads in 20
flips of this “p coin.”

data.frame(p = rbeta(500, 6, 6)) %%
mutate(Y = rbinom(500, size = 20, prob = p)) %>%
ggplot(aes(p, Y)) + geom_jitter()

A scatterplot of the simulated values of p and Y is displayed in Figure 6.5.
Note that the variables are positively correlated, which indicates that one tends
to observe a large number of heads with coins with a large probability of heads.
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FIGURE 6.5
Scatterplot of 500 simulated draws from the joint density of the probability of heads p and the number of
heads Y'in 20 flips.

What is the probability that one observes exactly 10 heads in the 20 flips,
that is P(Y = 10)? One performs this calculation by computing the marginal
probability function for Y. This is obtained by integrating out the probability p
from the joint density. This density is a special case of the beta-binomial
distribution.



@)= [y 9()f(y|p)dp
o 555 (20)py+5(1 —p)* dp

_ Bly1626-y)
_ (y)Tﬁ),y_o,Lz,...,%.

Using this formula with the substitution y = 10, we use R to find the
probability P(Y = 10).

choose(20, 10) * beta(10 + 6, 26 - 10) / beta(6, 6)
[1] 0.1065048

6.7 Bivariate Normal Distribution

Suppose one collects multiple body measurements from a group of 30 students.
For example, for each of 30 students, one might collect the diameter of the
wrist and the diameter of the ankle. If X and Y denote the two body
measurements (measured in cm) for a student, then one might think that the
density of X and the density of Y are normally distributed. Moreover, the two
random variables would be positively correlated — if a student has a large wrist
diameter, one would predict her to also have a large forearm length.

A convenient joint density function for two continuous measurements X and
Y, each variable measured on the whole real line, is the bivariate normal
density with density given by

1 1

fla,y) = ——exp|— 5 — (2 — 2pzxzy + 2v) 615
’ 271'0')(0’)/\/1 —p 2(1 - p?) ’ ©19
where zy and zy are the standardized scores
L — px Y— Ky
Zx = y Y = , (6.16)

ox oy



and py, ny and oy, oy are respectively the means and standard deviations of X
and Y. The parameter ¢ is the correlation of X and Y and measures the
association between the two variables.

Figure 6.6 shows contour plots of four bivariate normal distributions. The
bottom right graph corresponds to the values puy = 17, uy = 23, ox = 2, oy =

3 and ¢ = 0.4 where X and Y represent the wrist diameter and ankle diameter
measurements of the student. The correlation value of ¢ = 0.4 reflects the
moderate positive correlation of the two body measurements. The other three
graphs use the same means and standard deviations but different values of the
¢ parameter. This figure shows that the bivariate normal distribution is able to
model a variety of association structures between two continuous
measurements.
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FIGURE 6.6
Contour graphs of four Bivariate Normal distributions with different correlations.

There are a number of attractive properties of the bivariate normal
distribution.

1. The marginal densities of X and Y are Normal. So X has a Normal
density with parameters uy and oy and likewise Y is Normal(uy, oy).



2. X and Y are normal, conditional densities will also be normal.
For example, if one is given that Y = g, then the conditional density of X
given Y = y is normal where

ox
E(X|Y =y)=pux+ P;(y —py), Var(X | Y =y) = ox(1 — p*). @17

Similarly, if one knows that X = x, then the conditional density of Y given
X = zis Normal with mean py + p2=(z — px) and variance o3 (1 — p?).

3. For a bivariate normal distribution, X and Y are independent if
and only if the correlation ¢ = 0. In contrast, as the correlation
parameter g approaches +1 and —1, then all of the probability mass will be
concentrated on a line where Y = a X + b.

R Bivariate normal calculations

Returning to the body measurements application, different uses of the
bivariate normal model can be illustrated. Recall that X denotes the wrist
diameter, Y represents the ankle diameter and we are assuming (X, Y) has a
bivariate normal distribution with parameters puy = 17, py = 23, ox = 2, oy =

3 and o= 0.4

1. Find the probability a student’s wrist diameter exceeds 20 cm.
Here one is interested in the probability P(X > 20). From the facts above,
the marginal density for X will be normal with mean py = 17 and

standard deviation oy = 2. So this probability is computed using the

function pnorm():

1 - pnorm (20, 17, 2)
[1] 0.0668072

2. Suppose one is told that the student’s ankle diameter is 20 cm —
find the conditional probability P(X > 20| Y = 20).
By above the distribution of X conditional on the value Y = y is normal
with mean px + pg%(y — py) and variance 0% (1 — p?). Here one is



conditioning on the value Y = 20 and one computes the mean and
standard deviation and apply the pnorm() function:

BE(X|Y =20) =pux+pe-(y— py)
— 17+ 0.4(2)(20 — 23)

3
= 16.2.
SD(X |Y =20) =4/0%(1—p?)
= 1/22(1 — 0.4%)
— 1.83.

1 - pnorm (20, 16.2, 1.83)
[1] 0.01892374

3. Are X and Y independent variables?
By the properties above, for a bivariate normal distribution, a necessary
and sufficient condition for independence is that the correlation ¢ = 0.
Since the correlation between the two variables is not zero, the random
variables X and Y can not be independent.

4. Find the probability a student’s ankle diameter measurement is
at 50 percent greater than her wrist diameter measurement, that
is P(Y > 1.5 X).

R Simulating Bivariate Normal measurements

The computation of the probability P(Y > 1.5 X) is not obvious from the
information provided. But simulation provides an attractive method of
computing this probability. One simulates a large number, say 1000, draws
from the bivariate normal distribution and then finds the fraction of simulated
(z, y) pairs where y > 1.5 z. Figure 6.7 displays a scatterplot of these simulated
draws and the line y = 1.5 2. The probability is estimated by the fraction of
points that fall to the left of this line. In the R script below we use a function
sim_binorm() to simulate 1000 draws from a bivariate normal distribution with
inputted parameters uy, uy, ox, oy, ¢. The bivariate normal parameters are set
to the wvalues in this example and using the function sim_binorm() the
probability of interest is approximated by 0.242.



sim_binorm <- function(mx, my, sx, sy, r){
require(ProbBayes)
v <- matrix(c(sx A 2, r * sx * sy,
r * sx * sy, sy A 2),
2, 2)
as.data.frame(rmnorm(1000, mean = c(mx, my),
varcov = v))}
mx <- 17; my <- 23; sx <- 2; sy <- 3; r <- 0.4
sdata <- sim_binorm(mx, my, sx, sy, r)
names(sdata) <- c("X", "Y")
sdata %>% summarize(mean(Y > 1.5 * X))
mean(Y > 1.5 * X)
1 0.242

FIGURE 6.7
Scatterplot of simulated draws from the bivariate normal in body measurement example. The probability that
Y> 1.5 Xis approximated by the proportion of simulated points that fall to the left of the line y=1.5 x.

6.8 Exercises

1. Coin Flips
Suppose you flip a coin three times with eight equally likely outcomes
HHH, HHT.,..., TTT. Let X denote the number of heads in the first two
flips and Y the number of heads in the last two flips.
(a) Find the joint probability mass function (pmf) of X and Y and put
your answers in the following table.



| = O X

(b) Find P(X > Y).

(c) Find the marginal pmf’s of X and Y.

(d) Find the conditional pmf of X given Y = 1.

. Selecting Numbers

Suppose you select two numbers without replacement from the set {1, 2, 3,
4, 5}. Let X denote the smaller of the two numbers and Y denote the
larger of the two numbers.

(a) Find the joint probability mass function of X and Y.

(b) Find the marginal pmf’s of X and Y.

(¢) Are X and Y independent? If not, explain why.

(d) Find P(Y = 3| X = 2).

. Die Rolls

You roll a die 4 times and record O, the number of ones, and T the
number of twos rolled.

(a) Construct the joint pmf of O and T.

(b) Find the probability P(O = T).

(c¢) Find the conditional pmf of T given O = 1.

(d) Compute P(T > 0| O = 1).

. Choosing Balls

Suppose you have a box with 3 red and 2 black balls. You first roll a die —
if the roll is 1, 2, you sample 3 balls without replacement from the box. If
you roll is 3 or higher, you sample 2 balls with replacement from the box.
Let X denote the number of balls you sample and Y the number of red
balls selected.

(a) Find the joint pmf of X and Y.

(b) Find the probability P(X = Y).

(c¢) Find the marginal pmf of Y.

(d) Find the conditional pmf of X given Y = 2.

. Baseball Hitting

Suppose a player is equally likely to have 4, 5, or 6 at-bats (opportunities)
in a baseball game. If N is the number of opportunities, then assume that
X, the number of hits, is binomial with probability p = 0.03 and sample
size N.



(a) Find the joint pmf of N and X.
(b) Find the marginal pmf of X.
(c¢) Find the conditional pmf of N given X = 2.
(d) If the player gets 3 hits, what is the probability he had exactly 5 at-
bats?
6. Multinomial Density
Suppose a box contains 4 red, 3 black, and 3 green balls. You sample eight
balls with replacement from the box and let R denote the number of red
and B the number of black balls selected.
(a) Explain why this is a multinomial experiment and given values of the
parameters of the multinomial distribution for (R, B).
(a) Compute P(R = 3, B = 2).
(b) Compute the probability that you sample more red balls than black
balls.
(c¢) Find the marginal distribution of B.
(d) If you are given that you sampled B = 4 balls, find the probability
that you sampled at most 2 red balls.
7. Joint Density
Let X and Y have the joint density

flz,y) =ky, 0<z<2,0<y<2.

(a) Find the value of k so that f() is a pdf.
(b) Find the marginal density of X.
(c) Find P(Y > X).
(d) Find the conditional density of Y given X = x for any value 0 < z <
2.
8. Joint Density
Let X and Y have the joint density

flz,y) =z+y, 0<z<1l,0<y<l

(a) Check that fis indeed a valid pdf. If it is not, correct the definition of
fso it is valid.
(b) Find the probability P(X > 0.5, Y < 0.5).
(¢) Find the marginal density of X.
(d) Are X and Y independent? Answer by a suitable calculation.
9. Random Division
Suppose one randomly chooses a values X on the interval (0, 2), and then
random choosing a second point Y from 0 to X.



10.

11.

12.

13.

(a) Find the joint density of X and Y.

(b) Are X and Y independent? Explain.

(c¢) Find the probability P(Y > 0.5).

(d) Find the probability P(X + Y > 2).

Choosing a Random Point in a Circle

Suppose (X, Y) denotes a random point selected over the unit circle. The
joint pdf of (X, Y) is given by

C, 2z +y* < L
f(z,y) = {0
, elsewhere.
(a) Find the value of the constant C'so f() is indeed a joint pdf.
(b) Find the marginal pdf of Y.
(c¢) Find the probability P(Y > 0.5)
(d) Find the conditional pdf of X conditional on Y = 0.5.
A Random Meeting
Suppose John and Jill independently arrive at an airport at a random time
between 3 and 4 pm one afternoon. Let X and Y denote respectively the
number of minutes past 3 pm that John and Jill arrive.
(a) Find the joint pdf of X and Y.
(b) Find the probability that John arrives later than Jill.
(c) Find the probability that John and Jill meet within 10 minutes of
each other.
Defects in Fabric
Suppose the number of defects per yard in a fabric X is assumed to have a
Poisson distribution with mean A. That is, the conditional density of X
given A has the form

ef)\ T

A
flz|A) = ,x=0,1,2,...
x!

The parameter A is assumed to be uniformly distributed over the values
0.5, 1, 1.5, and 2.

(a) Write down the joint pmf of X and A.

(b) Find the probability that the number of defects X is equal to 0.

(c¢) Find the conditional pmf of 1 if you know that X = 0.

Defects in Fabric (continued)

Again we assume the number of defects per yard in a fabric X given A has
a Poisson distribution with mean A. But now we assume A is continuous-



valued with the exponential density
g(A\) = exp(—A), A > 0.

(a) Write down the joint density of X and A.
(b) Find the marginal density of X. [Hint: it may be helpful to use the
integral identity

0 !
/ exp(—a)\d\ = i,
0

ab

where b is a nonnegative integer.|
(c) Find the probability that the number of defects X is equal to 0.
(d) Find the conditional density of A if you know that X = 0.

14. Flipping a Random Coin

15.

Suppose you plan flipping a coin twice where the probability p of heads
has the density function

flp) =6p(1—p), 0<p<1.

Let Y denote the number of heads of this “random” coin. Y given a value

of p is binomial with n = 2 and probability of success p.

(a) Write down the joint density of Y and p.

(b) Find P(Y = 2).

(c) If Y = 2, then find the probability that p is greater than 0.5.

Passengers on An Airport Limousine

An airport limousine can accommodate up to four passengers on any one

trip. The company will accept a maximum of six reservations for a trip,

and a passenger must have a reservation. From previous records, 30% of

all those making reservations do not appear for the trip. Answer the

following questions, assuming independence whenever appropriate.

(a) If six reservations are made, what is the probability that at least one
individual with a reservation cannot be accommodated on the trip?

(b) If six reservations are made, what is the expected number of available
places when the limousine departs?

(c) Suppose the probability distribution of the number of reservations
made is given in the following table.

Number of observations 3 4 5 6

Probability 0.13 0.18 0.35 0.34




Let X denote the number of passengers on a randomly selected trip.
Obtain the probability mass function of X.

X 0 1 2 3 4
P

16. Heights of Fathers and Sons

It is well-known that heights of fathers and sons are positively associated.

In fact, if X represents the father’s height in inches and Y represents the

son’s height, then the joint distribution of (X, Y) can be approximated by

a bivariate normal with means puy = py = 69, oy = oy = 3 and correlation

o= 0.4.

(a) Are X and Y independent? Why or why not?

(b) Find the conditional density of the son’s height if you know the
father’s height is 70 inches.

(c) Using the result in part (b) to find P(Y > 72| X = 70).

(d) By simulating from the bivariate normal distribution, approximate
the probability that the son will be more than one inch taller than his
father.

17. Instruction and Students’ Scores

Twenty-two children are given a reading comprehension test before and

after receiving a particular instruction method. Assume students’ pre-

instructional and post-instructional scores follow a Bivariate Normal

distribution with: p,., = 47, .5 = 53, 0y, = 13, 05 = 15 and ¢ = 0.7.

(a) Find the probability that a student’s post-instructional score exceeds
60.

(b) Suppose one student’s pre-instructional score is 45, find the
probability that this student’s post-instructional score exceeds 70.

(c) Find the probability that a student has increased the test score by at
least 10 points. [Hint: Use R to simulate a large number of draws
from the bivariate normal distribution. Refer to the example
sim_binorm() function in Section 6.7 for simulating Bivariate Normal
draws.|

18. Shooting Free Throws
Suppose a basketball player will take N free throw shots during a game
where N has the following discrete distribution.

N 5 6 7 8 9 10
Probability 0.2 0.2 0.2 0.2 0.1 0.1




19.

20.

21.

If the player takes N = n shots, then the number of makes Y is binomial

with sample size n and probability of success p = 0.7.

(a) Find the probability the player takes 6 shots and makes 4 of them.

(b) From the joint distribution of (N, Y), find the most likely (n, y) pair.

(c¢) Find the conditional distribution of the number of shots N if he makes
4 shots.

(d) Find the expectation E(N] Y = 4).

Flipping a Random Coin

Suppose one selects a probability p uniforms from the interval (0, 1), and

then flips a coin 10 times, where the probability of heads is the probability

p. Let X denote the observed number of heads.

(a) Find the joint distribution of p and X.

(b) Use R to simulate a sample of size 1000 from the joint distribution of
(p, X).

(c) From inspecting a histogram of the simulated values of X, guess at
the marginal distribution of X.

R Exercises

Simulating Multinomial Probabilities

Revisit Exercise 6.

(a) Write an R function to simulate 10 balls of the special weighted box
(4 red, 3 black, and 3 green balls). [Hint: Section 6.3 introduces the
sim_die_rolls() function for the example of a special weighted die.]

(b) Use the replicate() function to simulate the multinomial experiment
in Exercise (6) for 5000 iterations, and approximate P(R = 3, B = 2).

(¢) Use the 5000 simulated multinomial experiments to approximate the
probability that you sample more red balls than black balls, i.e. P(R
> B).

(d) Conditional on B = 4, approximate the mean number of red balls
that will get sampled. Compare the approximated mean value to the
exact mean. [Hint: Conditional on B = 4, the distribution of R is a
binomial distribution.]

Simulating from a Beta-Binomial Distribution

Consider a box of coins where the coin probabilities vary, and the

probability of a selected coin lands heads, p, follows a beta(2, 8)

distribution. Jason then continues to flip this “random” coin 10 times, and

is interested in the count of heads of the 10 flips, denoted by Y.



(a) Write an R function to simulate 5000 samples of (p, y). [Hint: Use
rbeta() and rbinom() functions accordingly.|

(b) Approximate the probability that Jason observes 3 heads out of 10
flips, using the simulated 5000 samples. Compare the approximated
probability to the exact probability. [Hint: Write out f(y) following
the work in Section 6.6, and use R to calculate the exact probability.]

22. Shooting Free Throws (continued)

Consider the free throws shooting in Exercise (18).

(a) Write an R function to simulate 5000 samples of (n, y).

(b) From the 5000 samples, find the most likely (n, y) pair. Compare your
result to Exercise (18) part (b).

(c) Approximate the expectation F(N| Y = 4), and compare your result
to Exercise (18) part (d).



7

Learning about a Binomial
Probability

7.1 Introduction: Thinking Subjectively about a
Proportion

In previous chapters, we have seen many examples involving drawing color
balls from a box. In those examples, one is given the numbers of balls of
various colors in the box, and one considers questions related to calculating
probabilities. For example, there are 40 white and 20 red balls in a box. If
one draws two balls at random, what is the probability that both balls are
white?

Here we consider a new scenario where we do not know the proportions
of color balls in the box. In the previous example, one only knows that
there are two kinds of color balls in the box, but one doesn’t know 40 out
of 60 of the balls are white (proportion of white = 2/3) and 20 out of the
60 of the balls are red (proportion of red = 1/3). How can one learn about
the proportions of white and red balls? Since counting 60 balls is tedious,
how can one infer those proportions by drawing a sample of balls out of the
box and observing the colors of balls in the sample? This becomes an
inference question, because one is trying to infer the proportion p of the
population, based on a sample from the population.

Let’s continue discussing the scenario where one is told that there are 60
balls in total in a box, and the balls are either white or red. One does not
know the count of balls of each of the two colors but is given the
opportunity to learn about these counts by selecting a random sample of 10



balls. The object of interest is the quantity p, the proportion of red balls in
the 60 balls. How can one infer p, the proportion of red balls in the
population of 60 balls, based on the numbers of red and white balls
observed in the sample of 10 balls?

Proportions are like probabilities. Recall from Chapter 1 the following
three views and associated characteristics of probabilities.

1. The classical view: one needs to write down the sample space where
each outcome is equally likely.

2. The frequency view: one needs to repeat the random experiment many
times under identical conditions.

3. The subjective view: one needs to express one’s opinion about the
likelihood of a one-time event.

The classical view does not seem to work here, because one only knows
there are two kinds of color balls and the total number of balls is 60. Even
if one takes a sample of 10 balls, one only observes the proportion of red
balls in the sample. There does not seem to be a way for one to write down
the sample space where each outcome is equally likely.

The frequency view would work here. One could treat the process of
obtaining a sample (i.e. taking a random sample of 10 balls from the box)
as an experiment, and obtain a sample proportion p from the experiment.
One then could repeat the experiment many times under the same
condition, get many sample proportions p, and summarize all the p. When
one repeats the experiment enough times (a large number), one gets a good
sense about the proportion p of red balls in the population of 60 balls in
the box. This process is doable, but tedious and time-consuming.

The subjective view is one’s personal opinion about the location of the
unknown proportion p. It does require one to express his or her opinion
about the value of p, and he or she could be skeptical or unknown about
the opinion. In Chapter 1, a calibration experiment was introduced to help
one sharpen an opinion about the likelihood of an event by comparisons
with opinion about the likelihood of other events. In this chapter and the
chapters to follow, the key ideas will be introduced and the reader will
practice thinking subjectively about unknowns and quantifying one’s
opinions about the values of these unknowns using probability
distributions.



As an example, consider plausible values for the proportion p of red
balls. As p is a proportion, it takes any possible value between 0 and 1. In
the calibration experiment introduced in Chapter 1, we focus on the
scenario where only one value of p is of interest. If we think p = 0.5, it
reflects our belief that the probability of the value p = 0.5 is equal to 1.
The statement that “the probability that p = 0.5 is 1”7 sounds like a very
strong opinion because p is restricted to only one possible value and the
probability assigned to it is 1. Since we do not know the exact value of the
p proportion, assigning a single possible probability value of 1 appears to
be too strong.

Instead suppose that the proportion p takes multiple values between 0
and 1. In particular, consider two scenarios, where in each scenario p takes
10 different values denoted by the set A.

A=1{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0}

Although p takes the same ten values, different probabilities are assigned
to the values.

— Scenario 1:

f1(A) = (0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1)

— Scenario 2:

£2(A) = (0.05,0.05,0.05,0.175,0.175,0.175, 0.175, 0.05, 0.05, 0.05)

To visually compare the values of two probability distributions f;(A4) and
f>(A), we plot the distributions using the same scales as in Figure 7.1.
Figure 7.1 labels the a-axis with the values of p (range from 0 to 1) and the
y-axis with the probabilities (range from 0 to 1). For both panels, there are
ten bars, where the heights represent the associated probabilities of the
values of p in the set A = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
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FIGURE 7.1
The same ten possible values of p, but two sets of probabilities.

The probability assignment in fj(A) is called a discrete uniform
distribution where each possible value of the proportion p is equally likely.
Since there are ten possible values of p, each value gets assigned a
probability of 1/10 = 0.1. This assignment expresses the opinion that p can
be any value from the set A = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},
and each value has a probability of 0.1.

The probability assignment in f,(A) is also discrete, but the pattern of
probabilities is not uniform. What one sees is that the probabilities of the
first three proportion values (0.1, 0.2, and 0.3) and last three proportion
values (0.8, 0.9, and 1.0) are each 1/3.5 of the probabilities assigned to the
middle four values (0.4, 0.5, 0.6, and 0.7). The heights of the bars reflect
the opinion that the middle values of p are 3.5 times as likely as the
extreme values of p.

Both sets of probabilities follow the three probability axioms in Chapter
1. One sees that within each set,



1. Each probability is nonnegative,

2. The sum of the probabilities is 1,

3. The probability of mutually exclusive values is the sum of probability
of each value, e.g. probability of p = 0.1 or p = 0.2 is 0.1 + 0.1 in
fi(A4), and 0.05 + 0.05 in f,(A).

In this introduction, a method has been presented to think about
proportions subjectively. This method allows multiple values of p and
probability assignments follow the three probability axioms. Each
probability distribution expresses a unique opinion about the location of
the proportion p.

To answer the inference question “what is the proportion of red balls in
the box”, a random sample of 10 balls will be sampled and the observed
proportion of red balls in that sample will be used to sharpen and update
one’s belief about p. Bayesian inference is the formal mechanism for
updating one’s belief given new information. This mode of inference has
three general steps.

Step 1: (Prior): express an opinion about the location of the
proportion p before sampling.

Step 2: (Likelihood): take the sample and record the observed
proportion of red balls.

Step 3: (Posterior): use Bayes’ rule to update the previous opinion
about p given the information from the sample.

As indicated in the parentheses, the first step “Prior” constructs prior
opinion about the quantity of interest, and a probability distribution is
used (like f;(A) and f,(A) earlier) to quantify the prior opinion. The name
“prior” indicates that the opinion should be formed before collecting any
data.

The second step “Data” is the process of collecting data, where the
quantity of interest is observed in the collected data. For example, if our
10-ball sample contains 4 red balls and 6 white balls, the observed
proportion of red balls is 4/10 = 0.4. Informally, how does this information
help us revise our opinion about p? Intuitively one would give more
probability to p = 0.4, but it is unclear how the probabilities would be
redistributed among the 10 values in A. Since the sum of all probabilities is



1, is it possible that some of the larger proportion values, such as p = 0.9
and p = 1.0, will receive probabilities of zero? To address these questions,
the third step is needed.

The third step “Posterior” combines one’s prior opinion and the collected
data, by use of Bayes’ rule, to update one’s opinion about the quantity of
interest. Just like the example of observing 4 red balls in the 10-ball
sample, one needs a structured way of updating the opinion from prior to
posterior.

Throughout this chapter, the entire inference process will be described
for learning about a proportion p. This chapter will discuss how to express
prior opinion that matches with one’s belief, how to extract information
from the likelihood, and how to update our opinion to its posterior.

Section 7.2 introduces inference when a discrete prior distribution is
assigned to the proportion p. Section 7.3 introduces the beta class of
continuous prior distributions and the inference process with a beta prior is
described in detail in Section 7.4. Section 7.5 describes some general
Bayesian inference methods for learning about the proportion, namely
Bayesian hypothesis testing, Bayesian credible intervals and Bayesian
prediction. This chapter will illustrate both the use of exact analytical
solutions and approximate simulation calculations (with the help of the R
software).

7.2 Bayesian Inference with Discrete Priors

7.2.1 Example: students’ dining preference

Let’s start our Bayesian inference for proportion p with discrete prior
distributions with a students’ dining preference example. A popular
restaurant in a college town has been in business for about 5 years. Though
the business is doing well, the restaurant owner wishes to learn more about
his customers. Specifically, he is interested in learning about the dining
preferences of the students. The owner plans to conduct a survey by asking
students “what is your favorite day for eating out?” In particular, he wants
to find out what percentage of students prefer to dine on Friday, so he can
plan ahead for ordering supplies and giving promotions.



Let p denote the proportion of all students whose answer is Friday.

7.2.2 Discrete prior distributions for proportion p

Before giving out the survey, let’s pause and think about the possible
values for the proportion p. Not only does one want to know about possible
values, but also the probabilities associated with the values. A probability
distribution provides a measure of belief for the proportion and it
ultimately will help the restaurant owner improve his business.

One might not know much about students’ dining preference, but it is
possible to come up with a list of plausible values for the proportion. There
are seven days a week. If each day was equally popular, then one would
expect 1/7 or approximately 15% of all students to choose Friday. The
owner recognizes that Friday is the start of the weekend, therefore there
should be a higher chance of being students’ preferred day of dining out. So
perhaps p starts with 0.3. Then what about the largest plausible value?
Letting this largest value be 1 seems unrealistic, as there are six other days
in the week. Suppose that one chooses 0.8 to be the largest plausible value,
and then comes up with the list of values of p to be the six values going
from 0.3 to 0.8 with an increment of 0.1.

p = {0.3,0.4,0.5,0.6,0.7,0.8} (7.1)

Next one needs to assign probabilities to the list of plausible values of p.
Since one may not know much about the location of the probabilities p, a
good place to start is a discrete uniform prior (recall the discrete uniform
prior distribution for p, the proportion of red balls, in Section 7.1). A
discrete uniform prior distribution expresses the opinion that all plausible
values of p are equally likely. In the current students’ dining preference
example, if one decides on six plausible values of p as in Equation (7.1),
each of the six values gets a prior probability of 1/6. One labels this prior
as m;, where [ stands for laymen (for all of us who are not in the college

town restaurant business).



7'l'l(p) = (1/6a 1/6a1/6a1/6’1/6,1/6) (7.2)

With five years of experience of running his restaurant in this college
town, the restaurant owner might have different opinions about likely
values of p. Suppose he agrees with us that p could take the 6 plausible
values from 0.3 to 0.8, but he assigns a different prior distribution for p. In
particular, the restaurant owner thinks that values of 0.5 and 0.6 are most
likely — each of these values is twice as likely as the other values. His prior
is labelled as m,, where e stands for expert.

me(p) = (0.125,0.125,0.250, 0.250,0.125,0.125) (7.3)

R To obtain n,(p) efficiently, one can use the ProbBayes R package.
First a data frame is created by providing the list of plausible values of p
and corresponding weights assigned to each value using the function
data.frame(). As one can see here, one does not have to calculate the
probability — one only needs to give the weights (e.g. giving p = 0.3, 0.4,
0.7, 0.8 weight 1 and giving p = 0.5, 0.6 weight 2, to reflect the owner’s
opinion “0.5 and 0.6 are twice as likely as the other values”).

bayes_table <- data.frame(p = seq(.3, .8, by=.1),
Prior = c(1, 1, 2, 2, 1, 1))

bayes_table

p Prior

0.3 1

0.4 1
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One uses the function mutate() to normalize these weights to obtain the
prior probabilities in the Prior column.



bayes_table %>% mutate(Prior = Prior / sum(Prior)) -> bayes_table
bayes_table

p Prior
1 0.3 0.125
2 0.4 0.125
3 0.5 0.250
4 0.6 0.250
5 0.7 0.125
6 0.8 0.125

One conveniently plots the restaurant owner’s prior distribution by use of
ggplot2 functions. This distribution is displayed in Figure 7.2.

ggplot(data=bayes_table, aes(x=p, y=Prior)) +
geom_bar(stat="identity", fill=crcblue, width = 0.06)
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FIGURE 7.2

The restaurant owner’s prior distribution for the proportion p.

It is left as an exercise for the reader to compute and plot the laymen’s
prior 7(p) in Equation (7.2). For the rest of this section, we will work with

the expert’s prior 7,(p).



7.2.3 Likelihood of proportion p

The next step in the inference process is the data collection. The restaurant
owner gives a survey to 20 student diners at the restaurant. Out of the 20
student respondents, 12 say that their favorite day for eating out is Friday.
Recall the quantity of interest is proportion p of the population of students
choosing Friday.

The likelihood is a function of the quantity of interest, which is the
proportion p. The owner has conducted an experiment 20 times, where
each experiment involves a “yes” or “no” answer from the respondent to the
rephrased question “whether Friday is your preferred day to dine out”.
Then the proportion p is the probability a student answers “yes”.

Does this ring a bell of what we have seen before? Indeed, in Chapter 4,
one has seen this type of experiment, a binomial experiment, similar to the
dining survey. Recall that a binomial experiment needs to satisfy four
conditions:

1. One is repeating the same basic task or trial many times — let the
number of trials be denoted by n.

2. On each trial, there are two possible outcomes called “success” or
“failure”.

3. The probability of a success, denoted by p, is the same for each trial.

4. The results of outcomes from different trials are independent.

If one recognizes an experiment as being binomial, then all one needs to
know is n and p to determine probabilities for the number of successes Y.
The probability of y successes in a binomial experiment is given by

Prob(Y =y) = (Z)py(l —p)"Yy=0,---,n (7.4)

Assuming the dining survey is a random sample (thus independent
outcomes), this is the result of a binomial experiment. The likelihood is the
chance of 12 successes in 20 trials viewed as a function of the probability of
success p:



Likelihood = L(p) = (35)p'*(1 — p)&. (7.5)

Generally one uses L to denote a likelihood function — one sees in
Equation (7.5), L is a function of p. Note that the value of n, the total
number of trials, is known and the number of successes Y is observed to be
12. The proportion p, is the parameter of the binomial experiment and the
likelihood is a function of the proportion p.

The likelihood function L(p) is efficiently computed using the dbinom()
function in R. In order to use this function, we need to know the sample
size n (20 in the dining survey), the number of successes y (12 in the dining
survey), and p (the list of 6 plausible values created in Section 7.2.2; p =
{0.3, 0.4, 0.5, 0.6, 0.7, 0.8}). Note that we only need the plausible values of
p, not yet the assigned probabilities in the prior distribution. The prior will
be used in the third step to update the opinion of p to its posterior.

R Below is the example R code of finding the probability of 12 successes

in a sample of 20 for each value of the proportion p. The values are placed
in the Likelihood column of the bayes_table data frame.

bayes_table$Likelihood <- dbinom(12, size=20, prob=bayes_table$p)
bayes_table
p Prior Likelihood

1 0.3 0.125 0.003859282
2 0.4 0.125 0.035497440
3 0.5 0.250 0.120134354
4 0.6 0.250 0.179705788
5 0.7 0.125 0.114396740
6 0.8 0.125 0.022160877

7.2.4 Posterior distribution for proportion p

The posterior probabilities are found as an application of Bayes’ rule. This
recipe will be illustrated first through a step-by-step calculation process.
Next the process is demonstrated with the bayesian_crank() function in
the ProbBayes R package, which implements the Bayes’ rule calculation and
outputs the posterior probabilities.



Let n(p) to be the prior distribution of p, let L(p) denote the likelihood
function, and n(p| y) to be the posterior distribution of p after observing
the number of successes y. For discrete parameters, such as the proportion
p in our case, one is able to enumerate the list of plausible values and
assign prior probabilities to the values. If p, represents a particular value of

p, Bayes’ rule for a discrete parameter has the form

s iXL A
m(pi | ) = <Ly 76

where n(p;) is the prior probability of p = p, L(p;) is the likelihood
function evaluated at p = p;, and n(p,| y) is the posterior probability of p =
p; given the number of successes y. By the Law of Total Probability, the

denominator gives the marginal distribution of the observation y.
Bayes’ rule can also be expressed as “prior times likelihood™:

m(p; | y) o< w(ps) X L(ps) 7.7)

Equation (7.7) ignores the denominator and states that the posterior is
proportional to the product of the prior and the likelihood. As one will see
soon, the value of the denominator is a constant, meaning that its purpose
is to normalize the numerator. It is convenient to work with Bayes’ rule as
in Equation (7.7) in later chapters. However, it is instructive to show the
exact calculation of Equation (7.6), because one has a finite sum in the
denominator and it is possible to obtain the analytical solution. In the case
where the prior is continuous, it will be more difficult to analytically
compute the normalizing constant.

Returning to the students’ dining preference example, the list of
plausible values of the proportion is p = {0.3, 0.4, 0.5, 0.6, 0.7, 0.8} and
according to the restaurant owner’s expert prior, the assigned probabilities
are m,(p) = (0.125, 0.125, 0.250, 0.250, 0.125, 0.125) (recall Figure 7.2).

After observing the number of successes, the likelihood values are
calculated for the models using dbinom() function, as presented in Section
7.2.3.



The denominator is the sum of the products of the prior and the
likelihood at each possible p,, which, given the Law of Total Probability, is

equal to the marginal probability of the data f(y). One can think of the
above formula as reweighing or normalizing the probability of n(p; y) by

all possible values of p. In the case of discrete models like this, the
marginal  probability of the likelihood is computed through
> f(pj) x L(pj)-

In this setup, the computation of the posterior probabilities of different
p; values is straightforward. First, one calculates the denominator and
denote the value as D.

D = 7(0.3) x L(0.3) + 7(0.4) x L(0.4) +--- 4+ 7(0.8) x L(0.8)
= 0.125 x (79)(0.3)'2(1 — 0.3)8 +--- 4+ 0.125 x (27)(0.8)'2(1 — 0.8)?
~ 0.0969.

Then the posterior probability of p = 0.3 is given by

0.125x () (0.3)!2(1-0.3)8
D

~ 0.005.
In a similar fashion, the posterior probability of p = 0.5 is calculated as

n(p=05|12) = TA0I)

0.125x (15)(0.5)12(1-0.5)8
D

0.310.

One sees that the denominator is the same for the posterior probability
calculation of every value of p. This calculation gets tedious for a large
number of possible values of p. Relying on statistical software such as R
helps us simplify the tasks.

R To use the bayesian_crank() function, recall that we have already
created a data frame with variables p, Prior, and Likelihood. Then the
bayesian_crank() function is used to compute the posterior probabilities.



bayesian_crank(bayes_table) -> bayes_table
bayes_table
p Prior Likelihood Product Posterior

1 0.3 0.125 0.003859282 0.004824102 0.004975901

2 0.4 0.125 0.035497440 0.0044371799 0.045768032
3 0.5 0.250 0.120134354 0.0300335884 0.309786454
4 0.6 0.250 0.179705788 0.0449264469 0.463401326
5 0.7 0.125 0.114396740 0.0142995925 0.147495530
6 0.8 0.125 0.022160877 0.0027701096 0.028572757

As one sees in the bayes_table output, the bayesian_crank() function
computes the product of Prior and Likelihood and stores the values in the
column Product, then normalizes each product with the sum of all products
to produce the posterior probabilities, stored in the column Posterior.

Figure 7.3 compares the prior probabilities in the bottom panel with the
posterior probabilities in the top panel. Notice the difference in the two
distributions. After observing the survey results (i.e. the likelihood), the
owner is more confident that p is equal to 0.5 or 0.6, and it is unlikely for p
to be 0.3, 0.4, 0.7, and 0.8. Recall that the data gives an observed
proportion 12/20 = 0.6. Since the posterior is a combination of prior and
likelihood, it is not surprising that the likelihood helps the owner to
sharpen his belief about proportion p and place a larger posterior
probability around 0.6.
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FIGURE 7.3
Prior and posterior distributions on the proportion p.
7.2.5 Inference: students’ dining preference

Let’s revisit the posterior distribution table to perform some inference.
What is the posterior probability that over half of the students prefer
eating out on Friday? One is interested in the probability that p > 0.5, in
the posterior. Looking at the table, this posterior probability is equal to

Prob(p > 0.5) ~ 0.463 + 0.147 + 0.029 = 0.639.

This means the owner is reasonably confident (with probability 0.639) that
over half of the college students prefer to eat out on Friday.

R One easily obtains the probability from the R output, for example.



sum(bayes_table$Posterior[bayes_table$p > 0.5])
[1] ©.6394696

7.2.6 Discussion: using a discrete prior

Specifying a discrete prior has two steps: (1) specifying a list of plausible
values of the parameter of interest, and (2) assigning probabilities to the
plausible values. It is important to remember the three probability axioms
when specifying a discrete prior.

After the prior specification, the next component is the likelihood, which
can also be broken up into two steps. First, one constructs a suitable
experiment that works for the particular scenario. Here one has a binomial
experiment for a survey to a fixed number of respondents, the answers are

“yes” and ‘“no” or ‘“success” and “failure”, the outcome of

classified into
interest is the number of successes and trials are independent. From the
binomial distribution, one obtains the likelihood function which is
evaluated at each possible value of the parameter of interest. In our
example, the dbinom() R function was used to calculate the likelihood
function.

Last, the posterior probabilities are calculated using Bayes’ rule. In
particular for the discrete case, follow Equation (7.6). The calculation of
the denominator is tedious s, however practice with the Bayes’ rule
calculation enhances one’s understanding of Bayesian inference. R functions
such as bayesian_crank() are helpful for implementing the Bayes’ rule
calculations. Bayesian inference follows from a suitable summarization of
the posterior probabilities. In our example, inference was illustrated by
calculating the probability that over half of the students prefer eating out
on Friday.

Let’s revisit the list of plausible values of proportion p of students
preferring Friday in dining out in the example. Although p = 1.0, that is,
everyone prefers Friday, is very unlikely, one might not want to eliminate
this proportion value from consideration. As one observes in the Bayes’ rule
calculation process shown in Sections 7.2.3 and 7.2.4, if one does not
include p = 1.0 as one of the plausible values in the prior distribution in
Section 7.2.2, this value will also be given a probability of zero in the
posterior.



Alternatively, one could choose the alternative set of values
p={0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0},

and assign a very small prior probability (e.g. 0.05 or even smaller) for p =
1.0 to express the opinion that p = 1.0 is very unlikely. One may assign
small prior probabilities for other large values of p such as p = 0.9.

This comment illustrates a limitation of specifying a discrete prior for a
proportion p. If a plausible value is not specified in the prior distribution
(e.g. p = 1.0 is not in the restaurant owner’s prior distribution), it will be
assigned a probability of zero in the posterior (e.g. p = 1.0 is not in the
restaurant owner’s posterior distribution).

It generally is more desirable to have p to be any value in [0, 1] including
less plausible values such as p = 1.0. To make this happen, the proportion
p should be allowed to take any value between 0 and 1, which means p will
be a continuous variable. In this situation, it is necessary to construct a
continuous prior distribution for p. A popular class of continuous prior
distributions for proportion is the beta distribution which is the subject of
the next section.

7.3 Continuous Priors

Let’s continue our students’ dining preference example. A restaurant owner
is interested in learning about the proportion p of students whose favorite
day for eating out is Friday.

The proportion p should be a value between 0 and 1. Previously, we used
a discrete prior for p, representing the belief that p only takes the six
different values 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. An obvious limitation of this
assumption is, what if the true p is 0.557 If the value 0.55 is not specified
in the prior distribution of p (that is, a zero probability is assigned to the
value p = 0.55), then by the Bayes’ rule calculation (either by hand or by
the wuseful bayesian_crank() function) there will be zero posterior
probability assigned to 0.55. It is therefore preferable to specify a prior that
allows p to be any value in the interval [0, 1].



To represent such a prior belief, it is assumed that p is continuous on |0,
1]. Suppose again that one is a layman unfamiliar with the pattern of
dining during a week. Then one possible choice of a continuous prior for p
is the continuous uniform distribution, which expresses the opinion that p
is equally likely to take any value between 0 and 1.

Formally, the probability density function of the continuous uniform on
the interval (a, b) is

1
m(p) =< e fora<p=b (7.8)
0 for p <a or p > b.

In our situation p is a continuous uniform random variable on [0, 1], we
have n(p) = 1 for p € [0, 1], and n(p) = 0 everywhere else.

What about other possible continuous prior distributions for p on [0, 1]?
Consider a prior distribution for the restaurant owner who has some
information about the location (i.e. value) of p. This owner would be
interested in a continuous version of the discrete prior distribution where
values of p between 0.3 and 0.8 are more likely than the values at the two
ends.

The beta family of continuous distributions is useful for representing
prior knowledge in this situation. A beta distribution, denoted by Beta(a,
b), represents probabilities for a random variable falling between 0 and 1.
This distribution has two shape parameters, a and b, with probability
density function given by

71-(p) - B((lz’b) pa_l(l _p)b_la 0< b < 1a (7.9)

where B(a, b) is the beta function defined by B(a,b) = 1}((‘2%? , where T is

the Gamma function. For future reference, it is useful to know that if p ~

Beta(a, b), its mean E[p] = -3 and its variance V(p) = m. The

continuous uniform in Equation (7.8) is a special case of the beta
distribution: Uniform(0, 1) = Beta(1, 1).



For the remainder of this section, Section 7.3.1 introduces the beta
distribution and beta probabilities, and Section 7.3.2 focuses on several
ways of choosing a beta prior that reflects one’s opinion about the location
of a proportion.

7.3.1 The beta distribution and probabilities

The two shape parameters a and b control the shape of the beta density
curve. Figure 7.4 shows density curves of beta distributions for several
choices of the shape parameters. One observes from this figure that the
beta density curve displays vastly different shapes for varying choices of a
and b. For example, Beta(0.5, 0.5) represents the prior belief that extreme
values of p are likely and p = 0.5 is the least probable value. In the
students’ dining preference example, specifying a Beta(0.5, 0.5) would
reflect the owner’s belief that the proportion of students dining out on
Friday is either very high (near one) or very low (near one) and not likely
to be moderate values.
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FIGURE 74
Ilustration of nine beta density curves.

As the beta is a common continuous distribution, R functions are
available for beta distribution calculations. We provide a small example of
“beta’” functions for Beta(1, 1), where the two shape parameters 1 and 1 are
the second and third arguments of the functions.

R Recall the following useful results from previous material: (1) a Beta(1,
1) distribution is a uniform density on (0, 1), (2) the density of Uniform(0,
1) is #(p) = 1 on [0, 1], and (3) if p ~ Uniform(0, 1), then the cdf F(z) =
Prob(p < z) = x for z € [0, 1].

1. dbeta(): the probability density function for a Beta(a, b) which takes a
value of the random variable as its input and outputs the probability
density function at that value.



For example, we evaluate the density function of Beta(1l, 1) at the
values p = 0.5 and p = 0.8, which should be both 1, and 0 at p = 1.2
which should be 0 since this value is outside of [0, 1].

dbeta(c(0.5, 0.8, 1.2), 1, 1)
[1] 11 ©

. pbeta(): the distribution function of a Beta(a, b) random variable,
which takes a value x and gives the value of the random variable at
that value, F(z).

For example, suppose one wishes to evaluate the distribution function
of Beta(1, 1) at p = 0.5 and p = 0.8.

pbeta(c(0.5, 0.8), 1, 1)
[1] 0.5 0.8

One calculates the probability of p between 0.5 and 0.8, i.e. Prob(0.5 <
p < 0.8) by taking the difference of the cdf at the two values.

pbeta(0.8, 1, 1) - pbeta(0.5, 1, 1)
[1] ©.3

. gbeta(): the quantile function of a Beta(a, b), which inputs a
probability value p and outputs the value of z such that F(z) = p.

For example, suppose one wishes to calculate the quantile of Beta(1, 1)
at p = 0.5 and p = 0.8.

gbeta(c(0.5, 0.8), 1, 1)
[1] 0.5 0.8

. rbeta(): the random number generator for Beta(a, b), which inputs
the size of a random sample and gives a vector of the simulated
random variates.

For example, suppose one is interested in simulating a sample of size
five from Beta(1, 1).




rbeta(5, 1, 1)
[1] 0.71242248 0.59102308 0.05953272 0.47189451 0.44856499

R There are additional functions in the ProbBayes R package that aid in
visualizing beta distribution calculations. For example, suppose one has a
Beta(7, 10) curve and we want to find the chance that p is between 0.4 and
0.8. Looking at Figure 7.5, this probability corresponds to the area of the
shaded region. The special function beta_area() will compute and illustrate
this probability. Note the use of the vector c(7, 10) to input the two shape

parameters.

beta_area(0.4, 0.8, c(7, 10))

P(0.4<P < 0.8)=0.527

Beta(7, 10)

Density
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P

FIGURE 7.5
Area represents the probability that a Beta(7, 10) variable lies between 0.4 and 0.8.

One could also find the chance that p is between 0.4 and 0.8 by subtracting
two pbeta() functions.

pbeta(0.8, 7, 10) - pbeta(0.4, 7, 10)



The function beta_quantile() works in the same way as gbeta(), the
quantile function. However, beta_quantile() automatically produces a plot
with the shaded probability area. Figure 7.6) plots and computes the
quantile to be 0.408. The chance that p is smaller than 0.408 is 0.5.

beta_quantile(0.5, c(7, 10))

P(O<P < 0.408)=05
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FIGURE 7.6

[lustration of a 0.5 quantile for a Beta(7, 10) variable.

Alternatively, use the gbeta() function without returning a plot.

gbeta(0.5, 7, 10)
[1] 0.4082265

7.3.2 Choosing a beta density to represent prior opinion



One wants to use a Beta(a, b) density curve to represent one’s prior
opinion about the wvalues of the proportion p and their associated
probabilities. It is difficult to guess at values of the shape parameters a and
b directly. However, there are indirect ways of guessing their values. We
present two general methods here.

The first method is to consider the shape parameter a as the prior count
of “successes” and the other shape parameter b as the prior count of
“failures”. Subsequently, the value a + b represents the prior sample size
comparable to n, the data sample size. Following this setup, one could
specify a beta prior with shape parameter a expressing the number of
successes in one’s prior opinion, and the other shape parameter b
expressing the number of failures in one’s prior opinion. For example, if one
believes that a prior: there should be about 4 successes and 4 failures, then
one could use Beta(4, 4) as the prior distribution for the proportion p.

RHow can we check if Beta(4, 4) looks like what we believe a priori?
Recall that rbeta() generates a random sample from a beta distribution.
The R script below generates a random sample of size 1000 from Beta(4, 4)
and we plot a histogram and an overlapping density curve. (See left panel
of Figure 7.7.) By an inspection of this graph, one decides if this prior is a
reasonable approximation to one’s beliefs about the proportion.

Betad44samples <- rbeta(16000, 4, 4)
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FIGURE 7.7
Histograms of 1000 samples of two beta density curves: Beta(4, 4) and Beta(2, 9).

As a second example, consider a belief that a priori there are 2 successes
and 9 failures, corresponding to the Beta(2, 9) prior. One can use the
rbeta() function take a random sample of 1000 from this prior.

Beta29samples <- rbeta(16000, 2, 9)

Comparing the two distributions, note from Figure 7.7 that Beta(2, 9)
favors smaller proportion values than Beta(4, 4).

To further check the quantiles of the prior, one can use the quantile()
function on the simulated draws from the prior. For example, if one wishes
to check the middle 50% range of values of p from the random sample of
values from Beta(4, 4), one types

guantile(Betad44samples, c(0.25, 0.75))
25% 75%
0.3890909 0.6254733

This tells us that the probability that p < 0.366 is 0.25 and the
probability that p > 0.616 is also 0.25. These probability statements should
be checked against one’s prior belief about p. If these quantiles do not seem



reasonable, one should make adjustments to the values of the shape
parameters a and b .

On the surface the two priors Beta(4, 4) and Beta(40, 40) seem similar in
that they both have a mean of 0.5 and represent similar breakdowns of the
success and failure counts. However, the aforementioned concept of prior
sample size tells us that Beta(4, 4) has a prior sample size of 8 while that
of Beta(40, 40) is 80. As we will see in Section 7.4, the prior sample size
determines the strength of the prior (i.e. the confidence level in the prior)
and so the Beta(40, 40) prior represents a much stronger belief that p is
close to the value 0.5.

A second indirect method of determining a beta prior is by specification
of quantiles of the distribution. Specifically, one determines the shape
parameters a and b by first specifying two quantiles of the beta density
curve, and then finding the beta density curve that matches these
quantiles. Suppose the restaurant owner uses his knowledge to specify the
0.5 and 0.9 quantiles of the proportion p as follows.

1. First, the restaurant owner thinks of a value ps; such that the
proportion p is equally likely to be smaller or larger than ps,. After
some thought, he thinks that ps, = 0.55.

2. Next, the owner thinks of a value pg, that he is pretty sure (with
probability 0.90) that the proportion p is smaller than pg,. After more
thought, he decides pg, = 0.80.

R One then uses the beta.select() function in the ProbBayes package to
find shape parameters a and b of the beta density curve that match this
information. Each quantile is specified by a list with values z and p. From

the output, we see Beta(3.06, 2.56) curve represents the owner’s prior
beliefs.

beta.select(list(x = 0.55, p = 0.5),
list(x = 0.80, p = 0.9))
[1] 3.06 2.56

The owner’s beta density curve is shown here. To make sure this prior is
reasonable, the owner should compute several probabilities and quantiles



for his prior distribution and see if these values correspond to his opinion.
To illustrate this checking process, Figure 7.8 shows the middle 50% area of
the prior distribution. This graph shows that the probability that p < 0.402
is 0.25 and the probability that p > 0.692 is also 0.25. If these calculations
do not correspond to the owner’s opinion, then maybe some change in the
prior distribution would be appropriate.

P(0402<P=< 0692)=05
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FIGURE 7.8

Illustration of the middle 50% of a Beta(3.06, 2.56) curve.

7.4 Updating the Beta Prior

In the previous section, we have seen that the restaurant owner thinks that
a beta curve with shape parameters 3.06 and 2.56 is a reasonable reflection
of his prior opinion about the proportion of students p whose favorite day
for eating out is Friday. Therefore, we work with Beta(3.06, 2.56) as the
prior distribution for p.

Now we have the survey results — the survey was administered to 20
students and 12 say that their favorite day for eating out is Friday. As



before in Section 7.2, the likelihood, that is the chance of getting this data
if the probability of success is p is given by the binomial formula,

Likelihood = L(p) = (35)p"*(1 — p)®.

In this section, the Bayes’ rule calculation of the posterior is presented
for the continuous prior case and one discovers an interesting result: if one
starts with a beta prior for a proportion p, and the data is binomial, then
the posterior will also be a beta distribution. The beta posterior is a
natural combination of the information contained in the beta prior and the
binomial sampling, as one would expect in typical Bayesian inference. This
is an illustration of the use of a conjugate prior where the prior and
posterior densities are in the same family of distributions.

7.4.1 Bayes’ rule calculation

First we demonstrate the Bayes’ rule calculation of the posterior of p
through the proportional statement:

m(p | y) o< w(p) x L(p). (7.10)

The prior distribution of p, with density n(p), is beta with shape
parameters 3.06 and 2.56

p ~ Beta(3.06,2.56).

The symbol “~” is read “follows”, meaning that the random variable before
the symbol follows the distribution that is after the symbol.

For the likelihood, we introduce proper notation. Let Y be the random
variable of the number of students say that their favorite day for eating out
is Friday. We know that the sampling distribution for Y is a binomial
distribution with number of trials 20 and success probability p. Using the
notation of “~”, we have

Y ~ Binomial(20, p).



After the value Y = y is observed, L(p) = f(y| p) denotes the likelihood,
which is the probability of observing this sample value y viewed as a
function of the proportion p. (Note that a small letter y is used to denote
the actual data observed, as opposed to the random variable Y.) From the
dining survey, we know that y = 12.

Now we have the following prior density and the likelihood function.

e The prior distribution:

1 3.0671(1 _

_ 2.56—1
m(p) = B(3.06,2.56) P .

D)
e The likelihood:
fY =12 |p) = L(p) = (3)p'?(1 — p)®.

By Bayes’ rule, the posterior density n(p| y) is proportional to the
product of the prior and the likelihood.

m(p | y) o< w(p) X L(p).

Substituting the current prior and likelihood, one can perform the
algebra for the posterior density.

m(p|Y =12) o« 7(p) x f(Y =12 p)
_ 1 p3O6-T1(1 — p)256-15

B(3.06,2.56)

(3)p2(1 - p)® (7.11)
[drop the constants] o< p'?(1 — p)3p306-1(1 — p)2-56-1
[combine the powers] = p'*%-1(1 — p)l0-56-1,

One observes that the posterior density of p given Y = 12 is, up to a
proportionality constant,

7.‘.(p ‘ Y = 12) X p15.06—1(1 _ p)10.56—1'

Note that in the posterior derivation, the constants (20) and B 1

12 3.06,2.56)
are dropped due to the proportional sign “«”. That is, the expression of



a(p| Y = 12) is computed up to some constant. In this case, Appendix A
demonstrates the calculation of the constant.

Next, one recognizes if the posterior distribution of p is recognizable as a
member of a familiar family of distributions. In the computation of the
posterior, we have intentionally kept the expression of —1 in the powers of p
and 1 — p terms, instead of using 14.06 and 9.56 directly. By doing this,
one recognizes that the posterior density has the familiar form

(1 -p)

As the reader might have guessed, the posterior distribution turns out to
be a beta distribution with updated shape parameters. That is, the
posterior distribution of p given Y = 12 is beta with parameters 15.06 and
10.56.

7.4.2 From beta prior to beta posterior: conjugate priors

The results about a proportion p from the Bayes’ rule calculation
performed in Section 7.4.1 can be generalized. Suppose one works with the
following prior distribution and sampling density:

e The prior distribution:
p ~ Beta(a,b)
e The sampling density:
Y ~ Binomial(n, p)

One observes the count Y = gy, the number of successes in the collected
data. Then the posterior distribution of p is another beta distribution with
shape parameters a + y and b + n — .

e The posterior distribution:

p|Y =y~ Betala+y,b+n—y) (7.12)



The two shape parameters of the beta posterior distribution, a + y and b
+ n — y, are the sums of the prior and likelihood counts of successes and
failures, respectively. We algebraically combine the shape parameters of the
beta prior and the binomial likelihood to obtain the shape parameters of
the posterior beta distribution.

Table 7.1 demonstrates this process with three rows labelled Prior,
Likelihood, and Posterior. The Prior row contains the shape parameters of
the beta prior a and b in the Successes and Failures columns, respectively.
The Likelihood row contains the number of successes y and the number of
failures n — y. The shape parameters of the beta posterior are found by
adding the prior parameter values and the data values.

TABLE 7.1

Updating the beta prior.
Source Successes Failures
Prior a b
Likelihood y n—-y
Posterior a+y b+n-y

R In the following R script we update the beta shape parameters. We
see that the owner’s posterior distribution for p is beta with shape
parameters 15.06 and 10.56.

ab <- ¢(3.06, 2.56)
yny <- c(12, 8)
(ab_new <- ab + yny)
[1] 15.06 10.56

The function beta_prior_post() in the ProbBayes R package plots the
prior and posterior beta curves together on one graph, see Figure 7.9.

beta_prior_post(ab, ab_new)
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FIGURE 7.9

Prior and posterior curves for the proportion of students who prefer to dine out on Friday.
Comparing the two beta curves, several observations can be made.

e One can compare the prior and posterior beta curves using the

respective means. The mean of a Beta(a, b) distribution is aib. Using
this formula, the posterior mean of p is 15.06 / (15.06 + 10.56) =
0.588 which is slightly larger than the prior mean 3.06 / (30.6 + 2.56)

= 0.544. Recall that the sample proportion from the survey results is

12/20 = 0.6. The posterior mean lies between the prior mean and
sample mean and it is closer to the sample mean.

e Next one compares the spreads of the two curves. One sees a much
wider spread of the prior beta curve (dashed line) than that of the
posterior beta curve (solid line). Initially the owner was unsure about
the proportion of students favoring Friday to dine out. After observing
the results of the survey, the solid posterior curve indicates that he is
more certain that p is between 0.5 and 0.7. This sheds light on a
general feature of Bayesian inference: the data helps sharpen the belief
about the parameter of interest, producing a posterior distribution
with a smaller spread than the prior distribution.



The attractive combination of a beta prior and a binomial sampling
density to obtain a posterior motivates a definition of conjugate priors. If
the prior distribution and the posterior distribution come from the same
family of distributions, the prior is then called a conjugate prior. Here a
beta is a conjugate prior for a success probability p, since the posterior
distribution for p is also in the beta family. Conjugate priors are specific to
the choice of sampling density. For example, a beta prior is conjugate with
binomial sampling, but not to normal sampling which is popular for
continuous outcome. In Chapter 8 we will discover the conjugate prior
distribution for a normal sampling distribution.

Conjugate priors are desirable because they simplify the Bayesian
inference procedure. In the dining preference example, when a Beta(3.06,
2.56) prior is assigned to p, the posterior is Beta(15.06, 10.56) and
inference about p is made in a straightforward way. One can easily plot the
prior and posterior beta distributions as in Figure 7.9. One can also make
precise comparative statements about the locations of the prior and
posterior distribution using quantiles of a beta curve.

Although conjugate priors are convenient and straightforward to use,
they may not be appropriate for use in a Bayesian analysis. One should
choose a prior that fits one’s belief, not one that is convenient to use. In
some situations it may be appropriate to choose a prior distribution that
does not provide conjugacy. In Chapter 9, we will describe computational
methods to facilitate posterior inferences when non-conjugate priors are
used. Modern Bayesian posterior computations accommodate a wide
variety of choices of prior and sampling distributions. Therefore it is more
important to choose a prior that matches one’s prior belief than choosing a
prior that is computationally convenient.

7.5 Bayesian Inferences with Continuous Priors

We will continue with the dining preference example to illustrate different
types of Bayesian inference. The restaurant owner has taken his dining
survey and the posterior distribution Beta(15.06, 10.56) reflects his opinion
about the proportion p of students whose favorite day for eating out is
Friday.



All Bayesian inferences about the proportion p are based on various
summaries of this posterior beta distribution. The summary we compute
from the posterior will depend on the type of inference. We will focus on
three types of inference: (1) testing problems where one is interested in
assessing the likelihood of some values of p, (2) interval estimations where
one wants to find an interval that is likely to contain p, and (3) Bayesian
prediction where one wants to learn about new observation(s) in the future.

Simulation will be incorporated for all three types of Bayesian inference
problems. Since one has a conjugate prior distribution, one can derive the
exact posterior distribution (a beta) and inferences are performed with the
exact posterior beta distribution. In other situations when conjugacy is not
available, meaning that no exact representation of the posterior is
available, inferences through simulation are much more widely used. It is
instructive to present the exact solutions and the approximated simulation-
based solutions together, so one learns through practice and prepares for
future use of simulation in other settings.

There is nothing magic about simulation. In fact, simulation has been
used earlier, when the rbeta() function was used to generate simulated
samples from Beta(4, 4) and Beta(2, 9) and check the appropriateness of
the chosen beta prior (review Section 7.3.2 as needed). Information on
simulation and the relevant R code will be introduced in the description of
each inferential problem.

7.5.1 Bayesian hypothesis testing

Suppose one of the restaurant workers claims that at least 75% of the
students prefer to eat out on Friday. Is this a reasonable claim?

In traditional classical statistics, one might be interested in testing the
hypothesis H: p > 0.75. From a Bayesian viewpoint, it is straightforward to
implement this test. Since the hypothesis is an interval of values, one finds
the posterior probability that p > 0.75 and makes a decision based on the
value of this probability. If the probability is small, one rejects this claim.

R First the exact solution will be presented. Since the posterior
distribution is Beta(15.06, 10.56), the owner’s posterior density is graphed
and the area under the curve for values of p between 0.75 and 1 is found.
The beta_area() function is used to display and show the area; see Figure



7.10. Since the probability is only about 4%, one rejects the worker’s claim
that p is at least 0.75.

beta_area(lo = 0.75, hi = 1.0, shape_par = ¢(15.06, 10.56))

P(0.75<P < 1)=0.04

Beta(15.06, 10.56)
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FIGURE 7.10
Probability of the hypothesis from the beta posterior density.

This computation can be implemented using simulation. Since the
posterior distribution is Beta(15.06, 10.56), one generates a large number of
random values from this beta distribution, then summarizes the sample of
simulated draws to obtain the probability of p > 0.75. First a sample of S =
1000 from the beta posterior is taken, storing the results in the vector
BetaSamples.

S <- 1000
BetaSamples <- rbeta(S, 15.06, 10.56)

The proportion of the 1000 simulated values of p that are at least 0.75
gives an approximation of the probability that p > 0.75.




sum(BetaSamples >= 0.75)/S
[1] 0.037

The simulation-based probability estimate is 0.037 which is an accurate
approximation to the exact probability 0.04 obtained before.

It would be reasonable to question the choice of the number of
simulations § = 1000. One can change the simulation sample size to larger
or smaller values as one sees fit. In general, the larger the value of S, the
more accurate the approximation. Figure 7.11 shows that the shape of a
histogram of the simulated values of p approaches the exact posterior
density as the value of S changes from 100 to 10,000. The corresponding
simulation-based probabilities of p > 0.75 are {0.02, 0.05, 0.033, 0.0422}
indicating that the accuracy of the approximation improves for larger
simulation sample sizes.
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FIGURE 7.11
Histograms of simulated draws from Beta(15.06, 10.56) with exact beta density overlaid for four
samples drawn where S = {100, 500, 1000, 10, 000}.

R One will observe variation from one simulation from another (see the
two different but similar approximated probabilities 0.037 and 0.033 when
S = 1000). To replicate one’s results one specifies the seed of the random
number simulator set.seed(). Choose any number that you like to put in —



if this set.seed() line of code is executed first, then the same sequence of
random values will be generated and one replicates the simulation-based
computation.

7.5.2 Bayesian credible intervals

Another type of inference is a Bayesian credible interval, an interval that
one is confident contains p. Such an interval provides an uncertainty
estimate for the parameter p. A 90% Bayesian credible interval is an
interval that contains 90% of the posterior probability.

R One convenient 90% credible interval is the “equal tails” interval that
contains the middle 90% of the probability content. The function
beta_interval() in ProbBayes R package illustrates and computes the
equal-tails interval. The shaded area in Figure 7.12 corresponds to 90% of
the posterior probability. The probability p falls between 0.427 and 0.741 is
exactly 90%.

beta_interval(0.9, c(15.06, 10.56))

P(0427<P< 0.741)=0.9
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FIGURE 7.12
Display of 90% probability interval for the proportion p.



One obtains this middle 90% credible interval using the gbeta() function.

gbeta(c(0.05, 0.95), 15.06, 10.56)
[1] 0.4266788 0.7410141

This Bayesian credible interval differs from the interpretation of a
traditional confidence interval. With a traditional confidence interval, one
does not have confidence that one particular interval will contain p. Instead
90% confidence refers to the average coverage of the interval in repeated
sampling.

Other types of Bayesian credible intervals can be computed. For
example, instead of a credible interval covering the middle 90% of the
posterior probability, one could create a credible interval covering the lower
90%, or the upper 90%, or the middle 95%. The gbeta() function is helpful
in achieving all of these different type of intervals, as long as we know the
exact posterior distribution, that is, the two shape parameters of the
posterior beta distribution. For example, the following code computes a
credible interval that covers the lower 90% of the posterior distribution.

gbeta(c(0.00, 0.90), 15.06, 10.56)
[1] 0.0000000 0.7099912

An alternative way of creating credible intervals is by simulation. One
first takes a random sample from the Beta(15.06, 10.56) distribution, then
summarizes the simulated values by finding the two cutoff points of the
middle 90% of the sample. The quantile() function is useful for this
purpose. As a demonstration, below we simulate S = 1000 proportion
values and compute the credible interval.

S <- 1000

BetaSamples <- rbeta(S, 15.06, 10.56)
gquantile(BetaSamples, c(0.05, 0.95))
5% 95%

0.4266076 0.7333957




The approximate middle 90% credible interval is [0.427, 0.733|, which is
close in value to the exact 90% credible interval [0.427, 0.741] computed
using the gbeta() and beta_interval() functions. In an end-of-chapter
exercise the reader is encouraged to practice and experiment with different
values of the size of the simulated sample S.

7.5.3 Bayesian prediction

Prediction is a typical task of Bayesian inference and statistical inference in
general. Once we are able to make inference about the parameter in our
statistical model, we may be interested in predicting future observations.

Denote a new observation by the random variable Y. In particular, if the
new survey is given to m students, the random variable Y is the number of
students preferring Friday to dine out among the m respondents. If again
the survey is given to a random sample, the random variable Y, conditional
on p, follows a binomial distribution with the fixed total number of trails m
and success probability p. One’s knowledge about the location of p is
expressed by the posterior distribution of p.

Mathematically, to make a prediction of a new observation, one is asking
for the distribution of Y given the observed data Y = y. That is, one is
interested in the probability function f(¥ =g |Y = y) where § is a value
of Y. But the conditional distribution of ¥ given a value of the proportion
p is binomial(m, p) and the current beliefs about p are described by the
posterior density. So one writes the joint density of Y and p as the product

f¥=9p|Y=y=FfY=7|prp|Y =y). (7.13)
By integrating out p, one obtains the predictive distribution
f¥=9|Y=y)=[fY=9|pr(|Y =y)dp. (7.14)

The density of Y given p is binomial with m trials and success
probability p, and the posterior density of p is Beta(a + vy, b + n — y).



After the substitution of densities and an integration step (see Appendix B
for the detail), one finds that the predictive density is given by

v - m \ B(a+y+7§,b+n—y+m—3
[W=g|v=y = (7)2 g 719

This is the beta-binomial distribution with parameters m, a + y and b + n
— .

Y | Y = y ~ Beta — Binomial(m, a + y,b + n — y). (7.16)

To summarize, Bayesian prediction of a new observation is a beta-binomial
distribution where m is the number of trials in the new sample, a and b are

shape parameters from the beta prior, and y and n are quantities from the
likelihood.

R Using this beta-binomial distribution in our example, one computes the
predictive probability that § students prefer Friday in a new survey of 20
students. We illustrate the use of the pbetap() function from the ProbBayes
package. The inputs to pbetap() are the vector of beta posterior shape
parameters (a, b), the sample size 20, and the values of § of interest.

prob <- pbetap(c(15.06, 10.56), 20, 0:20)
prob_plot(data.frame(Y = 0:20, Probability = prob),
Color = crcblue, Size = 4) +
theme(text=element_text(size=18))

These predictive probabilities are displayed in Table 7.2 and graphed in
Figure 7.13.
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FIGURE 7.13
Display of the exact predictive distribution of the number of students § favoring Friday in a future
sample of 20.

TABLE 7.2
Predictive distribution of the number of students preferring Friday in a future sample of 20.
Y Probability Y Probability
0 0 11 0.127
1 0 12 0.134
2 0 13 0.127
3 0.001 14 0.108
4 0.004 15 0.080
5 0.010 16 0.052
6 0.021 17 0.028
7 0.037 18 0.012
8 0.059 19 0.004
9 0.085 20 0.001
10 0.109

Looking at the table, the most likely number of students preferring
Friday is 12. Just as in the inference situation, it is desirable to construct
an interval that will contain ¥ with a high probability. Suppose the desired
probability content is 0.90. One constructs this prediction interval by



putting in the most likely values of ¥ until the probability content of the
set exceeds 0.90.

R This method is implemented using the following command

discint(cbind(0:20, prob), .9)
$prob

[1] 0.9185699

$set

[1] 7 8 9 10 11 12 13 14 15 16

One therefore finds that

Prob(7 <Y < 16) = 0.919.

This exact predictive distribution is based on the posterior distribution
of p, as one uses n(p| Y = y) in the integration process in Equation (7.14).
For that reason this predictive distribution is called the posterior predictive
distribution. There also exists a prior predictive distribution, a topic we will
briefly introduce in Section 7.6.

In situations where it is difficult to derive the exact predictive
distribution, one simulates values from this distribution. One implements
this predictive simulation by first simulating draws of the parameter (in
this case the proportion p) from its posterior distribution, and then
simulating values of the future observation (e.g. the new observation Y)
from the sampling density (here the binomial distribution).

We illustrate this simulation procedure with the generic beta posterior
Beta(a + y, b + n — y). To simulate a single draw from the predictive
distribution, one first simulates a single proportion value p from the beta
posterior and then simulates a new data point § (the number of successes
out of m trials) from a binomial distribution with sample size m and
probability of success given by the simulated draw of p.

sample p ~ Beta(a +y,b+n —y) — sample Y ~ Binomial(m, p)

R This process of simulating a single draw is implemented by the rbeta()
and rbinom() functions. Let m = n (the size of the future sample is the
same as the size of the observed sample).



a <- 3.06; b <- 2.56

n <- 20; y <- 12

pred_p_sim <- rbeta(l1, a +y, b +n - vy)
(pred_y_sim <- rbinom(1, n, pred_p_sim))
[1] 14

Due to the ability of R to work easily with vectors, the same code is
essentially used for simulating S = 1000 draws from the predictive
distribution. In the following R script, pred_p_sim contains 1000 simulated
draws from the posterior, and for each element of this posterior sample, the
rbinom() function is used to simulate a corresponding value of ¥ from the
binomial sampling density.

a <- 3.06; b <- 2.56

n <-20; y <- 12

S = 1000

pred_p_sim <- rbeta(S, a +y, b+ n -vy)
pred_y_sim <- rbinom(S, n, pred_p_sim)

Figure 7.14 displays predictive probabilities for the number of students
who prefer Fridays using the exact beta-binomial and simulation methods.
One observes good agreement using these two computation methods. For
example, using the simulated values of Y one finds that

Prob(6 <Y < 15) = 0.927

which is close in value to the range Prob(7 <Y < 16) = 0.919 found using
the exact predictive distribution.

discint(as.matrix(S1[, 2:3]), .9)
$prob

[1] 0.927

$set

[1] 6 7 8 9 10 11 12 13 14 15
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FIGURE 7.14

Display of the exact and simulated predictive probabilities for dining example.

7.6 Predictive Checking

Prior predictive checking

In the previous section, the use of the predictive distribution has been
illustrated in learning about future data. This is more precisely described
as the posterior predictive density as one is obtaining this density by

integrating the sampling density f(Y = | p) over the posterior density

n(p| y)-
The prior predictive density is also useful in model checking. In a

Bayesian model where p has a prior n(p) and Y has a sampling density f{Y
= y| p), one writes the joint density of (p, Y) as the product of the
sampling density and the prior:

f,Y =y)=f(Y =y|p)n(p). (7.17)



Suppose one conditions on y instead of p and then one obtains an
alternative representation of the joint density:

fo,Y=y)=n|Y =y f(Y =y). (7.18)

The first term in this product, the density n(p| Y = y), is the posterior
density of p given the observation y; this density is useful for performing
inference about the proportion. The second term in this product, Y = y),
is the prior predictive density that represents the density of future data
before the observation y is taken. If the actual observation denoted by v,

is not consistent with the prior predictive density (Y = y), this indicates
some problem with the Bayesian model. Basically, this says that the
observed data is unlikely to happen if one simulates predictions of data
from our model.

To illustrate the use of prior predictive checking, recall that the
restaurant owner assigned a Beta(3.06, 2.56) prior to the proportion p of
students dining on Friday. A sample of 20 students will be taken. Based on
this information, one computes the predictive probability Y = y) of y
students preferring Friday dining of the sample of 20. This predictive
distribution for all possible values of y is displayed in Figure 7.15. Recall
that we actually observed y,,, = 12 Friday diners — this value is shown in
Figure 7.15 as a large black dot. This value is in the middle of the
distribution — the takeaway is that the observed data is consistent with
predictions from the owner’s Bayesian model.
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FIGURE 7.15

Prior predictive distribution of y using the owner’s beta prior. The observed number of y is indicated
with a large black dot. In this case the observed data is consistent with the Bayesian model.

In contrast, suppose another restaurant worker is more pessimistic about
the likelihood of students dining on Friday. This worker’s prior median of
the proportion p is 0.2 and her 90th percentile is 0.4 — this information is
matched with a beta prior with shape parameters 2.07 and 7.32. Figure
7.16 displays the predictive density of the number of Friday diners of a
sample of 20 wusing this worker’s prior. Here one reaches a different
conclusion. The observed number 12 of Friday diners is in the tail of this
predictive distribution — this observation is not consistent with predictions
from the Bayesian model. In closer examination, one sees conflict between
the information in the worker’s prior and the data — her prior said that
the proportion p was close to 0.20 and the data result (12 out of 20
successes) indicates that the proportion is close to 0.60. Predictive checking
is helpful in this case in detecting this prior/data conflict.
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FIGURE 7.16
Prior predictive distribution of y using a worker’s beta prior. The observed number of y is indicated
with a large black dot. In this case the observed data is not consistent with the Bayesian model.

Comparing Bayesian models

The prior predictive distribution is also useful in comparing two Bayesian
models. To illustrate model comparison, suppose a second worker at the
restaurant is also asked about the fraction of students who dine on Friday.
He knows that the owner’s belief about the proportion p is described by a
Beta(3.06, 2.56) density, and the fellow worker’s belief about p is
represented by a Beta(2.07, 7.32) density. Who should the second worker
believe?

Suppose this second worker believes that both the owner’s and fellow
worker’s beliefs about the proportion p are equally plausible. So he places a
probability of 0.5 on the Beta(3.06, 2.56) prior and a probability of 0.5 on
the Beta(2.07, 7.32) prior. This second worker’s prior n(p) is written as the
mixture

m(p) = qmi(p) + (1 — q)ma(p), (7.19)



where ¢ = 0.5 and m; and 7, denote the owner’s and worker’s beta priors.

Now one observes the survey data — y Fridays in a sample of size n.
Using the usual prior times likelihood procedure, the posterior density of p
is proportional to the product

w(p| Y =y)  [qmi(p) + A —@m(p)| x (J)pA-p)" " o

After some manipulation, one can show that the posterior density for the
proportion p has the mixture form

mp|Y=y) =qym|Y=y)+ (1 —q(y)m@|Y =1y). (7.21)

The posterior densities 7;(p| y) and m,(p| y) are the familiar beta forms.
For example, m(p| Y = y) will be the Beta(3.06 + vy, 2.56 + n - )
posterior density combining the Beta(3.06, 2.56) prior and the sample data
of y successes in a sample of size n. Likewise, m5(p| ¥ = y) will be the beta
density combining the worker’s Beta(2.07, 7.32) prior and the data.

The quantity ¢(y) represents the posterior probability of the owner’s
prior. One expresses this probability as

_ af1(Y=y)
1) = Fv=+ 0 HT=) (7.22)

where fi(Y = y) and f(Y = y) denote the predictive densities

corresponding to the owner’s and worker’s priors. With a little algebra, one
represents the posterior odds of the model probabilities as follows.

P(PriorllY=y) _ 4qy) _ | q f(Y=y)
P(Prior2]Y=y) — 1-q(y) — [1—q} [f2(Y:y)} (7.23)




The posterior odds of the owner’s prior P(Prior 1| Y = y)/P(Prior 2| y
—= y) is written as the product of two terms.

e The ratio g/(1 — g) represents the prior odds of the owner’s prior.

e The term fi(Y = y)/f(Y = y), the ratio of the predictive densities, is
called the Bayes factor. It reflects the relative abilities of the two
priors to predict the observation y.

R The function binomial.beta.mix() is used to find the Bayes factor for
our example. One inputs the prior probabilities of the two models (priors),
and the vectors of beta shape parameters that define the owner’s prior and
the worker’s prior. The displayed output is the posterior odds value of 6.77.

probs <- c(0.5, 0.5)

beta_parl <- ¢(3.06, 2.56)

beta_par2 <- ¢(2.07, 7.32)

beta_par <- rbind(beta_parl, beta_par2)

output <- binomial.beta.mix(probs, beta_par, c(12, 8))
(posterior_odds <- output$probs[1] / output$probs[2])
6.777823

Since the two priors are given equal probabilities, the prior odds ¢/(1 -
q) is equal to one. In this case the posterior odds is equal to the Bayes
factor. The interpretation is that for the given observation (12 successes in
20 trials), there is 6.77 times more support for the owner’s prior than for
the worker’s prior. This conclusion is consistent with the earlier work that
showed that the observed value of y was inconsistent with the Bayesian
model for the worker’s prior.

Posterior predictive checking

Although the prior predictive distribution is useful in model checking, it
has some disadvantages. One problem is that the distribution f{Y = y) may
not exist in the situation where the prior s() is not a proper probability
distribution. We will see particular situations in future chapters where a
vague or imprecise probability distribution is assigned as our prior and
then the prior predictive distribution will not be well-defined. A related
issue is that a prior may be assigned that may not accurately reflect one’s



prior beliefs about a parameter. Small errors in the specification of the
prior will result in errors in the prior predictive distribution. So there needs
to be some caution in the use of the prior predictive distribution in
assessing the goodness of the Bayesian model.

An alternative method of checking the suitability of a Bayesian model is
based on the posterior predictive distribution. In this setting, one computes
the posterior predictive distribution of a replicated dataset, that is a
dataset of the same sample size as our observed sample. One sees if the
observed value of y is in the middle of this predictive distribution. If this is
true, then this means that the observed sample is consistent with
predictions of replicated data. On the other hand, if the observed y is in
the tails of the posterior distribution, this indicates some model
misspecification which means that there is a possibility of some issue with
the specified prior or sampling density.

One attractive aspect of the posterior prediction distribution is that
replicated datasets are conveniently simulated. To simulate one replicated
dataset, we first simulate a parameter from its posterior distribution, then
simulate new data from the data model given the simulated parameter
value. In the beta-binomial situation, the posterior of the proportion p is
Beta(a + y, b + n — y). To simulate a new data point Y = §, one first
simulates a proportion value p() from the beta prior and then simulates a
new data point y(” from a binomial distribution with sample size n and
probability of success p(). If we wish to obtain a sample of size S from the
posterior predictive distribution, this process is repeated S times as showed
in the following diagram.

sample p(!) ~ Beta(a +y,b+n—y) — sample y(l) ~ Binomial(n,p(l))
sample p® ~ Beta(a +y,b+n—y) — sample 5 ~ Binomial(n, p?)

sample p®) ~ Beta(a +y,b+n—y) — sample 7 ~ Binomial(n, p'¥)

The sample 37(1),. .. ,g(S ) is an approximation to the posterior predictive
distribution that is used for model checking. In practice, one constructs a
histogram of this sample and decides if the observed value of y is in the
central portion of this predictive distribution. The reader will be given an



opportunity to use this algorithm to see if the observed data is consistent
with simulations of replicated data from this predictive distribution.

7.7 Exercises

1. Laymen’s Prior in the Dining Preference Example
Revisit Section 7.2.1 for the laymen’s prior in Equation (7.2) and the
expert’s prior in Equation (7.3). Follow the example R code (functions
data.frame(), mutate() and ggplot()) to obtain the Bayes table and
graph of the laymen’s prior distribution. Compare the similarities and
differences between the laymen’s prior and the expert’s prior.
2. Inference for the Dining Preference (Discrete Priors)
Revisit Section 7.2.5 where we show how to find the posterior
probability that over half of the students prefer eating out on Friday.
Find the following posterior probabilities. (Be careful about the end
points.)
(a) The probability that more than 60% of the students prefer eating
out on Friday.
(b) The probability that less than 40% of the students prefer eating
out on Friday.
(c) The probability that between 20% and 40% of the students prefer
eating out on Friday.
(d) No more than 50% of the students prefer eating out on Friday.
3. Another Dining Survey (Discrete Priors)
Suppose the restaurant owner in the college town gives another survey
to a different group of students. This time he gives the survey to 30
students — among these responses 10 of them say that Friday is their
preferred day to eat out. Use the owner’s prior (restated below) to
calculate the following posterior probabilities.

p= {0.3,0.4,0.5,0.6,0.7,0.8}
me(p) = (0.125,0.125,0.250,0.250, 0.125, 0.125)

(a) The probability that 30% of the students prefer eating out on
Friday.



(b) The probability that more than half of the students prefer eating
out on Friday.

(c) The probability that between 20% and 40% of the students prefer
eating out on Friday.

4. Interpreting A Beta Curve

Revisit Figure 7.4 where nine different beta curves are displayed. In
the context of students’ dining preference example where p is the
proportion of students preferring Friday, interpret the following prior
choices in terms of the opinion of p. For example, Beta(0.5, 0.5)
represents the prior belief the extreme values p = 0 and p = 1 are
more probable and p = 0.5 is the least probable. In the students’
dining preference example, specifying a Beta(0.5, 0.5) prior indicates
the owner thinks the students’ preference of dining out on Friday is
either very strong or very weak.

(a) Interpret the Beta(1l, 1) curve.

(b) Interpret the Beta(0.5, 1) curve.

(c) Interpret the Beta(4, 2) curve.

(d) Compare the opinion about p expressed by the two beta curves:
Beta(4, 1) and Beta(4, 2).

5. Beta Probabilities
Use the functions dbeta(), pbeta(), gbeta(), rbeta(), beta_area(),
and beta_quantile() to answer the following questions about beta
probabilities.

(a) Compute the density of Beta(0.5, 0.5) at the values p = {0.1, 0.5,
0.9, 1.5}. Check your answers with the Beta(0.5, 0.5) curve in
Figure 7.4.

(b) If p ~ Beta(6, 3), compute the probability Prob(0.2 < p < 0.6).

(c) Compute the quantiles of the Beta(10, 10) distribution at the
probability values in the set {0.1, 0.5, 0.9, 1.5}.

(d) Simulate a sample of 100 random values from Beta(4, 2).

6. Comparing Beta Distributions
Consider four Beta curves: (1) Beta(5, 5), (2) Beta(10, 10), (3)
Beta(50, 50) and (4) Beta(100, 100). Think of the shape parameters a
and b as counts of “successes” and “failures” in a prior sample. Use one
of the R beta functions (e.g. rbeta(), beta_area(), among others) to
discuss the similarities and differences between these four beta curves.
7. Specifying A Continuous Beta Prior



Consider another dining survey conducted by a restaurant owner in
New York. The owner is also interested in knowing about the
proportion p of students who prefer eating out on Friday. He believes
that its 0.4 quantile is 0.7 and 0.8 quantile is 0.9. Suppose the owner
plans on using a beta prior distribution.

(a) Find the values of the beta shape parameters a and b to represent
the restaurant owner’s belief.

(b) Confirm the choice of beta prior by taking a simulated sample
from the prior predictive simulation. [Hint: use the rbeta()
function to simulate a sample from the selected beta distribution,
and then simulate new ¢ values from the binomial data model
(function rbinom()) with a sample size of 20. Graph and/or
calculate a few quantiles of the simulated § sample from the
predictive distribution to check the restaurant owner’s prior
belief.|

. Deriving the Beta Posterior

Following the derivation process of the dining preference example in

Section 7.4.1, derive this more general result. If the proportion has a

Beta(a, b) prior and one samples Y from a binomial distribution with

parameters n and p, then if one observes Y = g, then the posterior

density of p is Beta(a + y, b + n — y).

. Prior Sample Size and Strength of Priors

Another way of specifying a Beta(a, b) prior is to imagine a pre-survey

with the same question and represent the beta shape parameters in the

form of a successes and b failures in the pre-survey (see Table 7.3).

This exercise explores this prior specification method.

TABLE 7.3

Updating the beta prior.
Source Successes Failures
Prior a b
Likelihood y n-y
Posterior a+y b+n-y

(a) Recall from Section 7.3 that the mean of the Beta(a, b)

distribution is aLer' Define the prior sample size to be n, = a -+ b.

Consider two beta prior distributions: Beta(2, 2) and Beta(20,



20). Find the prior means and prior sample sizes of these two
prior distributions and compare the prior beliefs of these two beta
distributions.

(b) Suppose a survey yields four successes out of ten responses.
Suppose one wishes to compare the posterior inference obtained
by the two different Beta priors Beta(2, 2) and Beta(20, 20). Find
and compare the two posterior distributions corresponding to
these two priors.

(c) Consider the use of the Beta(2, 2) and Beta(20, 20) prior
distributions. Show these two priors have the same prior mean,
but different strengths of belief about the location of the
proportion. Assuming the survey results in (b), use simulation
and graphs to show how different prior sample sizes affect the
posterior inference.

(d) Suppose a survey yields 40 successes out of 100 responses. Find
the two posterior distributions corresponding to the two prior
distributions Beta(2, 2) and Beta(20, 20). Contrast the two
posterior distributions and compare with your answer to part (c).

(e) Consider the two prior distributions Beta(9, 1) and Beta(45, 5).
Contrast these two beta prior distributions with respect to the
mean and strength of belief. Compare the two posterior
distributions with data n = 20, y = 5, and with the data n = 200,
y = 50.

10. Beta Posterior Mean is a Weighted Mean

11.

If the proportion has a Beta(a, b) prior and one observes Y from a
binomial distribution with parameters n and p, then if one observes Y
= y, then the posterior density of p is Beta(a + vy, b + n — y).

Recall that the mean of a Beta(a, b) random variable following is —2

a+tb -’
Show that the posterior mean of p| Y = y ~ Beta(a + y, b + n — y) is

a weighted average of the prior mean of p ~ Beta(a, b) and the sample
mean p = % Find the two weights and explain their implication for

the posterior being a combination of prior and data.

Sequential Updating

The restaurant owner’s belief about the proportion of students’
favorite dining day being Friday is represented by a Beta(15.06, 10.56)
distribution. Recall that he obtained this posterior distribution from a
Beta(3.06, 2.56) prior and a survey of 12 yes’s out of 20 responses. The



12.

13.

14.

owner is interested in conducting another dining survey a few months
later with the same question and the owner is still interested in p, the
proportion of all students who say Friday or Saturday.

(a) The second survey gives a result of 8 yes’s out of 20 responses.
Use the owner’s current beliefs and this information to update the
restaurant owner’s belief about the proportion p.

(b) Suppose the two surveys are conducted at the same time and the
results are 20 yes’s (12 + 8) out of 40 responses (20 + 20).
Starting with the Beta(3.06, 2.56) prior, update the owner’s belief
about the proportion of interest.

(c) Are the two posterior distribution the same in parts (a) and (b)?
Why or why not?

(d) Suppose the two survey results are reversed. That is, the first
survey gives 8 yes’s and second survey gives 12 yes’s. Do you still
observe the same posterior as in part (b)? What does this tell you
about the order of different pieces of information shaping the
belief about a parameter?

(e) What if the two survey results are slightly different? The first
survey gives 15 yes’s and second survey gives 5 yes’s. What is the
posterior distribution in this case?

(f) Should we combine the two survey results together? Describe a
scenario in which it would be inappropriate to combine the survey
results.

Bayesian Hypothesis Testing

In the dining preference example, the restaurant owner’s posterior
distribution of proportion p of students preferring Friday to eat out is
Beta(15.06, 10.56). Suppose the owner’s wife claims that between 50%
and 60% of the students prefer to eat out on Friday. Conduct a
Bayesian hypothesis test of this claim.

Simulation Sample Size

Revisit Section 7.5.2. Use R to simulate random samples of sizes S =
{10, 100, 500, 1000, 5000} of p from the Beta(15.06, 10.56)
distribution. Use the quantile() function to find the approximate 90%
credible interval of p for each value of S. Comment on the effect of the
simulation size S on the accuracy of the simulation results. Recall that
the exact middle 90% posterior interval estimate is [0.427, 0.741].
Bayesian Credible Intervals



15.

16.

17.

In the dining preference example, the restaurant owner’s posterior
distribution of proportion p of students preferring Friday to eat out is
Beta(15.06, 10.56). Find the exact Bayesian credible intervals for the
following cases.

(a) The middle 95% credible interval.

(b) The middle 98% credible interval.

(¢) The 90% credible interval of the form (0, B).

(d) The 99% credible interval of the form (A, 1)

Simulating the Posterior of the Log Odds

Since one is able to compute exact posterior summaries using the
pbeta() and gbeta() functions, what is the point of using simulation
computations? To illustrate the advantage of simulation, suppose one
is interested in finding a 90% probability interval about the logit or log

odds log(ll%p). One can approximate the posterior of the logit by

simulation. First simulate S = 1000 values from the beta posterior for
p, and then for each simulated value of p, compute a value of the logit.
The resulting vector will be a random sample from the posterior
distribution of the logit.

(a) If the posterior distribution for p is Beta(12, 20), use R to

simulate 1000 draws from the posterior of the logit log(lf'%p).

(b) Construct a 90% interval estimate for the logit parameter.
Simulating the Odds
Revisit Exercise (5). Instead of the logit or log odds of the proportion

p, suppose we are interested in the odds 1’%}9. If the posterior

distribution for p is Beta(12, 20), use R to simulate 1000 values from
the posterior distribution of the odds. Construct a histogram of the
simulated odds and construct a 90% interval estimate. Experiment
with different values of the simulation sample size S and comment on
the effect of the value of S on the width of the 90% interval estimates.
Teenagers and Televisions

In 1998, the New York Times and CBS News polled 1048 randomly
selected 13 — 17 year olds to ask them if they had a television in their
room. Among this group of teenagers, 692 of them said they had a
television in their room. Alex and Benedict both want to use the
binomial model for this dataset, but they have different prior beliefs
about p, the proportion of teenagers having a television in their room.



(a) Alex asks 10 friends the same question and 8 of them have a
television in their room. Alex decides to use this information to
construct his prior. Design a continuous beta prior reflecting
Alex’s belief.

(b) Benedict thinks the 0.2 quantile is 0.3 and the 0.9 quantile is 0.4.
Design a continuous beta prior reflecting Benedict’s belief.

(c) Calculate Alex’s posterior and Benedict’s posterior distributions.
Plot the two priors on one graph, and plot the corresponding
posteriors on another graph. In addition, obtain 95% credible
intervals for Alex and Benedict.

(d) Conduct prior predictive checks for Alex and Benedict. For each
person, is the prior consistent with the television data? Explain.

18. Teenagers and Televisions (continued)

19.

Revisit Exercise (17). Consider the odds of having a television in the
room. Recall that if p is the probability of having a television in room,
then the odds is 1%

(a) Find the mean, median and 95% posterior interval of Alex’s
analysis of the odds of teenagers having a television in their room.
(b) Find the mean, median and 95% posterior interval of Benedict’s
analysis of the odds of teenagers having a television in their room.
(c) Compare the two posterior summaries from parts (a) and (b).
Comparing Two Proportions - Science Majors at Liberal Arts
Colleges
Many liberal arts colleges and other organizations have been
promoting science majors in recent years because of their value on the
job market. One wishes to evaluate whether such promotion has any
effect on student major preference. A college student, Clara, is
interested in this question and collects data from three liberal arts
colleges, presented in Table 7.4.

TABLE 7.4
Total numbers of science and non-science majors enrolled in three liberal arts colleges in 2005 and
2015.

Year Science Non-Science
2005 264 1496
2015 437 1495




(a) Let pyggs and poyys denote the proportions of science majors in
2005 and 2015, respectively. Assuming that pyggs and poy;5 have
independent uniform priors, obtain the joint posterior distribution
of pPogos and pogy5- Recall that the Beta(l, 1) distribution is
equivalent to the Uniform(0, 1) distribution.

(b) Suppose one uses the parameter 6 = pyyi5 — Pogos to measure the
difference in proportions. Use simulation from the posterior
distribution to answer the question “have the proportions of
science majors changed from 2005 to 20157” [Hint: simulate a
vector o005 Of posterior samples of pyggs and another vector syy;5
of posterior samples of pyy5 (make sure to use the same number
of samples) and subtract syyp; from syp;5 which yields a vector of
simulated values from the posterior of é.]

(c) Did the proportion of science majors change from 2005 to 20157
Answer this question by a posterior computation.

(d) Compile a similar dataset for your school type, and answer parts
(a) through (c).

(e) What assumption is made about the proportions pyggs and pyg;5 in
our assignment of priors? Do you think such assumption is
justified? If not, how do you think you can adjust the approach to
be more realistic?

20. Comparing Two Proportions - Number of Depression Cases

21.

at a Hospital

Data are collected on depression cases at hospitals. For a particular
hospital, in the year of 1992, there were 306 diagnosed with depression
among 651 patients; in the year of 1993, there were 300 diagnosed with
depression among 705 patients. One is interested in learning whether
the probability of being diagnosed with depression changed between
1992 and 1993. Conduct a Bayesian analysis of this question. State
clearly the inference procedure, the choice of prior distributions, the
choice of data model, the posterior distributions and the conclusions.
Prior Predictive Checking - Pizza Popularity

Suppose a restaurant is serving pizza of two varieties, cheese and
pepperoni, and a manager is interested in the proportion p of
customers who prefer pepperoni. After some thought, the manager’s
prior beliefs about p are represented by a Beta(6, 12) distribution.



22.

23.

24.

(a) Suppose a random sample of 20 customers is surveyed on their
pizza preference and let Y denote the number that prefer
pepperoni. Compute and graph the prior predictive density of Y.

(b) Suppose 20 customers are sampled and 14 prefer pepperoni. Is the
value y = 14 consistent with the Bayesian model where p has a
Beta(6, 12) distribution? Explain why or why not.

Bayes Factor - Pizza Popularity

In the restaurant example of Exercise (21), suppose one of the waiters

has a different opinion about the popularity of pepperoni pizza. His

prior belief about the proportion p preferring pizza is described by a

Beta(12, 6) distribution.

(a) Find and graph the prior predictive density of the number y who
prefer pizza in a sample of 20 customers.

(b) If 14 out of 20 customers prefer pepperoni, is this result consistent
with the predictive distribution?

(c) Compare the two Bayesian models where (1) p is distributed
Beta(12, 62) distribution and (2) p is distributed Beta(6, 12)
distribution by a Bayes factor. Interpret the value that you
compute.

Posterior Predictive Checking - Pizza Popularity

Consider the same problem as in Exercise (22) where p is the

proportion of customers who prefer pepperoni and the manager’s prior

beliefs are given by a Beta(6, 12) distribution.

(a) Suppose 14 out of 20 customers prefer pepperoni. Using the
algorithm described in Section 7.6, simulate 1000 values of § (out
of 20 customers) from the posterior predictive distribution.
Construct a histogram of these values.

(b) Is the observation (14 preferring pepperoni) consistent with this
predictive distribution? Explain.

(c) Repeat parts (a) and (b) using the waiter’s Beta(12, 6)
distribution.

Learning from a Multinomial Experiment

In Chapter 6 Section 6.3, we discussed the multinomial distribution, an

extension of the binomial distribution where each trial has more than

two outcomes. As an application of a multinomial experiment, in an
analysis of an election poll, suppose that one wants inferences for three

probabilities: ¢, = probability of a vote for a candidate from Party A,



Jp = probability of a vote for a candidate from Party B and ¢, =

probability of a vote for a candidate from Party C. One assumes ¢, +

Up + 9o = 1 as people can vote for only one party. If a random sample

of n potential voters is taken, the respective vector counts Y,, Yp, Y,

have the probability mass function

n!

m HiA eyBBO%C, (7.24)

p(Ya=ya,Ye=yp Yo =yc) =

where y4 + yp + yo = n and Yy, yp, Yo = 0. This is written
Multinomial(n;d,, 95, 9¢).

A convenient prior distribution for (&4, ¢ @) is the Dirichlet
distribution, which has the density function

p(eA, 0B7 00) — KeiAfleaBBflegofl,
F(aA+aB+ac)

I'(ag)l(ap)l(ac)
is a normalizing constant. This is written Dirichlet(ay, ap, ap).

where (ay, ap, ap) are positive constants, and K =

Install the gtools R package and explore ddirichlet() and
rdirichlet() functions to evaluate the pdf and generate random
samples from Dirichlet(ay = 2, ag =1, ap = 1).

Suppose the prior distribution is Dirichlet(ay, ap, ar) and one
collects from n sampled voters, where (Yy, Y Yo ~
Multinomial(n;#,, 5, ¥-). Find the posterior distribution of (4,
dp, 9-) and show that this is a Dirichlet distribution with

updated parameters.
Suppose in the sample of n = 100 voters, 53 voted for Party A, 18
voted for Party B, and 29 voted for Party C (y4 = 53, yp = 18,

Yo = 29). Using the prior distribution Dirichlet(ay = 2, ap = 1,
ac = 1) and the generic results from part (b), obtain the posterior
distribution for (d,, 5, ¥-). Plot the prior and the posterior
distributions for (d4, ¥, ¥,) and discuss your findings.



(d) Suppose one wants to compute the ratio of odds of voting for

Party A to the odds of voting for Party B, %:zg;. Compute a

95% posterior interval for this odds ratio.



8

Modeling Measurement and Count Data

8.1 Introduction

We first consider the general situation where there is a hypothetical population of
individuals of interest and there is a continuous-valued measurement Y associated
with each individual. One represents the collection of measurements from all
individuals by means of a continuous probability density f(y). As discussed in
Chapter 5, one summarizes this probability density with the mean u:

n= [yf(y)dy. (8.1)

The value p gives us a sense of the location of a typical value of the continuous
measurement Y.
To learn about the population of measurements, a random sample of individuals

Yy, ..., Y, will be taken. The general inferential problem is to use these

measurements together with any prior beliefs to learn about the population mean p.
In other words, the goal is to use the collected measurements to learn about a
typical value of the population of measurements.

8.2 Modeling Measurements

8.2.1 Examples

College applications

How many college applications does a high school senior in the United States
complete? Here one imagines a population of all American high school seniors and



the measurement is the number of completed college applications. The unknown
quantity of interest is the mean number of applications p completed by these high
school seniors. The inferential question may be stated by asking, on average, how
many college applications does an American high school senior complete. The
answer to this question gives one a sense of the number of completed applications
for a typical high school senior. To learn about the average p, it would be infeasible
to collect this measurement from every high school senior in the U.S. Instead, a
survey is typically conducted to a sample of high school seniors (ideally a sample
representative of all American high school seniors) and based on the measurements
from this sample, some inference is performed about the mean number of college
applications.

Household spending

How much does a household in San Francisco spend on housing every month? One
visualizes the population of households in San Francisco and the continuous
measurement is the amount of money spent on housing (either rent for renters and
mortgage for homeowners) for a resident. One can ask “on average, how much does a
household spend on housing every month in San Francisco?”, and the answer to this
question gives one a sense of the housing costs for a typical household in San
Francisco. To learn about the mean value of housing p of all San Francisco residents,
a sample survey is conducted. The mean value of the housing costs § from this
sample of surveyed households is informative about the mean housing cost u for all
residents.

Weights of cats

Suppose you have a domestic shorthair cat weighing 14 pounds and you want to find
out if she is overweight. One imagines a population of all domestic shorthair cats
and the continuous measurement is the weight in pounds. Suppose you were able to
compute the mean weight u of all shorthair cats. Then by comparing 14 pounds (the
weight of our cat) to this mean, you would know whether your cat is overweight, or
underweight, or close to the mean. If we were able to find the distribution of the
weights of all domestic shorthair cats, then one observes the proportion of weights
smaller than 14 pounds in the distribution and learns if the cat is severely
overweight. To learn if our cat is overweight, you can ask the vet. How does the vet
know? Extensive research has been conducted periodically to record weights of a
large sample of domestic shorthair cats, and by using these samples of weights, the
vet performs an inference about the mean p of the weights of all domestic shorthair
cats.

Common elements of an inference problem

All three examples have common elements:



¢ One has an underlying population of measurements, where the measurement is
an integer, such as the number of college applications, or continuous, such as a
housing cost or a cat weight.

e One is interested in learning about the value of the mean p of the population of
measurements.

e It is impossible or impractical to collect all measurements from the population,
so one will collect a sample of measurements Yj, ..., Y, and use the observed

measurements to learn about the unknown population mean pu.

8.2.2 The general approach

Recall the three general steps of Bayesian inference discussed in Chapter 7 in the
context of an unknown proportion p.

Step 1 Prior: We express an opinion about the location of the proportion p
before sampling.

Step 2 Likelihood: We take the sample and record the observed proportion.
Step 3 Posterior: We use Bayes’ rule to sharpen and update the previous
opinion about p given the information from the sample.

In this setting, we have a continuous population of measurements that we
represent by the random variable Y with density function f(y). It is convenient to
assume that this population has a normal shape with mean p and standard
deviation o. That is, a single measurement Y is assume to come from the density
function

1 (y — w)?
fly) = exp{—— ,—00 <y < 00 8.2)
VvV 2mo 202

displayed in Figure 8.1. To simplify the discussion, it is convenient to assume that
the standard deviation o of the measurement distribution is known. Then the
objective is to learn about the single mean measurement p.



Density

FIGURE 8.1
Normal sampling density with mean p.

Step 1 in Bayesian inference is to express an opinion about the parameter. In this
continuous measurement setting, one constructs a prior for the mean parameter u
that expresses one’s opinion about the location of this mean. In this chapter, we
discuss different ways to specify a prior distribution for u. One attractive discrete
approach for expressing this prior opinion, similar to the approach in Chapter 7 for
a proportion p, has two steps. First one constructs a list of possible values of u, and
then one assigns probabilities to the possible values to reflect one’s belief.
Alternatively, we will describe the use of a continuous prior to represent one’s belief
for p. This is a more realistic approach for constructing a prior since one typically
views the mean as a real-valued parameter.

Step 2 of our process is to collect measurements from a random sample to gain
more information about the parameter u. In our first situation, one collects the
number of applications from a sample of 100 high school seniors. In the second
example, one collects a sample of 2000 housing costs, each from a sampled San
Francisco household. The third example collects a sample of 200 different weights of
domestic shorthair cats, each from a sampled cat. If these measurements are viewed
as independent observations from a normal sampling density with mean p, then one
constructs a likelihood function which is the joint density of the sampled
measurements viewed as a function of the unknown parameter.

Once the prior is specified and measurements have been collected, one proceeds to
Step 3 to use Bayes’ rule to update one’s prior opinion to obtain a posterior
distribution for the mean u. The algebraic implementation of Bayes’ rule is a bit
more tedious when dealing with continuous data with a normal sampling density.
But we will see there is a simple procedure for computing the posterior mean and
standard deviation.



8.2.3 Outline of chapter

Throughout this chapter, the entire inferential process is described for learning
about a mean p assuming a normal sampling density for the measurements. This
chapter discusses how to construct a prior distribution that matches one’s prior
belief, how to extract information from the data by the likelihood function, and how
to update one’s opinion in the posterior, combining the prior and data information
in a natural way.

Section 8.3 introduces inference with a discrete prior distribution for the mean pu
and Section 8.4 introduces the continuous family of normal prior distributions for
the mean. The inferential process with a normal prior distribution is described in
detail in Section 8.5. Section 8.6 describes some general Bayesian inference methods
in this normal data and normal prior setting, such as Bayesian hypothesis testing,
Bayesian credible intervals and Bayesian prediction. These sections describe the use
of both exact analytical solutions and approximation simulation-based calculations.
Section 8.7 introduces the use of the posterior predictive distribution as a general
tool for checking if the observed data is consistent with predictions from the
Bayesian model.

The chapter concludes in Section 8.8 by introducing a popular one-parameter
model for counts, the Poisson distribution, and its conjugate gamma distribution for
representing prior opinion. Although this section does not deal with the normal
mean situation, the exposure to the important gamma-Poisson conjugacy will
enhance our understanding and knowledge of the analytical process of combining the
prior and likelihood to obtain the posterior distribution.

8.3 Bayesian Inference with Discrete Priors

8.3.1 Example: Roger Federer’s time-to-serve

Roger Federer is recognized as one of the greatest players in tennis history. One
aspect of his play that people enjoy is his businesslike way of serving to start a point
in tennis. Federer appears to be efficient in his preparation to serve and some of his
service games are completed very quickly. One measures one’s service efficiency by
the time-to-serve which is the measured time in seconds between the end of the
previous point and the beginning of the current point.

Since Federer is viewed as an efficient server, this raises the question: how long, on
average, is Federer’s time-to-serve? We know two things about his time-to-serve
measurements. First, since they are time measurements, they are continuous
variables. Second, due to a number of other variables, the measurements will vary
from serve to serve. Suppose one collects a single time-to-serve measurement in



seconds. denoted as Y. It seems reasonable to assume Y is normally distributed with
unknown mean y and standard deviation o. From previous data, we assume that the
standard deviation is known and given by o = 4 seconds.

Recall the normal probability curve has the general form

fl) = —= exp{—%

}, —00 < Yy < 0. (8.3)
2o

Since 0 = 4 is known, the only parameter in Equation (8.3) is u. We are interested
in learning about the mean time-to-serve p.

A convenient first method of implementing Bayesian inference is by the use of a
discrete prior. One specifies a subjective discrete prior for Federer’s mean time-to-
serve by specifying a list of plausible values for y and assigning a probability to each
of these values.

In particular suppose one thinks that values of the equally spaced values u = 15,
16, ..., 22 are plausible. In addition, one does not have any good reason to think
that any of these values for the mean are more or less likely, so a uniform prior will
be assigned where each value of p is assigned the same probability %.

1
m(w) =g, W=1516,...,22 (8.4)

Each value of u corresponds to a particular normal sampling curve for the time-to-
serve measurement. Figure 2.1 displays the eight possible normal sampling curves.
Our prior says that each of these eight sampling curves has the same prior
probability.

To learn more about the mean p, one collects a single time-to-serve measurement
for Federer, and suppose it is 15.1 seconds, that is, one observes Y = 15.1. The
likelihood function is the normal density of the actual observation y viewed as a
function of the mean u (remember that it was assumed that o = 4 was given). By
substituting in the observation y = 15.1 and the known value of o = 4, one writes
the likelihood function as

L(p) = \/2174 exp{—Ti)Q(w.l - u)2}.

For each possible value of u, we substitute the value into the likelihood expression.
For example, the likelihood of p = 15 is equal to



L(15) = oo exp(— b (151 - 15)2)

~ 0.0997.

This calculation is repeated for each of the eight values u = 15, 16, ..., 22, obtaining
eight likelihood values.

A discrete prior has been assigned to the list of possible values of p and one is
now able to apply Bayes’ rule to obtain the posterior distribution for p. The
posterior probability of the value u = yu, given the data y for a discrete prior has the

form

(i) < L(p;)
> m(s) X L(pg)

(i | y) = (8.5)

where n(y,;) is the prior probability of u = u; and L(y;) is the likelihood function
evaluated at p = p,.

If a discrete uniform prior distribution for u is assigned, one has m(;) = + for all
i =1, .., 8 and n(y;) is canceled out from the numerator and denominator in
Equation (8.5). In this case one calculates the likelihood values L(y;) for all i = 1,
..., 8 and normalizes these values to obtain the posterior probabilities n(y,| y). Table

8.1 displays the values of u and the corresponding values of Prior, Likelihood, and
Posterior. Readers are encouraged to verify the results shown in the table.

TABLE 8.1

Value, Prior, Likelihood, and Posterior for u with a single observation.
u Prior Likelihood Posterior
15 0.125 0.0997 0.1888
16 0.125 0.0972 0.1842
17 0.125 0.0891 0.1688
18 0.125 0.0767 0.1452
19 0.125 0.0620 0.1174
20 0.125 0.0471 0.0892
21 0.125 0.0336 0.0637
22 0.125 0.0225 0.0427

With the single measurement of time-to-serve of y = 15.1, one sees from Table 8.1
that the posterior distribution for u favors values p = 15, and 16. In fact, the
posterior probabilities decrease as a function of pu. The Prior column reminds us that
the prior distribution is uniform. Bayesian inference uses the collected data to
sharpen one’s belief about the unknown parameter from the prior distribution to the



posterior distribution. For this single observation, the sample mean is y = 15.1 and
the p value closest to the sample mean (1 = 15) is assigned the highest posterior
probability.

Typically one collects multiple time-to-serve measurements. Suppose one collects
n time-to-serve measurements, denoted as Yy, ..., Y, that are normally distributed
with mean p and fixed standard deviation o = 4. Each observation follows the same
normal density

1 —(yi —m)°
fly:) = eXP{ , —00 < y; < 00. (8.6)
V2ro 202

Again since 0 = 4 is known, the only parameter in Equation (8.6) is p and we are
interested in learning about this mean parameter p. Suppose the same discrete
uniform prior is used as in Equation (8.4) and graphed in Figure 8.2. The mean u

takes on the values {15, 16, ..., 22} with each value assigned the same probability of
1
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FIGURE 8.2

Eight possible normal sampling curves corresponding to a discrete uniform prior on .

Suppose one collects a sample of 20 times-to-serve for Federer:
15.1 11.8 21.0 22.7 18.6 16.2 11.1 13.2 20.4 19.2
21.2 14.3 18.6 16.8 20.3 19.9 15.0 13.4 19.9 15.3

When multiple time-to-serve measurements are taken, the likelihood function is the
joint density of the actual observed values yi, ..., y, viewed as a function of the



mean . After some algebra (detailed derivation in Section 8.3.2), one writes the
likelihood function as

L(p) = ITi-y = exp{ — 50 (% — 1)}
o exp{—5% (7 — p)?} 8.7)
= exp{— 2 (- 0},

where we have substituted the known values n = 20 and the standard deviation o =
4. From our sample, we compute the sample mean
g = (15.1 4 11.8+...+15.3)/20 = 17.2. The value of g is substituted into Equation
(8.7), and for each possible value of pu, we substitute the value to find the
corresponding likelihood. For example, the likelihood of p = 15 is equal to

L(15) = exp{—%(l?.Q - 15)2}

~ 0.022.

This calculation is repeated for each of the eight values p = 15, 16, ..., 22, obtaining
eight likelihood values.

One now applies Bayes’ rule to obtain the posterior distribution for p. The
posterior probability of p = p; given the sequence of recorded times-to-serve y, ...,

y,, has the form

m(pi) X L)
> () X L(pg)

Tr(:ul | Yty 7yn) = (8.8)

where n(y,;) is the prior probability of u = u; and L(y;) is the likelihood function
evaluated at p = u,. We saw in Equation (8.7) that only the sample mean, g, is
needed in the calculation of the likelihood, so ¥ is used in place of y, ..., y, in the
formula.

With a discrete uniform prior distribution for y, again one has m(u;) = % for all 4
=1, ..., 8 and n(y;) is canceled out from the numerator and denominator in
Equation (8.8). One calculates the posterior probabilities by computing L(y;) for all
¢ =1, ..., 8 and normalizing these values. Table 8.2 displays the values of u and the
corresponding values of Prior, Likelihood, and Posterior. Readers are encouraged to
verify the results shown in the table.



TABLE 8.2
Value, Prior, Likelihood, and Posterior for ¢ with n observations.

u Prior Likelihood Posterior
15 0.125 0.0217 0.0217
16 0.125 0.1813 0.1815
17 0.125 0.4350 0.4353
18 0.125 0.2990 0.2992
19 0.125 0.0589 0.0589
20 0.125 0.0033 0.0033
21 0.125 0.0001 0.0001
22 0.125 0.0000 0.0000

It is helpful to construct a graph (see Figure 8.3) where one contrasts the prior
and probability probabilities for the mean time-to-serve p. While the prior
distribution is flat, the posterior distribution for u favors the values p = 16, 17, and
18 seconds. Bayesian inference uses the observed data to revise one’s belief about
the unknown parameter from the prior distribution to the posterior distribution.
Recall that the sample mean §y = 17.2 seconds. From Table 8.2 and Figure 8.3 one
sees the clear effect of the observed sample mean — u is likely to be close to the
value 17.2.
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FIGURE 8.3

Prior and posterior probabilities of the normal mean y with a sample of observations.

8.3.2 Simplification of the likelihood



The likelihood function is the joint density of the observations v, ..., y,, viewed as a
function of the mean u (since 0 = 4 is given). With n observations being identically
and independently distributed (i.i.d.) as Normal(u, 4), the likelihood function is the
product of normal density terms. In the algebra work that will be done shortly, the
likelihood, as a function of p, is found to be normal with mean § and standard
deviation o/+/n.

R The calculation of the posterior probabilities is an application of Bayes’ rule
illustrated in earlier chapters. One creates a data frame of values mu and
corresponding probabilities Prior. One computes the likelihood wvalues in the
variable Likelihood and the posterior probabilities are found using the
bayesian_crank() function.

df <- data.frame(mu = seq(15, 22, 1),

Prior = rep(1/8, 8)) %>%

mutate(Likelihood = dnorm(mu, 17.2, 4 / sqrt(20)))
df <- bayesian_crank(df)

round(df, 4)

mu Prior Likelihood Product Posterior

1 15 0.125 0.0217 0.0027 0.060217
2 16 0.125 0.1813 0.060227 0.1815
3 17 0.125 0.4350 0.0544 0.4353
4 18 0.125 0.2990 0.0374 0.2992
5 19 0.125 0.0589 0.0074 0.0589
6 20 0.125 0.0033 0.0004 0.0033
7 21 0.125 0.0001 0.0000 0.0001
8 22 0.125 0.0000 0.0000 0.0000

Derivation of L(u) o< exp(— 5% (§ — p)?)

In the following, we combine the terms in the exponent, expand all of the
summation terms, and complete the square to get the result.



i=1
n n (8.9)
[expand the ) terms] = exp % Y2 — 2#23}1’ + nu?
i=1 i=1
n
x exp{# (2/12% + n,uz) }
i—1

[replace ) with ngl = exp{ %(—Znugj - n,u2)}
[complete the square] = exp{ %(#2 —2uy + @2) + L—2}
n

o exp{— 525 (7 — 1)’}

Sufficient statistic

There are different ways of writing and simplifying the likelihood function. One can
choose to keep the product sign and each y; term, and leave the likelihood function
as

L(p) = ﬁ 1_ eXP{—%‘z(yi - M)2}- (8.10)

Doing so requires one to calculate the individual likelihood from each time-to-serve
measurement y; and multiply these values to obtain the function L(u) used to obtain
the posterior probability.

If one instead simplifies the likelihood to be

L(p) exp{—%(y - u)2}, (8.11)

all the proportionality constants drop out in the calculation of the posterior
probabilities for different values of p. In the application of Bayes’ rule, one only



needs to know the number of observations n and the mean time to serve § to
calculate the posterior. Since the likelihood function depends on the data only
through the value g, the statistic g is called a sufficient statistic for the mean pu.

8.3.3 Inference: Federer’s time-to-serve

What has one learned about Federer’s mean time-to-serve from this Bayesian
analysis? Our prior said that any of the eight possible values of u were equally likely
with probability 0.125. After observing the sample of 20 measurements, one believes
p is most likely 16, 17, and 18 seconds, with respective probabilities 0.181, 0.425,
and 0.299. In fact, if one adds up the posterior probabilities, one says that u is in
the set {16, 17, 18} seconds with probability 0.915.

Prob(16 < p < 18) = 0.181 + 0.435 + 0.299 = 0.915

This region of values of u is called a 91.5% posterior probability region for the mean
time-to-serve p.

8.4 Continuous Priors

8.4.1 The normal prior for mean u

Returning to our example, one is interested in learning about the time-to-serve for
the tennis player Roger Federer. His serving times are believed to be normally
distributed with unknown mean p and known standard deviation o = 4. The focus is
on learning about the mean value p.

In the prior construction in Section 8.3, we assumed p was discrete, taking only
integer values from 15 to 22. However, the mean time-to-serve p does not have to be
an integer. In fact, it is more realistic to assume u is continuous-valued. One widely-
used approach for representing one’s belief about a normal mean is based on a
normal prior density with mean p; and standard deviation o, that is

p ~ Normal(uo, 09).

There are two parameters for this normal prior: the value y, represents one’s best
guess at the mean time-to-serve p and o indicates how sure one thinks about the

guess.

To illustrate the use of different priors for u, let’s consider the opinion of one
tennis fan Joe who has strong prior information about the mean. His best guess at
Federer’s mean time-to-serve is 18 seconds so he lets y; = 18. He is very sure of this

guess and so he chooses oy to be the relatively small value of 0.4. In contrast, a



second tennis fan Kate also thinks that Federer’s mean time-to-serve is 18 seconds,
but does not have a strong belief in this guess and chooses the large value 2 of the
standard deviation op. Figure 8.4 shows these two normal priors for the mean time-

to-serve pu.
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FIGURE 8.4
Two priors for the normal mean u.
Both curves are symmetric and bell-shaped, centered at pu, — 18. The main

difference is the spread of the two curves: a Normal(8, 0.4) curve is much more
concentrated around the mean p; = 18 compared to the Normal(8, 2) curve. Since
the value of the probability density function at a point reflects the probability at
that value, the Normal(8, 0.4) prior reflects the belief that the mean time to serve
will most likely be around p; = 18 seconds, whereas the Normal(8, 2) prior indicates

that the mean p could be as small as 15 seconds and as large as 20 seconds.

8.4.2 Choosing a normal prior

Informative prior

How does one in practice choose a normal prior for u that reflects prior beliefs about
the location of this parameter? One indirect strategy for selecting values of the prior
parameters p, and o is based on the specification of quantiles. On the basis of one’s
prior beliefs, one specifies two quantiles of the normal density. Then the normal
parameters are found by matching these two quantiles to a particular normal curve.
Recall the definition of a quantile — in this setting it is a value of the mean pu
such that the probability of being smaller than that value is a given probability. To
construct one’s prior for Federer’s mean time-to-serve, one thinks first about two
quantiles. Suppose one specifies the 0.5 quantile to be 18 seconds — this means that



u is equally likely to be smaller or larger than 18 seconds. Next, one decides that the
0.9 quantile is 20 seconds. This means that one’s probability that p is smaller than
20 seconds is 90%. Given values of these two quantiles, the unique normal curve is
found that matches this information.

R The matching is performed by the R function normal.select(). One inputs two
quantiles by list statements, and the output is the mean and standard deviation of

the normal prior.

normal.select(list(p = 0.5, x = 18), list(p = 0.9, x = 20))
$mu
[1] 18

$sigma
[1] 1.560608

The normal curve with mean p, = 18 and o = 1.56, displayed in Figure 8.5,

matches the prior information stated by the two quantiles.
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FIGURE 8.5
A person’s normal prior for Federer’s mean time-to-serve L.

Since our measurement skills are limited, this prior is just an approximation to
our beliefs about p. We recommend in practice that one perform several checks to
see if this normal prior makes sense. Several functions are available to help in this
prior checking.

For example, we find the 0.25 quantile of our prior using the gnorm() function.

gnorm(©.25, 18, 1.56)



[1] 16.9478

This prior says that the prior probability that p is smaller than 16.95 is 25%. If
this does not seem reasonable, one would make adjustments in the values of the
normal mean and standard deviation until a reasonable normal prior is found.

Weakly informative prior

We have been assuming that we have some information about the mean parameter u
that is represented by a normal prior. What would we do in the situation where
little is known about the location on px? For a normal prior, the standard deviation
0, represents the sureness of our belief in our guess i at the value of the mean. If
we are really unsure about any guess at p, then we can assign the standard
deviation o, a large value. Then the choice of the prior mean will not matter, so we
suggest using a Normal(0, ;) with a large value for ¢y. This prior indicates that p
may plausibly range over a large interval and represents weakly informative prior
belief about the parameter.

As will be seen later in this chapter, when a vague prior is chosen, the posterior
inference for p will largely be driven by the data. This behavior is desirable since we
know little about the location of i a priori in this situation and we want the data to
inform about the location of u with little influence by the prior.

8.5 Updating the Normal Prior

8.5.1 Introduction

Continuing our discussion on learning about the mean time-to-serve for Roger
Federer, the current prior beliefs about Federer’s mean time-to-serve p are
represented by a normal curve with mean 18 seconds and standard deviation 1.56
seconds.

Next some data is collected — Federer’s time-to-serves are recorded for 20 serves
and the sample mean is 17.2 seconds. Recall that we are assuming the population
standard deviation o = 4 seconds. The likelihood is given by

n
L(p) o exp{—ﬁ(ﬂ — u)z}, (8.12)

and with substitution of the values § = 17.2, n = 20, and 0 = 4, we obtain



L{n) ox exp{ — 3287 (17.2 - u)?}

(8.13)
_ 1 2
= exp{ 2430y (n—17.2) }

Viewing the likelihood as a function of the parameter u as in Equation (8.13), the
likelihood is recognized as a normal density with mean § = 17.2 and standard
deviation o//n = 4/+/20 = 0.89.

The Bayes’ rule calculation is very familiar to the reader — one obtains the
posterior density curve by multiplying the normal prior by the likelihood. If one
writes down the product of the normal likelihood and the normal prior density and
works through some messy algebra, one will discover that the posterior density also
has the normal density form.

The normal prior is said to be conjugate since the prior and posterior densities
come from the same distribution family: normal. To be more specific, suppose the
observation has a normal sampling density with unknown mean p and known
standard deviation o. If one specifies a normal prior for the unknown mean p with
mean f, and standard deviation o¢p, one obtains a normal posterior for p with
updated parameters u, and o,.

In Section 8.5.2, we provide a quick peak at this posterior updating without
worrying about the mathematical derivation and Section 8.5.3 describes the details
of the Bayes’ rule calculation. Section 8.5.4 looks at the conjugacy more closely and
provides some insight on the effects of prior and likelihood on the posterior
distribution.

8.5.2 A quick peak at the update procedure

It is convenient to describe the updating procedure by use of a table. In Table 8.3,
there are rows corresponding to Prior, Likelihood, and Posterior and columns
corresponding to Mean, Precision, and Standard Deviation. The mean and standard
deviation of the normal prior are placed in the “Prior” row, and the sample mean
and standard error are placed in the “Likelihood” row.

TABLE 8.3

Updating the normal prior: step 1.
Type Mean Precision Stand_Dev
Prior 18.00 1.56

Likelihood 17.20 0.89

Posterior




We define the precision, ¢, to be the reciprocal of the square of the standard
deviation. We compute the precisions of the prior and data from the given standard
deviations:

¢ = 041, ¢ ! 1 1.21
prior — T o — = VU.zl, data — = = l.a1.
o  1.56 o/n  0.89
We enter the precisions in the corresponding rows of Table 8.4.
TABLE 8.4
Updating the normal prior: step 2.
Type Mean Precision Stand_Dev
Prior 18.00 0.41 1.56
Likelihood 17.20 1.26 0.89
Posterior

We will shortly see that the Posterior precision is the sum of the Prior precision
and the Likelihood precisions:

¢post - ¢prior + ¢data =0.41 + 1.26 = 1.67.

Once the posterior precision is computed, the posterior standard deviation is computed as
the reciprocal of the square root of the precision.

11
\/ ¢post \/1_67

These precisions and standard deviations are entered into Table 8.5.

= 0.77.

On

TABLE 8.5

Updating the normal prior: step 3.
Type Mean Precision Stand_Dev
Prior 18.00 0.41 1.56
Likelihood 17.20 1.26 0.89
Posterior 1.67 0.77

The posterior mean is a weighted average of the Prior and Likelihood means
where the weights are given by the corresponding precisions. That is, the formula is
given by

_ ¢prior X )u‘0+¢data Xy
'LLn - ¢prior+¢data : (8 14)




By making appropriate substitutions, we obtain the posterior mean:

_ 0.41x18.004+1.26x17.20 _
Hn = 0.41+1.26 = 17.40.

The posterior density is normal with mean 17.40 seconds and standard deviation
0.77 seconds. See Table 8.6 for the final update step.

TABLE 8.6

Updating the normal prior: step 4.
Type Mean Precision Stand_Dev
Prior 18.00 0.41 1.56
Likelihood 17.20 1.26 0.89
Posterior 17.40 1.67 0.77

R The normal updating is performed by the R function normal_update(). One
inputs two vectors — prior is a vector of the prior mean and standard deviation and
data is a vector of the sample mean and standard error. The output is a vector of
the posterior mean and posterior standard deviation.

prior <- c(18, 1.56)
data <- c(17.20, 0.89)
normal_update(prior, data)

[1] 17.3964473 0.7730412

The prior and posterior densities are displayed in Figure 8.6. As usually the case,
the posterior density has a smaller spread since the posterior has more information
than the prior about Federer’s mean time-to-serve. More information about a
parameter indicates less uncertainty and a smaller spread of the posterior density. In
the process from prior to posterior, one sees how the data modifies one’s initial
belief about the parameter p.
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FIGURE 8.6
Prior and posterior curves for Federer’s mean time-to-serve u.

8.5.3 Bayes’ rule calculation

Section 8.5.2 gave an overview of the updating procedure for a normal prior and
normal sampling. In this section we explain (1) why it is preferable to work with the
precisions instead of the standard deviations; (2) why the precisions act as the
weights in the calculation of the posterior mean and (3) why the posterior is a
normal distribution.

Recall a precision is the reciprocal of the square of the standard deviation. We use
¢ = % to represent the precision of a single observation in the normal likelihood,

and ¢g = ng to represent the precision in the normal prior.

e We write down the likelihood of u, combining terms, and writing the expression
in terms of the precision ¢.

Yy s Yn | 10 S Normal(u, o) (8.15)



L(I'L) - f(yla"'ayn ’ My U) = H \/;_mexp{—#(yi — /J,)z}
=1

i=1 (8.16)

Note that o is assumed known, therefore the likelihood function is only in terms

of u, i.e. L(p).
In similar fashion, we write down the prior density for u including the prior
precision @.

p ~ Normal(ug, op) (8.17)

n(p) = —L—exp{— L (u— o))}

V4 2moy
$o

1 (8.18)
= =% exp{——(u po)? }

Bayes’ rule is applied by multiplying the prior by the likelihood to obtain the
posterior. In deriving the posterior of p, the manipulations require careful
consideration regarding what is known. The only unknown variable is u, so any
“constants” or known quantities not depending on p can be added or dropped
with the proportionality sign “«”

W(N‘yl,”',yn, ) )L:u“
oceXp{ 2 (1 — o) } x exp{—%‘b(u—W}
o exp{— 5 (¢o + nd)p* + 5 (2p0c0 + 2ndg)p}

~4(é0+n9)(u ﬂ%%@)}

(8.19)

[complete the square] o exp



Looking closely at the final expression, one recognizes that the posterior for u is
a normal density with mean and precision parameters. Specifically we recognize

dopo+noy
do+ng

Summarizing, we have derived the following posterior distribution of p,

wl Yy, Yn, o~ Normal( ¢°(Z)°::$g v o/ ¢Oin¢ ) (8.20)

In passing, it should be noted that the same result would be attained using the
standard deviations, o and ¢, instead of the precisions, ¢ and ¢,. It is preferable to

(g + n¢) as the posterior precision and < ) as the posterior mean.

work with the precisions due to the relative simplicity of the notation. In particular,
one sees in Table 8.5 that the posterior precision is the sum of the prior and
likelihood precisions, that is, the posterior precision ¢, = ¢y + ng.

8.5.4 Conjugate normal prior

Let’s summarize our calculations in Section 8.5.3. We collect a sequence of
continuous observations that are assumed identically and independently distributed
as Normal(p, 0), and a normal prior is assigned to the mean parameter pu.

e The sampling model:

Yi,--, Y, | p,o S Normal(u, o) (8.21)

When o (or ¢) is known, and mean yu is the only parameter in the likelihood.
e The prior distribution:

p ~ Normal(pg, o) (8.22)

L4 Aftel" Yl = Y1y vy Y

., = Y, are observed, the posterior distribution for the mean

@ is another normal distribution with mean % and precision ¢, + ng

(thus standard deviation \/ %Tlnqb)

ndo
Ly, Yn, o~ Normal(%;]::fy Y. ¢Oin¢). (8.23)




In this situation where the sampling standard deviation o is known, the normal
density is a conjugate prior for the mean of a normal distribution, as the posterior
distribution for u is another normal density with updated parameters. Conjugacy is
a convenient property as the posterior distribution for p has a convenient functional
form. Conjugacy allows one to conduct Bayesian inference through exact analytical
solutions and simulation. Also conjugacy provides insight on how the data and prior
are combined in the posterior distribution.

The posterior compromises between the prior and the sample

Recall that Bayesian inference is a general approach where one initializes a prior
belief for an unknown quantity, collects data expressed through a likelihood
function, and combines prior and likelihood to give an updated belief for the
unknown quantity. In Chapter 7, we have seen how the posterior mean of a
proportion is a compromise between the prior mean and sample proportion (refer to
Section 7.4.2 as needed). In the current normal mean case, the posterior mean is
similarly viewed as an estimate that compromises between the prior mean and
sample mean. One rewrites the posterior mean in Equation (8.23) as follows:

_ Polig+NPY _ o ng _
Pn = O¢00+n¢ T ¢o+0n¢ Mo + do+ned Y. (8.24)

The prior precision is equal to ¢, and the precision in the likelihood for any y; is ¢.

Since there are mn observations, the precision in the joint likelihood is n¢. The
posterior mean is a weighted average of the prior mean p; and sample mean § where

the weights are proportional to the associated precisions.

The posterior accumulates information in the prior and the sample

In addition, the precision of the posterior mean is the sum of the precisions of the
prior and likelihood. That is,

dn = Po + no. (8.25)

The implication is that the posterior standard deviation will always be smaller than
either the prior standard deviation or the sampling standard error:



8.6 Bayesian Inferences for Continuous Normal Mean

Continuing with the example about Federer’s time-to-serve, our normal prior had
mean 18 seconds and standard deviation 1.56 seconds. After collecting 20 time-to-
serve measurements with a sample mean of 17.2, the posterior distribution
Normal(17.4, 0.77) reflects our opinion about the mean time-to-serve.

Bayesian inferences about the mean u are based on various summaries of this
posterior normal distribution. Because the exact posterior distribution of mean p is
normal, it is convenient to use R functions such as pnorm() and gnorm() to conduct
Bayesian hypothesis testing and construct Bayesian credible intervals. Simulation-
based methods utilizing functions such as rnorm() are also useful to provide
approximations to those inferences. A sequence of examples are given in Section
8.6.1.

Predictions of future data are also of interest. For example, one might want to
predict the next time-to-serve measurement based on the posterior distribution of u
being Normal(17.4, 0.77). In Section 8.6.2, details of the prediction procedure and
examples are provided.

8.6.1 Bayesian hypothesis testing and credible interval

A testing problem

In a testing problem, one is interested in checking the validity of a statement about
a population quantity. In our tennis example, suppose someone says that Federer
takes on average at least 19 seconds to serve. Is this a reasonable statement?

R The current beliefs about Federer’s mean time-to-serve are summarized by a
normal distribution with mean 17.4 seconds and standard deviation 0.77 seconds. To
assess if the statement “u is 19 seconds or more” is reasonable, one simply computes
its posterior probability, Prob(p = 19|u,, = 17.4, 0, = 0.77).

1 - pnorm(19, 17.4, 0.77)
[1] 0.01885827

This probability is about 0.019, a small value, so one would conclude that this
person’s statement is unlikely to be true.

This is the exact solution using the pnorm() function with mean 17.4 and standard
deviation 0.77. As seen in Chapter 7, simulation provides an alternative approach to
obtaining the probability Prob(p = 19 | u, = 17.4, o0, = 0.77). To implement the



simulation approach, recall that one generates a large number of values from the
posterior distribution and summarizes this simulated sample. In particular, using
the following R script, one generates 1000 values from the Normal(17.4, 0.77)
distribution and approximates the probability of “4 is 19 seconds or more” by
computing the percentage of values that falls above 19.

S <- 1000

NormalSamples <- rnorm(S, 17.4, 0.77)
sum(NormalSamples >= 19) / S

[1] 0.024

The reader might notice that the approximated value of 0.024 differs from the
exact answer of 0.019 using the pnorm() function. One way to improve the accuracy
of the approximation is by increasing the number of simulated values. For example,
increasing S from 1000 to 10,000 provides a better approximation to the exact
probability 0.019.

S <- 10000

NormalSamples <- rnorm(S, 17.4, 0.77)
sum(NormalSamples >= 19) / S

[1] 0.0175

A Bayesian interval estimate

Bayesian credible intervals for the mean parameter p can be achieved both by exact
calculation and simulation. Recall that a Bayesian credible interval is an interval
that contains the unknown parameter with a certain probability content. For
example, a 90% Bayesian credible interval for the parameter p is an interval
containing p with a probability of 0.90.

R The exact interval is obtained by using the R function gnorm(). For example,
with the posterior distribution for u being Normal(17.4, 0.77), the following R script
shows that a 90% central Bayesian credible interval is (16.133, 18.667). That is, the
posterior probability of u falls between 16.133 and 18.667 is exactly 90%.

gnorm(c(0.05, 0.95), 17.4, 0.77)
[1] 16.13346 18.66654

For simulation-based inference, one generates a large number of values from its
posterior distribution, then finds the 5th and 95th sample quantiles to obtain the



middle 90% of the generated values. Below one sees that a 90% credible interval for
posterior of u is approximately (16.151, 18.691).

S <- 1000

NormalSamples <- rnorm(S, 17.4, 0.77)
quantile(NormalSamples, c(0.05, 0.95))
5% 95%

16.15061 18.69062

The Bayesian credible intervals can also be used for testing hypothesis. Suppose
one again wants to evaluate the statement “ Federer takes on average at least 19
seconds to serve.” One answers this question by computing the 90% credible interval.
One notes that the values of p “at least 19” are not included in the exact 90%
credible interval (16.15, 18.69). The interpretation is that the probability is at least
0.90 that Federer’s average time-to-service is smaller than 19 seconds. One could
obtain a wider credible interval, say by computing a central 95% credible interval
(see the R output below), and observe that 19 is out of the interval. This indicates
we are 95% confident that 19 seconds is not the value of Federer’s average time-to-
serve.

gnorm(c(0.025, 0.975), 17.4, 0.77)
[1] 15.896083 18.90917

On the basis of this credible interval calculation, one concludes that the statement
about Federer’s time-to-serve is unlikely to be true. This conclusion is consistent
with the typical Bayesian hypothesis testing procedure given at the beginning of this
section.

8.6.2 Bayesian prediction

Suppose one is interested in predicting Federer’s future time-to-serve. Since one has
already updated the belief about the parameter, the mean yu, the prediction is made
based on its posterior predictive distribution.

How to make one future prediction of Federer’s time-to-serve? In Chapter 7, we
have seen two different approaches for predicting of a new survey outcome of
students’ dining preferences. One approach in Chapter 7 is based on the derivation
of the exact posterior predictive distribution f(Y =§ | Y = y) which was shown to
be a beta-binomial distribution. The second approach is a simulation-based
approach, which involves two steps: first, sample a value of the parameter from its
posterior distribution (a beta distribution), and second, sample a prediction from
the data model based on the sampled parameter draw (a binomial distribution).



When the sample size in the simulation-based approach is sufficiently large, a
prediction interval from the simulation-based approach is an accurate approximation
to the exact prediction interval.

Exact predictive distribution

We first describe the exact posterior predictive distribution. Consider making a
prediction of a single Federer’s time-to-serve Y. In general, suppose the sampling

density of Y given u and o is f(Y = § | 1) and suppose the current beliefs about u
are represented by the density n(u). The joint density of (§,u) is given by the
product

F¥ =g,u) = fY =7 | wr(p), (8.26)

and by integrating out y, the predictive density of Y is given by
17 =9) = [ 107 = 9| (. 27

The computation of the predictive density is possible for this normal sampling

model with a normal prior. It is assumed that f(Y = § | ) is normal with mean u
and standard deviation o and that the current beliefs about u are described by a
normal density with mean p, and standard deviation op. Then it is possible to

integrate out u from the joint density of (g,u) and one finds that the predictive
density for Y is normal with mean and standard deviation given by

E(Y) =, SD(Y)=4/0?+ 3. (8.28)

This result can be used to derive the posterior predictive distribution of
fY =9|Y1,---,Y,), where Y is a future observation and Y;, ..., Y, are n i.i.d.

observations from a normal sampling density with unknown mean p and known
standard deviation o. After observing the sample values v, ..., y,, the current beliefs

about the mean u are represented by a Normal(y,, 0,) density, where the mean and
standard deviation are given by



T 1
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Then by applying our general result in Equation (8.28), the posterior predictive
density of the single future observation Y is normal with mean g, and standard

deviation 1/0% + 02. That is,

Y =9y, Yn, 0~ Normal(pun, /02 + 02). (8.30)

An important aspect of the predictive distribution for Y is on the variance term
0? + o%. The variability of a future prediction comes from two sources: (1) the data
model variance ¢?, and (2) the posterior variance o?. Recall that the posterior

variance 02 = %in 3 If one fixes values of ¢, and ¢ and allows the sample size n to

grow, the posterior variance will approach zero. In this “large n” case, the
uncertainty in inference about the population mean p will decrease — essentially we
are certain about the location of p. However the uncertainty in prediction will not

decrease towards zero. In contrast, in this large sample case, the variance of Y will
decrease and approach the sampling variance o°.

Predictions by simulation

The alternative method of computing the predictive distribution is by simulation. In
this setting, there are two unknowns — the mean parameter p and the future
observation Y. One simulates a value from the predictive distribution in two steps:
first, one simulates a value of the parameter p from its posterior distribution;

second, use this simulated parameter draw to simulate a future observation Y from
the data model. In particular, the following algorithm is used to simulate a single
value from the posterior predictive distribution.

1. Sample a value of u from its posterior distribution

b
o~ Normal< ¢ﬁ°+:fy v 1/ %in p ), (8.31)

2. Sample a new observation Y from the data model (i.e. a prediction)




Y ~ Normal(u, o). (8.32)

R This two-step procedure is implemented for our time-to-serve example using
the following R script.

sigma <- 4

mu_n <- 17.4

sigma_n <- 0.77

pred_mu_sim <- rnorm(1, mu_n, sigma_n)
(pred_y_sim <- rnorm(1, pred_mu_sim, sigma))
[1] 16.04772

The script can easily be updated to create S = 1000 predictions, which is helpful to
make summary about predictions.

S <- 1000
pred_mu_sim <- rnorm(S, mu_n, sigma_n)
pred_y_sim <- rnorm(S, pred_mu_sim, sigma)

The vector pred_y_sim contains 1000 predictions of Federer’s time-to-serve.
To evaluate the accuracy of the simulation-based predictions, Figure 8.7 displays
the exact and a density estimate of the simulation-based predictive densities for a

single time-to-serve measurement. One observes pretty good agreement using these
two computation methods in this example.
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FIGURE 8.7
Display of the exact and simulated predictive time-to-serve for Federer’s example.

8.7 Posterior Predictive Checking

In Section 8.6, the use of the posterior predictive distribution for predicting a future
time-to-serve measurement was described. As discussed in Chapter 7, this
distribution is also helpful for assessing the suitability of the Bayesian model.

In our example, we observed 20 times-to-serve for Federer. The question is
whether these observed times are consistent with replicated data from the posterior
predictive distribution. In this setting, replicated refers to the same sample size as
our original sample. In other words, if one takes samples of 20 from the posterior
predictive distribution, do these replicated datasets resemble the observed sample?

Since the population standard deviation is known as ¢ = 4 seconds, the sampling
distribution of Y is normal with mean p and standard deviation 0. One simulates
replicated data Y1,...,Y9 from the posterior predictive distribution in two steps:

1. Sample a value of u from its posterior distribution

o~ Normal< ¢‘$;°:£fy , \/ ¢Oin 3 ) (8.33)
2. Sample Y1, ..., Yy from the data model
Y ~ Normal(y, o). (8.34)

R This method is implemented in the following R script to simulate 1000
replicated samples from the posterior predictive distribution. The vector
pred_mu_sim contains draws from the posterior distribution and the matrix ytilde
contains the simulated predictions where each row of the matrix is a simulated
sample of 20 future times.

sigma <- 4

mu_n <- 17.4

sigma_n <- 0.77

S <- 1000

pred_mu_sim <- rnorm(S, mu_n, sigma_n)
sim_ytilde <- function(j){



rnorm(20, pred_mu_sim[j], sigma)

ytilde <- t(sapply(1:S, sim_ytilde))

To judge goodness of fit, we wish to compare these simulated replicated datasets
from the posterior predictive distribution with the observed data. One convenient
way to implement this comparison is to compute some “testing function”, T'(g), on
each replicated dataset. If we have 1000 replicated datasets, one has 1000 values of
the testing function. One constructs a graph of these values and overlays the value
of the testing function on the observed data T(y). If the observed value is in the tail
of the posterior predictive distribution of T'(g§), this indicates some misfit of the
observed data with the Bayesian model.

To implement this procedure, one needs to choose a testing function T'(g).
Suppose, for example, one decides to use the sample mean T'(g) = »_ §;/20. In the
R script, we compute the sample mean on each row of the simulated prediction
matrix.

pred_ybar_sim <- apply(ytilde, 1, mean)

Figure 8.8 displays a density estimate of the simulated values from the posterior
predictive distribution of Y and the observed value of the sample mean Y = 17.20 is
displayed as a vertical line. Since this observed mean is in the middle of this
distribution, one concludes that this observation is consistent with samples predicted
from the Bayesian model. It should be noted that this conclusion about model fit is
sensitive to the choice of checking function TY(). In the end-of-chapter exercises, the
reader will explore the suitability of this model using alternative choices for the
checking function.
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FIGURE 8.8
Display of the posterior predictive mean time-to-serve for twenty observations. The observed mean time-to-serve
value is displayed by a vertical line.

8.8 Modeling Count Data

To further illustrate the Bayesian approach to inference for measurements, consider
Poisson sampling, a popular model for count data. One assumes that one observes a
random sample from a Poisson distribution with an unknown rate parameter A. The
conjugate prior for the Poisson mean is the gamma distribution. This scenario
provides further practice in various Bayesian computations, such as computing the
likelihood function and posterior distribution, and obtaining the predictive
distribution to learn about future data. In this section, we focus on the main results
and the detailed derivations are left as end-of-chapter exercises.

8.8.1 Examples

Counts of patients in an emergency room

A hospital wants to determine how many doctors and nurses to assign on its
emergency room (ER) team between 10 pm and 11 pm during the week. An
important piece of information is the count of patients arriving in the ER in this
one-hour period.

For a count measurement variable such as the count of patients, a popular
sampling model is the Poisson distribution. This distribution is used to model the
number of times an event occurs in an interval of time or space. In the current
example, the event is a patient’s arrival to the ER, and the time interval is the
period between 10 pm and 11 pm. The hospital wishes to learn about the average
count of patients arriving to the ER each hour. Perhaps more importantly, the
hospital wants to predict the patient count since that will directly address the
scheduling of doctors and nurses question.

Counts of visitors to a website

As a second example, suppose one is interested in monitoring the popularity of a
particular blog focusing on baseball analytics. Table 8.7 displays the number of
visitors viewing this blog for 28 days during June of 2019. In this setting, the event
of interest is a visit to the blog website and the time interval is a single day. The
blog author is particularly interested in learning about the average number of
visitors during the days Monday through Friday and predicting the number of visits
for a future day in the summer of 2019.



TABLE 8.7
Count of visitors to blog during 28 days in June 2019.

Fri Sat Sun Mon Tue Wed Thu
Week 1 95 81 85 100 111 130 113
Week 2 92 65 78 96 118 120 104
Week 3 91 91 79 106 91 114 110
Week 4 98 61 84 96 126 119 90

8.8.2 The Poisson distribution

Let the random variable Y denote the number of occurrences of an event in an
interval with sample space {0, 1, 2, ... }. In contrast to the normally distributed
continuous measurement, note that Y only takes integer values from 0 to infinity.
The variable Y follows a Poisson distribution with rate parameter A when the
probability mass function (pmf) of observing y events in an interval is given by

f(Y:y|>\):6_)\%, y:O,1,2,... (8.35)
where 1 is the average number of events per interval, e = 2.71828... is Euler’s

number, and ! is the factorial of y.

The Poisson sampling model is based on several assumptions about the sampling
process. One assumes that the time interval is fixed, counts of arrivals occurring
during different time intervals are independent, and the rate A at which the arrivals
occur is constant over time. To check the suitability of the Poisson distribution for
the examples, one needs to check the conditions individually.

1. The time interval is fixed in the ER example as we observe patient arrivals
during a one hour period between 10 pm and 11 pm. For the blog visits
example, the fixed time period is one day.

2. In both examples, one assumes that events occur independently during different
time intervals. In the ER example it is reasonable to assume that the time of
one patient’s arrival does not influence the time of another patient’s arrival. For
the website visits example, if different people are visiting the website on
different days, then the number of visits in a single day would be independent
of the number of visits on another day.

3. Is it reasonable to assume the rate A at which events occur is constant through
the time interval? In the ER example, one might not think that the rate of
patient arrivals would change much through one hour during the evening, so it
seems reasonable to assume that the average number of events is constant in
the fixed interval. Similarly, if one focuses on weekdays, then for the website



visits example, it is reasonable to assume that the average number of visits
remains constant across days.

In some situations, the second and third conditions will be violated. In our ER
example, the occurrence of serious accidents may bring multiple groups of patients
to the ER at certain time intervals. In this case, arrival times of patients may not be
independent and the arrival rate A in one subinterval will be higher than the arrival
rate of another subinterval. When such situations occur, one needs to decide about
the severity of the violation of the conditions and possibly use an alternative
sampling model instead of the Poisson.

As evident in Equation (8.35), the Poisson distribution has only one parameter,
the rate parameter A, so the Poisson sampling model belongs to the family of one-
parameter sampling models. The binomial data model with success probability p
and the normal data model with mean parameter p (with known standard
deviation) are two other examples of one-parameter models. One distinguishes these
models by the type of possible sample values, discrete or continuous. The binomial
random variable is the number of successes and the Poisson random variable is a
count of arrivals, so they both are discrete one-parameter models. In contrast, the
normal sampling data model is a continuous one-parameter model.

8.8.3 Bayesian inferences

The reader should be familiar with the typical procedure of Bayesian inference and
prediction for one-parameter models. We rewrite this procedure in the context of the
Poisson sampling model.

Step 1 One constructs a prior expressing an opinion about the location of the
rate A before any data is collected.

Step 2 One takes the sample of intervals and records the number of arrivals in
each interval. From this data, one forms the likelihood, the probability
of these observations expressed as a function of A.

Step 3 One uses Bayes’ rule to compute the posterior — this distribution
updates the prior opinion about A given the information from the data.

In addition, one computes the predictive distribution to learn about the
number of arrivals in future intervals. The posterior predictive
distribution is also useful in checking the appropriateness of our model.

Gamma prior distribution

One begins by constructing a prior density to express one’s opinion about the rate
parameter A. Since the rate is a positive continuous parameter, one needs to
construct a prior density that places its support only on positive values. The



convenient choice of prior distributions for Poisson sampling is the gamma
distribution which has a density function given by

(A | a,B) = %Xkle*ﬁ’\, for A>0, and «,8 >0, (8.36)

where I'(a) is the gamma function evaluated at a. The gamma density is a
continuous density where the support is on positive values. It depends on two
parameters, a positive shape parameter a and a positive rate parameter f.

The gamma density is a flexible family of distributions that can reflect many
different types of prior beliefs about the location of the parameter A. One chooses
values of the shape a and the rate £ so that the gamma density matches one’s prior
information about the location of A. In R, the function dgamma() gives the density,
pgamma() gives the distribution function and ggamma() gives the quantile function for
the gamma distribution. These functions are helpful in graphing the prior and
choosing values of the shape and rate parameters that match prior statements about
gamma percentiles and probabilities. We provide an illustration of choosing a
subjective gamma prior in the example.

Sampling and the likelihood

Suppose that Y, ..., Y, represent the observed counts in n time intervals where the
counts are independent and each Y, follows a Poisson distribution with rate A. The
joint mass function of Yj, ..., Y, is obtained by multiplying the Poisson densities.

fi=y,.. Ya=yu | N =[] Flw |
=1

o AXi-1YigmnA,

(8.37)

Once the counts yy, ..., y,, are observed, the likelihood of A is the joint probability of
observing this data, viewed as a function of the rate parameter A.

L(\) = AXimvig™™, (8.38)

The Gamma posterior

If the rate parameter A in the Poisson sampling model follows a gamma prior
distribution, then it turns out that the posterior distribution for A will also have a



gamma density with updated parameters. This demonstrates that the gamma
density is the conjugate distribution for Poisson sampling as the prior and posterior
densities both come from the same family of distribution: gamma.

We begin by assuming that the Poisson parameter A has a gamma distribution
with shape and rate parameters a and f, that is, A ~ Gamma(a, ). If one multiplies
the gamma prior by the likelihood function L(4), then in an end-of-chapter exercise
you will show that the posterior density of 4 is Gamma(a,, f,), where the updated

parameters a, and f, are given by
n
an=a+> Y, Pu=B+n. (8.39)
=1

Inference about A

Once the posterior distribution has been derived, then all inferences about the
Poisson parameter A are performed by computing particular summaries of the
gamma posterior distribution. In particular, one may be interested in testing if A
falls in a particular region by computing a posterior probability. All of these
computations are facilitated using the pgamma(), qgamma(), and rgamma() functions.
Or one may be interested in constructing an interval estimate for A. In the end-of-
chapter exercises, there are opportunities to perform these inferences using a dataset
containing a sample of ER arrival counts.

Prediction of future data

One advantage of using a conjugate prior is that the predictive density for a future
observation Y is available in closed form. Suppose A is assigned a Gamma(a, f)
prior. Then the prior predictive density of ¥ is given by

fY=9)=[fY= y | A)m(A)A
e AN a—1_ —
= f A >‘ emPrdA (8.40)

(a+y) ﬂ“
la) (B+1)7+e "

In addition, the posterior distribution of A also has the gamma form with updated
parameters a, and f,. So Equation (8.40) also provides the posterior predictive

distribution for a future count Y using the updated parameter values.



For prediction purposes, there are several ways of summarizing the predictive
distribution. One can use the formula in Equation (8.40) to directly compute f(Y)
for a list of values of ¥ and then one uses the computed probabilities to form a
prediction interval for Y. Alternately, one simulates values of ¥ in a two-step
process. For example, if one wants to simulate a draw from the posterior predictive
distribution, one would first simulate a value A from its posterior distribution, and
given that simulated draw A*, simulate Y from a Poisson distribution with mean A*.
Repeating this process for a large number of iterations provides a sample from the
posterior prediction distribution that one uses to construct a prediction interval.

8.8.4 Case study: Learning about website counts

Let’s return to the website example where one is interested in learning about the
average weekday visits to a baseball analytics blog site. One observes the counts ¥,
.y Yoo displayed in the “Mon”, “Tue”, “Wed”, “Thu”, “Fri” columns of Table 8.7. We
assume the {y,} represent a random sample from a Poisson distribution with mean
parameter A.

Suppose one’s prior guess at the value of 1 is 80 and one wishes to match this
information with a Gamma(a, f) prior. Two helpful facts about the gamma
distribution are that the mean and variance are equal to u = a/f and ® = a/f* =
i/ B, respectively. Figure 8.9 displays three gamma curves for values (a, ) = (80, 1),
(40, 0.5), and (20, 0.25). Each of these gamma curves has a mean of 80 and the
curves become more diffuse as the parameter f moves from 1 to 0.25. After some
thought, the user believes that the Gamma(80, 1) matches her prior beliefs. To
check, she computes a prior probability interval. Using the ggamma() function, she
finds that her 90% prior probability interval is Prob(65.9 < A < 95.3) = 0.90 and
this appears to be a reasonable approximation to her prior beliefs.
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FIGURE 8.9
Three Gamma(a, ) plausible prior distributions for the average number of weekday visits to the website.

From the data, we compute Zfil y; = 2120 and the sample size is n = 20. The
posterior distribution is Gamma(a,, f,) where the updated parameters are

o = 80 + 2120 = 2200, B, = 1 + 20 = 21.

Figure 8.10 displays the gamma posterior curve for A. This figure displays a 90%
probability interval which is found using the ggamma() function to be (101.1, 108.5).
The interpretation is that the average number of visits lies between 101.1 and 108.5

with probability 0.90.
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FIGURE 8.10

Posterior curve for the mean number of visits A to the website. The shaded region shows the limits of a 90% interval
estimate.

Suppose the user is interested in predicting the number of blog visits Y at a
future summer weekday. One simulates the posterior predictive distribution by first
simulating 1000 values from the gamma posterior, and then simulating values of ¥
from Poisson distributions where the Poisson means come from the posterior. Figure
8.11 displays a histogram of the simulated values from the predictive distribution.
The 5th and 95th quantiles of this distribution are computed to be 88 and 123 —
there is a 90% probability that that the number of visitors in a future weekday will
fall in the interval (88, 123).
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Histogram of a simulated sample from the posterior predictive distribution of the number of visitors to the website
on a future day.
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8.9 Exercises

1. Another Set of Federer’s Time-to-Serve Measurements (Discrete
Priors)
Suppose another set of thirty Federer’'s time-to-serve measurements are
collected with an observed mean of 19 seconds. Assume the same discrete
uniform prior on the values p = 15, 16, ..., 22. The prior and the likelihood
function are displayed below.



m(p) = =, w=15,16,...,22,

L(p) o exr><—%(z7 — u)z)-
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(a) Assuming o = 4, perform the Bayes’ rule calculation to find the posterior
distribution for p.

(b) Using the posterior, find a “best” estimate at u and an interval of values
that contains y with probability 0.5.

2. Temperature in Bismarck
Suppose one is interested in learning about the average January daily
temperature (in degrees Fahrenheit) in Bismarck, North Dakota. One assumes
that the daily temperature Y is normally distributed with mean p and known
standard deviation ¢ = 10. Suppose that one’s prior is uniformly distributed
over the values pu = 5, 10, 15, 20, 25, 30, 25. Suppose one observes the
temperature for one January day to be 28 degrees. Find the posterior
distribution of p and compute the posterior probability the mean is at least as
large as 30 degrees.

3. Choosing A Normal Prior

(a) Suppose Sam believes that the 0.25 quantile of the mean of Federer’s time-
to-serve p is 14 seconds and the 0.8 quantile is 21 seconds. Using the
normal.select() function, construct a normal prior distribution to match
this belief.

(b) Suppose Sam also believes that the 0.10 quantile of his prior is equal to
10.5 seconds. Is this statement consistent with the normal prior chosen in
part (a)? If not, how could you adjust the prior to reconcile this statement
about the 0.10 quantile?

4. Choosing A Normal Prior
Another way of choosing a normal prior for Federer’'s mean time-to-serve p is to
specify statements about the prior predictive distribution for a future time-to-
serve measurement Y. Using results from Section 8.5.2, if 4 has a normal prior

with mean 5 and o), then the predictive density of Y is normal with mean Ho

and standard deviation \/ o2 + o2, where we are assuming that the sampling

standard deviation o = 4 seconds.

(a) Suppose your best guess at Y is 15 seconds, and you are 90 percent
confident that Y is smaller than 25 seconds. Find the normal prior for u
that matches this prior information about the future time-to-serve.

(b) Suppose instead that you are 90% confident that the future time-to-serve
is between 18 and 24 seconds. Find the normal prior for p that matches
this prior belief.



. Bayesian Hypothesis Testing

The posterior distribution for the mean time-to-serve u for Federer is normal

with mean 17.4 seconds and standard deviation 0.77 seconds.

(a) Using this posterior, evaluate the plausibility of the statement “Federer’s
mean time-to-serve is at least 16.5 seconds.”

(b) Is it reasonable to say that Federer’s mean time-to-serve falls between 17
and 18 seconds? Explain.

. Bayesian Credible Interval

The posterior distribution for the mean time-to-serve u for Federer is normal

with mean 17.4 seconds and standard deviation 0.77 seconds.

(a) Construct a central 98% credible interval for p.

(b) Can you use the credible interval to test the hypothesis “Federer’s mean
time-to-serve is 16.5 seconds”? Explain.

. Posterior Predictive Distribution

Write an R script to generate S = 1000 predictions of a single time-to-serve of

Federer based on the posterior predictive distribution using the results given in

Equation (8.31) and Equation (8.32).

(a) Compare the exact posterior predictive distribution (Equation (8.30)) with
the density estimate of the simulated predictions.

(b) Construct a 90% prediction interval for the future time-to-serve.

. Posterior Predictive Checking

The posterior predictive distribution can be used to check the suitability of the

normal sampling and normal prior model for Federer’s time-to-serve data. The

function post_pred_check() simulates samples of n = 20 from the posterior

predictive function, and for each sample, computes a value of the checking

function T(g).

post_pred_check <- function(test_function){
mu_n <- 17.4

sigma_n <- 0.77

sigma <- 4

n <- 20

one_sim <- function(){

mu <- rnorm(1, mu_1, sigma_1)

test(rnorm(n, mu, sigma))

replicate(1000, one_sim())
}

The output of the function is 1000 draws from the posterior predictive
distribution of 7. If the checking function is max (y), then one would obtain
1000 draws from the posterior predictive distribution by typing



post_pred_check(max)

If the value of the checking function on the observed time-to-serves T(y) is
unusual relative to this posterior predictive distribution of T, this would cast
doubt on the model. The observed times-to-serve for Federer are displayed in
Section 8.3.1. and repeated below.

15.1 11.8 21.0 22.7 18.6 16.2 11.1 13.2 20.4 19.2
21.2 14.3 18.6 16.8 20.3 19.9 15.0 13.4 19.9 15.3

(a) Use the function post_pred_check() with the checking function T(y) =
max (y) to check the suitability of the Bayesian model.

(b) Use the function post_pred_check() with the checking function T(y) =
sd(y) to check the suitability of the Bayesian model.

9. Taxi Cab Fares

Suppose a city manager is interested in learning about the mean fare u for taxi

cabs in New York City.

(a) Suppose the manager believes that p is smaller than $8 with probability
0.25, and that u is smaller than $12 with probability 0.75. Find a normal
prior that matches this prior information.

(b) The manager reviews 20 fares and observes the values (in dollars): 7.5, 8.5,
9.5, 6.5, 7.0, 6.0, 7.0, 16.0, 8.0, 8.5, 9.5, 13.5, 4.5, 8.5, 7.5, 13.0, 6.5, 9.5,
21.0, 6.5. Assuming these fares are normally distributed with mean p and
standard deviation o = 4, find the posterior distribution for the mean u.

(c) Construct a 90% interval estimate for the mean fare p.

10. Taxi Cab Fares (continued)

Suppose that a visitor to New York City has little knowledge about the mean

taxi cab fare.

(a) Construct a weakly informative prior for p.

(b) Use the data from Exercise 9 to compute the posterior distribution for the
mean fare.

(c) Construct a 90% interval estimate for the mean fare and compare your
interval with the interval computed in Exercise 9 using an informative
prior.

11. Taxi Cab Fares (continued)

(a) In Exercise 9, one finds the posterior distribution for the mean fare u.
Write an R function to simulate a sample of twenty fares from the
posterior predictive distribution.

(b) Looking at the observed data, one sees an unusually large fare of $21. To
see if this fare is unusual for our model, first revise your function in part



12.

13.

14.

(a) to simulate the maximum fare of a sample of twenty fares from the
posterior predictive distribution. Then repeat this process 1000 times,
collecting the maximum fares for 1000 predictive samples.

(¢) Construct a graph of the maximum fares. Is the fare of $21 large relative to
the prediction distribution of maximum fares?

(d) Based on the answer to part (c), what does that say about the suitability
of our model?

Student Sleeping Times

How many hours do college students sleep, on the average?” Recently, some

introductory students were asked when they went to bed and when they woke

the following morning. A following random sample of 14 sleeping times (in

hours) were recorded: 9.0, 7.5, 7.0, 8.0, 5.0, 6.5, 8.5, 7.0, 9.0, 7.0, 5.5, 6.0, 8.5,

7.5. Assume that these measurements follow a normal sampling distribution

with mean p and standard deviation o, where we are given that o = 1.5.

(a) Suppose that John believes a priori that the mean amount of sleep u is
normal with mean 8 hours and standard deviation 1 hour. Find the
posterior distribution of p.

(b) Construct a 90% interval estimate for the mean pu.

(c) Let y* denote the sleeping time for a randomly selected student. Find the
predictive distribution for y* and use this to construct a 90% prediction
interval.

Student Sleeping Times (continued)

Suppose two other people are interested in learning about the mean sleeping

times of college students. Mary’s prior is normal with mean 8 hours and

standard deviation 0.1 — she is pretty confident that the mean sleeping time is

close to 8 hours. In contrast, Larry is very uncertain about the location of u

and assigns a normal prior with mean 8 hours and standard deviation 3 hours.

(a) Find the posterior distributions of p using Mary’s prior and using Larry’s
prior.

(b) Construct 90% interval estimates for u using Mary’s and Larry’s priors.

(c) Compare the interval estimates with the interval estimates constructed in
Exercise 12(b) using Mary’s prior. Is the location of the interval estimate
sensitive to the choice of prior? If so, explain the differences.

Comparing Two Means - IQ Tests on School Children

Do teachers’ expectations impact academic development of children? To find

out, researchers gave an IQ test to a group of 12 elementary school children.

They randomly picked six children and told teachers that the test predicts them

to have high potential for accelerated growth (accelerated group); for the other

six students in the group, the researchers told teachers that the test predicts
them to have no potential for growth (no growth group). At the end of school
year, they gave IQ tests again to all 12 students, and the change in IQ scores of
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each student is recorded. Table 8.8 shows the IQ) score change of students in the
accelerated group and the no growth group.

TABLE 8.8

Data from IQ score change of 12 students; 6 are in the accelerated group, and 6 are in the no growth group.
Group 1Q score change
Accelerated 20, 10, 19, 15,9, 18
No growth 3,2,6,10,11,5

The sample means of the accelerated group and the no growth group are
respectively g4 = 15.2 and gy = 6.2. Consider independent sampling models,
where the IQ scores for the accelerated group (no growth group) are assumed
normal with mean py (uy) with known standard deviation o = 4.

Ya RS Normal(pa,4), for i=1,---na,

YN < Normal(uy,4), for i=1,---ny,

where ny = ny = 6.
(a) Assuming independent sampling, write down the likelihood function of the

means ({iy, (y)-
(b) Assume that one’s prior beliefs about uy and uy are independent, where u 4

~ Normal(yy, t4) and py ~ Normal(yy, ty). Show that the posterior
distributions for pu, and py are independent normal and find the mean and
standard deviation parameters for each distribution.

Comparing Two Means - 1Q Tests on School Children (continued)

In Exercise 14, you should have established that the mean I(Q) score changes piy

and uy have independent normal posterior distributions. Assume that one has
vague prior beliefs and py ~ Normal(0, 20) and py ~ Normal(0, 20).

(a) Is the average improvement for the accelerated group larger than that for
the no growth group? Consider the parameter 6 = u, — uy to measure the

difference in means. The question now becomes finding the posterior
probability of § > 0, i.e. p(uy — py > 0|y 4, Yu), where y, and yj are the

vectors of recorded 1Q score change. [Hint: simulate a vector s, of posterior
samples of u, and another vector sy of posterior samples of py (make sure
to use the same number of samples) and subtract sy from s,, which gives
us a vector of posterior differences between sy and s,. This vector of

posterior differences serves as an approximation to the posterior
distribution of 4.|

(b) What is the probability that a randomly selected child assigned to the
accelerated group will have larger improvement than a randomly selected



child assigned to the no growth group? Consider Y 4 and Y to be random
variables for predicted IQ score change for the accelerated group and the
no growth group, respectively. The question now becomes finding the
posterior predictive probability of Y4 > Yy, ie. p(Ya > YN |ya,¥n),
where y, and y, are the vectors of recorded IQ score change, each of

length 6. [Hint: Show that the posterior predictive distributions of Y 4 and
Yy are independent. Simulate predicted IQ score changes from the
posterior predictive distributions for the two groups, then simulate the
posterior predictive distribution of Y4 — Y by taking the difference of
simulated draws.|

16. Comparing Two Means - Prices of Diamonds

Weights of diamonds are measured in carats. The difference between the size of

a 0.99 carat diamond and a 1 carat diamond is most likely undetectable to the

naked human eye, but the price of a 1 carat diamond tends to be much higher

than the price of a 0.99 carat diamond. To find out if it is truly the case, data
on point prices (the prices of 0.99 carat diamonds divided by 99, and the prices
of 1 carat diamonds divided by 100) of ngg = 23 of 0.99 carat diamonds and

N — 25 of 1 carat diamonds were collected and stored in the files

pt99price.csv and pt100price.csv.

(a) Explore the two datasets by making plots and computing summary
statistics. What are the findings?

(b) Consider independent normal sampling models for these datasets with a
fixed and known value of the standard deviation. From your exploratory
work, choose a value for the standard deviation.

(c) Choose appropriate weakly informative prior distributions, and use
posterior simulation to answer whether the average point price of the 1
carat diamonds is higher than that of the 0.99 diamonds.

(d) Perform posterior predictive checks of the Bayesian inferences obtained in
part (c).

17. Gamma-Poisson Conjugacy Derivation

Section 8.8.3 presents the Bayesian update results for Poisson sampling with

the use of the gamma conjugate prior.

(a) Verify the equation for the likelihood in Equation (8.37). [Hint:
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the joint sampling density of n i.i.d. Poisson distributed random variables. |



(b) Assuming that the Poisson parameter A has a gamma prior with shape a
and rate p, show that the posterior distribution of A has a gamma
functional form and find the parameters of this gamma distribution.

18. The Number of ER Visits: the Prior

Suppose two people, Pedro and Mia, have different prior beliefs about the

average number of ER visits during the 10 pm - 11 pm time period. Pedro’s

prior information is matched to a gamma distribution with parameters a = 70

and g = 10, and Mia’s beliefs are matched to a gamma distribution with a =

33.3 and f = 3.3. The two gamma priors are displayed in Figure 8.12.

(a) Compare the priors of Pedro and Mia with respect to average value and
spread. Which person believes that there will be more ER visits, on
average? Which person is more confident of his or her best guess at the
average number of ER visits?

0.5-
+r
)\
0.4- I "‘ Pedro’s Prior: G(70, 10)
I
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0.3+
>
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=
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O g2 Mia's Prior: G(33.3, 3.3)
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0.0-
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X

FIGURE 8.12
Two gamma priors for the average number of visits to ER during a particular hour in the evening.

(b) Using the qgamma() function, construct 90% interval estimates for A using
Pedro’s prior and Mia’s prior.

(c) After some thought, Pedro believes that his best prior guess at A is correct,
but he is less confident in this new guess. Explain how Pedro can adjust
the parameters of his gamma prior to reflect this new prior belief.

(d) Mia also revisits her prior. Her best guess at the average number of ER
visits is now 3 larger than her previous best guess, but the degree of
confidence in this guess hasn’t changed. Explain how Mia can adjust the
parameters of her gamma prior to reflect this new prior belief.

19. The Number of ER Visits



A hospital collects the number of patients in the emergency room (ER)
admitted between 10 pm and 11 pm for each day of a week. Table 8.9 records
the day and the number of ER visits for the given day.

TABLE 8.9
Data for ER visits in a given week.

Day Number of ER visits

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday

~N O 0 0O O O

Saturday

Suppose one assumes Poisson sampling for the counts, and a conjugate gamma
prior with parameters a = 70 and f = 10 for the Poisson rate parameter A.

(a) Given the sample shown in Table 8.9, obtain the posterior distribution for
A through the gamma-Poisson conjugacy. Obtain a 95% posterior credible
interval for A.

(b) Suppose a hospital administrator states that the average number of ER
visits during any evening hour does not exceed 6. By computing a
posterior probability, evaluate the wvalidity of the administrator’s
statement.

(¢) The hospital is interested in predicting the number of ER visits between 10
pm and 11 pm for another week. Use simulations to generate posterior
predictions of the number of ER visits for another week (seven days).

20. Times Between Traffic Accidents
The exponential distribution is often used as a model to describe the time
between events, such as traffic accidents. A random variable Y has an
Exponential distribution if its pdf is as follows.

(8.41)

— )\exp (_)‘y)7 1fy20
f(y"\)_{o, if y < 0.

Here, the parameter A > 0, considered as the rate of event occurrences.
This is a one-parameter model.

(a) The gamma distribution is a conjugate prior distribution for the rate
parameter A in the Exponential data model. Use the prior distribution A ~



Gamma(a, b), and find its posterior distribution n(1| y;, ..., y,), where

Yi = Exponential(\) for i = 1, ..., n.

(b) Suppose 10 times between traffic accidents are collected: 1.5, 15, 60.3, 30.5,
2.8, 56.4, 27, 6.4, 110.7, 25.4 (in minutes). With the posterior distribution
derived in part (a), use Monte Carlo approximation to calculate the
posterior mean, median, and a middle 95% credible interval for the rate A.
[Hint: choose the appropriate R functions from dgamma(), pgamma(),
qgamma(), and rgamma().|

(¢c) Use Monte Carlo approximation to generate another set of 10 predicted
times between events. [Hint: rexp() generates random draws from an
Exponential distribution.|

21. Modeling Survival Times
The Weibull distribution is often used as a model for survival times in
biomedical, demographic, and engineering analyses. A random variable Y has a
Weibull distribution if its pdf is as follows.

fly| a,\) = day* Lexp (—Ay®) fory > 0. (8.42)

Here, a > 0 and A > 0 are parameters of the distribution. For this problem,
assume that a = q is known, but A is not known, i.e. a simplified case of a one-
parameter model. Also assume that software routines for simulating from
Weibull distributions are available (e.g. rweibull())

(a) Assuming a prior distribution n(dla = a;) « 1, find its posterior

(A Y1,y Yn, @ = o), where y; B4 - Weibull(A, @ = ap) for i = 1, ..., n.
Write the name of the distribution and expressions for its parameter
values.

(b) Using the posterior distribution derived in part (a), explain step-by-step
how you would use Monte Carlo simulation to approximate the posterior
median survival time, assuming that a = a;.

(¢) What family of distributions represents the conjugate prior distributions
for A, assuming that a = a.
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Simulation by Markov Chain Monte
Carlo

9.1 Introduction

9.1.1 The Bayesian computation problem

The Bayesian models in Chapters 7 and 8 describe the application of conjugate
priors where the prior and posterior belong to the same family of distributions.
In these cases, the posterior distribution has a convenient functional form such
as a beta density or normal density, and the posterior distributions are easy to
summarize. For example, if the posterior density has a normal form, one uses
the R functions pnorm() and gnorm() to compute posterior probabilities and
quantiles.

In a general Bayesian problem, the data Y comes from a sampling density f(y|
#) and the parameter ¢ is assigned a prior density a(#). After ¥ = y has been
observed, the likelihood function is equal to L(#) = f(y|#) and the posterior
density is written as

m(6)L(6)
[m(0)L(6)do

7T(9 | y) = 9.1)

If the prior and likelihood function do not combine in a helpful way, the
normalizing constant [m(0)L(0)dd can not be evaluated analytically. In
addition, summaries of the posterior distribution are expressed as ratios of
integrals. For example, the posterior mean of # is given by



_ [6r(6)L(6)d8
~ [n(0)L(6)do

E@©|y)

9.2)

Computation of the posterior mean requires the evaluation of two integrals,
each not expressible in closed-form.

The following sections illustrate this general problem where integrals of the
product of the likelihood and prior can not be evaluated analytically and so
there are challenges in summarizing the posterior distribution.

9.1.2 Choosing a prior

Suppose you are planning to move to Buffalo, New York. You currently live on
the west coast of the United States where the weather is warm and you are
wondering about the snowfall you will encounter in Buffalo in the following
winter season.

Suppose you focus on the quantity u, the average snowfall during the month
of January. After some reflection, you are 50 percent confident that u falls
between 8 and 12 inches. That is, the 25th percentile of your prior for u is 8
inches and the 75th percentile is 12 inches.

A normal prior

Once you have figured out your prior information, you construct a prior density
for p that matches this information. In one of the end-of-chapter exercises, you
can confirm that one possible density matching this information is a normal
density with mean 10 and standard deviation 3.

We collect data for the last 20 seasons in January. Assume that these
observations of January snowfall are normally distributed with mean p and
standard deviation o. For simplicity we assume that the sampling standard
deviation o is equal to the observed standard deviation s. The observed sample
mean ¢ and corresponding standard error are given by g = 26.785 and
se = s/v/n = 3.236.

R With this normal prior and normal sampling, results from Chapter 8 are
applied to find the posterior distribution of u. The normal_update() function is
used to find the mean and standard deviation of the normal posterior
distribution.



(postl <- normal_update(c(10, 3), c(ybar, se)))
[1] 17.75676 2.20020

In Figure 9.1 the prior, likelihood, and posterior are displayed on the same
graph. Initially you believed that p was close to 10 inches, the data says that
the mean is in the neighborhood of 26.75 inches, and the posterior is a
compromise, where p is in an interval about 17.75 inches.
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FIGURE 9.1

Prior, likelihood, and posterior of a normal mean with a normal prior.

An alternative prior

Looking at Figure 9.1, there is some concern about this particular Bayesian
analysis. Since the the main probability contents of the prior and likelihood
functions have little overlap, there is serious conflict between the information in
your prior and the information from the data.

Since we have a prior-data conflict, it would make sense to revisit our choice
for a prior density on p. Remember you specified the quartiles for p to be 8 and
12 inches. Another symmetric density that matches this information is a Cauchy
density with location 10 inches and scale parameter 2 inches. The reader can
confirm that the quantiles of a Cauchy(10, 2) do match your prior information.
[Hint: use the gcauchy() R command.|

In Figure 9.2 we compare the normal and Cauchy priors graphically.
Remember these two densities have the same quartiles at 8 and 12 inches. But



the two priors have different shapes — the Cauchy prior is more peaked near the
median value 10 and has tails that decrease to zero at a slower rate than the
normal. In other words, the Cauchy curve has flatter tails than the normal
curve.

0.15- / \‘
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p=29
0.05-
0.00-
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u
FIGURE 9.2

Two priors for representing prior opinion about a normal mean.

With the use of a Cauchy(10, 2) prior and the same normal likelihood, the
posterior density of u is

w1 | y) o m(1) L(p) x > < exp{ - (7 - )}

4—10 (9.3)
1+ (452)

In contrast with a mnormal prior, one can not algebraically simplify this
likelihood times prior product to obtain a “nice” functional expression for the
posterior density in terms of the mean u. That raises the question — how does
one implement a Bayesian analysis when one can not easily express the
posterior density in a convenient functional form?

9.1.3 The two-parameter normal problem



In the problem in learning about a normal mean p in Chapter 8, it was assumed
that the sampling standard deviation o was known. This is unrealistic — in most
settings, if one is uncertain about the mean of the population, then likely the
population standard deviation will also be unknown. From a Bayesian
perspective, since we have two unknown parameters p and o, this situation
presents new challenges. One needs to construct a joint prior z(u, o) for the two
parameters — up to this point, we have only discussed constructing a prior
distribution for a single parameter. Also, although one can compute the
posterior density by the usual “prior times likelihood” recipe, it may be difficult
to get nice analytic answers with this posterior to obtain particular inferences of
interest.

9.1.4 Overview of the chapter

In Chapters 7 and 8, we illustrated the use of simulation to summarize posterior
distributions of a specific functional form such as the beta and normal. In this
chapter, we introduce a general class of algorithms, collectively called Markov
chain Monte Carlo (MCMC), that can be used to simulate the posterior from
general Bayesian models. These algorithms are based on a general probability
model called a Markov chain and Section 9.2 describes this probability model
for situations where the possible models are finite. Section 9.3 introduces the
Metropolis sampler, a general algorithm for simulating from an arbitrary
posterior distribution. Section 9.4 describes the implementation of this
simulation algorithm for the normal sampling problem with a Cauchy prior.
Section 9.5 introduces another MCMC simulation algorithm, Gibbs sampling,
that is well-suited for simulation from posterior distributions of many
parameters. One issue in the implementation of these MCMC algorithms is that
the simulation draws represent an approximate sample from the posterior
distribution. Section 9.6 describes some common diagnostic methods for seeing
if the simulated sample is a suitable exploration of the posterior distribution.
Finally in Section 9.7, we describe the use of a general-purpose software
program Just Another Gibbs Sampler (JAGS) and R interface for implementing
these MCMC algorithms.

9.2 Markov Chains

9.2.1 Definition



Since our simulation algorithms are based on Markov chains, we begin by
defining this class of probability models in the situation where the possible
outcomes are finite. Suppose a person takes a random walk on a number line on
the values 1, 2, 3, 4, 5, 6. If the person is currently at an interior value (2, 3, 4,
or 5), in the next second she is equally likely to remain at that number or move
to an adjacent number. If she does move, she is equally likely to move left or
right. If the person is currently at one of the end values (1 or 6), in the next
second she is equally likely to stay still or move to the adjacent location.

This is a simple example of a discrete Markov chain. A Markov chain
describes probabilistic movement between a number of states. Here there are six
possible states, 1 through 6, corresponding to the possible locations of the
walker. Given that the person is at a current location, she moves to other
locations with specified probabilities. The probability that she moves to another
location depends only on her current location and not on previous locations
visited. We describe movement between states in terms of transition
probabilities — they describe the likelihoods of moving between all possible
states in a single step in a Markov chain. We summarize the transition
probabilities by means of a transition matrix P:

.50 .50 O 0 0
25 50 25 O 0
25 60 .25 O
0 .25 .50 .25
0 0 .25 .50 .25
0 0 0 .50 .50

o O O O

The first row in P gives the probabilities of moving to all states 1 through 6 in a
single step from location 1, the second row gives the transition probabilities in a
single step from location 2, and so on.

There are several important properties of this particular Markov chain. It is
possible to go from every state to every state in one or more steps — a Markov
chain with this property is said to be irreducible. Given that the person is in a
particular state, if the person can only return to this state at regular intervals,
then the Markov chain is said to be pertodic. This example is aperiodic since the
walker cannot return to the current state at regular intervals.

9.2.2 Some properties

We represent the person’s current location as a probability row vector of the
form



D= (p17p27p37p47p57p6)7

where p, represents the probability that the person is currently in state i. If pl)

represents the location of the person at step j, then the location of the person at
the 5 + 1 step is given by the matrix product

PG — 0 p.

Moreover, if p¥ represents the location at step j, then the location of the
traveler after m additional steps, ptt™ is given by the matrix product

pUtm) — p) pm.

where P™ indicates the matrix multiplication P x P x ... X P (the matrix P
multiplied by itself m times).

R To illustrate for our example using R, suppose that the person begins at
state 3 that is represented in R by the vector p with a 1 in the third entry:

p <- C(OI o, 1, 0, 9, 0)

We also define the transition matrix by use of the matrix() function.

P <- matrix(c(.5, .5, 06, 0, 0, 0,
.25, .5, .25, 0, 0, O,

, .25, .5, .25, 0, O,

, 0, .25, .5, .25, O,

, 0, 0, .25, .5, .25,

’ 0/ 0/ 0/ '51 '5)1

(0]
0
0
0
nrow=6, ncol=6, byrow=TRUE)

If one multiplies this vector by the matrix P, one obtains the probabilities of
being in all six states after one move.

print(p %*% P, digits = 5)

(11 [,2] [,3] [,4] [,5] [,6]
[1,] © 0.25 0.5 0.25 0 0

After one move (starting at state 3), our walker will be at states 2, 3, and 4
with respective probabilities 0.25, 0.5, and 0.25. If one multiplies p by the



matrix P four times, one obtains the probabilities that the walker will be in the
different states after four moves.

print(p %*% P %*% P %*% P %*% P, digits = 5)

(-1 [,2] [,3] [,4] [,5] [,6]
[1,] 0.10938 0.25 0.27734 0.21875 0.11328 0.03125

Starting from state 3, this person will most likely be in states 2, 3, and 4 after
four moves.

For an irreducible, aperiodic Markov chain, there is a limiting behavior of the
matrix power P™ as m approaches infinity. Specifically, this limit is equal to

W = lim Pm, (9.4)

m—oo

where W has common rows equal to w. The implication of this result is that, as
one takes an infinite number of moves, the probability of landing at a particular
state does not depend on the initial starting state.

One can demonstrate this result empirically for our example. Using a loop, we
take the transition matrix P to the 100th power by repeatedly multiplying the
transition matrix by itself. From this calculation below, note that the rows of
the matrix Pm appear to be approaching a constant vector. Specifically, it
appears the constant vector w is equal to (0.1, 0.2, 0.2, 0.2, 0.2, 0.1).

Pm <- diag(rep(1, 6))
for(j in 1:100){
Pm <- Pm %*% P

}
print(Pm, digits = 5)
[,11 [,2] [,3] [,4] [,5] [,6]

[1,] 0.100009 0.20001 0.20001 0.19999 0.19999 0.099991
[2,] ©0.100007 0.20001 0.20000 0.20000 0.19999 0.099993
[3,] 0.100003 0.20000 0.20000 0.20000 0.20000 0.099997
[4,] 0.099997 0.20000 0.20000 0.20000 0.20000 0.100003
[5,] 0.099993 0.19999 0.20000 0.20000 0.20001 0.100007
[6,] ©0.099991 0.19999 0.19999 0.20001 0.20001 0.100009

From this result about the limiting behavior of the matrix power P™, one can
derive a rule for determining this constant vector. Suppose we can find a
probability vector w such that wP = w. This vector w is said to be the
stationary distribution. If a Markov chain is irreducible and aperiodic, then it



has a unique stationary distribution. Moreover, as illustrated above, the limiting
distribution of this Markov chain, as the number of steps approaches infinity,
will be equal to this stationary distribution.

9.2.3 Simulating a Markov chain

Another method for demonstrating the existence of the stationary distribution
of our Markov chain is by running a simulation experiment. We start our
random walk at a particular state, say location 3, and then simulate many steps
of the Markov chain using the transition matrix P. The relative frequencies of
our traveler in the six locations after many steps will eventually approach the
stationary distribution w.

R In R we have already defined the transition matrix P. To begin the
simulation exercise, we set up a storage vector s for the locations of our traveler
in the random walk. We indicate that the starting location for our traveler is
state 3 and perform a loop to simulate 10,000 draws from the Markov chain. We
use the sample() function to simulate one step — the arguments to this function
indicate that we are sampling a single value from the set {1, 2, 3, 4, 5, 6} with
probabilities given by the s; row of the transition matrix P, where s} is the
current location of our traveler.

s <- vector("numeric", 10000)

s[1] <- 3

for (j in 2:10000)

s[j] <- sample(1:6, size=1, prob=P[s[j - 11, 1)

Suppose that we record the relative frequencies of each of the outcomes 1, 2,
..., 6 after each iteration of the simulation. Figure 9.3 graphs the relative
frequencies of each of the outcomes as a function of the iteration number. It
appears from Figure 9.3 that the relative frequencies of the states are
converging to the stationary distribution w = (0.1, 0.2, 0.2, 0.2, 0.2, 0.1). We
confirm that this specific vector w is indeed the stationary distribution of this
chain by multiplyingw by the transition matrix P and noticing that the product
is equal to w.

w <- matrix(c(.1,.2,.2,.2,.2,.1), nrow=1, ncol=6)
w %*% P

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.1 0.2 0.2 0.2 0.2 0.1
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FIGURE 9.3
Relative frequencies of the states 1 through 6 as a function of the number of iterations for Markov chain
simulation. As the number of iterations increases, the relative frequencies appear to approach the probabilities
in the stationary distribution w = (0.1, 0.2, 0.2, 0.2, 0.2, 0.1).

9.3 The Metropolis Algorithm

9.3.1 Example: Walking on a number line

Markov chains can be used to sample from an arbitrary probability distribution.
To introduce a general Markov chain sampling algorithm, we illustrate sampling
from a discrete distribution. Suppose one defines a discrete probability

distribution on the integers 1, ..., K.

R As an example, we write a short function pd() in R taking on the values 1,
..., 8 with probabilities proportional to the values 5, 10, 4, 4, 20, 20, 12, and 5.
Note that these probabilities don’t sum to one, but we will shortly see that only
the relative sizes of these values are relevant in this algorithm. A line graph of

this probability distribution is displayed in Figure 9.4.



pd <- function(x){
values <- c(5, 10, 4, 4, 20, 20, 12, 5)
ifelse(x %in% 1:length(values), values[x], 0)

prob_dist <- data.frame(x = 1:8,
prob = pd(1:8))
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FIGURE 9.4
A discrete probability distribution on the values 1, ..., 8.

To simulate from this probability distribution, we will take a simple random
walk described as follows.

1. We start at any possible location of our random variable from 1 to K = 8.

2. To decide where to visit next, a fair coin is flipped. If the coin lands heads,
we think about visiting the location one value to the left, and if coin lands
tails, we consider visiting the location one value to right. We call this the
“candidate” location.

3. We compute

_ pd(candidate)

R
pd(current)

(9.5)

the ratio of the probabilities at the candidate and current locations.



4. We spin a continuous spinner that lands anywhere from 0 to 1 — call the
random spin X. If X is smaller than R, we move to the candidate location,
and otherwise we remain at the current location.

Steps 1 through 4 define an irreducible, aperiodic Markov chain on the state
values {1, 2, ..., 8} where Step 1 gives the starting location and the transition
matrix P is defined by Steps 2 through 4. One way of “discovering” the discrete
probability distribution pd is by starting at any location and walking through
the distribution many times repeating Steps 2, 3, and 4 (propose a candidate
location, compute the ratio, and decide whether to visit the candidate location).
If this process is repeated for a large number of steps, the distribution of our
actual visits should approximate the probability distribution pd.

R A R function random_walk() is written implementing this random walk
algorithm. There are three inputs to this function, the probability distribution
pd, the starting location start and the number of steps of the algorithm s.

random_walk <- function(pd, start, num_steps){
y <- rep(0, num_steps)

current <- start

for (j in 1:num_steps){

candidate <- current + sample(c(-1, 1), 1)
prob <- pd(candidate) / pd(current)

if (runif(1) < prob) current <- candidate
y[j] <- current

}
return(y)

We have already defined the probability distribution by use of the function
pd(). Below, we implement the random walk algorithm by inputting this
probability function, starting at the value X = 4 and running the algorithm for
s = 10,000 iterations.

out <- random_walk(pd, 4, 10000)
data.frame(out) %>% group_by(out) %>%
summarize(N = n(), Prob = N / 10000) -> S

In Figure 9.5 a histogram of the simulated values from the random walk is
compared with the actual probability distribution. Note that the collection of
simulated draws appears to be a close match to the true probabilities.
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FIGURE 9.5
Histogram of simulated draws from the random walk compared with the actual probabilities of the
distribution.

9.3.2 The general algorithm

A popular way of simulating from a general continuous posterior distribution is
by using a generalization of the discrete Markov chain setup described in the
random walk example in the previous section. The Markov chain Monte Carlo
sampling strategy sets up an irreducible, aperiodic Markov chain for which the
stationary distribution equals the posterior distribution of interest. This
method, called the Metropolis algorithm, is applicable to a wide range of
Bayesian inference problems.

Here the Metropolis algorithm is presented and illustrated. This algorithm is
a special case of the Metropolis-Hastings algorithm, where the proposal
distribution is symmetric (e.g. uniform or normal).

Suppose the posterior density is written as

mn(0) x 7(8)L(6),

where n() is the prior and L(#) is the likelihood function. In this algorithm, it
is not necessary to compute the normalizing constant — only the product of
likelihood and prior is needed.



1. (START) As in the random walk algorithm, we begin by selecting any
value where the posterior density is positive — the value we select 90 is the
starting value.

2. (PROPOSE) Given the current simulated value d9) we propose a new value
#” which is selected at random in the interval (39 — C, 99 + () where C
is a preselected constant.

3. (ACCEPTANCE PROBABILITY) One computes the ratio R of the
posterior density at the proposed value and the current value:

7 (6F)
R=—"—. 9.6
n(00) 09
The acceptance probability is the minimum of R and 1:
PROB =min {R,1}. 9.7)

4. (MOVE OR STAY?) One simulates a uniform random variable U. If U is
smaller than the acceptance probability PROB, one moves to the proposed
value ¢; otherwise one stays at the current value 9. In other words, the
next simulated draw 9%

41) _ {ep if U < PROB, on

019  elsewhere.

5. (CONTINUE) One continues by returning to Step 2 — propose a new
simulated value, compute an acceptance probability, decide to move to the
proposed value or stay, and so on.

Figure 9.6 illustrates how the Metropolis algorithm works. The bell-shaped
curve is the posterior density of interest. In the top-left panel, the solid dot
represents the current simulated draw and the black bar represents the proposal
region. One simulates the proposed value represented by the “P” symbol. One
computes the probability of accepting this proposed value — in this case, this
probability is 0.02. By simulating a uniform draw, one decides not to accept this



proposal and the new simulated draw is the current value shown in the top-right
panel. A different scenario is shown in the bottom panels. One proposes a value
corresponding to a higher posterior density value. The probability of accepting
this proposal is 1 and the bottom left graph shows that the new simulated draw
is the proposed value.

Propose: Accept Probability = 0.02

Posterior

Reject — Stay at Current Value

Posterior

-5 0 5 10 15

Propose: Accept Probability = 1

Posterior

-5 0 5 10 15

Accept - Move to Proposed Value

Posterior

-5 0 5 10 15 -5 0 5 10 15
FIGURE 9.6
Illustration of the Metropolis algorithm. The left graphs show the proposal region and two possible proposal
values and the right graphs show the result of either accepting or rejecting the proposal.

9.3.3 A general function for the Metropolis algorithm

Since the Metropolis is a relatively simple algorithm, one writes a short function
in R to implement this sampling for an arbitrary probability distribution.

R The function metropolis() has five inputs: logpost is a function defining the
C defines the
neighborhood where one looks for a proposal value, iter is the number of

logarithm of the density, current is the starting value,
iterations of the algorithm, and ... denotes any data or parameters needed in

the function logpost().




metropolis <- function(logpost, current, C, iter, ...){
S <- rep(0, iter)

n_accept <- 0

for(j in 1:iter){

candidate <- runif(1, min=current - C,
max=current + C)

prob <- exp(logpost(candidate, ...) -
logpost(current, ...))

accept <- ifelse(runif(1) < prob, "yes", "no")
current <- ifelse(accept == "yes",

candidate, current)

S[j] <- current

n_accept <- n_accept + (accept == "yes")
}

list(S=S, accept_rate=n_accept / iter)
}

9.4 Example: Cauchy-Normal Problem

To illustrate using the metropolis() function, suppose we wish to simulate 1000
values from the posterior distribution in our Buffalo snowfall problem where we
use a Cauchy prior to model our prior opinion about the mean snowfall amount.
Recall that the posterior density of p is proportional to

m(p | y) ©9)

There are four inputs to this posterior — the mean 7 and corresponding
standard error o/4/n, and the location parameter 10 and the scale parameter 2
for the Cauchy prior. Recall that for the Buffalo snowfall, we observed
7 = 26.785 and o/+/n = 3.236.

R First we need to define a short function defining the logarithm of the
posterior density function. Ignoring constants, the logarithm of this density is
given by



__ p=10\*| _n
logm(p | y) = log{1+< 5 >} 5g? (g —w)°. 9.10)

The function 1lpost() returns the value of the logarithm of the posterior
where s is a list containing the four inputs ybar, se, loc, and scale.

lpost <- function(theta, s){

dcauchy(theta, s$loc, s$scale, log = TRUE) +
dnorm(s$ybar, theta, s$se, log = TRUE)

}

A list named s is defined that contains these inputs for this particular
problem.

s <- list(loc = 10, scale = 2,
ybar = mean(data$JAN),
se = sd(data$JAN) / sqrt(20))

Now we are ready to apply the Metropolis algorithm as coded in the function
metropolis(). The inputs to this function are the log posterior function 1lpost,
the starting value p = 5, the width of the proposal density C' = 20, the number
of iterations 10,000, and the list s that contains the inputs to the log posterior
function.

out <- metropolis(lpost, 5, 20, 10000, s)

The output variable out has two components — S is a vector of the simulated
draws and accept_rate gives the acceptance rate of the algorithm.

9.4.1 Choice of starting value and proposal region

In implementing this Metropolis algorithm, the user has to make two choices.
He or she needs to select a starting value for the algorithm and select a value of
C which determines the width of the proposal region.

Assuming that the starting value is a place where the density is positive, then
this particular choice in usual practice is not critical. In the event where the



probability density at the starting value is small, the algorithm will move
towards the region where the density is more probable.

The choice of the constant C is more critical. If one chooses a very small
value of C, then the simulated values from the algorithm tend to be strongly
correlated and it takes a relatively long time to explore the entire probability
distribution. In contrast, if C is chosen too large, then it is more likely that
proposal values will not be accepted and the simulated values tend to get stuck
at the current values. One monitors the choice of C by computing the
acceptance rate, the proportion of proposal values that are accepted. If the
acceptance rate is large, that indicates that the simulated values are highly
correlated and the algorithm is not efficiently exploring the distribution. If the
acceptance rate is low, then few candidate values are accepted and the
algorithm tends to be “sticky” or stuck at current draws.

We illustrate different choices of C for the mean amount of Buffalo snowfall
problem. In each case, we start with the value p = 20 and try the C values 0.3,
3, 30, and 200. In each case, we simulate 5000 values of the MCMC chain.
Figure 9.7 shows in each case a line graph of the simulated draws against the
iteration number and the acceptance rate of the algorithm is displayed.

C= 0.3, Accept = 0.9702 C= 3, Accept = 0.8158
40-
30-
20-
10-
C|_
x C= 30, Accept= 0.179 C= 200, Accept = 0.0272
40-
30-
20-
10-
0-
2000 4000 2000 4000
Iteratlon
FIGURE 9.7

Trace plots of simulated draws using different choices of the constant C.



When one chooses a small value C' = 0.3 (top-left panel in Figure 9.7), note
that the graph of simulated draws has a snake-like appearance. Due to the
strong autocorrelation of the simulated draws, the sampler does a relatively
poor job of exploring the posterior distribution. One measure that this sampler
is not working well is the large acceptance rate of 0.9702. On the other hand, if
one uses a large value C' = 200 (bottom-right panel in Figure 9.7), the flat-
portions in the graph indicates there are many occurrences where the chain will
not move from the current value. The low acceptance rate of 0.0272 indicates
this problem. The more moderate values of C' = 3 and C = 30 (top-right and
bottom-left panels in Figure 9.7) produce more acceptable streams of simulated
values, although the respective acceptance rates (0.8158 and 0.179) are very
different.

In practice, it is recommended that the Metropolis algorithm has an
acceptance rate between 20% and 40%. For this example, this would suggest
trying an alternative choice of C between 2 and 20.

9.4.2 Collecting the simulated draws

Using MCMC diagnostic methods that will be described in Section 9.6, one sees
that the simulated draws are a reasonable approximation to the posterior
density of u. One displays the posterior density by computing a density estimate
of the simulated sample. In Figure 9.8, we plot the prior, likelihood, and
posterior density for the mean amount of Buffalo snowfall x4 using the Cauchy
prior. Recall that we have prior-data conflict, the prior says that the mean
snowfall is about 10 inches and the likelihood indicates that the mean snowfall
was around 27 inches. When a normal prior was applied, we found that the
posterior mean was 17.75 inches — actually the posterior density has little
overlap with the prior or the likelihood in Figure 9.1. In contrast, it is seen from
Figure 9.8 that the posterior density using the Cauchy density resembles the
likelihood. Essentially this posterior analysis says that our prior information was
off the mark and the posterior is most influenced by the data.
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Prior, likelihood, and posterior of a normal mean with a Cauchy prior.

9.5 Gibbs Sampling

In our examples, we have focused on the use of the Metropolis sampler in
simulating from a probability distribution of a single variable. Here we introduce
an MCMC algorithm for simulating from a probability distribution of several
variables based on conditional distributions: the Gibbs sampling algorithm. As
we will see, it facilitates parameter estimation in Bayesian models with more
than one parameter, providing data analysts much flexibility in specifying
Bayesian models.

9.5.1 Bivariate discrete distribution

To introduce the Gibbs sampling method, suppose that the random variables X
and Y each take on the values 1, 2, 3, 4, and the joint probability distribution is
given in the following table.



Y 1 2 3 4
1 0.100 0.075 0.050 0.025
2 0.075 0.100 0.075 0.050
3 0.050 0.075 0.100 0.075
4 0.025 0.050 0.075 0.100

Suppose it is of interest to simulate from this joint distribution of (X, Y). We
set up a Markov chain by taking simulated draws from the conditional
distributions flz] y) and f(y| x). Let’s describe this Markov chain by example.
Suppose the algorithm starts at the value X = 1.

Step 1 One simulates Y from the conditional distribution f(y| X = 1). This
conditional distribution is represented by the probabilities in the
first column of the probability matrix.

Y Probability
1 0.100
2 0.075
3 0.050
4 0.025

(Actually these values are proportional to the distribution f{y] X = 1).)
Suppose we perform this simulation and obtain Y = 2.
Step 2 Next one simulates X from the conditional distribution of f(z] ¥ =
2). This distribution is found by looking at the probabilities in the
second row of the probability matrix.

X 1 2 3 4
Probability 0.075 0.100 0.075 0.050

Suppose the simulated draw from this distribution is X = 3.

By implementing Steps 1 and 2, we have one iteration of Gibbs sampling,
obtaining the simulated pair (X, Y) = (3, 2). To continue this algorithm, we
repeat Steps 1 and 2 many times where we condition in each case on the most
recently simulated values of X or Y.

By simulating successively from the distributions fly| z) and f(z] y), one
defines a Markov chain that moves from one simulated pair (X, Y1) to the
next simulated pair (XU, YUt1)) In theory, after simulating from these two



conditional distributions a large number of times, the distribution will converge
to the joint probability distribution of (X, Y).

R We write a short R function gibbs_discrete() to implement Gibbs sampling
for a two-parameter discrete distribution where the probabilities are represented
in a matrix. One inputs the matrix p and the output is a matrix of simulated
draws of X and Y where each row corresponds to a simulated pair. By default,
the sampler starts at the value X = 1 and 1000 iterations of the algorithm will
be taken.

gibbs_discrete <- function(p, i = 1, iter = 1000){
X <- matrix(@, iter, 2)
nxX <- dim(p)[1]
ny <- dim(p)[2]
for(k in 1:iter){

j <- sample(1l:nY, 1, prob
i <- sample(1:nX, 1, prob
x[k, T <- c(i, J)

}

p[i, 1)
pL, 31)

X

}

The function gibbs_discrete() is run using the probability matrix for our
example. The output is converted to a data frame and we tally the counts for
each possible pair of values of (X, Y), and then divide the counts by the
simulation sample size of 1000. One can check that the relative frequencies of
these pairs are good approximations to the joint probabilities.

sp <- data.frame(gibbs_discrete(p))
names(sp) <- c("X", "Y")
table(sp) / 1000

Y
X1234
1 0.086 0.058 0.050 0.020
2 0.061 0.081 0.079 0.048
3 0.046 0.070 0.6090 0.079
4 0.017 0.036 0.068 0.111

9.5.2 Beta-binomial sampling

The previous example demonstrated Gibbs sampling for a two-parameter
discrete distribution. In fact, the Gibbs sampling algorithm works for any two-
parameter distribution. To illustrate, consider a familiar Bayesian model
discussed in Chapter 7. Suppose we flip a coin n times and observe y heads



where the probability of heads is p, and our prior for the heads probability is
described by a beta curve with shape parameters a and 0. It is convenient to
write X| Y = y as the conditional distribution of X given Y = y. Using this
notation we have

Y | p ~ Binomial(n, p), (9.11)

p ~ Beta(a,b). (9.12)

To implement Gibbs sampling for this situation, one needs to identify the two
conditional distributions Y] p and p| Y. First write down the joint density of (Y,
p) which is found by multiplying the marginal density n(p) with the conditional

density f(y| p).

fY =y,p)=n(p)f(Y =y |p)
= [B(tlz,b) (1 - p)b_l} [(Z)py(l - p)"‘y] - O

1. The conditional density (Y = y| p) is found by fixing a value of the
proportion p and then the only random variable is Y. This distribution is
Binomial(n, p) which actually was given in the statement of the problem.

2. Turning things around, the conditional density n(p| y) takes the number of
successes y and views the joint density as a function only of the random
variable p. Ignoring constants, we see this conditional density is
proportional to

py+a—1(1 . p)n—y—i—b—l, (9.14)

which we recognize as a beta distribution with shape parameters y + a and
n — y + b. Using our notation, we have p| y ~ Beta(y + a, n — y + b).

R Once these conditional distributions are identified, it is straightforward to
write an algorithm to implement Gibbs sampling. For example, suppose n = 20



and the prior density for p is Beta(5, 5). Suppose that the current simulated
value of p is pU.

1. Simulate YU from a Binomial(20, p\?) distribution.

y <- rbinom(1, size = 20, prob = p)

2. Given the current simulated value y(j), simulate pU'D from a beta
distribution with shape parameters ) + 5 and 20 — ¢\ + 5.

p <- rbeta(1, y +a, n -y + b)

The R function gibbs_betabin() will implement Gibbs sampling for this
problem. One inputs the sample size n and the shape parameters a and b. By
default, one starts the algorithm at the proportion value p = 0.5 and one takes
1000 iterations of the algorithm.

gibbs_betabin <- function(n, a, b, p = 0.5, iter = 1000){
X <- matrix(@, iter, 2)

for(k in 1:iter){

y <- rbinom(1, size = n, prob = p)

p <- rbeta(1, y +a, n -y + b )

)}([kl ] <- C(yl p)

X

}

Below we run Gibbs sampling for this beta-binomial model with n = 20, a =
5, and b = 5. After performing 1000 iterations, one regards the matrix sp as an
approximate simulated sample from the joint distribution of Y and p. A
histogram is constructed of the simulated draws of Y in Figure 9.9. This graph
represents an approximate sample from the marginal distribution f(y) of Y.

sp <- data.frame(gibbs_betabin(20, 5, 5))
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FIGURE 9.9
Histogram of simulated draws of Y from Gibbs sampling for the beta-binomial model with n=20, a=5, and b
=5.

9.5.3 Normal sampling — both parameters unknown

In Chapter 8, we considered the situation of sampling from a normal
distribution with mean p and standard deviation o. To simplify this to a one-
parameter model, we assumed that the value of 0 was known and focused on the
problem of learning about the mean p. Since Gibbs sampling allows us to
simulate from posterior distributions of more than one parameter, we can
generalize to the more realistic situation where both the mean and the standard
deviation are unknown.

Suppose we take a sample of n observations Yi,.., Y, from a normal

distribution with mean pu and variance o®. Recall the sampling density of Y; has
the form

flyi | ny0) = 1_ GXP{_L(%’ - M)2}- (9.15)
DL o

It will be convenient to reexpress the variance o by the precision ¢ where



b= —. (9.16)

The precision ¢ reflects the strength in knowledge about the location of the
observation Y, If Y; is likely to be close to the mean yu, then the variance o
would be small and so the precision ¢ would be large. So we restate the
sampling model as follows. The observations Yi,.., Y, are a random sample
from a normal density with mean p and precision ¢, where the sampling density
of Y, is given by

; — \/a —é ; — 2 17
fyi | m, @) = \/%eXp{ 2(yz 1) } 9.17)

The next step is to construct a prior density on the parameter vector (u, ¢).
A convenient choice for this prior is to assume that one’s opinion about the
location of the mean p is independent of one’s belief about the location of the
precision ¢. So we assume that u and ¢ are independent, so one writes the joint
prior density as

(1, @) = mu()7s (), (9.18)

where z,() and n4() are marginal densities. For convenience, each of these

marginal priors are assigned conjugate forms: we assume that u is normal with
mean g, and precision @:

(i) = \/%exp{ Po

D exp] (e}, 019
T

The prior for the precision parameter ¢ is assumed gamma with parameters a
and b:



a

I'(a)

Te(4) = ¢" " exp(—be), ¢ > 0. (9.20)

Once values of y,..., y, are observed, the likelihood is the density of these

normal observations viewed as a function of the mean u and the precision
parameter ¢. Simplifying the expression and removing constants, one obtains:

L(u, ¢) =1 %exp{—g(yi _ N)2}
X ¢n/2 exp{—% Z?zl(yi _ ,u)2},

(9.21)

To implement Gibbs sampling, one first writes down the expression for the
posterior density as the product of the likelihood and prior where any constants
not involving the parameters are removed.

(@ | Y1,y Yn) < P2 eXP{-% > i (yi — M)2}

. (9.22)
X eXP{—%(u - uo)2}¢“‘1 exp(—be).
Next, the two conditional posterior distributions s(u|¢, v, - - -, v,) and (@
U, Yy, - -+, Y, are identified.
1. The first conditional density #(u|d, y;, - - -, y,) follows from the work in

Chapter 8 on Bayesian inference about a mean with a conjugate prior when
the sampling standard deviation was assumed known. One obtains that this

conditional distribution n(u|@, y;, - - -, y,,) is normal with mean
= Gopo + nPY 02
" ¢o+ngp '

and standard deviation



1
o= | —— . 9.24)
éo + no

2. Collecting terms, the second conditional density z(dlu, vy, - - -, ¥,) is

proportional to

_ 1 &
ﬂ-(¢ ‘ My Y1y yn) X ¢n/2+a ' exp{¢ [2 (yl - M)z +b } (9.25)
i=1
The second conditional distribution z(@|u, vy, - - -, ¥,) is seen to be a
gamma density with parameters
n
anp = B + a, (9.26)
1 9
bn=5 D (yi—p)" +0b. 927)
i=1

R An R function gibbs_normal() is written to implement this Gibbs sampling
simulation. The inputs to this function are a list s containing the vector of
observations y and the prior parameters mu@, phio, a, and b, the starting value
of the precision parameter ¢, phi, and the number of Gibbs sampling iterations
S. This function is similar in structure to the gibbs_betabin() function — the
two simulations in the Gibbs sampling are accomplished by use of the rnorm()
and rgamma() functions.

gibbs_normal <- function(s, phi = 0.002, iter = 1000){
ybar <- mean(s$y)

n <- length(s$y)

mud <- s$muo

phi® <- s$phio

a <- s%a

b <- s$b



X <- matrix(0, iter, 2)

for(k in 1:iter){

mun <- (phi®@ * mu® + n * phi * ybar) /
(phi®@ + n * phi)

sigman <- sqrt(1 / (phi®@ + n * phi))

mu <- rnorm(l, mean = mun, sd = sigman)
an <- n/ 2 + a

bn <- sum((s$y - mu) A~ 2) / 2 + b

phi <- rgamma(l, shape = an, rate = bn)
x[k, 1 <- c(mu, phi)

}

X

}

We run this function for our Buffalo snowfall example where now the
sampling model is normal with both the mean pu and standard deviation o
unknown. The prior distribution assumes that g and the precision ¢ are
independent, where p is normal with mean 10 and standard deviation 3 (i.e.
precision 1/3%), and ¢ is gamma with @ = b = 1. The output of this function is
a matrix out where the two columns of the matrix correspond to random draws
of u and ¢ from the posterior distribution.

s <- list(y = data$JAN, mu® = 10, phi@ = 1/322, a =1, b = 1)
out <- gibbs_normal(s, iter=10000)

By performing the transformation o = 4/1/¢, one obtains a sample of the
simulated draws of the standard deviation o. Figure 9.10 displays a scatterplot
of the posterior draws of p and o.
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FIGURE 9.10
Scatterplot of simulated draws of the posterior distribution of u and o from Gibbs sampling for the normal
sampling model with independent priors on u and the precision ¢.

9.6 MCMC Inputs and Diagnostics

9.6.1 Burn-in, starting values, and multiple chains

In theory, the Metropolis and Gibbs sampling algorithms will produce simulated
draws that converge to the posterior distribution of interest. But in typical
practice, it may take a number of iterations before the simulation values are
close to the posterior distribution. So in general it is recommended that one run
the algorithm for a number of “burn-in” iterations before one collects iterations
for inference. The JAGS software that is introduced in Section 9.7 will allow the
user to specify the number of burn-in iterations.

In the examples, we have illustrated running a single “chain” where one has a
single starting value and one collects simulated draws from many iterations. It is
possible that the MCMC sample will depend on the choice of starting value. So
a general recommendation is to run the MCMC algorithm several times using
different starting values. In this case, one will have multiple MCMC chains. By
comparing the inferential summaries from the different chains one explores the
sensitivity of the inference to the choice of starting value. Although we will
focus on the use of a single chain, we will explore the use of different starting
values and multiple chains in an example in this chapter. The JAGS software
and other programs to implement MCMC will allow for different starting values
and several chains.

9.6.2 Diagnostics

The output of a single chain from the Metropolis and Gibbs algorithms is a
vector or matrix of simulated draws. Before one believes that a collection of
simulated draws is a close approximation to the posterior distribution, some
special diagnostic methods should be initially performed.

Trace plot

It is helpful to construct a trace plot which is a line plot of the simulated draws
of the parameter of interest graphed against the iteration number. Figure 9.11
displays a trace plot of the simulated draws of u from the Metropolis algorithm
for our Buffalo snowfall example for normal sampling (known standard



deviation) with a Cauchy prior. Section 9.4.1 shows some sample trace plots for
Metropolis sampler. As discussed in that section, it is undesirable to have a
snake-like appearance in the trace plot indicating a high acceptance rate. Also,
Section 9.4.1 displays a trace plot with many flat portions that indicates a
sampler with a low acceptance rate. From the authors’ experience, the trace
plot in Figure 9.11 indicates that the sampler is using a good value of the
constant C and efficiently sampling from the posterior distribution.
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FIGURE 9.11
Trace plot of simulated draws of u using the Metropolis algorithm with C'= 20.

Autocorrelation plot

Since one is simulating a dependent sequence of values of the parameter, one is
concerned about the possible strong correlation between successive draws of the
sampler. One visualizes this dependence by computing the correlation of the
pairs {ﬁ(j), ﬁ(jﬂ)} and plotting this “lag-correlation” as a function of the lag
value [. This autocorrelation plot of the simulated draws from our example is
displayed in Figure 9.12. If there is a strong degree of autocorrelation in the
sequence, then there will be a large correlation of these pairs even for large
values of the lag value. Figure 9.12 is an example of a suitable autocorrelation
graph where the lag correlation values quickly drop to zero as a function of the
lag value. This autocorrelation graph is another indication that the Metropolis
algorithm is providing an efficient sampler of the posterior.
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FIGURE 9.12

Autocorrelation plot of simulated draws of u using the Metropolis algorithm with C = 20.

9.6.3 Graphs and summaries

If the trace plot or autocorrelation plot indicate issues with the Metropolis
sampler, then the width of the proposal C should be adjusted and the algorithm
run again. Since we believe that the Metropolis simulation stream is reasonable
with the use of the value C' = 20, then we use a histogram of simulated draws,
as displayed in Figure 9.13 to represent the posterior distribution. Alternatively,
a density estimate of the simulated draws can be used to show a smoothed
representation of the posterior density. Figure 9.13 places a density estimate on
top of the histogram of the simulated values of the parameter p.
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FIGURE 9.13

Histogram of simulated draws of ¢ using the Metropolis algorithm with C = 20. The solid curve is a density
estimate of the simulated values.

One estimates different summaries of the posterior distribution by computing
different summaries of the simulated sample. In our Cauchy-normal model, one
estimates, for example, the posterior mean of u by computing the mean of the
simulated posterior draws:

E(u|y) ~ _T (9.28)

One typically wants to estimate the simulation standard error of this MCMC
estimate. If the draws from the posterior were independent, then the Monte
Carlo standard error of this posterior mean estimate would be given by the
standard deviation of the draws divided by the square root of the simulation
sample size:

_ sd({u9)
NE

se (9.29)



However, this estimate of the standard error is not correct since the MCMC
sample is not independent (the simulated value ,u(j) depends on the value of the
previous simulated value ™). One obtains a more accurate estimate of Monte
Carlo standard error by using time-series methods. As we will see in the
examples of Section 9.7, this standard error estimate will be larger than the
“naive” standard error estimate that assumes the MCMC sample values are
independent.

9.7 Using JAGS

Sections 9.3 and 9.5 have illustrated general strategies for simulating from a
posterior distribution of one or more parameters. Over the years, there has been
an effort to develop general-purpose Bayesian computing software that would
take a Bayesian model (i.e. the specification of a prior and sampling density as
input), and use an MCMC algorithm to output a matrix of simulated draws
from the posterior. One of the earliest Bayesian simulation-based computing
software was BUGS (for Bayesian inference Using Gibbs Sampling) and we
illustrate in this text applications of a similar package JAGS (for Just Another
Gibbs Sampler).

The use of JAGS has several attractive features. One defines a Bayesian
model for a particular problem by writing a short script. One then inputs this
script together with data and prior parameter values in a single R function from
the runjags package that decides on the appropriate MCMC sampling algorithm
for the particular Bayesian model. In addition, this function simulates from the
MCMC algorithm for a specified number of samples and collects simulated
draws of the parameters of interest.

9.7.1 Normal sampling model

To illustrate the use of JAGS, consider the problem of estimating the mean
Buffalo snowfall assuming a normal sampling model with both the mean and
standard deviation unknown, and independent priors placed on both
parameters. As in Section 9.5.3 one expresses the parameters of the normal
distribution as p and ¢, where the precision ¢ is the reciprocal of the variance ¢
= 1/0. One then writes this Bayesian model as

e Sampling, fori=1,-- -, n



Y; “i Normal(y, 1/1/¢). (9.30)

e Independent priors for x and ¢:

p ~ Normal(po, 1/ 1/¢0), (9.31)

¢ ~ Gamma(a,b). (9.32)

The JAGS program parameterizes a normal density in terms of the precision, so
the prior precision is equal to ¢y = 1/03. As in Section 9.5.3, the parameters of
the normal and gamma priors are set at p; = 10, ¢y = 1/3 2 a=1,b=1.

Describe the model by a script

R To begin, one writes the following script defining this model. The model is
saved in the character string modelString.

modelString = "

mode 1{

## sampling

for (i in 1:N) {

y[i] ~ dnorm(mu, phi)
}
## priors

mu ~ dnorm(mu®, phio)
phi ~ dgamma(a, b)
sigma <- sqrt(pow(phi, -1))
}

Note that this script closely resembles the statement of the model. In the
sampling part of the script, the loop structure starting with for (i in 1:N) is
used to assign the distribution of each value in the data vector y the same

normal distribution, represented by dnorm. The ~ operator is read as “is
distributed as”.



In the priors part of the script, in addition to setting the normal prior and
gamma prior for mu and phi respectively, sigma <- sqrt(pow(phi, -1)) is added
to help track sigma directly.

Define the data and prior parameters

The next step is to define the data and provide values for parameters of the
prior. In the script below, a list the data is used to collect the vector of
observations y, the number of observations N, and values of the normal prior
parameters mu@, phi®, and of the gamma prior parameters a and b.

buffalo <- read.csv("../data/buffalo_snowfall.csv")
data <- buffalo[59:78, c("SEASON", "JAN")]
y <- data$JAN
N <- length(y)
the_data <- list("y" =y, "N" = N,
"mue"=10, "phi@"=1/3A72,
llalI:1, lle:l)

Define initial values

One needs to supply initial values in the MCMC simulation for all of the
parameters in the model. To obtain reproducible results, one can use the
initsfunction() function shown below to set the seed for the sequence of
simulated parameter values in the MCMC.

initsfunction <- function(chain){
.RNG.seed <- c(1,2)[chain]
.RNG.name <- c("base: :Super-Duper",
"base: :Wichmann-Hill")[chain]
return(list(.RNG.seed=.RNG.seed,
.RNG.name=.RNG.name))

}

Alternatively, one can specify the initial values by means of a function — this
will be implemented when multiple chains are discussed. If no initial values are
specified, then JAGS will select initial values — these are usually a “typical”
value such as a mean or median from the prior distribution.

Generate samples from the posterior distribution

Now that the model definition and data have been defined, one is ready to draw
samples from the posterior distribution. The runjags provides the R interface to
the use of the JAGS software. The run.jags() function sets up the Bayesian



model defined in modelString. The input n.chains = 1 indicates that one
stream of simulated values will be generated. adapt = 1000 says that 1000
simulated iterations are used in “adapt” period to prepare for MCMC, burnin =
1000 indicates 5000 simulated iterations are used in a “burn-in” period where the
iterations are approaching the main probability region of the posterior
distribution. The sample = 5000 arguments indicates that 5000 additional
iterations of the MCMC algorithm will be collected. The monitor arguments
says that we are collecting simulated values of the mean mu and the standard
deviation sigma. The output variable posterior includes a matrix of the
simulated draws. The inits = initsfunction argument indicates that initial
parameter values are chosen by the initsfunction() function.

posterior <- run.jags(modelString,
n.chains = 1,
data = the_data,

monitor = c("mu", "sigma"),
adapt = 1000,
burnin = 5000,
sample = 5000,

inits = initsfunction)

MCMUC diagnostics and summarization

Before summarizing the simulated sample, some graphical diagnostics methods
should be implemented to judge if the sample appears to “mix” or move well
across the space of likely values of the parameters. The plot() function in the
runjags package constructs a collection of four graphs for a parameter of
interest. By running plot() for mu and sigma, we obtain the graphs displayed in
Figures 9.14 and 9.15.

llmu n
n Sigma" )
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FIGURE 9.15
Diagnostic plots of simulated draws of o using the JAGS software with the runjags package.

The trace and autocorrelation plots in the top left and bottom right sections
of the display are helpful for seeing how the sampler moves across the posterior
distribution. In Figures 9.14 and 9.15, the trace plots show little autocorrelation
in the streams of simulated draws and both simulated samples of u and o
appear to mix well. In the autocorrelation plots, the value of the autocorrelation
drops sharply to zero as a function of the lag which confirms that we have
modest autocorrelation in these samples. In each display, the bottom left graph
is a histogram of the simulated draws and the top right graph is an estimate at
the cumulative distribution function of the variable.

Since we are encouraged by these diagnostic graphs, we go ahead and obtain
summaries of the simulated samples of 4 and o by the print() function on our
MCMC object. The posterior mean of u is 16.5. The standard error of this
simulation estimate is the “MCerr” value of 0.0486 — this standard error takes in
account the correlated nature of these simulated draws. A 90% probability
interval for the mean yu is found from the output to be (10.8, 21.4). For o, it has
a posterior mean of 17.4, and a 90% probability interval (11.8, 24).

print(posterior, digits = 3)

Lower95 Median Upper95 Mean SD Mode MCerr
mu 10.8 16.5 21.4 16.5 2.68 -- 0.0486
sigma 11.8 17.1 24 17.4 3.18 -- 0.0576

9.7.2 Multiple chains

In Section 9.6.1, we explained the benefit of trying different starting values and
running several MCMC chains. This is facilitated by arguments in the
run.jags() function. Suppose one considers the very different pairs of starting
values, (g, ) = (2, 1/4) and (g, ¢) = (30, 1/900). Note that both pairs of
parameter values are far outside of the region where the posterior density is
concentrated. One defines Initialvalues as containing two lists, each containing
a starting value.

InitialvValues <- 1list(
list(mu = 2, phi =1 / 4),
list(mu = 30, phi = 1 / 900)

)




The run.jags() function is run with two modifications — one chooses n.chains
= 2 and the initial values are input through the inits = Initialvalues option.

posterior <- run.jags(modelString,
n.chains = 2,

data = the_data,

monitor = c("mu", "sigma"),

adapt = 1000,

burnin 5000,

sample 5000,

inits = InitialValues)

The output variable posterior contains a component mcmc which is a list of
two components where posterior$memc[[1]] contains the simulated draws from
the first chain and posterior$memc[[2]] contains the simulated draws from the
second chain. To see if the MCMC run is sensitive to the choice of starting
value, one compares posterior summaries from the two chains. Below, we display
posterior quantiles for the parameters p and o for each chain. Note that these
quantiles are very close in value indicating that the MCMC run is insensitive to
the choice of starting value.

3)

summary(posterior$memc[[1]], digits
2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%

mu 10.99 14.64 16.49 18.35 21.62
sigma 12.26 15.15 17.03 19.31 25.07
summary(posterior$mcmc[[2]], digits
2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%

mu 10.97 14.59 16.55 18.33 21.54
sigma 12.21 15.08 16.96 19.18 24.99

3)

9.7.3 Posterior predictive checking

In Chapter 8 Section 8.7, we illustrated the usefulness of the posterior predictive
checking in model checking. The basic idea is to simulate a number of replicated
datasets from the posterior predictive distribution and see how the observed
sample compares to the replications. If the observed data does resemble the
replications, one says that the observed data is consistent with predicted data
from the Bayesian model.

For our Buffalo snowfall example, suppose we wish to simulate a replicated
sample from the posterior predictive distribution. Since our original sample size
was n = 20, the intent is to simulate a sample of values §y,..., Ty from the



posterior predictive distribution. A single replicated sample is simulated in the
following two steps.

1. We draw a set of parameter values, say u*,o0" from the posterior
distribution of (g, o).

2. Given these parameter values, we simulate §i,...,Jyy from the normal
sampling density with mean p* and standard deviation o*.

R Recall that the simulated posterior values are stored in the matrix post. We
write a function postpred_sim() to simulate one sample from the predictive
distribution.

post <- data.frame(posterior$mcmc[[1]])
postpred_sim <- function(j){
rnorm(20, mean = post[j, "mu"],
sd = post[j, "sigma"])
}
print(postpred_sim(1), digits = 3)
[1] 5.37 10.91 40.87 15.94 16.93 43.49 22.48
[8] -6.43 3.26 7.30 35.27 20.79 21.47 16.62
[15] 5.45 44.69 23.10 -18.18 26.51 6.84

If this process is repeated for each of the 5000 draws from the posterior
distribution, then one obtains 5000 samples of size 20 drawn from the predictive
distribution. In R, the function sapply() is used together with postpred_sim()

to simulate 5000 samples that are stored in the matrix ypred.
ypred <- t(sapply(1:5000, postpred_sim))

Figure 9.16 displays histograms of the predicted snowfalls from eight of these
simulated samples and the observed snowfall measurements are displayed in the
lower right panel. Generally, the center and spread of the observed snowfalls
appear to be similar in appearance to the eight predicted snowfall samples from
the fitted model. Can we detect any differences between the distribution of
observed snowfalls and the distributions of predicted snowfalls? One concern is
that some of the predictive samples contain negative snowfall values. Another
concern from this inspection is that we observed a snowfall of 65.1 inches in our
sample and none of our eight samples had a snowfall this large. Perhaps there is
an outlier in our sample that is not consistent with predictions from our model.
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FIGURE 9.16
Histograms of eight simulated predictive samples and the observed sample for the snowfall example.

When one notices a possible discrepancy between the observed sample and
simulated prediction samples, one thinks of a checking function 7T() that will
distinguish the two types of samples. In this situation since we noticed the
extreme snowfall of 65.1 inches, that suggests that we use T(y) = max y as a
checking function.

Once one decides on a checking function 7Y(), then one simulates the posterior
predictive distribution of T'(g). This is conveniently done by evaluating the
function T() on each simulated sample from the predictive distribution. In R,
this is conveniently done using the apply() function and the values of T'(g) are
stored in the vector postpred_max.

postpred_max <- apply(ypred, 1, max)

If the checking function evaluated at the observed sample 7T(y) is not
consistent with the distribution of T'(g), then predictions from the model are
not similar to the observed data and there is some issue with the model
assumptions. Figure 9.17 displays a histogram of the predictive distribution of



T(y) in our example where T() is the maximum function, and the observed
maximum snowfall is shown by a vertical line. Here the observed maximum is in
the right tail of the posterior predictive distribution — the interpretation is that
this largest snowfall of 65.1 inches is not predicted from the model. In this case,
one might want to think about revising the sampling model, say, by assuming
that the data follow a distribution with flatter tails than the normal.

1000-
Observed
750- -
Maximum
prar)
5
3 500-
250-
0- _ 1n IIIIII-__
25 50 75 100 125
Maximum
FIGURE 9.17

Histogram of the posterior predictive distribution of T'(g) where T{) is the maximum function. The vertical
line shows the location of the observed value T(y).

9.7.4 Comparing two proportions

To illustrate the usefulness of the JAGS software, we consider a problem
comparing two proportions from independent samples. The model is defined in a
JAGS script, the data and values of prior parameters are entered through a list,
and the run.jags() function is used to simulate from the posterior of the
parameters by an MCMC algorithm.

To better understand the behavior of Facebook users, a survey was
administered in 2011 to 244 students. Each student was asked his or her gender
and the average number of Facebook visits in a day. We say that the number of
daily visits is “high” if the number of visits is 5 or more; otherwise it is “low”. If
we classify the sample by gender and daily visits, we obtain the two by two
table of counts as shown in Table 9.1.

TABLE 9.1
Two-way table of counts of students by gender and Facebook visits.



Visits to Facebook

Gender High Low
Male YM op = YM
Female YF ng-yg

In Table 9.1, the random variable Y, represents the number of males who
have a high number of Facebook visits in a sample of n;; and Yy and n,; are

the analogous count and sample size for women. Assuming that the sample
survey represents a random sample from all students using Facebook, then it is
reasonable to assume that Y,; and Y are independent with Y, distributed

binomial with parameters n,, and p,; and Y is binomial with parameters np
and pp.
The probabilities p,; and pj are displayed in Table 9.2. In this type of data

structure, one is interested in the association between gender and Facebook
visits. Define the odds as the ratio of the probability of high to the probability
of low. The odds of high for the men and odds of high for the women are
defined by

PMm
) 9.33
and
PFr
1—pp’ (9.34)
respectively. The odds ratio
_ pu/(1 — pu) 035)
pr/(1—pr)’ '

is a measure of association in this two-way table. If a = 1, this means that p;; =
p; — this says that tendency to have high numbers of visits to Facebook does
not depend on gender. If @ > 1, this indicates that men are more likely to have



high numbers of visits to Facebook, and a value a < 1 indicates that women are
more likely to have high numbers of visits. Sometimes association is expressed
on a log scale — the log odds ratio A is written as

Azlogazlog(%)—log(lpr ) (9.36)
— DM — DF

That is, the log odds ratio is expressed as the difference in the logits of the men
and women probabilities, where the logit of a probability p is equal to logit(p) =
log (p) — log (1 — p). If gender is independent of Facebook visits, then A = 0.

TABLE 9.2
Probability structure in two-way table.

Visits to Facebook

Gender High Low
Male PM 1-ppm
Female PF 1-pF

One’s prior beliefs about association in the two-way table is expressed in
terms of logits and the log odds ratio. If one believes that gender and Facebook
visits are independent, then the log odds ratio is assigned a normal prior with
mean (0 and standard deviation o. The mean of 0 reflects the prior guess of
independence and o indicates the strength of the belief in independence. If one
believed strongly in independence, then one would assign ¢ a small value.

In addition, let

_ logit(par) + logit(pr)

f 2

(9.37)

be the mean of the logits, and assume that ¢ has a normal prior with mean o,
and standard deviation ¢, (precision ¢,). The prior on ¢ reflects beliefs about
the general size of the proportions on the logit scale.

R To fit this model using JAGS, the following script, saved in modelString, is
written defining the model.



modelString = "

mode 1{

## sampling

yF ~ dbin(pF, nF)

yM ~ dbin(pM, nM)

logit(pF) <- theta - lambda / 2
logit(pM) <- theta + lambda / 2
## priors

theta ~ dnorm(mu®, phio)

lambda ~ dnorm(©, phi)

}

In the sampling part of the script, the two first lines define the binomial
sampling models, and the logits of the probabilities are defined in terms of the
log odds ratio lambda and the mean of the logits theta. In the priors part of the
script, note that theta is assigned a normal prior with mean mu® and precision
phio, and lambda is assigned a normal prior with mean 0 and precision phi.

When the sample survey is conducted, one observes that 75 of the 151 female
students say that they are frequent visitors of Facebook, and 39 of the 93 male
students are frequent visitors. This data and the values of the prior parameters
are entered into R by use of a list. Note that phi = 2 indicating some belief that
gender is independent of Facebook visits, and mue = @ and phie = 0.001
reflecting little knowledge about the location of the logit proportions. Using the
run.jags() function, we take an adapt period of 1000, burn-in period of 5000
iterations and collect 5000 iterations, storing values of pF, pM and the log odds
ratio lambda.

the_data <- list("yF" = 75, "nF" = 151,
IIyMII — 39, Ilanl = 93,
"mue@" = @, "phi®" = 0.001, "phi" = 2)
posterior <- run.jags(modelString,
data = the_data,
n.chains = 1,

monitor = c("pF", "pM", "lambda"),
adapt = 1000,

burnin = 5000,

sample = 5000)

Since the main goal is to learn about the association structure in the table,
Figure 9.18 displays a density estimate of the posterior draws of the log odds
ratio A. A reference line at A = 0 is drawn on the graph which corresponds to
the case where p,; = p;. What is the probability that women are more likely



than men to make more visits to Facebook? This is directly answered by
computing the posterior probability Prob(A < 0| data) that is computed to be
0.874. Based on this computation, one concludes that it is very probable that
women have a greater tendency than men to visit Facebook frequently.

post <- data.frame(posterior$mcmc[[1]])
post %>%

summarize(Prob = mean(lambda < 0))
Prob

1 0.874
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FIGURE 9.18
Posterior density estimate of simulated draws of log odds ratio A for visits to Facebook example. A vertical

line is drawn at the value A = 0 corresponding to no association between gender and visits to Facebook.

In the end-of-chapter exercises, the reader will be asked to perform further
explorations with this two proportion model.

9.8 Exercises

1. Normal and Cauchy Priors



In the example in Section 9.1.2, it was assumed that the prior for the

average snowfall 4 was normal with mean 10 inches and standard deviation

3 inches.

(a) Confirm that the 25th and 75th percentiles of this prior are equal to 8
and 12 inches, respectively.

(b) Show that under this normal prior, it is unlikely that the mean u is at
least as large as 26.75 inches.

(c) Confirm that a Cauchy distribution with location 10 inches and scale
parameter 2 inches also has 25th and 75th percentiles equal to 8 and
12 inches, respectively.

2. A Random Walk
The following matrix represents the transition matrix for a random walk on
the integers {1, 2, 3, 4, 5}.

Y

I
© O i
Som o
o B R R )
N OO O

(a) Suppose one starts walking at the state value 4. Find the probability
of landing at each location after a single step.

(b) Starting at value 4, find the probability of landing at each location
after three steps.

(c) Explain what is means for this Markov chain to be irreducible and
aperiodic.

3. A Random Walk (continued)

Consider the random walk Markov chain described in Exercise 2.

(a) Suppose one starts at the location 1. Using an R script with the
sample() function (see example script Section 9.2.3), simulate 1000
steps of the Markov chain using the probabilities given in the
transition matrix. Store the locations of the walk in a vector.

(b) Compute the relative frequencies of the walker in the five states from
the simulation output. From this computation, guess at the value of
the stationary distribution vector w.

(¢) Confirm that your guess is indeed the stationary distribution by using
the matrix computation w %*% P.

4. Weird Weather



Suppose a city in Alaska has interesting weather. The four possible weather
states are “sunny” (SU), “rainy” (R), “cloudy” (C), and “snow” (SN). If it is
sunny one day, it is equally likely to be rainy, cloudy, and snow on the next
day. If is currently rainy, then the probabilities of sunny, rain, cloudy, and
snow on the next day are respectively 1/2, 1/6, 1/6, and 1/6. The following
matrix gives the transitions of weather from one day to the next day.

SU R C B8N
sU«0 1/3 1/3 1/3
R [1/2 1/6 1/6 1/6
C 0 1/4 1/2 1/4
SN\O0O 1/4 1/4 1/2
(a) If the weather is rainy today, find the probability that is rainy two

days later.
(b) Starting with a sunny day, write an R script to simulate 1000 days of
weather using this Markov chain.
(c) Find the relative frequencies of the four states. Are these values
approximately the stationary distribution of the Markov chain?
5. Ehrenfest Urn Model
Grinstead and Snell (2006) describe a model used to explain diffusion of
gases. One version of this model is described in the setting of two urns that
contain a total of four balls. A state is the number of balls in the first urn.
There are five possible states 0, 1, 2, 3, and 4. At each step, one ball is
chosen at random and moved from the urn it is located to the other urn.
The transition matrix for this Markov chain is shown below:

0 1 0 0 ©0
1/4 0 3/4 0 0
P=|0 1/2 0 1/2 0
0 0 3/4 1/4
0 0 o0 1 0|

(a) Starting at state 1, find the probabilities of each state after two steps.
(b) Starting at state 1, find the probabilities of each state after three

steps.

(c) Explain why this Markov chain is not aperiodic.

(d) Does a stationary distribution exist for this Markov chain? Why or

why not?

6. Metropolis Sampling in a Random Walk




Suppose the variable X takes on values from 1 to 9 with respective
probabilities that are proportional to the values 9, 7, 5, 3, 1, 3, 5, 7, 9. This
probability distribution displayed in Figure 9.19 has a “bathtub” shape.
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FIGURE 9.19
Bathtub shaped probability distribution.

(a) Write an R function that computes this probability distribution for
any value of X.

(b) Using the Metropolis algorithm described in Section 9.3.1 as
programmed in the function random_walk(), simulate 10,000 draws
from this probability distribution starting at the value X = 2.

(¢) Collect the simulated draws and find the relative frequencies of the
values 1 through 9. Compare these approximate probabilities with the
exact probabilities.

7. Metropolis Sampling of a Binomial Distribution

(a) Using the Metropolis algorithm described in Section 9.3 as
programmed in the function random_walk(), simulate 1000 draws from
a binomial distribution with parameters n = 20 and p = 0.3.

(b) Collect the simulated draws and find the relative frequencies of the
values 0 through 20. Compare these approximate probabilities with the
exact probabilities.

(c) Using the simulated values, estimate the mean p and standard
deviation o of the distribution and compare these estimates with the
known values of 1 and o of a binomial distribution.

8. Metropolis Sampling - Poisson-Gamma Model
Suppose we observe y,..., ¥, from a Poisson distribution with mean A, and

the parameter A has a Gamma(a, b) distribution. The posterior density is



proportional to

T(A Y1, Yn) X [ﬁ exp(—A)Ayi] (A" exp(—bA)].

i=1

(a) Write a function to compute the logarithm of the posterior density.
Assume that one observes the sample 2, 5, 10, 5, 6, and the prior
parameters are a = b = 1.

(b) Use the metropolis() function in Section 9.3.3 to collect 1000 draws
from the posterior distribution. Use a starting value of A = 5 and a
neighborhood scale value of C' = 2.

(¢) Inspect MCMC diagnostic graphs to assess if the simulated sample
approximates the posterior density of A.

9. Metropolis Sampling from a Bimodal Distribution
Suppose we observe a random sample y,..., y,, from a Cauchy distribution

with location ¢ and scale parameter 1 with density

£y | 6) = :

Tt (-0 %39

If a uniform prior is placed on ¢, then the posterior density of @ is
proportional to

1
1+ (yi — 0)?]

n
(0 [ Y1, Yn) x H (9.39)
=1 7

If we observe the values 3, 6, 7, 8, 15, 14, 16, 17, Figure 9.20 displays
the bimodal shape of the posterior density.
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FIGURE 9.20

Posterior density of location parameter with Cauchy sampling.

(a) Write a function to compute the logarithm of the posterior density.

(b) Using the metropolis() function in Section 9.3.3, collect a simulated
sample of 1000 from the posterior distribution. Run the sampler twice,
once using a starting value of ¢ = 10 and a neighborhood scale value
of C'= 3, and a second time with the same starting value and a scale
value of C' = 0.2.

(c) By inspecting MCMC diagnostic graphs, which value of C appears to
result in a simulated sample that is a better approximation to the
posterior distribution? Explain.

10. Gibbs Sampling - Poisson-Gamma Model
Suppose a single observation Y conditional on A is Poisson with mean A,
and A has a Gamma(a, b) prior with density equal to

LA
I'(a)

(a) Write down the joint density of Y and A.

(b) Identify the conditional distribution Y conditional on A, and the
conditional distribution of A conditional on Y = y.

(c) Use the information from part (b) to construct a Gibbs sampling
algorithm to sample from the joint distribution of (Y, 1).

(d) Write an R function to implement one cycle of Gibbs sampling, and

run 1000 iterations of Gibbs sampling for the case where ¢ = 3 and b
= 3.

m(A) = AL exp(—bA).



(e) By integration, find the marginal density of Y. Compare the exact
values of the marginal density with the simulated draws of Y found
using Gibbs sampling.

11. Gibbs Sampling - Coin Flips

Suppose one observes the outcomes of four fair coin flips Wy,..., W, where

W, = 1 if the outcome is heads and W; = 0 otherwise. Let X = W, + W,

+ Wj denote the number of heads in the first three flips and Y = W, + W;

+ W, is the number of heads in the last three flips. The joint probability of

X and Y is given in Table 9.3.

TABLE 9.3
The joint probability mass function f{(x, y) of the number of heads in the first three flips X and the number of
heads in the last three flips Y in four tosses of a fair coin.

Y
0 1 2 3
0 1/16 1/16 0 0
X 1 1/16 3/16 2/16 0
2 0 2/16 3/16 1/16
3 0 0 1/16 1/16

(a) Find the conditional distribution flz] ¥ = 1).

(b) Find the conditional distribution f{y| X = 2).

(c) Describe how Gibbs sampling can be used to simulate from the joint
distribution of X and Y.

(d) Using the gibbs_discrete function in Section 9.5.1, simulate 1000
iterations of Gibbs sampling using this probability distribution. By
tabulating the (X, Y) output and computing relative frequencies,
confirm that the relative frequencies are good approximations to the
actual probabilities.

12. Normal Sampling with Both Parameters Unknown

The heights in inches of 20 college women were collected, observing the

following measurements:

47 64 61 61 63 61 64 66 63 67
63.5 65 62 64 61 56 63 65 64 59

Suppose one assumes that the normal mean and precision parameters are
independent with p distributed Normal(62, 1) and ¢ distributed gamma
with parameters a = 1 and b = 1.



13.

14.

15.

16.

(a) Using the gibbs_normal() function in Section 9.5.3, collect a sample of
5000 from the joint posterior distribution of (u, ¢).

(b) Find a 90% interval estimate for the standard deviation o = 1/4/ .

(c) Suppose one is interested in estimating the 90th percentile of the
height distribution Py = p + 1.6450. Collect simulated draws from the
posterior of Py, and construct a density estimate.

Normal Sampling with Both Parameters Unknown (continued)

In Exercise 12, one learned about the mean and precision of the heights by
use of a Gibbs sampling algorithm. Use JAGS and the runjags package to
collect MCMC draws from this model. Write a JAGS script for this normal
sampling problem and use the run.jags() function. Answer questions from
parts (c) and (d) from Exercise 12. (Note that the sample JAGS script in

Section 9.7.1 returns samples of x and o.)

Normal Sampling with Both Parameters Unknown (continued)

If we graph the height data from Exercise 12, we see one usually small
height value, 47. We want to determine if this minimum height is consistent
with the fitted model.

(a) Write a function to simulate a sample of size 20 from the posterior
predictive distribution. You can use either the gibbs_normal() function
in Section 9.5.3 or the JAGS sample script in Section 9.7.1 to generate
a sample from the posterior distribution of (u, ¢) or (u, o). For each
sample, compute the minimum value T'(g).

(b) Repeat the procedure 1000 times, collecting a sample of the predictive
distribution of the minimum observation.

(¢c) Graph the predictive distribution. From comparing the observed
minimum height with this distribution, what can you conclude about
the suitability of the model?

Comparing Proportions

In Section 9.7.4, the problem of comparing proportions of high numbers of

visits to Facebook from male and female students was considered.

(a) Using the same prior, use JAGS to take a simulated sample of size
5000 from the posterior of pp and p,;. Construct a 90% probability
interval estimate for the difference in proportions 6 = py — py,-

(b) Use the same simulated sample to perform inferences about the ratio
of proportions R = py/py. Construct a density estimate of R and
construct a 90% probability interval estimate.

Comparing Poisson Rates



17.

18.

19.

Suppose the number of customers y; arriving at a bank during a halt-hour
period in the morning is Poisson with mean J;;, and the number of

customers w; arriving in an afternoon half-hour period is Poisson with mean

A4. Suppose one observes the counts 3, 3, 6, 3, 2, 3, 7, 6 for the morning

periods, and the counts 11, 3, 9, 10, 10, 5, 8, 7 for the afternoon periods.
Assume that A); and 1, have independent Gamma(1, 1) priors. Use JAGS

to obtain a simulated sample from the joint posterior of (1,, A4) and use

the output to obtain a 90% posterior interval estimate for the ratio of
means R = A,/
Normal Sampling with a Cauchy Prior
In Section 9.4, we considered the problem of estimating the mean snowfall
amount in Buffalo with a Cauchy prior. The sample mean ¢ is normal with
mean u and standard error se and u is Cauchy with location 10 and scale 2.
In our problem, § = 26.785 and se = 3.236. Write a JAGS script for this
Bayesian model. Use the run.jags() function to simulate 1000 draws of the
posterior distribution for p. Compute the posterior mean and posterior
standard deviation for p.
Normal Sampling with a Cauchy Prior (continued)
In Exercise 17, we used JAGS to simulate values from the posterior of u
from a single MCMC chain. Instead use two chains with the different
starting values of ¢ = 0 and g = 50. Run JAGS with two chains and
estimate the posterior mean and posterior standard deviation using output
from each of the two chains. Based on the output, comment on the
sensitivity of the MCMC run with the choice of the starting value.

Bivariate Normal

Section 6.7 introduced the bivariate normal distribution. Suppose we wish

to use Gibbs sampling to simulate from this distribution. In the following

assume (X, Y) is bivariate normal with parameters (uy, 1y, oy, oy, 0).

(a) Using results from Section 6.7, identify the two conditional
distributions f(z| y) and f(y| ) and write down a Gibbs sampling
algorithm for simulating from the joint distribution of (X, Y).

(b) Write an R function to simulate a sample from the distribution using
Gibbs sampling.

(c) Assume puy = 0, uy = 0, oy = 1, oy = 1, ¢ = 0.5 and run the
simulation for 1000 iterations. Compare the means, standard
deviations, and correlation computed from the simulation with the
true values of the parameters.



(d) Repeat part (c) using the correlation value ¢ = 0.95 and again
compare the simulation estimates with the true values. Explain why
Gibbs sampling does not appear to work as well in this situation.

20. A Normal Mixture Model

21.

Consider a three-component mixture distribution, where the density for z
has the form

f(z) =045 x ¢(z,—3,1/3) + 0.1 x ¢(x,0,1/3) + 0.45 x ¢(x,3,1/3), (9.40)

where ¢(z, u, o) is the normal density with mean p and standard deviation
0. Consider the following two ways of simulating from this mixture density.

Approach 1: Monte Carlo: Introduce a “mixture component indicator”,
d, an unobserved latent variable. The variable z is equal to 1, 2, and 3 with
respective probabilities 0.45, 0.1, and 0.45. The density for z conditional on
z is normal where [z| z = 1] ~ Normal( — 3, 1/3), [z| z = 2] ~ Normal(0,
1/3), and [2| z = 3| ~ Normal(3, 1/3).

One simulates z by first simulating a value of 2z from its discrete
distribution and then simulating a value of z from the corresponding
conditional distribution. By repeating this method, one obtains a Monte
Carlo simulated sample from the exact mixture distribution.

Approach 2: Gibbs Sampling: An alternative way of simulating from
the mixture density is based on Gibbs sampling. Introduce the latent
variable z and consider the two conditional distributions [z] 2 and [z] .
The conditional distribution [z] 2] will be a normal density where the
normal parameters depend on the value of the latent variable. The
conditional distribution [z| z] is discrete on the values 1, 2, 3 where the
probabilities are proportional to 0.45 x ¢(x, — 3, 1/3), 0.1 x ¢(x, 0, 1/3),
0.45 x ¢(z, 3, 1/3) respectively.

Write R scripts to use both the Monte Carlo and Gibbs sampling methods
to simulate 1000 draws from this mixture density.

A Normal Mixture Model — MCMC Diagnostics

Figure 9.21 displays histograms of simulated draws from the mixture
distribution using the Monte Carlo and Gibbs sampling algorithms, and the
exact mixture density is overlaid on top. It is clear from the figure that the
Gibbs sampling does not appear to perform as well as the Monte Carlo
method in simulating from this distribution. Using MCMC diagnostic



graphs, explore the Gibbs sampling output. Are there particular features in
these diagnostic graphs that would indicate problems in the convergence of
the Gibbs sampling algorithm?

Monte Carlo

Gibbs Sampling

FIGURE 9.21
Histogram of 1000 samples of ¢ from the Monte Carlo and Gibbs sampling algorithms.

22. Change Point Analysis

The World Meteorological Association collects data on tropical storms, and
scientists want to find out whether the distribution of storms changed over
time, and if so, when. Data on the number of storms per year has been
collected for n years, and let y; be the number of storms in year i, where ¢
=1, .-, n Let M be the year in which the distribution of Y changes,
where M € {1, - -, n-1}.

A reasonable sampling model for Y is:

Yi | A1, M ~ Poisson(A;), i =1,---, M;
Yi | Aoy M ~ Poisson(As), i=M+1,---,n.

Suppose one gives a uniform prior for M over integers from 1 to n — 1 to
represent complete uncertainty about change point:

1 1
M | A1, Ay ~ Discrete( e
n—1 n—1

), Me{l,---,n—1}.
Equivalently, you can think of the uniform prior as:

1
P'rob(M:m)z—l, Me{1,---,n—1}.
n_



Recall that gamma distributions are conjugate prior distributions for

Poisson data model. Suppose one uses independent conjugate gamma priors
for A; and Jy:

A1 | a1,b1 ~ Gamma(ay, by),
)\2 | as, b2 ~ Gamma(aQ, bg)

(a) Write the joint posterior distribution, s(Ay, Ay, M| y1, - - -, ¥y,,), up to a
constant.

(b) Find the full conditional posterior distribution for A; and A,. Write the
name of the distributions and expressions for their parameter values.

(¢) Find the full conditional posterior distribution for M, which should be
a discrete distribution over m =1, - - -, n — 1.

(d) Describe how you would design a Gibbs sampling to simulate posterior
draws of the set of parameters, (1, Ay, M).



10

Bayesian Hierarchical Modeling

10.1 Introduction

10.1.1 Observations in groups

Chapters 7, 8, and 9 make an underlying assumption about the source of data: observations are assumed
to be identically and independently distributed (i.i.d.) following a single distribution with one or more
unknown parameters. In Chapter 7, the binomial data model is based on the assumptions that a
student’s chance of preferring dining out on Friday is the same for all students, and the dining
preferences of different students are independent. To refresh your memory, recall the four conditions of a
binomial experiment: a fixed number of trials, only two outcomes, a fixed success probability, and
independent trials. In Chapter 8, the normal sampling model is based on the assumptions that Roger
Federer’s time-to-serves are independent observations following a single normal distribution with an

unknown mean p and known standard deviation o. That is, Y; S Normal(p, o). Similarly in Chapter 9,
the underlying assumption is that the snowfall amounts in Buffalo for the month of January for the last
20 years follow the same Normal(y, o) distribution with both parameters unknown.

In many situations, treating observations as 4.i.d. from the same distribution with the same
parameter(s) is not sensible. In our dining out example, dining preferences for students may be different
from dining preferences of senior citizens, so it would not make sense to use a single success probability
for a combined group of students and senior citizens. In a similar fashion, if one considered time-to-serve
data for a group of tennis players, then it would not be reasonable to use a single normal distribution
with a single mean to represent these data — the mean time-to-serve for a quick-serving player would
likely be smaller than the mean time-to-serve for a slower player. For many applications, some
observations share characteristics, such as age or player, that distinguish them from other observations,
therefore multiple distinct groups are observed.

10.1.2 Example: standardized test scores

As a new example, consider a study in which students’ scores of a standardized test such as the SAT are
collected from five different senior high schools in a given year. Suppose a researcher is interested in
learning about the mean SAT score. Since five different schools participated in this study and students’
scores might vary from school to school, it makes sense for the researcher to learn about the mean SAT
score for each school and compare students’ mean performance across schools.

To start modeling this education data, it is inappropriate to use Y; as the random variable for the
SAT score of student ¢ (i = 1, ... , n, where n is the total number of students from all five schools) since
this ignores the inherent grouping of the observations. Instead, the researcher adds a school label j to Y;
to reflect the grouping. Let Y;; denote the SAT score of student i in school j, where j = 1, ..., 5, and i =

. . . R
1, ..., nj where n; is the number of students in school j, and n = ijl n;.
Since SAT scores are continuous, the normal sampling model is a reasonable choice for a data

distribution. Within school j, one assumes that SAT scores are i.i.d. from a normal data model with a



mean and standard deviation depending on the school. Specifically, one assumes a school-specific mean p;
and a school-specific standard deviation o; for the normal data model for school j. Combining the
information for the five schools, one has

Y L Normal(p;, 05), (10.1)

where j=1, ..., 5and j=1, ..., n;

10.1.3 Separate estimates?

One approach for handling this group estimation problem is find separate estimates for each school. One
focuses on the observations in school j,{Yi;,Y2;,-- -,Ynjj}, choose a prior distribution n(,uj, oj) for the
mean and the standard deviation parameters, follow the Bayesian inference procedure in Chapter 9 and
obtain posterior inference on p; and o; If one assumes that the prior distributions on the individual
parameters for the schools are independent, one is essentially fitting five separate Bayesian models and
one’s inferences about one particular school will be independent of the inferences on the remaining
schools.

This “separate estimates” approach may be reasonable, especially if the researcher thinks the means
and the standard deviations from the five normal models are completely unrelated to each other. That
is, one’s prior beliefs about the parameters of the SAT score distribution in one school are unrelated to
the prior beliefs about the distribution parameters in another school.

To see if this assumption is reasonable, let us consider a thought experiment for the school testing
example. Suppose you are interested in learning about the mean SAT score uy for school N. You may
not be familiar with the distribution of SAT scores and it would be difficult to construct an informative
prior for uy. But suppose that you are told that the students from another school, call it school M,
average 1,200 on their SAT scores. That information would likely influence your prior on uy, since now
you have some general idea about SAT scores. This means that your prior beliefs about the mean SAT
scores uy and s are not independent — some information about one school’s mean SAT scores would
change your prior on the second school’s mean SAT score. So in many situations, this independence
assumption would be questionable.

10.1.4 Combined estimates?

Another way to handle this group estimation problem is to ignore the fact that there is a grouping
variable and estimate the parameters in the combined sample. In our school example, one ignores the
school variable and simply assumes that the SAT scores Yj's are distributed from a single normal
population with mean p and standard deviation o. Here, ¢ = 1, ... , n where n is the total number of
students from all five schools.

If ones ignores the grouping variable, then the inference procedure described in Chapter 9 can be used.
One constructs a prior for the parameters g and o and use Gibbs sampling to obtain a simulated sample
from the posterior distribution of (y, o).

Using this approach, one is effectively ignoring any differences between the five schools. Although it is
reasonable to assume some similarity in the SAT scores across different schools, one probably does not
believe that the schools are indistinguishable. In fact, state officials assume the schools have distinct
features such as student bodies with different socioeconomic statuses so that SAT scores from different
schools can be substantially different. In some states in the United States, all schools are ranked on
different criteria which reflects the belief that schools are different with respect to student achievement.

10.1.5 A two-stage prior leading to compromise estimates



If one applies the “separate estimates” approach, one performs separate analyses on the different groups,
and one ignores any prior knowledge about the similarity between the groups. On the other extreme, the
“combined estimates” approach ignores the grouping variable and assumes that the groups are identical
with respect to the response variable SAT score. Is there an alternative approach that compromises
between the separate and combined estimate methods?

Let us return to the model Normal(,uj, oj) where p; is the parameter representing the mean SAT score

of students in school j. For simplicity of discussion it is assumed the standard deviation o; of the j-th
school is known. Consider the collection of five mean parameters, {u;, pio, t3, f4, l5} representing the
means of the five schools’ SAT scores. One believes that the us are distinct, because each p; depends on
the characteristics of school j, such as size and socioeconomic status. But one also believes that the mean
parameters are similar in size. Imagine if you were given some information about the location of one
mean, say i, then this information would influence your beliefs about the location of another mean w.
One wishes to construct a prior distribution for the five mean parameters that reflects the belief that p,
o, H3, Hy, and us are related or similar in size. This type of “similarity” prior allows one to combine the
SAT scores of the five schools in the posterior distribution in such a way to obtain compromise estimates
of the separate mean parameters.
The prior belief in similarity of the means is constructed in two stages.

Stage 1 The prior distribution for the j-th mean, y; is normal, where the mean and standard

deviation parameters are shared among all y;’s:
Hj | My T~ Normal(u, T)a j=1...,5. (10.2)

Stage 2 In the Stage 1 specification, the parameters p and z are unknown. So this stage assigns the
parameters a prior density 7.

Wy T~ Ty T). (10.3)

Several comments can be made about this two-stage prior.

* Specifying the same prior distribution for all u/’s at Stage 1 does not say that the /s are the same
value. Instead, Stage 1 indicates that the p's a priori are related and come from the same
distribution. If the prior distribution Normal(y, ) has a large standard deviation (that is, if 7 is
large), the s can be very different from each other a priori. On the other hand, if the standard
deviation 7 is small, the u’s will be very similar in size.

e To follow up the previous comment, if one considers the limit of the Stage 1 prior as the standard
deviation 7 approaches zero, the group means y; will be identical. Then one is in the “combined
groups” situation where one is pooling the SAT data to learn about a single population. At the
other extreme, if one allows the standard deviation = of the Stage 1 prior to approach infinity, then
one is saying that the group means py,..., yu5 are unrelated and that leads to the separate estimates
situation.

 In the school testing example, this prior Normal(y, 7) distribution is a model about all pj’s in the
U.S., i.e. the population of SAT score means corresponding to all schools in the United States. The
five schools in the dataset represent a sample from all schools in the U.S.

e Since u and 7 are parameters in the prior distribution, they are called hyperparameters. Learning
about p and t provides information about the population of pj’s. Naturally in Bayesian inference,



one learns about u and 7 by specifying a hyperprior distribution and performing inference based on
the posterior distribution. In this example, inferences about p and z tell us about the location and
spread of the population of mean SAT scores of schools in the U.S.

To recap, one models continuous outcomes in groups through the school-specific sampling density in
Equation (10.1) and the common normal prior distribution in Equation (10.2) for the mean parameters.
An important and appealing feature of this approach is learning simultaneously about each school
(group) and learning about the population of schools (groups). Specifically in the current setup, the
model simultaneously estimates the means for the schools (the y]-’s) and the variation among the means
(¢ and 7). It will be seen that the hierarchical model posterior estimates for one school borrows
information from other schools. This process is often called “partial pooling” information among groups.

From the structural point of view, due to the two stages of the model, this approach is called
hierarchical or multilevel modeling. In essence, hierarchical modeling takes into account information from
multiple levels, acknowledging differences and similarities among groups. In the posterior analysis, one
learns simultaneously about each group and learns about the population of groups by pooling
information across groups.

In this chapter, hierarchical modeling is described in two situations that extend the Bayesian models
for one proportion and one normal mean described in Chapters 7 and 8, respectively. Section 10.2
introduces hierarchical normal modeling using a sample of ratings of animation movies released in 2010;
and Section 10.3 describes hierarchical beta-binomial modeling with an example of deaths after heart
attack. In each section, we motivate the consideration of hierarchical models, outline the model
structure, and implement model inference through Markov chain Monte Carlo simulation.

10.2 Hierarchical Normal Modeling

10.2.1 Example: ratings of animation movies

MovieLens is a website which provides personalized movie recommendations from users who create
accounts and rate movies that they have seen. Based on such information, MovieLens works to build a
custom preference profile for each user and provide movie recommendations. MovieLens is run by
GroupLens Research, a research laboratory at the University of Minnesota that has made MovieLens
rating datasets available to the public. GroupLens Research regularly updates these datasets on its
website and the datasets are useful for new research, education and development initiatives.

In one study, a sample from the MovieLens database was collected on movie ratings for eight different
animation movies released in 2010. There are a total of 55 movie ratings, where a rating is is for a
particular animation movie completed by a MovieLens user. The ratings are likely affected by the quality
of the movie itself, as some movies are generally favored by the audience while others might be less
favored. Therefore there exists a natural grouping of the 55 ratings by the movie title.

Figure 10.1 displays a jittered dotplot of the ratings grouped by movie title and Table 10.1 lists the
sample mean, sample standard deviation, and the number of ratings for each title. Note the variability in
the sample sizes — Toy Story 3 received 16 ratings andLegend of the Guardians and Batman: Under the
Red Hood only received a single rating. For a movie with only one observed rating, such as Legend of the
Guardians and Batman: Under the Red Hood, it would be difficult to learn much about its mean rating.
Here it is desirable to improve the estimate of its mean rating by using rating information from similar
movies.
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FIGURE 10.1
Jittered dotplot of the ratings for the eight animation movies.

TABLE 10.1

The movie title, the mean rating, the standard deviation of the ratings, and the number of ratings.
Movie Title Mean SD N
Batman: Under the Red Hood 5.00 1
Despicable Me 3.72 0.62 9
How to Train Your Dragon 3.41 0.86 11
Legend of the Guardians 4.00 1
Megamind 3.38 1.31 4
Shrek Forever After 4.00 1.32 3
Tangled 4.20 0.89 10
Toy Story 3 3.81 0.96 16

10.2.2 A hierarchical Normal model with random o

In this situation it is reasonable to develop a model for the movie ratings where the grouping variable is
the movie title. We index ratings by two subscripts, where Y;; denotes the ¢th rating for the jth movie
title (j =1, ..., 8).

What sampling model should be used for the movie ratings? Since the ratings are continuous, it is
reasonable to use the normal data model described in Chapter 8. Recall that a normal model has two
parameters, the mean and the standard deviation. Based on previous reasoning, the mean parameter is
assumed to be movie-specific, so p; will represent the mean of the ratings for movie j. Thinking about

the standard deviation parameter, should the standard deviation also be movie-specific, where o;
represents the standard deviation of the ratings for movie j7 Or can we assume a common value of the
standard deviation, say o, across movies? For simplicity and ease of illustration, a common and shared
unknown standard deviation o is assumed for all normal models. This is a simplified version of random

o/s — the more flexible hierarchical model with random oj’s will be left as an end-of-chapter exercise.

One begins by writing down the sampling distributions for the ratings of the eight movies. Recall that
Y,; denotes the rth rating of movie j, where y; denote the mean of the normal model for movie j, and o
denote the shared standard deviation of the normal models across different movies. In our notation, n;
represents the number of ratings for movie j.

e Sampling, for j=1,..,8and i =1, ..., n;



Y | uj,o < Normal(p;, o). (104)

The next task is to set up a prior distribution for the eight mean parameters, {y;, g, ... , iz} and the

shared standard deviation parameter 0. Focus first on the prior distribution for the mean parameters.
Since these movies are all animations, it is reasonable to believe that the mean ratings are similar across
movies. So one assigns each mean rating the same normal prior distribution at the first stage:

e Prior for p;, j=1, ..., &
K | p, 7 ~ Normal(p, 7). (10.5)

As discussed in Section 10.1, this prior allows for a flexible method for pooling information across
movies. If the prior distribution has a large standard deviation (e.g. a large value of 7), the pj's are very

different from each other a priori, and one would have modest pooling of the eight sets of ratings. If
instead this prior has a small standard deviation (e.g. a small value of 7), the u/s are very similar a
priori and one would essentially be pooling the ratings to get an estimate at each of the pj- This shared
prior Normal(u, 7) distribution among the ;s simultaneously estimates both a mean for each movie (the
p's) and also lets us learn about variation among the movies by the parameter z.

The hyperparameters p and 7 are treated as random since we are unsure about the degree of pooling
of the eight sets of ratings. In typical practice, one specifies weakly informative hyperprior distributions
for these “second-stage” parameters, indicating that one has little prior knowledge about the locations of
these parameters. After observing data, inference is performed about p and v based on their posterior
distributions. The posterior on the mean parameter y is informative about an “average” mean rating and
the posterior on 7 lets one know about the variation among the u;’s in the posterior.

Treating p and t as random, one arrives at the following hierarchical model.

e Sampling: for j =1, ..., 8 and 1 =1, ..., n;
Yii | pj,o L Normal(p;, o). (10.6)
e Prior for p;, Stage 1: p;, j= 1, ..., &
pj | p, 7 ~ Normal(u, 7). (10.7)
* Prior for y;, Stage 2:
Wy T~ 7(p, T). (10.8)

In our model n(u, 7) denotes an arbitrary joint hyperprior distribution for the Stage 2
hyperparameters y and z. When the MovieLens ratings dataset is analyzed, the specification of this
hyperprior distribution will be described.



To complete the model, one needs to specify a prior distribution for the standard deviation parameter,
0. As discussed in Chapter 9, when making inference about the standard deviation in a normal model,
one uses a gamma prior on the precision (the inverse of the variance), for example,

e Prior for o:
1/0? | ay,b, ~ Gamma(a,, b,) (10.9)

One assigns a known gamma prior distribution for 1/0?, with fixed hyperparameter values a, and b,.
In some situations, one may consider the situation where a, and b, are random and assign hyperprior
distributions for these unknown hyperparameters.

Before continuing to the graphical representation and simulation by MCMC using JAGS, it is helpful
to contrast the two-stage prior distribution for {;;} and the one-stage prior distribution for o. The
hierarchical model specifies a common prior for the means us which induces sharing of information

across ratings from different movies. On the other hand, the model uses a shared o for all movies which
also induces sharing of information, though different from the sharing induced by the two-stage prior
distribution for {u;}.

What is the difference between the two types of sharing? For the means {u;}, we have discussed that
specifying a common prior distribution for different y;’s pools information across the movies. One is
simultaneously estimating both a mean for each movie (the p/s) and the variation among the movies (u
and 7). For the standard deviation o, the hierarchical model also pools information across movies.
However, all of the observations are combined in the estimation of 0. Since separate values of o}'s are not
assumed, one cannot learn about the differences and similarities among the oj's. If one is interested in

pooling information across movies for the o/’s, one needs to allow random oy’s, and specify a two-stage

prior distribution for these parameters. Interested readers are encouraged to try out this approach as an
end-of-chapter exercise.

Graphical representation of the hierarchical model

An alternative way of expressing this hierarchical model uses the following graphical representation.

{5577
ttj ~ Normal (i, 7) I i s

Yi; ~ Normal(p;,0) {Yi} {Yis)
\ J

In the middle section of the graph, {Yij} represents the collection of random variables for all ratings of

foy T~ (jy T)

1/0% ~ Gamma(a,, by)

movie j, and the label to the left indicates the assumed normal sampling distribution. The two
parameters in the normal sampling density, p; and o, are connected from above and below, with arrows
pointing from the parameters to the random variables.

The upper section of the graph focuses on the pjs. All means follow the same prior, a normal
distribution with mean p and standard deviation t. Therefore, arrows come from the common
hyperparameters p and 7 to each p; Since p and 7 are random, these second-stage parameters are
associated with the prior label n(y, 7).



The lowest section of the graph is about o, or to be precise, 1/0°>. If one wants to allow
hyperparameters a, and b, to be random as well, the lower part of the graph grows further, in a similar

manner as the upper section for p;.

Second-stage prior

The hierarchical normal model presented in Equations (10.6) through (10.9) has not specified the
hyperprior distribution #(y, ). How does one construct a prior on these second-stage hyperparameters?

Recall that p and z are parameters for the normal prior distribution for {,uj} the collection of eight
different normal sampling means. The mean p and standard deviation ¢ in this normal prior distribution
reflect respectively the mean and spread of the mean ratings across eight different movies.

Following the discussion in Section 9.5.3, a typical approach for normal models is to assign two
independent prior distributions — a normal distribution for the mean p and a gamma distribution for
the precision 1/7%. Such a specification facilitates the use of the Gibbs sampling due to the availability of
the conditional posterior distributions of both parameters (see the details of this work in Section 9.5.3).
Using this approach, the density n(u, ) is replaced by the two hyperprior distributions below.

e The hyperprior for p and ©

& | to,v0 ~ Normal(po,vo) (10.10)

1/72? | a,b ~ Gamma(a,, b,) (10.11)

The task of choosing a prior for (u, 7) reduces to the problem of choosing values for the four
hyperparameters g, 3y, @,, and b, If one believes that u is located around the value of 3 and is not very

confident of this choice, the set of values gy = 3 and p; = 1 could be chosen. As for 7z, one chooses a
weakly informative prior with a, = b, = 1, as Gamma(1, 1). Moreover, to choose a prior for o, let a, =
b, = 1 to have the weakly informative Gamma(1, 1) prior.

10.2.3 Inference through MCMC

With the specification of the prior, the complete hierarchical model is described as follows:

e Sampling: for j=1, .., 8and i =1, ..., n;
Y | 1y, 05 "= Normal(uj, o) (1012
e Prior for y;, Stage 1: for j =1, ... , 8
Kj | p, T ~ Normal(u, 7) (10.13)

e Prior for y;, Stage 2: the hyperpriors:



w ~ Normal(3,1) (10.14)

1/7? ~ Gamma(1,1) (10.15)
¢ Prior for o:
1/0* ~ Gamma(1,1) (10.16)

If one uses JAGS for simulation by MCMC, one writes out the model section by following the model
structure above closely. Review Section 9.7 for an introduction and a description of several examples of

JAGS.
Describe the model by a script

R The first step in using the JAGS software is to write the following script defining the hierarchical
model. The model is saved in the character string modelString.

modelString <-"

model {

## sampling

for (i in 1:N){

y[i] ~ dnorm(mu_j[MovieIndex[i]], invsigma2)

## priors
for (j in 1:3){
mu_j[j] ~ dnorm(mu, invtau2)

invsigma2 ~ dgamma(a_s, b_s)
sigma <- sqrt(pow(invsigma2, -1))
## hyperpriors

mu ~ dnorm(mu@, go)

invtau2 ~ dgamma(a_t, b_t)

tau <- sqrt(pow(invtau2, -1))

}

In the sampling part of the script, note that the loop goes from 1 to N, where N is the number of
observations with index i. However, because now N observations are grouped according to movies,
indicated by j, one needs to create one vector, mu_j of length eight, and use MovieIndex[i] to grab the
corresponding mu_j based on the movie index.

In the priors part of the script, the loop goes from 1 to J, and J = 8 in the current example. Inside the
loop, the first line corresponds to the prior distribution for mu_j. Due to a commonly shared sigma,
invsigma2 follows dgamma(a_g, b_g) outside of the loop. In addition, sigma <- sqrt(pow(invsigma2, -1))
is added to help track sigma directly.

Finally in the hyperpriors section of the script, one specifies the normal hyperprior for mu, a gamma
hyperprior for invtau2. Keep in mind that the arguments in the dnorm in JAGS are the mean and the
precision. If one is interested instead in the standard deviation parameter tau, one could return it in the
script by using tau <- sqrt(pow(invtau2, -1)), enabling the tracking of its MCMC chain in the
posterior inferences.



Define the data and prior parameters

R After one has defined the model script, the next step is to provide the data and values for
parameters of the prior. In the R script below, a list the_data contains the vector of observations, the
vector of movie indices, the number of observations, and the number of movies. It also contains the
normal hyperparameters mue and go, and two sets of gamma hyperparameters (a_t and b_t) for invtau2,
and (a_s and b_s) for invsigma2.

y <- MovieRatings$rating
MovieIndex <- MovieRatings$Group_Number
N <- length(y)
J <- length(unique(MovieIndex))
the_data <- list("y" =y, "MovieIndex" = MovielIndex,

Generate samples from the posterior distribution

R One uses the run.jags() function in the runjags R package to generate posterior samples by using
the MCMC algorithms in JAGS. The script below runs one MCMC chain with 1000 iterations in the
adapt period (preparing for MCMC), 5000 iterations of burn-in and an additional set of 5000 iterations
to be run and collected for inference. By using monitor = c("mu", "tau", "mu_j", "sigma"), one collects
the values of all parameters in the model. In the end, the output variable posterior contains a matrix of
simulated draws.

posterior <- run.jags(modelString,
n.chains = 1,
data = the_data,

monitor = c("mu", "tau", "mu_j", "sigma"),
adapt = 1000,

burnin = 5000,

sample = 5000)

MCMC diagnostics and summarization

R In any implementation of MCMC sampling, diagnostics are crucial to perform to ensure convergence.
To perform some MCMC diagnostics in our example, one uses the plot() function, specifying the
variable to be checked by the vars argument. For example, the script below returns four diagnostic plots
(trace plot, empirical PDF, histogram, and autocorrelation plot) in Figure 10.2 for the hyperparameter
7. Note that the trace plot only includes 5000 iterations in sample, although its index starts from adapt
(1000 adapt + 5000 burn-in). The trace plot and autocorrelation plot suggest good mixing of the chain,
therefore indicating convergence of the MCMC chain for 7.
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FIGURE 10.2
Diagnostic plots of simulated draws of T using the JAGS software with the runjags package.

plot(posterior, vars = "tau")

In practice MCMC diagnostics should be performed for all parameters to justify the overall MCMC
convergence. In our example, the above diagnostics should be implemented for each of the eleven
parameters in the model: p, 7, yy, f, ... , pg, and o. Once diagnostics are done, one reports posterior
summaries of the parameters using print(). Note that these summaries are based on the 5000 iterations
from the sample period, excluding the adapt and burn-in iterations.

print(posterior, digits = 3)

Lower95 Median Upper95 Mean SD Mode MCerr
mu 3.19 3.78 4.34 3.77 0.286 -- 0.00542
tau 0.357 0.638 1.08 0.677 0.2 -- 0.00365

mu_j[1] 2.96 3.47 3.99 3.47 0.262 -- 0.00376
mu_j[2] 3.38 3.81 4.25 3.82 0.221 -- 0.00313
mu_j[3] 3.07 3.91 4.75 3.91 0.425 -- 0.00677
mu_j[4] 3.21 3.74 4.31 3.74 0.285 -- 0.00428
mu_j[5] 3.09 4.15 5.43 4.18 0.588 -- 0.0115

mu_j[6] 2.7 3.84 4.99 3.85 0.576 -- 0.00915

mu_j[7] 2.74 3.53 4.27 3.51 0.388 -- 0.00595
mu_j[8] 3.58 4.12 4.66 4.12 0.276 -- 0.00423
sigma 0.763 0.92 1.12 0.93 0.0923 -- 0.00142

One performs various inferential summaries and inferences based on the output. For example, the
movies How to Train Your Dragon (corresponding to u;) and Megamind (corresponding to ;) have the
lowest average ratings with short 90% credible intervals, (2.96, 3.99) and (2.74, 4.27) respectively,
whereas Legend of the Guardians: The Owls of Ga’Hoole (corresponding to ) also has a low average
rating but with a wider 90% credible interval (2.70, 4.99). The differences in the width of the credible
intervals stem from the sample sizes: there are eleven ratings for How to Train Your Dragon, four ratings
for Megamind, and only a single rating for Legend of the Guardians: The Owls of Ga’Hoole. The smaller
the sample size, the larger the variability in the inference, even if one pools information across groups.

Among the movies with high average ratings, Batman: Under the Red Hood (corresponding to us) is
worth noting. This movie’s average rating u; has the largest median value among all s, at 4.15, and
also a wide 90% credible interval, (3.09, 5.43). Batman: Under the Red Hood also received one rating in
the sample resulting in a wide credible interval.

Shrinkage



Recall that the two-stage prior in Equations (10.7) to (10.8) specifies a shared prior Normal(y, 7) for all

1j's which facilitates simultaneous estimation of the movie mean ratings (the y;’s), and estimation of the
variation among the movie mean ratings through the parameters p and z. The posterior mean of the
rating for a particular movie y; shrinks the observed mean rating towards an average rating. Figure 10.3
displays a shrinkage plot which illustrates the movement of the observed sample mean ratings towards

an average rating.
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FIGURE 10.3
Shrinkage plot of sample means and posterior means of movie ratings for eight movies.

The left side of Figure 10.3 plots the sample movie rating means and lines connect the sample means
to the corresponding posterior means (i.e. means of the posterior draws of ,uj). The shrinkage effect is
obvious for the movie Batman: Under the Red Hood which corresponds to the dot at the value 5.0 on the
left. This movie only received one rating of 5.0 and its mean rating us shrinks to the value 4.178 on the
right, which is still the highest posterior mean among the nine movie posterior means. A large shrinkage
is desirable for a movie with a small number of ratings such as Batman: Under the Red Hood. For a
movie with a small sample size, information about other ratings of similar movies helps to produce a
more reasonable estimate at the “true” average movie rating. The amount of shrinkage is more modest
for movies with larger sample sizes. Furthermore, by pooling ratings across movies, one is able to
estimate the standard deviation o of the ratings. Without this pooling, one would be unable to estimate
the standard deviation for a movie with only one rating.

Sources of variability

As discussed in Section 10.1, the prior distribution Normal(y, 7) is shared among the means p;’s of all
groups in a hierarchical normal model, and the hyperparameters u and = provide information about the
population of WS- Specifically, the standard deviation t measures the variability among the pj's. When
the hierarchical model is estimated through MCMC, summaries from the simulation draws from the
posterior of 7 provide information about this source of variation after analyzing the data.

There are actually two sources for the variability among the observed Y;’s. At the sampling level of
the model, the standard deviation ¢ measures variability of the Y;; within the groups. In contrast, the
parameter 7 measures the variability in the measurements between the groups. When the hierarchical
model is fit through MCMC, summaries from the marginal posterior distributions of ¢ and = provide
information about the two sources of variability.



Yi; b Normal(p;, o) [within-group variability] (10.17)

i | p, T ~ Normal(p, T) [between-group variability] (10.18)

The Bayesian posterior inference in the hierarchical model is able to compare these two sources of
variability, taking into account the prior belief and the information from the data. One initially provides
prior beliefs about the values of the standard deviations o and 7 through gamma distributions. In the
MovieLens ratings application, weakly informative priors of Gamma(l, 1) are assigned to both o and z.
These prior distributions assume a priori the within-group variability, measured by o, is believed to be
the same size as the between-group variability measured by .

What can be said about these two sources of variability after the estimation of the hierarchical model?
As seen in the output of print(posterior, digits = 3), the 90% credible interval for ¢ is (0.763, 1.12)
and the 90% credible interval for 7 is (0.357, 1.08). After observing the data, the within-group variability
in the measurements is estimated to be larger than the between-group variability.

To compare these two sources of variation one computes the fraction R = #272 from the posterior
samples of o and t. The interpretation of R is that it represents the fraction of the total variability in
the movie ratings due to the differences between groups. If the value of R is close to 1, most of the total
variability is attributed to the between-group variability. On the other side, if R is close to 0, most of the
variation is within groups and there is little significant difference between groups.

R Sample code shown below computes simulated values of R from the MCMC output. A density plot of
R is shown in Figure 10.4.
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FIGURE 10.4
Density plot of the ratio R =
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2,z {rom the posterior samples of T and o.

tau_draws <- as.mcmc(posterior, vars = "tau")
sigma_draws <- as.mcmc(posterior, vars = "sigma")
R <- tau_draws A 2 / (tau_draws N 2 + sigma_draws A 2)

A 95% credible interval for R is (0.149, 0.630). Since much of the posterior probability of R is located
below the value 0.5, this confirms that the variation between the mean movie rating titles is smaller than
the variation of the ratings within the movie titles in this example.




10.3 Hierarchical Beta-Binomial Modeling

10.3.1 Example: Deaths after heart attacks

The New York State (NYS) Department of Health collects and releases data on mortality after acute
myocardial infarction (AMI), commonly known as a heart attack. Its 2015 report was the initial public
data release by the NYS Department of Health on risk-adjusted mortality outcomes for AMI patients at
hospitals across the state. We focus on 13 hospitals in Manhattan, New York City, with the goal of
learning about the percentages of deaths resulting from heart attacks in hospitals cited below. Table 10.2
records for each hospital the number of heart attack cases, the corresponding number of resulted deaths,
and their computed percentage of resulted deaths.

TABLE 10.2
The number of heart attack cases, the number of resulted deaths, and the percentage of resulted deaths of 13 hospitals in New York City - Manhattan in
2015. NYP stands for New York Presbyterian.

Hospital Cases Deaths Death %
Bellevue Hospital Center 129 4 3.101
Harlem Hospital Center 35 1 2.857
Lenox Hill Hospital 228 18 7.894
Metropolitan Hospital Center 84 7 8.333
Mount Sinai Beth Israel 291 24 8.247
Mount Sinai Hospital 270 16 5.926
Mount Sinai Roosevelt 46 6 13.043
Mount Sinai St. Luke’s 293 19 6.485
NYU Hospitals Center 241 15 6.224
NYP Allen Hospital 105 13 12.381
NYP Columbia Presbyterian Center 353 25 7.082
NYP New York Weill Cornell Center 250 11 4.400
NYP Lower Manhattan Hospital 41 4 9.756

10.3.2 A hierarchical beta-binomial model

Treating “cases” as trials and “deaths” as successes, the binomial sampling model is a natural choice for
this data, and the objective is to learn about the death probability p of the hospitals. If one looks at the
actual death percentages in Table 10.2, some hospitals have much higher death rates than other
hospitals. For example, the highest death rate belongs to Mount Sinai Roosevelt, at 13.043% which is
more than four times the rate of Harlem Hospital Center at 2.857%. If one assumes a common
probability p for all thirteen hospitals, this model does not allow for possible differences between the
death rates among these hospitals.

On the other hand, if one creates thirteen separate binomial sampling models, one for each hospital,
and conducts separate inferences, one loses the ability to use potential information about the death rate
from hospital j when making inference about that of a different hospital i. Since these are all hospitals in
Manhattan, New York City, they may share attributes in common related to death rates from heart
attack. The separate modeling approach does not allow for the sharing of information across hospitals.

A hierarchical model provides a compromise between the combined and separate modeling approaches.
In Section 10.2, a hierarchical normal density was used to model mean rating scores from different
movies. In this setting, one builds a hierarchical model by assuming the hospital death rate parameters a
priori come from a common distribution. Specifically, one builds a hierarchical model based on a
common beta distribution that generalizes the beta-binomial conjugate model described in Chapter 7.
This modeling setup provides posterior estimates that partially pool information among hospitals

Let Y; denote the number of resulted deaths from heart attack, n, the number of heart attack cases,

and p; the death rate for hospital <. The sampling density for Y, for hospital ¢ is a binomial distribution



with n; and p;, as in Equation (10.19). Suppose that the proportions {p;} independently follow the same
conjugate beta prior distribution, as in Equation (10.20). So the sampling and first stage of the prior of
our model is written as follows:

e Sampling, for 4, ... , 13:

Y; ~ Binomial(n;, p;) (10.19)

e Prior for p;, i =1, ..., 13:

p; ~ Beta(a,b) (10.20)

Note that the hyperparameters a and b are shared among all hospitals. If ¢ and b are known values, then
the posterior inference for p; of hospital 4 is simply another beta distribution by conjugacy (review

material in Chapter 7 if needed):

pi | yi ~ Beta(a + yi, b+ ni — yi). (10.21)

In the general situation where the hyperparameters a and b are unknown, a second stage of the prior
a(a, b) needs to specified for these hyperparameters. With this specification, one arrives at the
hierarchical model below.

e Sampling, for i, ... , 13:

Y; ~ Binomial(n;, p;) (10.22)

¢ Prior for p;, Stagel: for i =1, ..., 13:

p; ~ Beta(a,b) (10.23)

e Prior for p, Stage 2: the hyperprior:

a,b ~ 7m(a,b) (10.24)

We use n(a, b) to denote an arbitrary distribution for the joint hyperprior distribution for a and b.
When we start analyzing the New York State heart attack death rate dataset, the specification of this
hyperprior distribution s(a, b) will be described.

Graphical representations of the hierarchical model

Below is a sketch of a graphical representation of the hierarchical beta-binomial model.



Y; ~ Binomial(n;, p;) Y;

i ~ Beta(a, b) Di

a,b~m(a,b) a b

Focusing on the graph on the right, one sees that the upper section of the graph represents the
sampling density, with the arrow directing from p; to Y, Here the start of the arrow is the parameter
and the end of the arrow is the random variable. The lower section of the graph represents the prior,
with arrows directing from @ and b to p,. In this case, the start of the arrow is the hyperparameter and
the end of the arrow is the parameter. On the left side of the display, the sampling density, prior and
hyperprior distributional expressions are written next to the graphical representation.

In the situation where the beta parameters a and b are known constants, the graphical representation
changes to the beta-binomial conjugate model displayed below.

Y; ~ Binomial(n;, p;) Y;
pi ~ Beta(a, b) Di
a b

To illustrate another graphical representation, we display below the one for the separate models
approach in the hospitals death rate application where a fully specified beta prior is specified for each
death rate. The separate models are represented by thirteen graphs, one for each hospital. This graphical
structure shows clearly the separation of the subsamples and the resulting separation of the
corresponding Bayesian posterior distributions.

In comparing graphical representations for hierarchical models, the interested reader might notice that
the structure for the hierarchical beta-binomial model looks different from the ones in Section 10.2 for
the hierarchical normal models. In this chapter, one is dealing with one-parameter models (recall that
beta-binomial is an example of one-parameter models; other examples include gamma-Poisson), whereas
the normal models in Section 10.2 involve two parameters. Typically, when working with one-parameter
models, one starts from the top with the sampling density, then next writes down the priors and
continues with the hyperpriors. When there are multiple parameters, one needs to be careful in
describing the graphical structure. In fact, for a large number of parameters, a good graphical
representation might not be feasible. In that case, one writes a representation that focuses on the key
parts of the model.

Also note that there is no unique way of sketching a graphical representation, as long as the
representation is clear and shows the relationship among the random variables, parameters and
hyperparameters with the arrows in the correct directions.
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10.3.3 Inference through MCMC



In this section the application of JAGS script for simulation by MCMC is illustrated for the hierarchical
beta-binomial models for the New York State heart attach death rate dataset. Before this is done, we
discuss the specification of the hyperprior density s(a, b) for the hyperparameters a and b for the
common beta prior distribution for the proportions p,’s.

Second-stage prior

In Chapter 7, the task was to specify the values of a and b for a single beta curve Beta(a, b) and the
beta shape parameter values were selected by trial-and-error using the beta.select() function in the
ProbBayes package. In this hierarchical model setting, the shape parameters a and b are random and the
goal is learn about these parameters from its posterior distribution.

In this prior construction, it is helpful to review some facts on beta curves from Chapter 7. For a
Beta(a, b) prior distribution for a proportion p, one considers the parameter a as the prior count of
“successes”, the parameter b as the prior count of “failures”, and the sum a + b represents the prior
sample size. Also the expectation of Beta(a, b) is —%. From these facts, a more natural parameterization

a+b *
of the hyperprior distribution n(a, b) is n(y, 1), where p =

a
a+b

the hyperprior sample size. One rewrites the hyperprior distribution in terms of the new parameters u

is the hyperprior mean and 7= a + b is

and 7 as follows:
ps 1 ~ (12, 7), (1025)

where a = unp and b = (1 - p)n. These expressions are useful in writing the JAGS script for the
hierarchical beta-binomial Bayesian model.

A hyperprior is constructed from the (u, 7) representation. Assume p and 7 are independent which
means that one’s beliefs about the prior mean are independent of the beliefs about the prior sample size.
The hyperprior expectation p is the mean measure for p,, the average death rate across 13 hospitals. If
one has little prior knowledge about the expectation u, one assigns this parameter a uniform prior which
is equivalent to a Beta(1, 1) prior.

To motivate the prior choice for the hyperparameter sample size 7, consider the case where the
hyperparameter values are known. If y* and n* are respectively the number of deaths and number of
cases for one hospital, then the posterior mean of death rate parameter p* is given by

. y* 4 un
Ep |y)= "7

. 10.26
n*+1 (10.26)
With a little algebra, the posterior mean is rewritten as
) — y
Bl |y) =0 =2+, (10.27)
where A is the shrinkage fraction
_ n
= (10.28)

n*+n’



The parameter A falls in the interval (0, 1) and represents the degree of shrinkage of the posterior mean
away from the sample proportion y*/n* towards the prior mean p.

Suppose one believes a priori that, for a representative sample size n*, the shrinkage A is uniformly
distributed on (0, 1). By performing a transformation, this implies that the prior density for the prior
sample size 1 has the form

*

m(n) = Ik n>0. (10.29)

Equivalently, the logarithm of 7, # = log 7, has a logistic distribution with location logn* and scale 1.
We represent this distribution as Logistic(logn*, 1), with pdf:

e—(€—logn*)
m(0) = P . (10.30)

With this specification of the hyperparameter distribution, one writes down the complete hierarchical
model as follows:

e Sampling, for 4, ... , 13:

Y; ~ Binomial(n;, p;) (10.31)

e Prior for p; Stage 1: for 1 =1, ..., 13:

p; ~ Beta(a,b) (10.32)
e Prior for p, Stage 2:

u ~ Beta(1,1), (10.33)

logn ~ Logistic(log n*, 1) (10.34)

where a = unand b= (1 - p)n.
Writing the JAGS script

R Following this model structure above, one writes out the model section of the JAGS script for the
hierarchical beta-binomial model. The model script is saved in modelString.

modelString <-"

model {

## likelihood

for (i in 1:N){

y[i] ~ dbin(p[i], n[i])



3

## priors

for (i in 1:N){
p[i] ~ dbeta(a, b)
3

## hyperpriors

a <- mu*eta

b <- (1-mu)*eta

mu ~ dbeta(mua, mub)

eta <- exp(logeta)
logeta ~ dlogis(logn, 1)
}

In the sampling part of the script, the loop goes from 1 to N, where N is the total number of
observations, with index i. Another loop going from 1 to N is needed for the priors as each p[i] follows
the same dbeta(a, b) distribution. The hyperpriors section uses the new parameterization of the Beta(a,
b) distribution in terms of mu and eta. Here one expresses the hyperparameters a and b in terms of the
new hyperparameters mu and eta, and then assigns to the parameters mu and logeta the independent
distributions dbeta(mua, mub) and dlogist(logn, 1), respectively. One also needs to transform logeta to
eta. The values of mua, mub, and logn are assigned together with the data in the setup of JAGS, following
Equation (10.33) and Equation (10.34).

Define the data and prior parameters

R Following the usual implementation of JAGS, the next step is to define the data and provide values
for the parameters of the prior. In the script below, a list the_data contains the vector of death counts in
y, the vector of hearth attack cases in n, the number of observations N, the values of mua, mub, and logn.
Note that we are setting logn* = log(100) which indicates that a priori we believe the shrinkage A =
n/(n + 100) is uniformly distributed on (0, 1).

y <- deathdata$Deaths

n <- deathdata$Cases

N <- length(y)

the_data <- list("y" =y, "n" =n, "N" =N,
"mua" =1, "mub" = 1,

"logn" = log(100))

Generate samples from the posterior distribution

R The run.jags() function is used to generate samples by MCMC in JAGS following the sample script
below. It runs one MCMC chain with 1000 iterations in the adapt period, 5000 iterations of burn-in and
an additional set of 5000 iterations to be run and collected for inference. One keeps tracks of all
parameters in the model by using the argument monitor = c("p", "mu", "logeta"). The output of the
MCMC runs is the variable posterior containing a matrix of simulated draws.

posterior <- run.jags(modelString,
n.chains = 1,
data = the_data,

monitor = c("p", "mu", "logeta"),
adapt = 1000,

burnin = 5000,

sample = 5000)

MCMC diagnostics and summarization



R As usual, it is important to perform MCMC diagnostics to ensure convergence of the simulated
sample. The plot() function returns diagnostics plots of a designated parameter. For brevity, the
diagnostics for a are performed and results shown in Figure 10.5. Readers should implement MCMC
diagnostics for all parameters in the model.
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FIGURE 10.5
Diagnostics plots of simulated draws of logn using the JAGS software with the run. jags package.

plot(posterior, vars = "logeta")

After the diagnostics are performed, one reports posterior summaries of the parameters using print().
Note that these summaries are based on the 5000 iterations from the sampling period (excluding the
adapt and burn-in periods).

print(posterior, digits = 3)

Lower95 Median Upper95 Mean SD Mode MCerr

p[1] 0.0314 0.0602 0.0847 0.0593 0.0138 -- 0.000619
p[2] 0.0312 0.066 0.095 0.0654 0.0156 -- 0.000496
p[3] 0.0515 0.0731 0.1 0.0741 0.0122 -- 0.000398

p[4] 0.044 0.0726 0.105 0.074 0.0155 -- 0.000486
p[5] 0.0553 0.0756 0.1 0.0765 0.0116 -- 0.000348
p[6] 0.0435 0.0655 0.0871 0.0655 0.0111 -- 0.00042
p[7] 0.0466 0.0765 0.119 0.0797 0.0191 -- 0.000717
p[8] 0.0473 0.0683 0.0889 0.0683 0.0104 -- 0.000277
p[9] 0.0442 0.0669 0.0879 0.0671 0.0111 -- 0.000301

p[10] 0.0544 0.0811 0.122 0.0845 0.0178 -- 0.000732
p[11] 0.0521 0.0704 0.0934 0.0711 0.0103 -- 0.000279
p[12] ©0.0369 0.06 0.0818 0.0596 0.0116 -- 0.000504
p[13] 0.0444 0.0729 0.113 0.0752 0.0176 -- 0.000593
mu 0.0576 0.0705 0.0881 0.0714 0.00788 -- 0.000375
logeta 3.63 5.84 8.38 6.01 1.26 -- 0.107

From the posterior output, one evaluates the effect of information pooling in the hierarchical model.
Figure 10.6 displays a shrinkage plot showing how the sample proportions are shrunk towards the overall
death rate. Two of the lines in the figure are labelled to indicate the the death rates for the hospitals
Mount Sinai Roosevelt and NYP Allen Hospital. Mount Sinai Roosevelt’s death rate of 6/46 = 0.13043
exceeds the rate of NYP Allen of 13/105 = 0.12381, but the figure shows the posterior death rate of
NYP Allen exceeds the posterior death rate of Mount Sinai Roosevelt. Due to the relatively small
sample size, one has less confidence in the 0.13043 death rate of Mount Sinai and this rate is shrunk
significantly towards the overall death rate in the hierarchical posterior analysis.



Mt. Sinai Roos.

0.125- NYP - Allen
0.100-

c

- %

o}

o

2 0.075-

o [ @
0.050- 7
0.025- 1 i

Sample Posterior

Type

FIGURE 10.6
Shrinkage plot of sample proportions and posterior means of proportions of resulted heart attack deaths of 13 hospitals. The death rates of two
particular hospitals are labeled. Due to the varying sample sizes, Mt Sinai Roosevelt has a higher observed death rate than NYP Allen, but NYP
Allen has a higher posterior proportion than Mt Sinai Roosevelt.

To compare the posterior densities of the different p; one displays the density estimates in a single
graph as in Figure 10.7. Because of the relatively large number of parameters, such plots are difficult to
read. Combining the graph and the output above, one sees that p; and and p,, have the largest median

values with large standard deviations. One makes inferential statements such as Mount Sinai Roosevelt’s
(corresponding to p;) death rate of heart attack cases has a posterior 90% credible interval of (0.0466,
0.119), the highest among the 13 hospitals in the dataset.
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FIGURE 10.7
Density plots of simulated draws of p;’s using the JAGS software with the run.jags package.

Comparison of hospitals

R One uses this MCMC output to compare the death rates of two hospitals directly, for example, NYP
Columbia Presbyterian Center and NYP New York Weill Cornell Center corresponding respectively to
py; and ppe. One collects the vector of simulated values of the difference of the death rates (6 = py; —

pyo) by subtracting the sets of simulated proportion draws. From the simulated values of the difference in
proportions diff, one estimates the probability that p;; > p;y is positive.

plldraws <- as.mcmc(posterior, vars = "p[11]")
pl2draws <- as.mcmc(posterior, vars = "p[12]")
diff = plidraws - pl2draws
sum(diff > 0)/5000

[1] ©.7872

A 78.72% posterior probability of p;; > p;, indicates strong posterior evidence that the the death rate
of NYP Columbia Presbyterian Center is higher than that of NYP New York Weill Cornell Center.

Generally, when one presents a table such as Table 10.2, one is interested in ranking the 13 hospitals
from best (smallest death rate) to worst (largest death rate). A particular hospital, say Bellevue Hospital
Center, is interested in its rank among the 13 hospitals. The probability Bellevue has rank 1 is the
posterior probability

P(p1 <p2,...,p1 <p13|y), (10.35)

and this probability is approximated by collecting the posterior draws where the simulated value of p; is
the smallest among the 13 simulated proportions. Likewise, one computes from the MCMC output the
probability that Bellevue has rank 2 through 13. These rank probabilities are displayed in Figure 10.8
for two hospitals. The probability that Bellevue is the best hospital with respect to death rate is 0.25
and by summing several probabilities, the probability that Bellevue is ranked among the top three
hospitals is 0.54. In contrast, from Figure 10.8, the rank of Harlem Hospital is less certain since the
probability distribution is relatively flat across the 13 possible rank values. This is not surprising since
this particular hospital had only 35 cases, compared to 129 cases at Bellevue.
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FIGURE 10.8
Posterior probabilities of rank for two hospitals.

From a patient’s perspective, she would be interested in learning the identity of the hospital that is
ranked best among the 13. For each simulation draw of p;, ... , pi3, one identifies the hospital with the
smallest simulated value. By collecting this information over the 5000 draws, one computes the posterior
probability that each hospital is ranked first. These probabilities are displayed in Figure 10.9. The
identity of the best hospital is not certain, but the top three hospitals are Bellevue, NYP New York
Weill Cornell Center, and Harlem with respective probabilities 0.250, 0.220, and 0.137 of being the best.
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FIGURE 10.9
Posterior probabilities of the hospital that was ranked first.

10.4 Exercises

1. Time-to-Serve for Six Tennis Players
Table 10.3 displays the sample size n; and the mean time-to-serve g; (in seconds) for six professional
tennis players. Assume that the sample mean for the #th player g, is normally distributed with
mean y; and standard deviation o/,/n; where we assume o = 5.5 seconds.

TABLE 10.3

Number of serves and mean time-to-serve for six professional tennis players.
Player n g
Murray 731 23.56
Simon 570 18.07
Federer 491 16.21
Ferrer 456 21.70
Isner 403 22.32
Kyrgios 274 14.11

(a) (Separate estimate) Suppose one is interested in estimating Murray’s mean time-to-serve
using only Murray’s time-to-serve data. Assume that one’s prior beliefs about pu; are
represented by a normal density with mean 20 and standard deviation 10 seconds. Use results



from Chapter 8 to find the posterior distribution of p; and construct a 90% interval estimate
for ;.

(b) (Combined estimate) Suppose instead that one believes that there are no differences between
players and p; = ... = yg = p. The overall mean time-to-serve is § = 19.9 seconds with a
combined sample size n = 2925. Assuming that p has a Normal(20,10) prior, find the posterior
distribution of u and construct a 90% interval estimate for p.

(c) Which approach, part (a) or part (b), seems more reasonable in this situation? Explain.

2. Time-to-Serve for Six Tennis Players (continued)

Suppose one wishes to estimate the mean time-to-serve values for the six players by the following

hierarchical model. Remember that we are assuming o = 5.5 seconds.

g; ~ Normal(p;,0/4/n;), i =1,...,6.
w; ~ Normal(u,7), i =1,...,6.
p ~ Normal(20,1/0.001),

1/7% ~ Gamma(0.1,0.1).

(a) Use JAGS to simulate a sample of size 1000 from the posterior distribution from this
hierarchical model, storing values of the means yq,..., yg.

(b) Construct a 90% interval estimate for each of the means.

(¢) Compare the 90% estimate for Murray with the separate and combined interval estimates from
Exercise sec(1).

3. Random o}’s for Movie Ratings
In Section 10.2.2, consider the situation where the standard deviations of the ratings differ across
movies, so o; represents the standard deviation of the ratings for movie j.

(a) Write out the likelihood, the prior distributions, and hyperprior distributions for this varying
means and varying standard deviations model.

(b) Discuss the implications of specifying varying oj’s by comparing this hierarchical model to the
developed model in Section 10.2.2.

(c) What prior distributions do you choose for g;s? Why?

(d) Carry out the simulation by MCMC using JAGS. Report and discuss the findings.

4. Smoothing Counts

A general issue in statistical inference is how to handle situations where there are zero observed

counts in a sample. This exercise illustrates several Bayesian modeling approaches to this problem.

(a) Suppose one is learning about the probability p a particular player successively makes a three-
point shot in basketball. One assigns a uniform prior for p. This player attempts 10 shots and
one observes y = 0 successes. Derive the posterior density of p and compute the posterior
mean.

(b) Suppose that you are learning about the probabilities p;, psy, p3, D4, ps of five players making
three-throw shots. You assign the following hierarchical prior on the probabilities. You assume
P1y----, Dy are independently identically distributed beta with shape parameters a and a, and at
the second stage, you assign a a uniform prior on (0, 1). Write down a graphical representation
of this hierarchical model.

(¢) In part (b), suppose that each player attempts 10 shots and you observe 0, 2, 3, 1, 3 successes
for the five players. Use JAGS to obtain posterior samples from the parameters a, p;, ps, D3, D,
ps. Compute the posterior means of a and p; and compare your probability estimates with the
estimate of p using the single-stage prior in part (a).

5. Schedules and Producers in Korean Drama Ratings
The Korean entertainment industry has been continuously booming. The global audience for K-
drama is exploding across Asia and even spreading to other parts of the world, notably the U.S. and
Europe. This surge of Korean cultural popularity is called “Hallyu”, literally meaning the “Korean



wave”. K-dramas are popular on multiple streaming websites in the U.S., such as Hulu, DramaFever,
and even Netflix.

How are K-dramas being rated in Korea? How are the producing company and broadcasting
schedule affecting the drama ratings? In one study, data were collected on 101 K-dramas from 2014
to 2016. Each drama was produced by one of the three main producers, and was broadcasted in one
of four different times of the week. The ratings of dramas were collected from the AGB Nielsen
Media Research Group' . In particular, the national AGB TV ratings of each drama were recorded.
The data is stored in KbDramaData.csv. Table 10.4 provides information about the variables in the
complete dataset.

TABLE 10.4
Table of the variables in K-dramas application.
Name Variable Information
Drama Name Name of drama
Schedule 1 =Mon. and Tue., 2 = Wed. and Thu., 3 = Fri.,

4 = Sat. and Sun.
Producer 1 = Seoul Broadcasting System, 2 = Korean

Broadcasting System, 3 = Munhwa Broadcasting

Corporation
Viewership AGB national TV ratings, in percentage
Date Month, day, year

(a) Explore the ratings graphically by schedule and by producer.

(b) Explain how the ratings differ by schedule and by producer. Are there particular days when the
ratings are high or low? Does one producer tend to have larger ratings than the other
producer?

(c) Choose a subset of the KbramabData.csv dataset for a particular producer. Develop a hierarchical
model to make inference about the mean ratings of dramas across different schedules. Discuss
your conclusions and the advantage of using hierarchical modeling in this situation.

6. Homework Hours for Five Schools

To compare weekly hours spent on homework by students, data is collected from a sample of five

different schools. The data is stored in Hwhours5schools.csv.

(a) Explore the weekly hours spent on homework by students from the five schools. Do the school-
specific means seem significantly different from each other? What about their variances?

(b) Set up a hierarchical model with common and unknown o in the likelihood, as in Section
10.2.2. Write out the likelihood, the prior distributions and the hyperprior distributions.

(c) Use JAGS to obtain posterior samples of the parameters in the hierarchical model. Perform
appropriate MCMC diagnostics.

(d) Compute posterior means and 95% credible intervals for every school mean. Compute the
posterior probability that the mean hour in school 1 is higher than that of school 2. Discuss
your findings.

2
T—UZ. Comment on the

(e) Compute and summarize the posterior distribution of the ratio R = "
evidence of between-school variability for this data.
7. Heart Attack Deaths - New York City
In Section 10.3, the heart attack deaths dataset of thirteen hospitals in Manhattan, New York City
were analyzed using a hierarchical beta-binomial model. A complete dataset of heart attack death
information of 45 hospitals in all 5 boroughs of New York City (Manhattan, the Bronx, Brooklyn,
Queens, and Staten Island) is stored in DeathHeartAttackDataNYCfull.csv. Table 10.5 lists the

variables and their description.

TABLE 10.5
The list of variables in the New York City heart attack deaths dataset and their description.
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Variable Description

Hospital Name of hospital
Borough Borough location of hospital
Type N = Non-PCI hospital; P = PCI hospital
Cases Number of heart attack cases
Deaths Number of deaths among heart attack cases
Note: PCI = Percutaneous coronary intervention, also known as coronary angioplasty, is a

nonsurgical procedure that improves blood flow to your heart.

(a) Write out the complete hierarchical beta-binomial model for the subset of thirteen hospitals in
Brooklyn. Sketch a graphical representation and discuss how to choose priors and hyperpriors.

(b) Use JAGS to obtain posterior samples of the parameters in the hierarchical model. Perform
appropriate MCMC diagnostics.

(c) Compute the posterior probability that the death rate of Kings County Hospital Center is
higher than that of the Kingsbrook Jewish Medical Center. Report and discuss your findings.

. Heart Attack Deaths - New York City (continued)

Develop a hierarchical beta-binomial model for the subset of sixteen hospitals in the Bronx and
Queens. Instead of allowing a p; for each hospital ¢ in the subset, allow a pp to be shared among
hospitals in the Bronx, and a p( to be shared among hospitals in Queens.

(a) How does the hierarchical beta-binomial model change from the specification in Exercise (7)7
Write out the complete hierarchical beta-binomial model, sketch a graphical representation.
Discuss how to choose priors and hyperpriors.

(b) Use JAGS to obtain posterior samples of the parameters in the hierarchical model. Perform
appropriate MCMC diagnostics.

(c) Compute the posterior probability that the death rate of all hospitals in the Bronx is higher
than that of all hospitals in Queens. Report and discuss your findings.

. Heart Attack Deaths - New York City (continued)

Develop a hierarchical beta-binomial model for the complete dataset of 45 hospitals in New York
City. Instead of allowing a p, for each hospital ¢ in the subset, allow a pp to be shared among
hospitals of Type P, and a pj to be shared among hospitals of Type N.

(a) Write out the complete hierarchical beta-binomial model, sketch a graphical representation.
Discuss how to choose priors and hyperpriors.

(b) Use JAGS to obtain posterior samples of the parameters in the hierarchical model. Perform
appropriate MCMC diagnostics.

(c) Compute the posterior probability that the death rates of all hospitals of Type P are higher
than those of all hospitals of Type N. Report and discuss your findings.

(d) Can you develop a hierarchical beta-binomial model for all 45 hospitals in New York City that
takes into account Borough and Type? Describe how you would design the hierarchical model,
write JAGS script to obtain posterior samples of the parameters and discuss any findings from
your work.

Hierarchical Gamma-Poisson Modeling - Marriage Rates in Italy

Annual marriage counts per 1000 of the population in Italy from 1936 to 1951 were collected and
recorded in Table 10.6. Can we learn something about Italians’ marriage rates during this 16-year
period? The dataset is stored in marriage_counts.csv.

TABLE 10.6

The year and the marriage counts per 1000 of the population in Italy from 1936 to 1951.
Year Count Year Count
1936 7 1944 5

1937 9 1945 7



Year Count Year Count
1938 8 1946 9
1939 7 1947 10
1940 7 1948 8

1941 6 1949 8

1942 6 1950 8

1943 5 1951 7

(a) Recall that with count data, a common conjugate model is the gamma-Poisson model,
introduced in Section 8.8. Write out the likelihood, the prior distribution, and its posterior
distribution under the gamma-Poisson model.

(b) Observations are considered i.i.d. in the model in part (a). Figure 10.10 plots the marriage
rates in Italy across years. Discuss whether the i.i.d. assumption is reasonable.

FIGURE 10.10

Count

Dotplot of marriage rates in Italy from 1936 to 1951.

(¢) Suppose one believes that the mean marriage rate differs across the three time periods shown in
Figure 10.10. Using this belief, model the Italian marriage rates in a hierarchical approach.
Write out the likelihood, the prior distributions, and any hyperprior distributions under a
hierarchical gamma-Poisson model.

(d) Sketch a graphical representation of the hierarchical gamma-Poisson model.

(e) Simulate posterior draws by MCMC using JAGS. Perform MCMC diagnostics and make sure
your MCMC has converged.

(f) Do you see clear differences between the three rate parameters in the posterior? Report and
discuss your findings.

11. Hierarchical Gamma-Poisson Modeling - Fire Calls in Pennsylvania
Table 10.7 displays the number of fire calls and the number of building fires for ten zip codes in
Montgomery County, Pennsylvania from 2015 through 2019. This data is currently described as
“Emergency - 911 Calls” from kaggle.com. Suppose that the number of building fires for the jth zip
code is Poisson with mean n4;, where n; and 4; are respectively the number of fire calls and rate of
building fires for the jth zip code.

J

TABLE 10.7
The number of fire calls and building fires for ten zip codes in Montgomery County, Pennsylvania.
Zip Code Fire Calls Building Fires
18054 266 12
18103 1 0
19010 1470 59
19025 246 11



Zip Code Fire Calls Building Fires

19040 1093 47
19066 435 26
19116 2 0
19406 2092 113
19428 2025 73
19474 4 1

(a) Suppose that the building fire rates A;,..., 4o follow a common Gamma(a, §) distribution where
the hyperparameters a and f follow weakly informative distributions. Use JAGS to simulate a
sample of size 5000 from the joint posterior distribution of all parameters of the model.

(b) The individual estimates of the building rates for zip codes 18054 and 19010 are 12/266 and
59/1470, respectively. Contrast these estimates with the posterior means of the rates 4; and As.

(¢) The parameter u = a/f represents the mean building fire rates across zip codes. Construct a
density estimate of the posterior distribution of p.

(d) Suppose that the county has 50 fire calls to the zip code 19066. Use the simulated predictive
distribution to construct a 90% predictive interval for the number of building fires.

12. Hierarchical Gamma-Exponential Modeling - Times Between Traffic Accidents

13.

Exercise 20 in Chapter 8 describes the exponential distribution, which is often used as a model for

time between events, such as traffic accidents. The exercise also describes the gamma distribution as

a conjugate prior choice for the exponential data model. 10 times between traffic accidents are

collected: 1.5, 15, 60.3, 30.5, 2.8, 56.4, 27, 6.4, 110.7, 25.4 (in minutes).

(a) Suppose the 10 collected times are observed at 4 different locations, shown in Table 10.8. Using
this information, model the times between traffic accidents in a hierarchical approach. Write
out the likelihood, the prior distributions, and any hyperprior distributions under a hierarchical
gamma-exponential model.

TABLE 10.8
The time between traffic accidents and recorded location.
Time Location Time Location
1.5 1 15 1
60.3 2 30.5 2
2.8 3 56.4 3
27 4 6.4 4
110.7 5 254 5

(b) Sketch a graphical representation of the hierarchical gamma-exponential model.

(c) Simulate posterior draws by MCMC using JAGS. Perform MCMC diagnostics and make sure
your MCMC has converged.

(d) Do you see clear differences between the rate of traffic accidents at the 5 locations? Report and
discuss your findings.

Bird Survey Trend Estimates

The North American Breeding Bird Survey (BBS) is a yearly survey to monitor the bird population.

Regression models were used to estimate the change in population size for many species of birds

between 1966 to 1999. For each of 28 particular grassland species of birds, Table 10.9 displays the

trend estimate Bl and the corresponding standard error o, This data is stored in the data file
BBS_survey.csv. Assume that the trend estimates are independent with Bl ~ Normal(S;, ;) where

we assume that the standard errors {o;} are known.

TABLE 10.9

Trend estimate ﬁz and associated standard error o; for 28 grassland species birds.



Species Name Trend SE

Upland Sandpiper 0.76 0.39
Long-billed Curlew -0.77 1.01
Mountain Plover -1.05 2.24
Greater Prairie-Chicken -2.54 2.33
Sharp-tailed Grouse -0.92 1.43
Ring-necked Pheasant -1.06 0.32
Northern Harrier -0.80 4.00
Ferruginous Hawk 3.52 1.31
Common Barn Owl -2.00 2.14
Short-eared Owl -6.23 4.55
Burrowing Owl 1.00 2.74
Horned Lark -1.89 0.22
Bobolink -1.25 0.31
Eastern Meadlowlark -2.69 0.17
Western Meadowlark -0.75 0.17
Chestnut-col Longspur -1.36 0.68
McCown’s Longspur -9.29 8.27
Vesper Sparrow -0.61 0.24
Savannah Sparrow -0.34 0.29
Baird’s Sparrow -2.04 1.48
Grasshopper Sparrow -3.73 0.47
Henslow’s Sparrow -4.82 2.50
LeConte’s Sparrow 0.91 0.95
Cassin’s Sparrow -2.10 0.51
Dickcissel -1.46 0.28
Lark Bunting -3.74 2.30
Sprague’s Pipit -5.62 1.34
Sedge Wren 3.18 0.73
(a) Suppose one assumes that the population trend estimates are equal, that is, f; =... fag = S.

Using JAGS to simulate from the posterior distribution of f assuming a weakly informative
prior on p. Find the posterior mean and posterior standard deviation of f and compare your
answers to the trend estimates and standard errors in Table 10.9.

(b) Next assume that the population trend estimates f; =... fag are a random sample from a
normal distribution with mean p and standard deviation z. Assuming weakly informative priors
on p and 7, use JAGS to simulate from the posterior distribution of all parameters. Find the
posterior means of the {/53} and compare your estimates with the trend estimates in Table 10.9.

14. Predicting Baseball Batting Averages

The data file batting_2018.csv contains batting data for every player in the 2018 Major League

Baseball season. The variables AB.x and H.x in the dataset contain the number of at-bats

(opportunities) and number of hits of each player in the first month of the baseball season. One

assumes that y,;, the number of hits of the th player is Binomial(n;, p;) where n; is the number of

at-bats and p, is the probability of a hit.

(a) Select a random sample of 20 players from the dataset.

(b) Assume that the hitting probabilities {p;} have a common Beta(a, b) prior where a = nu and b
= (1 — p). Assume that the hyper parameters 7 and p are independent where u is Uniform(0,
1) and log (7) has a logistic distribution with mean log (50) and scale 1.



15.

16.

(c) Use a JAGS script similar to what is presented in Section 10.3.3, draw a sample of 5000 from
the posterior distribution, monitoring values of the {p;}, 1, and log (7).

(d) Compare unpooled, pooled, and hierarchical estimates of the {p;} in predicting the batting
averages in the remainder of the season.

Estimating Kidney Cancer Death Rates

This exercise is a variation of an activity described in Gelman and Nolan (2017). Suppose one is

interested in estimating the kidney cancer death rates for the ten Ohio counties displayed in Table

10.10. Suppose the true death rates d,..., ¥, are a sample from a Gamma(a, f) distribution. The

observed number of deaths y; in the jth county is assumed to be Poisson(n;i;) where n; is the

population size.

TABLE 10.10
Populations of ten Ohio counties from recent census estimates.
County Population County Population
Cuyahoga 1,243,857 Jackson 32,384
Gallia 29,979 Knox 61,893
Hamilton 816,684 Noble 14,354
Henry 27,086 Seneca 55,207
Holmes 43,892 Van Wert 28,281
(a) Assuming a = 27, f = 58,000, simulate ten true cancer rates &, ... , ¥, from a Gammal(a, f)

distribution. For each county, simulate the number of deaths in all counties. (Use the following
R code.)

true_rates <- rgamma(10, shape = 27, rate = 58000)
pop_size <- c(1243857, 29979, 816684, 27086, 43892,
32384, 61893, 14354, 55207, 28281)

deaths <- rpois(10, lambda = pop_size * true_rates)

(b) Compute the observed death rates {y;/n;}. Identify the counties with the lowest and highest
death rates.

(¢) Using JAGS, fit a hierarchical model to the data assuming weakly informative gamma priors on
the parameters a and f. Simulate a sample of 10,000 draws from the posterior distribution and
compute the posterior means of the {d}.

(d) Identify the counties with the lowest and highest posterior means of the true rates. Compare
these “best” and “worst” counties with the best and worst counties identified in part (b).
Exercises (16) to (20) concern additional Bayesian hierarchical models with more
complicated structures. These exercises are here to help the reader gain familiarity
of working with joint posterior distribution and deriving full conditional posterior
distributions. These skills are essential to creating one’s own Metropolis and Gibbs
sampling algorithms instead of using JAGS.

Inference for the Binomial N parameter

Suppose that we want inference about an unknown number of animals N in a fixed-size population.
On five separate days, we take photographs of some areas where they reside, and count the number
of animals in the photos (yi,...,ys). Suppose further that each animal has a constant probability ¢
of appearing in a photograph and that appearances are independent across animals and days. A
reasonable model for such data is a binomial distribution, y,| N, ¢ ~ Binomial(N, ). In our setting,
neither the number of trials N nor the probability ¢ are known.

To get a posterior distribution for N and @, we propose the following system of models (Raftery

1988):



y; | N, 6 ~ Binomial(N, )
N | 0, ~ Poisson(\/0)
m(A, 6) o< 1/,

where 1 > 0 is a continuous random variable introduced to help with computations.

(a) Write down the joint posterior distribution, w(N,0,\|yq,...,¥s5), up to a multiplicative
constant.

(b) Find an expression for the conditional distribution, w(A | yy,...,ys, N,0). Write the name of
the distribution and expressions for its parameter values.

(c¢) Find the posterior distribution w(N,0 | yy,...,ys) by integrating w(N,0,A | y1,...,y5) with
respect to A. You don’t need to name the distribution; just write its mathematical form.

(d) Find the conditional distribution, 7(é | y1,...,¥s,N). Write the name of the distribution and
expressions for its parameter values.

17. Successes and Failures in Tests

A standard model for success or failure in testing situations is the item response model, also called

the Rasch model. Suppose that J persons are given a test with K items. For j=1,...,J and

k=1,...,K, let y; = 1if person j gets item k correct, and let y; = 0 otherwise. The Rasch model

is

p(Yip =1|mj) = Bernoulli(7;z) (10.36)

log( 1jjﬂkjk ) = a;j — Br. (10.37)

Here, a; represents the ability of person j, and f represents the difficulty of item k. For a Bayesian
version of the Rasch model, we use the hierarchical model distributions,

a;j ~ Normal(0, y/1/7), forj=1,...,J
Br ~ Normal(u,1/1/¢), fork=1,...,K

where t and o are precisions. For prior distributions, we use

7 ~ Gamma(a, b),
¢ ~ Gamma(c, d),
u ~ Normal(0, e),

for known positive constants (a, b, ¢, d, €¢). We intend to run an MCMC to estimate the posterior
distributions of all parameters. This problem asks you to outline some of the MCMC steps.

(a) Write the joint posterior distribution of m(au,...,os,B1,...,0k, 7, ¢, p | {yjx}), up to a
constant.

(b) Write the steps you’d take to sample u given (ou,...,az,B1,..., Pk, T, ¢, {yjr}). If you can use
a Gibbs step, write the name of the full conditional posterior distribution for p and its
parameter values. If you use a Metropolis step, write an expression for the acceptance
probability and suggest a family of proposal distributions.

(c) Write the steps you’d take to sample ¢ given (o, ...,z B1,...,Br, T, 1, {y;r}). If you can use
a Gibbs step, write the name of the full conditional posterior distribution for ¢ and its
parameter values. If you use a Metropolis step, write an expression for the acceptance
probability and suggest a family of proposal distributions.



(d) Write the steps you’d take to sample 7 given (ai,...,oz, B1,...,Br, & 1, {yjx}). If you use a
Gibbs step, write the name of the full conditional distribution for z. If you use a Metropolis
step, write an expression for the acceptance probability and suggest a family of proposal
distributions.

18. Success and Failures in Tests (continued)

Continuing from Exercise 17.

(a) Write the steps you'd take to sample b given
(a1 eeesar, Brye e Br1s Brsty - - - Brs Ty by 1, {yji }). If you can use a Gibbs step, write the name
of the full conditional posterior distribution for g, and its parameter values. f you use a
Metropolis step, write an expression for the acceptance probability and suggest a family of
proposal distributions.

(b) Write the steps you'd take to sample a; given
(01, @1, Qg1 ey, By ey Bry T, @y 1, {yji}). If you use a Gibbs step, write the name of
the full conditional distribution for a;. If you use a Metropolis step, write an expression for the
acceptance probability and suggest a family of proposal distributions.

19. Success and Failures in Tests (continued)

Suppose that you have 1000 approximately uncorrelated draws of the parameters from the joint

posterior distribution of the Rasch model in Exercise (17). Describe how you would do the following

tasks.

(a) Find the posterior probability that the variability in peoples’ abilities exceeds the variability in
item difficulty.

(b) Find the item in the test that appears to be the most difficult, and attach a posterior
probability that it in fact is the most difficult among all K items.

(¢) Perform a posterior predictive check of the model.

20. AR(1) Models in Finance and Macroeconomics

A common model in finance and macroeconomics is the AR(1) model. Suppose that we have n

measurements ordered in time. For j=1,...,n, let y; be the measurement at time j. Suppose we

consider the measurement at time 1 as known (not a random variable). Then, for j=2,...,n, a

typical AR(1) model is y; = fy; | + & where &; ~ Normal(0, 0). Equivalently, we have

p(y; | yj-1,---,91,B,0%) = Normal(By;_1,0) forj=2,...,n. (10.38)

Note that what happens at time j only depends on what happened at time j — 1. For prior
distributions, we will use

1/0® ~ Gamma(a, b),
B ~ Normal(c, d),

for known positive constants (a, b, ¢, d). We intend to run an MCMC sampler to estimate the

posterior distribution of (B, ¢?). Whenever possible, we will sample directly from full conditionals.

This problem asks you to outline some of the MCMC steps, and to make a prediction for a future

observation.

(a) Write the kernel of the joint distribution of 7(8,0% | y1,-..,yn). [Hint: write
I}(y%---)yn | 91,8,0%) = P(Yn | Yn—15- Y291, B, 0)P(Yn—1 | Yn—25-- -5 Y2, 91, 8,0%) - p(y2 | 1, B

(b) Write the steps you'd take to sample o® given (B,v1,---,¥s). If you use a Gibbs step, write the
name of the full conditional distribution for ¢ and its parameter values. If you use a Metropolis
step, write an expression for the acceptance probability and suggest a family of proposal
distributions.



(c) Write the steps you'd take to sample f§ given (o, yi,...,yn). If you use a Gibbs step, write the
name of the full conditional distribution for f and its parameter values. If you use a Metropolis

step, write an expression for the acceptance probability and suggest a family of proposal
distributions.

(d) Describe how you would make a 95% posterior interval for the future value of Y, o.

'AGB Nielsen Media Research Group is one of the biggest companies that measures audiences’
television ratings. At the time the data were collected, AGB Nielsen analyzed viewing of 2020 households
from five major and five medium-sized cities in South Korea to determine TV ratings.



11

Simple Linear Regression

11.1 Introduction

For continuous response variables such as Roger Federer’s time-to-serve data in
Chapter 8 and snowfall amounts in Buffalo, New York in Chapter 9, normal
sampling models have been applied. The basic underlying assumption in a
normal sampling model is that observations are identically and independently

distributed (i.i.d.) according to a normal density, as in Y; “E Normal(u, o).

Adding a predictor variable

When continuous responses are observed, it is common that other variables are
recorded that may be associated with the primary response measure. In the
Buffalo snowfall example, one may also observe the average temperature in
winter season and one believes that the average season temperature is
associated with the corresponding amount of snowfall. For the tennis example,
one may believe that the time-to-serve measurement is related to the rally
length of the previous point. Specifically, a long rally in the previous point may
be associated with a long time-to-serve in the current point.

In Chapter 9, a normal curve was used to model the snowfalls Y, ... , Y, for
n winters,
Y| p,o s Normal(u,0), i =1,---,n. (11.1)

The model in Equation (11.1) assumes that each winter snowfall follows the
same normal density with mean pu and o. From a Bayesian viewpoint, one



assigns prior distributions for g and o and bases inferences about these
parameters from the posterior distribution.

However when the average temperature in winter ¢, z;, is also available, one
might wonder if the snowfall amount Y; can be explained by the average
temperature z; in the same winter. One typically calls z; a predictor variable as
one is interested in predicting the snowfall amount Y, from the value of z,

How does one extend the basic normal sampling model in Equation (11.1) to
study the possible relationship between the average temperature and the
snowfall amount?

An observation-specific mean

The model in Equation (11.1) assumes a common mean p for each Y; Since
one wishes to introduce a new variable z; specific to winter 7, the model in

Equation (11.1) is adjusted to Equation (11.2) where the common mean pu is
replaced by a winter specific mean y, .

Y | piyo ind Normal(y;,0), i =1,---,n. (11.2)
Note that the observations Yj, ..., Y, are no longer identically distributed

since they have different means, but the observations are still independent
which is indicated by ind written over the distributed ~ symbol in the
formula.

Linear relationship between the mean and the predictor

One basic approach for relating a predictor z; and the response Y, is to assume
that the mean of Y, y,;, is a linear function of z; This linear relationship is

written as

wi = Bo + Bz, (11.3)

for i =1,...,n. In Equation (11.3), each z; is a known constant (that is why a
small letter is used for z) and f, and f; are unknown parameters. As one might

guess, these intercept and slope parameters are random. One assigns a prior



distribution to (f,, f;) and performs inference by summarizing the posterior

distribution of these parameters.
In this model, the linear function f, + p; z; is interpreted as the expected

snowfall amount when the average temperature is equal to z;, The intercept £,
represents the expected snowfall when the winter temperature is z; = 0. The
slope parameter f; gives the increase in the expected snowfall when the
temperature z; increases by one degree. It is important to note that the linear
relationship in Equation (11.3) with parameters f, and p; describes the
association between the mean p; and the predictor z; This linear relationship
is a statement about the expected or average snowfall amount p; not the
actual snowfall amount Y.

Linear regression model

Substituting Equation (11.3) into the model in Equation (11.2), one obtains
the linear regression model.

Yi ‘ IBOa /817 o ZﬁJd Normal(ﬂo + Iglxi7 0-)7 1= ]-v BN LT (11.4)

This is a special case of a normal sampling model, where the Y, independently
follow a normal density with observation specific mean f, + f; z; and common
standard deviation o. Since there is only a single predictor z;, this model is

commonly called the simple linear regression model.
One restates this regression model as

Y;:/'Li"f_ez'ai:lf'Wna (11.5)

where the mean response u; = f, + f, z; and the residuals ¢, ..., g, are .i.d.
from a normal distribution with mean 0 and standard deviation o. In the
context of our example, this model says that the snowfall for a particular

season Y, is a linear function of the average season temperature z; plus a

random error g; that is normal with mean 0 and standard deviation o.
The simple linear regression model is displayed in Figure 11.1. The line in
the graph represents the equation f; + f; « for the mean response u = E(Y).



The actual response Y is equal to f; + f; * + & where the random variable ¢ is
distributed normal with mean 0 and standard deviation o. The normal curves
(drawn sideways) represent the locations of the response Y for three distinct
values of the predictor z. The parameter o represents the deviation of the
response Y about the mean value £, + f; z. One is interested in learning about
the parameters f, and f; that describe the line and the standard deviation o

which describes the deviations of the random response about the line.

X

FIGURE 11.1
Display of linear regression model. The line represents the unknown regression line ) + 1 x and the

normal curves (drawn sideways) represent the distribution of the response Y about the line.

In the linear regression model, the observation Y, is random, the predictor z,
is a fixed constant and the unknown parameters are f), f;, and o. Using the
Bayesian paradigm, a joint prior distribution is assigned to (f,, f;, 0). After

the response values Y, = y;, ¢« = 1, ..., n are observed, one learns about the

parameters through the posterior distribution. An MCMC algorithm will be
used to simulate a posterior sample, and using the simulation sample, one
makes inferences about the expected response f, + f; = for a specific value of

the predictor x. Also, one will be able to assess the sizes of the errors by
summarizing the posterior density of the standard deviation o.

In our snowfall example, one is interested in learning about the relationship
between the average temperature and the mean snowfall that is described by
the linear model p = f, + f; x. If the posterior probability that f; < 0 is large,



that indicates that lower average temperatures will likely result in larger mean
snowfall. Also one is interested in using this model for prediction. If given the
average winter temperature in the following season, can one predict the Buffalo
snowfall? This question is addressed by use of the posterior predictive
distribution of a future snowfall Y. Using the usual computing strategy, one
simulates a large sample of values from the posterior predictive distribution
and finds an interval that contains Y with a prescribed probability.

In this chapter, regression is introduced in Section 11.2 by a dataset
containing several characteristics of 24 house sales in an area in Ohio. In this
example, one is interested in predicting the price of a house given the house
size and Section 11.3 presents a simple linear regression model to explain this
relationship. The practice of standardizing variables will be introduced which
is helpful in the process of assigning an informative prior on the regression
parameters. Inference through MCMC is presented in Section 11.6 and
methods for performing Bayesian inferences with simple linear regression are
illustrated in Section 11.7.

11.2 Example: Prices and Areas of House Sales

Zillow is an online real estate database company that collects information on
110 million homes across the United States. Data is collected from a random
sample of 24 houses for sale in the Findlay, Ohio area during October 2018.
For each house, the dataset contains the selling price (in $1000) and size (in
1000 square feet). Table 11.1 displays the first five observations of the dataset.

TABLE 11.1
he house index, price (in $1000), and size (in 1000 sq feet) of 5 house sales in Findlay, Ohio area during October
2018. The random sample contains 24 house sales.

Index Price ($1000) Size (1000 sq feet)
1 167 1.625
2 236 1.980
3 355 2.758
4 148 1.341
5 93 1.465

Suppose one is interested in predicting a house’s selling price from its size.
In this example, one is treating price as the response variable and size as the



single predictor. Figure 11.2 constructs a scatterplot of price (y-axis) against
the size (x-axis) for the houses in the sample. This figure shows a positive
relationship between the size and the price of a house sale, suggesting that the
house sale price increases as the house size increases. Can one quantify this
relationship through a Bayesian linear regression model? In particular, is there
sufficient evidence that there is a positive association among the population of
all homes? Can one predict the sale price of a home given its size?
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FIGURE 11.2

Scatterplot of price against size of house sales.

11.3 A Simple Linear Regression Model

The house sale example can be fit into the linear regression model framework.
It is assumed the response variable, the price of a house sale, is a continuous

variable is distributed as a normal random variable. Specifically, the price Y,

for house ¢, is normally distributed with mean u, and standard deviation o.

Y | ,ui,a%i Normal(u;, o), (11.6)



where 1 = 1, - - -, n, where n = 24 is the number of homes in the dataset. The

ind over ~ in Equation (11.6) indicates that each response Y; independently
follows its own normal density. Moreover, unlike the house-specific mean y;, a
common standard deviation o is shared among all responses Y}’s.

Since one believes the size of the house is helpful in understanding a house’s
price, one represents the mean price y; as a linear function of the house size z;

depending on two parameters £, and ;.

i = Bo + Bizi (11.7)

How does one interpret the intercept and slope parameters? The intercept £
gives the expected price p; for a house 7 that has zero square feet (z; = 0). This

is not a meaningful parameter since no house (not even a tiny house) has zero
square feet. The slope parameter f; gives the change in the expected price u,,

when the size z; of house 4 increases by 1 unit, i.e., increases by 1000 square
feet.

11.4 A Weakly Informative Prior

In some situations, the user has limited prior information about the location of
the regression parameters or the standard deviation. To implement the
Bayesian approach, one has to assign a prior distribution, but it is desirable in
this situation to assign a prior that has little impact on the posterior
distribution.

Suppose that one’s beliefs about the regression coefficients (f,, f,) are
independent from one’s opinion about the standard deviation o. Then the joint
prior density for the parameters (£, f;, 0) is written as

7.‘-(/807 /81’ J) - 71-(/BOa 51)71'(0').

The choice of weakly informative priors on (f,, f;) and o are described in
separate sections.

Prior on the intercept B, and slope B,



If one assumes independence of one’s opinion about the intercept and the
slope, one represents the joint prior n(f,, p;) as the product of priors
a(fy)n(p;), and it is convenient to use normal priors. So it is assumed f; ~
Normal(y, sy) and f; ~ Normal(uy, sp).

The choice of the standard deviation $; in the normal prior reflects how
confident the person believes in a prior guess of f;. If one has little information

about the location of a regression parameter, then the choice of the prior guess
1 is not that important and one chooses a large value for the prior standard
deviation s;. So the regression intercept and slope are each assigned a normal

prior with a mean of 0 and standard deviation equal to the large value of 100.

Prior on sampling standard deviation o

In the current regression model, one assumes that Y; ~ Normal(f, + f; z;, 0)
and o represents the variability of the house price about the regression line. It
is typically hard to specify informative beliefs about a standard deviation than
a mean parameter such as £, + f; z. So following the suggestions from Chapter
9 and Chapter 10, one assigns a weakly informative prior for the standard
deviation 0. A gamma prior for the precision parameter ¢ = 1/0®> with small
values of the shape and rate parameters, say a = 1 and b = 1, was seen in
those chapters to represent weak prior information, and a similar prior is
assigned in this regression setting.

¢ = 1/0% ~ Gamma(1,1).

11.5 Posterior Analysis

In the sampling model one has that Y;, ..., Y, are independent with Y, ~
Normal(f, + f; z;, 0). Suppose the pairs (z;, v;), ..., (%,, y,) are observed. The
likelihood is the joint density of these observations viewed as a function of (f,,
f1, 0). For convenience, the standard deviation o is reexpressed as the precision

¢ =1/



L(Bo, B1, 9)= ﬁ [ @exp{—g(% — Bo — 51%‘)2}]

(11.8)

By multiplying the likelihood by the prior for (f,, £, ¢), one obtains an
expression for the posterior density.

2 1=1

1 1 (11.9)
X exp{2—sz(ﬁo - M0)2} eXP{2—82(51 - N1)2}
0 1

x ¢! exp(—be)

W(/BOaﬂlaqb ‘ Y1, - ,yn)OC Qb% exp{é Z(yz - /80 - 161331')2}

Since this is not a familiar probability distribution, one needs to use an
MCMC algorithm to obtain simulated draws from the posterior.

11.6 Inference through MCMC

R It is convenient to draw an MCMC sample from a regression model using
the JAGS software. One attractive feature of JAGS is that it is straightforward
to transpose the statement of the Bayesian model (sampling density and prior)
directly to the JAGS model script.

Describe the model by a script

The first step in using JAGS is writing the following script defining the linear
regression model, saving the script in the character string modelString.

modelString <-"
model {



## sampling
for (i in 1:N){
y[i] ~ dnorm(beta® + betal*x[i], invsigma2)

## priors

beta® ~ dnorm(mu®@, go)

betal ~ dnorm(mul, g1)

invsigma2 ~ dgamma(a, b)

sigma <- sqrt(pow(invsigma2, -1))

In the sampling section of the script, the loop goes from 1 to N, where N is
the number of observations with index i. Recall that the normal distribution
dnorm in JAGS is stated in terms of the mean and precision, and so the
variable invsigma2 corresponds to the normal sampling precision. The variable
sigma is defined in the prior section of the script so one can track the
simulated values of the standard deviation o. Also the variables go and g1
correspond to the precisions of the normal prior densities for beta® and betai.

Define the data and prior parameters

The next step is to provide the observed data and the values for the prior
parameters. In the R script below, a list the_data contains the vector of sale

prices, the vector of house sizes, and the number of observations. This list also
contains the means and precisions of the normal priors for beta® and betai,

and the values of the two parameters a and b of the gamma prior for
invsigma2. The prior standard deviations of the normal priors on beta® and
betal are both 100, and so the corresponding precision values of go and g1 are
both 1/100? = 0.0001.

y <- PriceAreaData$price

X <- PriceAreaData$newsize

N <- length(y)

the_data <- list("y" =y, "x" = x, "N" =N,
"mue" = 0, "go" = 0.0001,

"mul" = 0, "gl1" = 0.0001,

llall = 1, llbll = 1)

Generate samples from the posterior distribution



The run.jags() function in the runjags package generates posterior samples
by the MCMC algorithm using the JAGS software. The script below runs one
MCMC chain with an adaption period of 1000 iterations, a burn-in period of
5000 iterations, and an additional set of 5000 iterations to be run and collected
for inference. By using the argument monitor = c¢("beta®", "betal",
"sigma"), one keeps tracks of all three model parameters. The output variable
posterior contains a matrix of simulated draws.

posterior <- run.jags(modelString,
n.chains = 1,

data = the_data,

monitor = c("beta®", "betal", "sigma"),
adapt = 1000,

burnin = 5000,

sample = 5000)

MCMC diagnostics and summarization

Using JAGS one obtains 5000 posterior samples for the vector of parameters.
Below the first 10 posterior samples are displayed for the triplet (f,, f;, 0).
Note that the index starts from 6001 since 6000 samples were already
generated in the adaption and burn-in periods.

beta® betal sigma

6001 -17.62 103.3 40.68
6002 -21.35 107.3 44.92
6003 -34.34 114.0 37.11
6004 -42.06 110.5 51.84
6005 -47.71 111.4 62.63
6006 -47.49 113.9 53.80
6007 -18.85 106.0 50.92
6008 -28.50 114.8 42.71
6009 -32.10 105.1 47.41
6010 -37.41 119.3 45.88

To obtain valid inferences from the posterior draws from the MCMC
simulation, convergence of the MCMC chain is necessary. The plot() function
with the argument input vars returns four diagnostic plots (trace plot,
empirical CDF, histogram and autocorrelation plot) for the specified
parameter. For example, Figure 11.3 shows the diagnostic plots for the
intercept parameter £, by the following command.



plot(posterior, vars = "beta@")
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FIGURE 11.3

MCMC diagnostics plots for the regression intercept parameter ().

The upper left trace plot shows good MCMC mixing for the 5000 simulated
draws of f;,. The lower right autocorrelation plot indicates close to zero

correlation between adjacent posterior draws of f;,. Overall these indicate
convergence of the MCMC chain for f;,. In usual practice, one should perform
these diagnostics for all three parameters in the model.

Figure 11.4 displays a scatterplot of the simulated draws of the regression
parameters f, and f;. It is interesting to note the strong negative correlation in

these parameters. If one assigned informative independent priors on £, and f,

these prior beliefs would be counter to the correlation between the two
parameters observed in the data.
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FIGURE 114
Scatterplot of posterior draws of the intercept and slope parameters f3y and f37.

Posterior summaries of the parameters are obtained by use of the
print(posterior, digits = 3) command. Note that these summaries are
based on the 5000 iterations from the sampling period excluding the samples
from the adaption and burn-in periods.

print(posterior, digits = 3)
Lower95 Median Upper95 Mean SD Mode MCerr

beta® -122 -46.2 31.4 -45.7 37.6 -- 2.98
betal 78.7 117 159 117 20 -- 1.65
sigma 33.2 45 59.3 45.7 6.93 -- 0.157

Then intercept parameter f; does not have a useful interpretation, so values

of these particular posterior summaries will not be interpreted. The summaries
of the slope f; indicate a positive slope with a posterior median of 117 and a

90% credible interval (78.7, 159). That is, with every 1000 square feet increase
of the house size, the house price increases by $117,000. In addition, this
increase in the house price falls in the interval ($78,700, $159,000) with 90%
posterior probability. The posterior median of the standard deviation o is the
large value 45 or $45,000 which indicates that there are likely additional
variables than house size that determine the price.



11.7 Bayesian Inferences with Simple Linear Regression

11.7.1 Simulate fits from the regression model

The intercept f;, and slope p; determine the linear relationship between the
mean of the response Y and the predictor z.

E(Y) = By + frz. (11.10)

Each pair of values (f), f;) corresponds to a line f; + f; = in the space of

values of z and y. If one finds the posterior mean of these coefficients, say
and £, then the line

y=Bo+ Piz

corresponds to a “best” line of fit through the data.
This best line represents a most likely value of the line f, + f, x from the

posterior distribution. One learns about the uncertainty of this line estimate
by drawing a sample of J rows from the matrix of posterior draws of (£, /)

and collecting the line estimates

30(

R Using the R script below, one produces a graph showing the best line of fit
(solid line) and ten simulated fits from the posterior as in Figure 11.5.

D gV i1,



300-

1.0 1.5 2.0 25
Size
FIGURE 11.5
Scatterplot of the (size, price) data with the best line of fit (solid line) and ten simulated fits B + 1 x from

the posterior distribution.

post <- as.mcmc(posterior)

post_means <- apply(post, 2, mean)

post <- as.data.frame(post)
ggplot(PriceAreabData, aes(newsize, price)) +
geom_point(size=3) +
geom_abline(data=post[1:10, ],
aes(intercept=beta®, slope=betal),

alpha = 0.5) +

geom_abline(intercept = post_means[1],

slope = post_means[2],

size = 2) +

ylab("Price") + xlab("Size") +
theme_grey(base_size = 18, base_family = "")

From Figure 11.5, since there is inferential uncertainty about the intercept f,
and slope f;, one sees variation among the ten fits from the posterior of the
linear regression line £, + pf; z. This variation about the best-fitting line is

understandable since the size of our sample of data is the relatively small value
of 24. A larger sample size would help to reduce the posterior variation for the
intercept and slope parameters and result in posterior samples of fits that are
more tightly clustered about the best fitting line in Figure 11.5.

11.7.2 Learning about the expected response



In regression modeling, one may be interested in learning about the expected
response E(Y) for a specific value of the predictor x. In the house sale example,
one may wish to learn about the expected house price for a specific value of
the house size. Since the expected response E(Y) = f, + f, = is a linear
function of the intercept and slope parameters, one obtains a simulated sample
from the posterior of £, + f; = by computing this function on each of the

simulated pairs from the posterior of (£, ;).

R For example, suppose one is interested in the expected price E(Y) for a
house with a size of 1, i.e. x = 1 (1000 sq feet). In the R script below, one
simulates 5000 draws from the posterior of the expected house prices, E[Y]
from the 5000 posterior samples of the pair (£, f;)-

size <- 1
mean_response <- post[, "beta0"] + size * post[, "betal"]

This process is repeated for the four sizes z = 1.2, 1.6, 2.0, 2.4 (1200 sq feet,
1600 sq feet, 2000 sq feet, and 2400 sq feet). Let E(Y] z) denote the expected
price for a house with size z. Figure 11.6 displays density plots of the
simulated posterior samples for the expected prices E(Y]| 1.2), E(Y] 1.6), E(Y]
2.0), E(Y] 2.4) for these four house sizes.
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Value

Size = 1.6-

Size = 1.2 -

100 200 300
Expected_Price



FIGURE 11.6
Density plots of the simulated draws of the posterior expected house price for four different values of the
house size.

The R output below provides summaries of the posterior of the expected
price for each of the four values of the house size. From this output, one sees
that, for a house of size of 1.2 (1200 sq feet), the posterior median of the
expected price is $94,500, and the probability that the expected price falls
between $69,800 and $121,000 is 90%.

Value PG5 P50 P95
<chr> <dbl> <db1> <dbl>

1 Size = 1.2 69.8 94.5 121
2 Size = 1.6 125 142 159
3 Size = 2 172 189 205

4 Size = 2.4 211 236 260

11.7.3 Prediction of future response

Learning about the regression model and values of the expected response
values focuses on the deterministic linear relationship between z and E|Y]
through the intercept f, and the slope f;, as shown in Equation (11.10). The

variability among the fitted lines in Figure 11.5 and the variability among the
simulated house price for fixed size in Figure 11.6 reflect the variability in the
posterior draws of f;, and f;.

However, if one wants to predict future values for a house sale price Y given
its size x, one needs to go one step further to incorporate the sampling model
in the simulation process.

Y; ‘ ,30, 51, o iﬁJd Normal(,Bo + ,31%-, a) (11.11)

As shown in Equation (11.11), the sampling model of Y is a normal with a
mean expressed as a linear combination of f, and f; and a standard deviation

o. To obtain a predicted value of Y given z = z; one first simulates the
expected response from f, + f; z;, and then simulates the predicted value of Y,
from the sampling model: Y; ~ Normal(E|Y)], o). Below is a diagram for the
prediction process for an observation where its house size is given as z, and



predicted value denoted as g(s) for iteration s. Here the simulation size S is
5000 as there are 5000 posterior samples of each of the three parameters.

simulate E[y]") = 81) + ﬁgl)a:—> sample §V ~ {Normal}(E[y]V, cM)
simulate E[y]® = Bgz) + Bgz)ac—> sample §» ~ {Normal}(E[y]®, )

simulate E[y]®) = BSS) + Bgs)m—> sample §¥ ~ {Normal}(E[y]*®), 59)

R The R function one_predicted() obtains a simulated sample of the

predictive distribution of the house price given a value of the house size. First
one uses the posterior sample of (£, ;) to obtain a posterior sample of the

“linear response” f, + p; z. Then one simulates draws of the future observation
by simulating from a normal distribution with mean f, + f; = and standard

deviation o, where draws of o are taken from its posterior distribution.

one_predicted <- function(x){

lp <- post[ , "beta®"] + x * post[ , "betal"]
y <- rnorm(5000, 1lp, post[, "sigma"])
data.frame(Value = paste("Price =", x),
Predicted_Price = vy)

}

This process is repeated for each of the house sizes z = 1.2, 1.6, 2.0, 2.4
(1200 sq feet, 1600 sq feet, 2000 sq feet, and 2400 sq feet). Figure 11.7 displays
density estimates of these simulated samples from the predictive distributions
of the house price. Comparing Figure 11.7 with Figure 11.6, note that the
predictive distributions are much wider than the posterior distributions on the
expected response. This is what one would anticipate, since the predictive
distribution incorporates two types of uncertainty — the inferential uncertainty
in the values of the regression line f, + f; = and the predictive uncertainty

expressed in the sampling density of the response y with standard deviation o.
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Density plots of the simulated draws of the predicted house price for four different values of the house size.

To reinforce this last point, the R output below displays the 5th, 50th, and
95th percentiles of the predictive distribution of the house price for each of the
four values of the house size. One saw earlier that a 90% interval estimate for
the expected price for a house with z = 1.2 was given by (69.8, 121). Below
one sees that a 90% prediction interval for the price of the same house size is
(15.5, 175). The prediction interval is substantially wider than the posterior
interval estimate. This is true since the predictive distribution incorporates the
sizable uncertainty in the house price given the house size represented by the
sampling standard deviation o.

Value P05 P50 P95
<chr> <dbl> <db1> <db1>

1 Size = 1.2 15.5 94.4 175
2 Size = 1.6 64.5 142 219
3 Size = 2 110 189 266

4 Size = 2.4 157 234 315

11.7.4 Posterior predictive model checking

Simulating replicated datasets



The posterior predictive distribution is used to predict the value of a house’s
price for a particular house size. It is also helpful in judging the suitability of
the linear regression model. The basic idea is that the observed response values
should be consistent with predicted responses generated from the fitted model.

In our example, one observed the house size x and the house price y for a
sample of 24 houses. Suppose one simulates a sample of prices for a sample of
24 houses with the same sizes from the posterior predictive distribution. This
is implemented in two steps.

1. Values of the parameters (f,, f, o) are simulated from the posterior

distribution — call these simulated values (5, 87, 0%).
2. A sample {yf’, ..., 9y} is simulated where the sample size is n = 24 and
yf is Normal(uf, 0*), where pf = 8§ + Biz;.

This is called a replicated sample from the posterior predictive distribution
since one is using the same sample size and covariate values as the original
dataset.

For our example, this simulation process was repeated eight times, where
each iteration produces a sample (mi,yf“),i =1,...,24. Scatterplots of these
eight replicated samples are displayed in Figure 11.8. The observed sample is
also displayed in this figure.
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FIGURE 11.8
Scatterplots of observed and eight replicated datasets from the posterior predictive distribution.

The question one wants to ask is: Do the scatterplots of the simulated
replicated samples resemble the scatterplot of the observed data? Since the z
values are the same for the observed and replicated datasets, one focuses on
possible differences in the observed and replicated response values. Possibly,
the sample prices display more variation than the replicated prices, or perhaps
the sample prices have a particular outlier or other feature that is not present
in the replicated prices.

In the examination of these scatterplots, the distribution of the observed
responses does not seem markably different from the distribution of the
response in the simulated replicated datasets. Therefore in this brief
examination, one does not see any indication of model misfit — the observed (z,
y) data seems consistent with replicated data generated from the posterior
predictive distribution.



Predictive residuals

In linear regression, one typically explores the residuals that are the deviations
of the observations {y;} from the fitted regression model. The posterior

prediction distribution is used to define a suitable Bayesian residual.
Consider the observed point (z;, y;). One asks the question — is the observed

response value y, consistent with predictions §; of this observation from the

fitted model? One simulates predictions §; from the posterior predictive
distribution in two steps:

1. One simulates (f,, f;, 0) from the posterior distribution.
2. One simulates §; from a normal distribution with mean £, + f, z; and

standard deviation o.

By repeating this process many times, one has a sample of values {g;} from
the posterior predictive distribution.
To see how close the observed response y; is to the predictions {g;}, one

computes the predictive residual

Ti = Yi — Y- (11.12)

If this predictive residual is away from zero, that indicates that the observation
is not consistent with the linear regression model. Remember that §;, and
therefore the predictive residual r; is random. So one constructs a 90% interval
estimate for the predictive residual r; and says that the observation is unusual

if the predictive residual interval estimate does not include zero.
Figure 11.9 displays a graph of the 90% interval estimates for the predictive
residuals {r;} plotted against the size variable. A horizontal line at the value 0

is displayed and we look for intervals that are located on one side of zero. One
notices that a few of the intervals barely overlap zero — this indicates that the

corresponding points (x; y;) are somewhat inconsistent with the fitted

regression model.
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11.8 Informative Prior

One challenge in a Bayesian analysis is the construction of a prior that reflects
beliefs about the parameters. In the usual linear function representation in
Equation (11.7), thinking about prior beliefs can be difficult since the intercept
fp does not have a meaningful interpretation. To make the regression

parameters [, and p; easier to interpret, one considers standardizing the

response and predictor variables. With this standardization, the task of
constructing informative priors will be facilitated.

11.8.1 Standardization

Standardization is the process of putting different variables on similar scales.
As we can see in Figure 11.2, the house size variable ranges from 1.0 to over
2.5 (in 1000 sq feet), while the price variable ranges from below 50 to over 350
(in $1000). The standardization process works as follows: for each variable,
calculate the sample mean and the sample standard deviation, and then for
each observed value of the variable, subtract the sample mean and divide by
the sample standard deviation.



For example, let y, be the observed sale price and z; be the size of a house.

Let § and Z denote the sample means and s, and s, denote the sample

y
standard deviations for the y/s and z;’s, respectively. Then the standardized

variables y; and x; are defined by the following formula.

*
Y = y Ly = . (11.13)

In R, the function scale() performs standardization.

PriceAreaData$price_standardized <- scale(PriceAreaData$price)
PriceAreaData$size_standardized <- scale(PriceAreaData$newsize)

A standardized value represents the number of standard deviations that the
value falls above or below the mean. For example, if 7 = —2, then this house
size is two standard deviations below the mean of all house sizes, and a value
y; = 1 indicates a sale price that is one standard deviation larger than the
mean. Figure 11.10 constructs a scatterplot of the original (z, y) data (top)
and the standardized (z*,y*) data (bottom). Note that the ranges of the
standardized scores for the z* and y* are similar — both sets of standardized
scores fall between —2 and 2. Also note that the association patterns of the two
graphs agree which indicates that the standardization procedure has no impact
on the relationship of house size with the sale price.
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Two scatterplots of price against size of house sales: both variables unstandardized (top) and both variables
standardized (bottom).

One advantage of standardization of the variables is that it provides more
meaningful interpretations of the regression parameters £, and f;. The linear

regression model with the standardized variables is written as follows:

Y |y, o (S Normal(u;, o), (11.14)

pi = Bo+ Briz;. (11.15)

The intercept parameter f, now is the expected standardized sale price for a
house where z} = 0 corresponding to a house of average size. The slope p;

gives the change in the expected standardized sale price p; when the
standardized size z increases by 1 unit, or when the size variable increases by
one standard deviation. In addition, when the variables are standardized, the



slope f; can be shown equal to the correlation between z; and y,. So this slope

provides a meaningful measure of the the linear relationship between the
standardized predictor z; and the expected standardized response pu;. A
positive value f; indicates a positive linear relationship between the two

variables, and the absolute value of p; indicates the strength of the
relationship.

11.8.2 Prior distributions

As in the weakly informative prior case, assume that the three parameters £,
p; and o are independent so the joint prior is factored into the marginal

components.

7(Bo, B1,0) = 7(Bo)m(B1)m(0).

Then the task of assigning a joint prior simplifies to the task of assigning
priors separately to each of the three parameters. The process of assigning an
informative prior is described for each parameter.

Prior on the intercept B,

After the data is standardized, recall that the intercept £, represents the

expected standardized sale price given a house of average size (i.e. 7 = 0). If
one believes a house of average size will also have an average price, then a
reasonable guess of f is zero. One can give a normal prior for £, with mean g,

— 0 and standard deviation s
Bo ~ Normal(0, sp).

The standard deviation s, in the normal prior reflects how confident one
believes in the guess of £, = 0. For example, if one specifies £, ~ Normal(0, 1),
this indicates that a price of a house of average size could range from one
standard deviation below to one standard deviation above the average price.
Since this is a wide range, one is stating that he or she is unsure that a house
of average size will have an average price. If one instead is very sure of the
guess that £, = 0, one could choose a smaller value of s.

Prior on the slope B,



For standardized data, the slope p; represents the correlation between the

house size and the sale price. One represents one’s belief about the location of
f; by means of a normal prior.

B1 ~ Normal(u, s1),

For this prior, p; represents one’s best guess of the correlation and s
represents the sureness of this guess. For example, if one lets f; be Normal(0.7,

0.15), this means that one’s best guess of the correlation is 0.7 and one is
pretty certain that the correlation falls between 0.7 — 0.15 and 0.7 + 0.15. If
one is not very sure of the guess of 0.7, one could choose a larger value of s;.

Prior on o

It is typically harder to specify informative beliefs about a standard deviation
than a mean parameter such as f, + f; z. So it seems reasonable to assign a
weakly informative prior for the sampling error standard deviation o. A
gamma prior for the precision parameter ¢ = 1/0®> with small values of the
shape and rate parameters, say a = 1 and b = 1, can represent weak prior
information in this regression setting.

1/0* ~ Gamma(1,1).

To summarize, the informative prior distribution for (f,, £, o) is defined as

follows.

7(Bo, B1,0) = 7(Bo)m(B1)m(0), (11.16)
Bo ~ Normal(0,1), (11.17)
Bl et Norma1(0.7, 0.15), (11.18)

1/0> ~ Gamma(l,1). (11.19)



11.8.3 Posterior Analysis

R Omne again uses the JAGS software to simulate from the posterior
distribution of the parameters. The modelString is written in the same way as
in Section 11.6.

Since the data have been standardized, one needs to do some initial
preliminary work before the MCMC implementation. First, in R, one defines
new variables price_standardized and size_standardized that are
standardized versions of the original price and newsize variables.

PriceAreaData$price_standardized <- scale(PriceAreaData$price)
PriceAreaData$size_standardized <- scale(PriceAreaData$newsize)

Then the wvariables y and x in modelString now correspond to the
standardized data. Also in the definition of the the_data list, we enter the
mean and precision values of the informative priors placed on the regression
intercept and slope. Remember that one needs to convert the prior standard
deviations s, and s; to the corresponding precision values.

y <- as.vector(PriceAreaData$price_standardized)
X <- as.vector(PriceAreaData$size_standardized)
N <- length(y)

the_data <- list("y" =y, "x" = x, "N" =N,
llmuell = 0, "90" — 1,

"mul" 0.7, "gl1" = 44.4,

llall = 1, llbll - 1)

With the redefinition of the standardized variables y and x, the same JAGS
script modelString is used to define the posterior distribution. As before, the
run.jags() function is run, collecting a sample of 5000 draws from (4,, f;, o).

posterior2 <- run.jags(modelString,
n.chains = 1,

data = the_data,

monitor = c("beta®", "betal", "sigma"),
adapt = 1000,

burnin 5000,

sample 5000)




Comparing posteriors for two priors

R To understand the influence of the informative prior, one can contrast this
posterior distribution with a posterior using a weakly informative prior.
Suppose one assumes that £, f;, and o are independent with f; ~ Normal(0,

100), p; ~ Normal(0.7, 100) and ¢ = 1/0*> ~ Gamma(1, 1). This prior differs
from the informative prior in that large values are assigned to the standard

deviations, reflecting weak information about the location of the regression
intercept and slope.

the_data <_ 'List(lly" = y, HX" = X, IINII = N,
"mu@" = 0, "go" = 0.0001,

"mul" = 0.7, "gl" = 0.0001,

llall — 1, llbll - 1)

posterior3 <- run.jags(modelString,
n.chains = 1,

data = the_data,

monitor = c("beta®", "betal", "sigma"),
adapt = 1000,

burnin 5000,

sample 5000)

Figure 11.11 displays density estimates of the simulated posterior draws of
the slope parameter S, under the informative and weakly informative prior
distributions. Note that the informative prior posterior has less spread than
the weakly informative prior posterior. This is to be expected since the
informative prior adds more information about the location of the slope
parameter. In addition, the informative prior posterior shifts the weakly
informative prior posterior towards the prior belief that the slope is close to
the value 0.7.
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FIGURE 11.11
Density plots of posterior distributions of regression slope parameter ] using informative and weakly

informative prior distributions.

After viewing Figure 11.11, one would expect the posterior interval estimate
for the slope p; to be shorter with the informative prior. We had earlier found
that the 90% interval estimate for f; to be (0.551, 0.959) with the informative
prior. The 90% interval for the slope with the weakly informative prior is
(0.501, 1.08) which is about 40% longer than the interval using the informative
prior.

print(posterior2, digits = 3)

Lower95 Median Upper95 Mean SD Mode MCerr

beta® -0.267 0.000358 0.276 0.000372 0.138 -- 0.00195
betal 0.551 0.751 0.959 0.749 0.104 -- 0.00147

sigma 0.498 0.67 0.878 0.682 0.102 -- 0.00154

print(posterior3, digits = 3)

Lower95 Median Upper95 Mean SD Mode MCerr

beta® -0.273 0.000362 0.281 0.000421 0.141 -- 0.00199
betal 0.501 0.794 1.08 0.792 0.146 -- 0.00207

sigma 0.502 0.677 0.894 0.688 0.105 -- 0.00163




11.9 A Conditional Means Prior

In this chapter, we have illustrated two methods for constructing a prior on
the parameters of a regression model. The first method reflects weakly
informative prior beliefs about the parameters, and the second method assesses
an informative prior on the regression parameters on a model on standardized
data. In this section, a third method is described for representing prior beliefs
on a regression model on the original data. This approach assesses a prior on
(Po, P1, 0) indirectly by stating prior beliefs about the expected response value

conditional on specific values of the predictor variable.

Learning about a gas bill from the outside temperature

A homeowner will typically have monthly payments on basic utilities such as
water, natural gas, and electricity. One particular homeowner observes that her
monthly natural gas bill seems to vary across the year. The bill is larger for
colder months and smaller for warmer months. That raises the question: can
one accurately predict one’s monthly natural gas bill from the outside
temperature?

To address this question, the homeowner collects the mostly gas bills in
dollars and the average mostly outside temperatures for all twelve months in a
particular year. Figure 11.12 displays a scatterplot of the temperatures and bill
amounts. Note that the month bill appears to decrease as a function of the
temperature. This motivates consideration of the linear regression model

Y; | Bo, B1,0 ~ Normal(By + p1zi,0), (11.20)

where x; and 1y, are respectively the average temperature (degrees in
Fahrenheit) and the bill amount (in dollars) in month 4, and (£, f;, o) are the
unknown regression parameters.
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FIGURE 11.12
Scatterplot of average temperatures and gas bills for twelve payments.

A conditional means prior

To construct a prior, first assume that one’s beliefs about the regression
parameters (f,, f;) are independent of the beliefs on the standard deviation o

and so the joint prior can be factored into the marginal densities:

ﬂ-(ﬂoa Bl’ U) - W(ﬂOa ﬂl)ﬂ-(o-)'

With the unstandardized data, it is difficult to think directly about plausible
values of the intercept f, and slope f; and also how these regression

parameters are related. But it may be easier to formulate prior opinion about
the mean values

w; = Bo + iy, (11.21)

for two specified values of the predictor ] and x3. The conditional means
approach proceeds in two steps.

1. For the first predictor value x] construct a normal prior for the mean
value pj. Let the mean and standard deviation values of this prior be



denoted by m; and s;, respectively.

2. Similarly, for the second predictor value x; construct a normal prior for
the mean value p; with respective mean and standard deviation m, and

59.

If one assumes that one’s beliefs about the conditional means are
independent, then the joint prior for the vector (uj, u5) has the form

m(p1, ) = m(py)m(ps)-

This prior on the two conditional means implies a bivariate normal prior on
the regression parameters. The two conditional means pj and p; were written
above as a function of the regression parameters f, and f;,. By solving these
two equations for the regression parameters, one expresses each parameter as a
function of the conditional means:

By — B
= #, (11.22)
Iro — I
* *
Bo = .UT — I LBl . (11.23)
o2 — X1

Note that both the slope f;, and f; are linear functions of the two conditional
means g and py and this implies that f,, f; will have a bivariate normal
distribution.

Regression analysis of the gas bill example

The process of constructing a conditional means prior is illustrated for our gas
bill example. Consider two different temperature values, say 40 degrees and 60
degrees, and, for each temperature, construct a normal prior for the expected
monthly bill. After some thought, the following priors are assigned.

o If z = 40, the mean bill uj = By + F1(40) is normal with mean $100 and
standard deviation $20. This statement indicates that one believes the



average gas bill will be relatively high during a cold month averaging 40
degrees.

o If z = 60, the mean bill u3 = By + £1(100) is normal with mean $50 and
standard deviation $15. Here the month’s average temperature is warmer
and one believes the gas cost will average $50 lower than in the first
scenario.

By assuming independence of our prior beliefs about the two means, we have

(g, ts) = P(py,100,20)0(p5, 50, 15), (11.24)

where ¢(y, u, o) denotes the normal density with mean p and standard
deviation o.

The prior on the two means is an indirect way of assessing a prior on the
regression parameters £, and f;. One simulates pairs (f), f;) from the prior
distribution by simulating values of the means p] and p; from independent
normal distributions and applying Equation (11.22) and Equation (11.23).

R Simulated draws from the prior are conveniently produced using the JAGS
software. The prior is specified for the conditional means by two applications
of the dnorm() function and the regression parameters are defined as functions
of the conditional means.

modelString = "

mode 1{

betal <- (mu2 - mul) / (x2 - x1)

beta® <- mul - x1 * (mu2 - mul) / (x2 - x1)
mul ~ dnorm(ml, s1)

mu2 ~ dnorm(m2, s2)

}ll

Figure 11.13 displays 1000 simulated draws of (f,, f;) from the the
conditional means prior. It is interesting to note that although the conditional
means g7 and ps; are independent, the implied prior on the regression
coefficients indicates that /4, and p; are strongly negatively correlated.
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Scatterplot of simulated draws of the regression parameters (f(), f1) from the conditional means prior.

The conditional means approach is used to indirectly specify a prior on the
regression vector f = (f), f;).- To complete the prior, one assigns the precision

parameter ¢ = 1/0°> a gamma prior with parameters a and b. Then the prior
density on all parameters has the form

7(Bo, B1,0) = mom(Bo, Br)m(0),

where 7, is the conditional means prior.

Using this conditional means prior and the gas bill data, one also uses JAGS
to simulate from the posterior distribution of (f,, f;, 0). In the exercises, the
reader will have the opportunity to perform inference about the regression line.
In addition, there will be an opportunity to compare inferences using
conditional means and weakly informative priors.

11.10 Exercises

1. Linear Regression Model
Suppose one is interested in predicting a person’s height y, in cm from his

or her arm span z; in cm. Let y; denote the mean p; = E(Y)| z;). Are the
following linear models? If not, explain why.



a) p
b) p
c) /50 + /91

) ;= exp (fy + /51 z;)
2. Linear Regression Model

Suppose a researcher collects some daily weather data for Denver,
Colorado for several winter months. She considers the regression model Y

( +z/py
(
(
(d

i, 0 ~ Normal(y;, o) where

i = Bo + Bizi,

and z; and y; are respectively the observed temperature (in degrees

Fahrenheit) and snowfall (in inches) on data collected on the th day.
(a) Interpret the intercept parameter f,.

(b) Interpret the slope parameter f;.
(¢) Suppose fy = 5, f; = -0.2, and o = 0.2. If the temperature is 10

degrees, use this model to predict the amount of snowfall.

(d) With the same assumptions in part (c), find a 90% interval estimate
for the amount of snowfall.

3. Pythagorean Result in Baseball

Table 11.2 displays the average runs scored R, the average runs allowed

RA, the number of wins W, the number of losses L for 15 National League

teams in the 2018 baseball season. This data is contained in the datafile
pythag2018.csv. By the Pythagorean formula, if y = log (W/L) and z =

log (R/RA), then approximately y = fr for some slope parameter p.

Consider the model Y; ~ Normal(fz; o) where z; and y; are the values of

log (R/RA) and log (W/L) for the i-th team.

(a) Suppose one assumes f and o are independent where f ~ Normal(0,
10) and the precision ¢ = 1/0® is gamma with parameters 0.001 and
0.001. Write down the expression for the joint posterior density of (f,
0).

(b) Using JAGS, write a script defining the Bayesian model and use
MCMC to simulate a sample of 1000 draws from the posterior
distribution.

(c) From the simulated output, construct 90% interval estimates for the
slope f and for the standard deviation o.

TABLE 11.2
Average runs scored (R), average runs scored against (RA), wins (W) and losses (L) for 15 National League



teams (Tm).

Tm R RA w L Tm R RA \4 L
MIL 4.6 4 96 67 ARI 43 4 82 80
CHC 4.7 4 95 68 PHI 4.2 4.50 80 82
LAD 4.9 3.70 92 71 NYM 4.2 4.40 77 85
COL 4.8 4.60 91 72 SFG 3.7 4.30 73 89
ATL 4.7 4.10 90 72 CIN 43 5.10 67 95
STL 4.7 4.30 88 74 SDP 3.8 4.70 66 96
PIT 43 4.30 82 79 MIA 3.7 5 63 98
WSN 4.8 4.20 82 80

4. Pythagorean Result in Baseball (continued)

(a) Suppose a team scores on average 4.5 runs and allows, on average, 4.0
runs, so ¢ = log (R/RA) = log (4.5/4) = 0.118. Simulate 1000 draws
from the posterior distribution of u = pz.

(b) If = 0.118, use the work from part (a) to simulate repeated draws
of the posterior predictive distribution of y = log (W/L) and use the
output to construct a 90% prediction interval for y.

(c) From the interval found in part (a), find a 90% prediction interval for
the number of wins in a 162 game season.

5. Pythagorean Result in Baseball (continued)
A traditional least-squares of the model y = fz can be found by use of the

Im() function for the 2018 team data as follows.

fit <- Im(I(log(W / L)) ~ 0 + I(log(R / RA)),
data = pythag2018)
summary (fit)

The “Estimate” value is the least-squares estimate of the slope f and the
“Std. Error” provides an estimate at the sampling error of this estimate.
Compare these estimates with the Bayesian posterior mean and standard
deviation of f using a weakly informative prior.
6. Height and Arm Span

A person’s arm span is strongly related to his or her height. To investigate
this relationship, arm spans and heights were measured (in cm) for a
sample of 20 students and stored in the file arm_height.csv. (This data
was simulated using statistics from Mohanty, Babu, and Nair (2001).)
Consider the regression model Y; ~ Normal(y;, 0) where y; = fy + p; =;

77



and y;, and z; are respectively the height and arm span for the 4th

student.
(a) Suppose that one assigns a weakly informative prior to the vector (4,

p, o) where f, and p; are independent normal with mean 0 and

standard deviation 10, and the precision ¢ = 1/0° is gamma with
parameters 0.1 and 0.1. Use JAGS to obtain a simulated sample from
the posterior distribution. Find the posterior means of the regression
intercept and slope and interpret these posterior means in the context
of the problem.

(b) Rescale the heights and arm spans and consider the alternative
regression model Y;* ~ Normal(u;,0) where p; = By + frz} and
and y; are the rescaled measurements found by subtracting the
respective  means and dividing by the respectively standard
deviations, i.e. standardized. By using similar weakly informative
priors as in part (a), use JAGS to simulate from the joint posterior
distribution. Find the posterior means of the regression parameters
for this rescaled problem and interpret the means.

7. Height and Arm Span (continued)

Consider the problem of learning about a student height using his or her

arm span where the measurements are both standardized and one assigns

weakly informative priors on the parameters.

(a) Consider a student whose arm span is one standard deviation above
the mean so z; = 1. Using the simulated sample from the posterior
distribution, find the posterior mean and 90% interval estimate for
the expected rescaled height.

(b) For the same value z] =1, simulate a sample from the posterior
predictive distribution of a future standardized height y;. Estimate
the mean and construct a 90% prediction interval for y;.

(c) Compare the intervals computed in parts (a) and (b) and explain how
they are different.

8. Serving Size and Calories of Sandwiches
McDonald restaurant publishes nutritional information on the sandwiches
served. Table 11.3 displays the serving size (in grams) and the calories for

some sandwiches. (This data is available from the file mcdonalds.csv.).
One is interested in the model Y; ~ Normal(y;, o), where u; = f, + f; z;
and y; and z; are respectively the calories and serving size for the ith

sandwich.



(a) Using a suitable weakly informative prior for the regression
parameters and the standard deviation, use JAGS to obtain a
simulated sample from the joint posterior distribution.

(b) Construct a graph and 95% interval estimate for the regression slope
py. Is there sufficient evidence to say that sandwiches with larger

serving sizes have more calories?

(b) For a sandwich with serving size 200 grams, simulate a sample from
the predictive distribution of the number of calories. Construct a 95%
prediction interval for the number of calories.

TABLE 11.3

Serving size (grams) and calories for some McDonalds sandwiches.
Sandwich Size Calories
Hamburger 105 260
Cheeseburger 119 310
Double Cheeseburger 173 460
Quarter Pounder with Cheese 199 510
Double Quarter Pounder with Cheese 280 730
Big Mac 219 560
Big N’ Tasty 232 470
Filet-O-Fish 141 400
McChicken 147 370
Premium Grilled Chicken Classic Sandwich 229 420
Premium Crispy Chicken Classic Sandwich 232 500

9. Serving Size and Calories of Sandwiches (continued)
In Exercise 8, one obtained a simulated sample from the posterior
distribution of (4, f;, o) using a weakly informative prior.

(a) Suppose one is interested in learning about the expected calories u for
a sandwich where the serving size is 300 grams. From the simulated
sample from the posterior, construct a sample from the posterior of u
and construct a 90% interval estimate.

(b) Suppose one is interested in learning about the value of the serving
size £* such that the mean calorie value By + Biz* is equal to 500.
First write the serving size z* as a function of f;, and f;. Then use

this representation to find a 90% interval estimate for the serving size

x*

10. Movie Sales



11.

Table 11.4 displays the weekend and gross sales, in millions of dollars, for
ten popular movies released in 2017. This data is contained in the file
movies2017.csv. Suppose one is interested in studying the relationship
between the two variables by fitting the model

Yi | 507 1817 g~ Normal(lBO + ﬂiwh 0)7

where y; and z; are respectively the gross sales and weekend sales for the ¢
th movie.

(a) Assuming weekly informative priors on the regression parameters and
the standard deviation, use JAGS to simulate from the joint posterior
distribution of (£, f, 0).

(b) Construct a scatterplot of the simulated draws of f; and f,.

(c) From your output, is there significant evidence that weekend sales is a
useful predictor of gross sales? Explain.

(d) From the simulated draws, construct a 80% interval estimate for the
average gross sales for all movies that has $100 million weekend sales.

Suppose you are interested in predicting the gross sales for a single movie
that has $100 million weekend sales. Construct a 80% prediction interval
for the gross sales.

TABLE 114

Weekend and gross sales (in millions of dollars) for ten popular movies released in 2017.
Movie Weekend Gross
Beauty and the Beast 174 504
The Fate of the Furious 99 226
Despicable Me 3 72 264
Spider-Man: Homecoming 117 334
Guardians of the Galaxy, Vol 2. 147 389
Thor: Ragnarok 122 315
Wonder Woman 103 413
Pirates of the Caribbean 63 173
It 123 327
Justice League 94 229

Fog Index and Complex Words of Books

The amazon.com website used to provide “text statistics” for many of the
books it sold. For a particular book, the website displayed the “fog index”,
the number of years of formal education required to read and understand


http://www.amazon.com/

a passage of text, and the “complex words”, the percentage of words in the
book with three or more syllables. Table 11.5 displays the complex words
and fog index for a selection of 21 popular books. (This data is contained
in the file book_stats.csv.) Suppose one is interested in predicting the fog
index of a book given its complex words measurement. Using suitable
weakly informative priors on the parameters, fit a simple regression model
by simulating 5000 draws from the joint posterior distribution. Use this
output to construct a 90% prediction interval for a book whose complex
word measurement is 10.

TABLE 11.5
Measures of complex words and fog indexes for a selection of 20 books.

Book Complex Words Fog Index
A Million Little Pieces 4.00 5.70
The Five People You Meet in Heaven 6.00 6.60
The Glass Castle 6.00 8.40
The Mermaid Chair 7.00 8.20
The Kite Runner 7.00 7.10
Marley & Me 8.00 9.20
Memoirs of a Geisha 8.00 10.10
In Cold Blood 10.00 9.80
Moneyball 10.00 10.30
Jim Cramer’s Real Money 10.00 11.70
The Da Vinci Code 12.00 9.10
Power of Thinking Without Thinking 12.00 11.60
A Mathematician at the Ballpark 12.00 10.20
Misquoting Jesus 13.00 16.10
The Tipping Point 13.00 12.60
Freakonomics 14.00 11.10
Curve Ball 14.00 10.10
The World is Flat 15.00 15.00
Confessions of an Economics Hit Man 15.00 12.80
Collapse 17.00 18.00
Ordinal Data Modeling 24.00 14.60

12. Distances of Batted Balls
Figure 11.14 displays a scatterplot of the launch speed (mph) and distance
traveled (feet) for batted balls hit by the baseball player Mike Trout



during the 2018 season. This data is contained in the file trout20.csv.
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FIGURE 11.14
Scatterplot of launch speed and distance traveled for batted balls of Mike Trout during the 2018
season.

(a) In R, rescale both the explanatory and response variables so each has
mean 0 and standard deviation 1.
(b) Consider the regression model on the rescaled data:

Y* ~ Normal(u!, o) where

,u;k = ﬁO +Blm;’

where y; and x; are respectively the rescaled distance traveled and
rescaled launch speed of the i-th batted ball. Suppose one has little prior
knowledge about the values of the parameters f,, f; and o. One assumes

that the parameter are independent where £, and f; are assigned normal

priors with mean 0 and standard deviation 10, and the precision ¢ = 1/0°
is gamma with parameters 0.1 and 0.1. Use JAGS to obtain a simulated

sample of 5000 draws from the posterior distribution of (4, f;, o).

(c) From the simulated output, construct a density estimate and 90%
interval estimate for the slope parameter f;.

(d) Using the output, obtain simulated draws of the expected
standardized distances when the standardized speed is equal to one.
Construct a 90% interval estimate for the expected distance.

(e) Obtain a simulated sample from the predicted standardized distance
when the standardized speed is equal to one. Construct a 90%



prediction interval and compare this interval with the interval
constructed in part (c).
13. Distance of Batted Balls (continued)
Consider the use of the regression model on the standardized data
Y.* ~ Normal(u;, o) where

N: = /30 +,81$;<,

where y; and x; are respectively the rescaled distance traveled and

rescaled launch speed of the i-th batted ball.

(a) Suppose one believes that if Trout hits a ball with average speed, his
expected distance is normal with mean 350 feet and standard
deviation 10 feet. In addition, one believe the correlation between
launch speed and distance is normal with mean 0.9 and a standard
deviation of 0.02. Construct a prior distribution on the vector of
parameters (f};, p;) that reflects this information.

(b) Use JAGS with this informative prior to obtain a simulated sample
from the posterior distribution of all parameters.

(c) Construct a 90% interval estimate for the slope parameter f; and
compare your answer with the interval estimate constructed in part
(c) of Exercise (12).

14. Gas Bill

The dataset gas2017.csv contains the average temperatures and gas bills

in dollars for twelve months for a particular homeowner. This chapter

described the use of a conditional means prior to construct a prior

distribution on the regression vector (f,, f;) in Section 11.9.

(a) Using this conditional means prior and a weakly informative
Gamma(1, 1) prior on ¢ = 1/0?, use JAGS to simulate 5000 draws
from the posterior distribution of (£, f;, 0). Construct a 90% interval
estimate for the regression slope f;.

(b) Rerun this analysis using a suitable weakly informative prior on all
the parameters. Simulate 5000 draws and construct a 90% interval
estimate for the slope f;.

(c) Compare your interval estimates for parts (a) and (b).
15. Gas Bill (continued)
A traditional maximum likelihood fit of the model Yj|f,, p1, 0 ~

Normal(f, + f; , 0) can be found by use of the lm() function.



16.

17.

fit <- Im(Bill ~ Temp, data = gas2017)
summary (fit)

The output provides estimates of the regression coefficients £, and f; and
the Residual standard error provides an estimate at the standard
deviation 0. Compare these estimates with the posterior means of £, f;, o
found in Exercise (14).

Conditional Means Prior

Suppose you are interested in predicting the cost of purchasing groceries
based on the number of items purchased. You consider the regression
model Yj|fy, 1, 0 ~ Normal(f, + f; z;, 0), where z; and y; are respectively
the number of grocery items and the total cost (in dollars) of the ith
purchase. Use a conditional mean prior using the following information.
Let ui = Bo + £1(10) and w3 = By + B1(30) denote the expected cost of
purchasing 10 and 30 grocery items, respectively. You assume that your
beliefs about pj and w3 are independent where uj ~ Normal(20,5) and
py ~ Normal(70,5).

(a) Use JAGS to simulate 1000 draws from the prior distribution of (/,,

-

(b) Construct a scatterplot of the values of f;, and f; and describe the
relationship that you see in the scatterplot.

(c) Suppose you believe that your prior beliefs about the regression
parameters are too strong. Choose a new conditional means prior
that reflects this belief.

Olympic Swimming Times

The dataset olympic_butterfly.csv contains the winning time in seconds

for the men’s and women’s 100 m butterfly race for the Olympics from

1964 through 2016. Suppose we focus on the women’s times. If y; and

denote respectively the winning time for the women’s 100 m butterfly and

year for the i-th Olympics, consider the use of the regression model

Y: | Bo, B1,0 ~ Normal(By + B1(x; — 1964), o).

(a) Give interpretations for the regression parameters f, and f,.

(b) Assuming weakly informative priors for all parameters, use JAGS to
simulate 5000 values from the joint posterior distribution.



(c) Suppose one is interested in predicting the winning time for the
women’s 100 m butterfly the 2020 Olympics. Simulate 5000 draws
from the posterior predictive distribution and construct a 90%
prediction interval for this winning time.

18. Olympic Swimming Times (continued)

One way to judge the suitability of the linear model u; = £, + f; (z; —

1964) for the Olympics race data is to look for a pattern in the predictive

residuals r; = y; — 9;.

(a) Using the draws from the posterior distribution of (£, f;, 0), simulate
a sample from the posterior predictive distribution of the future
observation §; for all ¢ using the algorithm described in Section
11.7.4.

(b) Compute the sample of predictive residuals r; and find 90% interval
estimates for each .

(c) Construct a graph of the 90% intervals for r; against ;.

(d) Comment on any lack of fit of the linear model from looking at the
residual graph.

19. Priors for Two-Group Model

Returning to a tennis example described in Section 8.3, suppose one is

interested in comparing the time-to-serve for two tennis servers Roger

Federer and Rafael Nadal. One collects the time to serve y; for both

players for many serves. One assumes that Y} is distributed Normal(y;, o)

where

Wi = Bo + Bizi,

where z; is an indicator of the server where z; = 0 if Federer is serving and

z; = 1 if Nadal is serving. In this setting, £, is the mean time to serve for

Federer and pf; is the increase in mean serving time for Nadal.

(a) Construct a reasonable prior for the intercept parameter f,.

(b) If you believe that Nadal is significantly slower than Federer in his
time-to-serve, construct a prior for f; that reflects this belief.

(c) Suppose that the range of serving times is about 3 seconds. Construct
a prior for o that reflects this knowledge.

(d) Construct a joint prior for (4, f;, o) using the priors constructed in
parts (a), (b), and (c).

20. Two-Group Model (continued)



In Exercise (19), you constructed an informative prior for (f,, f;, o) for
the regression model for the time-to-serve measurements for two tennis
servers. The data file two_players_time_to_serve.csv  contain
measurements for 100 serves for the players Roger Federer and Rafael
Nadal. Use JAGS to obtain a simulated sample of the posterior
distribution using your prior and this data. Construct a 90% interval
estimate for the regression slope f; that measures the differences in the
mean time to serve for the two players.
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Bayesian Multiple Regression and Logistic
Models

12.1 Introduction

In Chapter 11, we introduced simple linear regression where the mean of a continuous
response variable was represented as a linear function of a single predictor variable. In
this chapter, this regression scenario is generalized in several ways. In Section 12.2, the
multiple regression setting is considered where the mean of a continuous response is
written as a function of several predictor variables. Methodology for comparing
different regression models is described in Section 12.3. The second generalization
considers the case where the response variable is binary with two possible responses in
Section 12.4. Here one is interested in modeling the probability of a particular response
as a function of an predictor variable. Although these situations are more
sophisticated, the Bayesian methodology for inference and prediction follows the
general approach described in the previous chapters.

12.2 Bayesian Multiple Linear Regression

12.2.1 Example: expenditures of U.S. households

The U.S. Bureau of Labor Statistics (BLS) conducts the Consumer Expenditure
Surveys (CE) through which the BLS collects data on expenditures, income, and tax
statistics about households across the United States. Specifically, this survey provides
information on the buying habits of U.S. consumers. The summary, domain-level
statistics published by the CE are used for both policy-making and research, including
the most widely used measure of inflation, the Consumer Price Index (CPI). In
addition, the CE has measurements of poverty that determine thresholds for the U.S.
Government’s Supplemental Poverty Measure.



The CE consists of two surveys. The Quarterly Interview Survey, taken each quarter,
aims to capture large purchases (such as rent, utilities, and vehicles), containing
approximately 7000 interviews. The Diary Survey, administrated on an annual basis,
focuses on capturing small purchases (such as food, beverages, tobacco), containing
approximately 14,000 interviews of households.

The CE publishes public-use microdata (PUMD), and a sample of the Quarterly
Interview Survey in 2017 1st quarter is collected from the PUMD. This sample
contains 1000 consumer units (CU), and provides information of the CU’s total
expenditures in last quarter, the amount of CU income before taxes in past 12 months,
and the CU’s urban or rural status. Table 12.1 provides the description of each variable
in the CE sample.

TABLE 12.1
Variable description for CE sample.
Variable Description
Expenditure Continuous; CU’s total expenditures in last quarter
Income Continuous; the amount of CU income before taxes in past 12 months
UrbanRural Binary; the urban or rural status of CU: 1 = Urban, 2 = Rural

Suppose someone is interested in predicting a CU expenditure based on his or her
urban or rural status and its income before taxes. In this example, one is treating
expenditure as the response variable and the other two variables as predictors. To
proceed, one needs to develop a model to express the relationship between expenditure
and the other two predictors jointly. This requires extending the simple linear
regression model introduced in Chapter 11 to the case with multiple predictors. This
extension is known as multiple linear regression — the word “multiple” indicates two or
more predictors are present in the regression model. This section describes how to set
up a multiple linear regression model, how to specify prior distributions for regression
coefficients of multiple predictors, and how to make Bayesian inferences and predictions
in this setting.

Recall in Chapter 11, the mean response p; was expressed as a linear function of the
single continuous predictor z; depending on an intercept parameter £, and a slope

parameter f:

pi = Bo + Prz;.

In particular, the slope parameter f; is interpreted as the change in the expected
response f;, when the predictor z; of record ¢ increases by a single unit. In the
household expenditures example, not only there are multiple predictors, but the
predictors are of different types including one continuous predictor (income), and one
binary categorical (rural or urban status) predictor. As Chapter 11 focused on
continuous-valued predictors, the interpretation of a regression coefficient for a binary
categorical predictor is an important topic for discussion in this section.



12.2.2 A multiple linear regression model

Similar to a simple linear regression model, a multiple linear regression model assumes
an observation-specific mean p; for the i-th response variable Y.

Y | wi,o ind Normal(u;,0), i =1,---,n. (12.1)

In addition, it assumes that the mean of Y, y;, is a linear function of all predictors. In

general, one writes

wi = Bo + Brzi1 + Poxiz + -+ BrTig, (12.2)
where x; = (7,1, Z;9, - - -, ¥;,) is a vector of r known predictors for observation 4, and f
= (B, P1s - - -, P,) is a vector of unknown regression parameters (coefficients), shared

among all observations.
For studies where all r predictors are continuous, one interprets the intercept
parameter f, as the expected response y; for observation i, where all of its predictors

take values of 0 (i.e. ,; = 7,9 = - - - = z;,, = 0). One can also interpret the slope
parameter f; (j = 1, 2, - - -, r) as the change in the expected response p;, when the j-th

predictor, z; ;, of observation ¢ increases by a single unit while all remaining (r — 1)

[N
predictors stay constant.

However in the household expenditures example from the CE data sample, not all
predictors are continuous. The urban or rural status variable is a binary categorical
variable, taking a value of 1 if the CU is in an urban area, and taking value of 2 if the
CU is in a rural area. It is possible to consider the variable as continuous and interpret

the associated regression coefficient as the change in the expected response u; when the

CU’s urban or rural status changes by one unit from urban to rural (corresponding to
change from one to two). But it is much more common to consider this variable as a
binary categorical variable that classifies the observations into two distinct groups: the
urban group and the rural group. It will be seen that this classification puts an
emphasis on the difference of the expected responses between the two distinct groups.
Consequently, consider the construction of a new indicator variable in place of the
binary variable. This new indicator variable takes a value of 0 if the CU is in an urban
area, and a value of 1 if the CU is in a rural area. To understand the implication of
this indicator variable, it is helpful to consider a simplified regression model with a
single predictor, the binary indicator for rural area z; This simple linear regression

model expresses the linear relationship as



Bo, the urban group;

Hi = P+ Prazi = {ﬂo + B1, the rural group. (12.3)

The expected response p; for CUs in the urban group is given by f,;, and the
expected response p; for CUs in the rural group is f;, + f;. In this case f; represents the
change in the expected response p; from the urban group to the rural group. That is, 4,
represents the effect of being a member of the rural group.

Before continuing, there is a need for some data transformation. Both the
expenditure and income variables are highly skewed, and both variables have more
even distributions if we apply logarithm transformations. So the response variable will
be the logarithm of the CU’s total expenditure and the continuous predictor will be the
logarithm of the CU 12-month income. Figure 12.1 displays scatterplots of log income
and log expenditure where the two panels correspond to urban and rural residents.
Note that in each panel there appears to be a positive association between log income
and log expenditure.

Rural: 0 Rural: 1

log_TotalExp

5.0-

log_Totallncome

FIGURE 12.1
Scatterplot of log total income and log total expenditure for the urban and rural groups.

Now the the data transformations are completed, one is ready to set up a multiple
linear regression model for the log expenditure response including one continuous
predictor and one binary categorical predictor. The expected response y; is expressed as

a linear combination of the log income variable and the rural indicator variable.



pi = Bo + ,Blmi,income + ﬂ2mi,rural- (12.4)

The multiple linear regression model is written as

Yvi | IBOa 617 B2a (o} i’T\LJd NOI‘IIlal(B() + /Blmi,income + IBZwi,rur(zl) U)a (12.5)

xA

where X = (:L’ z,ruml)

S incomes is a vector of predictors and o is the standard deviation in
)

the normal model shared among all responses Y,’s.
The regression parameters have clear interpretations. The intercept parameter £ is
the expected log expenditure when both the remaining variables are 0°s: Z; jpcome =

x ; = 0. This intercept represents the mean log expenditure for an urban CU with a

1, TUra
log income of 0.

The regression slope coefficient f; is associated with the continuous predictor
variable, log income. This slope f; can be interpreted as the change in the expected log
expenditure when the predictor log income of record i increases by one unit, while all
other predictors stay unchanged.

The remaining regression coefficient f, represents the change in the expected log
expenditure compared relative to the expected log expenditure of the associated
reference category, while all other predictors stay unchanged. In other words, S, is the
change in the expected log expenditure of a rural CU comparing to an urban CU, when
the two CUs have the same log income.

With an understanding of the meaning of the regression coefficients, one can now
proceed to a description of a prior and MCMC algorithm of this multiple linear
regression model. Note that one needs to construct a prior distribution for the set of
parameters (£, fi, Po, 0). We begin by describing the weakly informative prior
approach and the subsequent MCMC inference.

12.2.3 Weakly informative priors and inference through MCMC

In situations where the data analyst has limited prior information about the regression
parameters or the standard deviation, it is desirable to assign a prior that has little
impact on the posterior. Similar to the weakly informative prior for simple linear
regression described in Chapter 11, one assigns a weakly informative prior for a
multiple linear regression model using standard functional forms. Assuming
independence, the prior density for the set of parameters (£, f;, fo, 0) is written as a

product of the component densities:

7(Bo, B, B2, 0) = w(Bo)m(B1)7(B2) (o),



where f; is Normal(my, sy), f; is Normal(m,, s;), f» is Normal(ms,, s,), and the

precision parameter ¢ = 1/0, the inverse of the variance 0%, is Gamma(a, b).

If one has little information about the location of the regression parameters £, f,
and f,, one assigns the respective prior means to be 0 and the prior standard
deviations to be large values, say 20. In similar fashion, if little knowledge exists about
the location of the sampling standard deviation o, one assigns small values for the
hyperparameters, a and b, say a = b = 0.001, for the Gamma prior placed on the
precision ¢ = 1/0°.

One uses the JAGS software to draw MCMC samples from this multiple linear
regression model. The process of using JAGS mimics the general approach used in
earlier chapters.

Describe the model by a script

R The first step in using JAGS writes the following script defining the multiple linear
regression model, saving the script in the character string modelString.

modelString <-"

model {

## sampling

for (i in 1:N){

y[i] ~ dnorm(beta® + betal*x_income[i] +
beta2*x_rural[i], invsigma2)

}

## priors

beta® ~ dnorm(mu®, go)

betal ~ dnorm(mul, g1)

beta2 ~ dnorm(mu2, g2)

invsigma2 ~ dgamma(a, b)

sigma <- sqrt(pow(invsigma2, -1))

In the sampling section of the script, the iterative loop goes from 1 to N, where N is
the number of observations with index i. Recall that the normal distribution dnorm in
JAGS is stated in terms of the mean and the precision and the variable invsigma2
corresponds to the normal sampling precision. The variable sigma is defined in the
prior section of the script so one can track the simulated values of the standard
deviation o. Also the variables mo, mi, m2 correspond to the means, and ge, gi, g2
correspond to the precisions of the normal prior densities for the three regression
parameters.

Define the data and prior parameters

The next step is to provide the observed data and the values for the prior parameters.
In the R script below, a list the_data contains the vector of log expenditures, the



vector of log incomes, the indicator variables for the categories of the binary categorical
variable, and the number of observations. This list also contains the means and
precisions of the normal priors for beta® through beta2 and the values of the two
parameters a and b of the gamma prior for invsigma2. The prior mean of the normal
priors on the individual regression coefficients is 0, for mu® through mu2. The prior
standard deviations of the normal priors on the individual regression coefficients are 20,
and so the corresponding precision values are 1/20% = 0.0025 for go through g2.

y <- as.vector(CEsample$log_TotalExp)

X_income <- as.vector(CEsample$log_TotalIncome)
x_rural <- as.vector(CEsample$Rural)

N <- length(y)

the_data <- list("y" =y, "x_income" = x_income,
"x_rural" = x_rural, "N" =N,
"mue" = 0, "go0" = 0.0025,
"mul" = 0, "gl1" = 0.0025,
"mu2" = 0, "g2" = 0.0025,
"a" = 0.001, "b" = 0.001)

Generate samples from the posterior distribution

The run.jags() function in the runjags package generates posterior samples by the
MCMC algorithm using the JAGS software. The script below runs one MCMC chain
with an adaption period of 1000 iterations, a burn-in period of 5000 iterations, and an
additional set of 20,000 iterations to be run and collected for inference. By using the
argument monitor = c("beta®@", "betal", "beta2", "sigma"), one keeps tracks of all
four model parameters. The output variable posterior contains a matrix of simulated
draws.

posterior <- run.jags(modelString,
n.chains = 1,

data = the_data,

monitor = c("beta®", "betal",
"beta2", "sigma"),

adapt = 1000,

burnin 5000,

sample 20000)

MCMC diagnostics

To obtain valid inferences from the posterior draws from the MCMC simulation, one
should assess convergence of the MCMC chain. The plot() function with the argument
input vars returns four diagnostic plots (trace plot, empirical CDF, histogram and
autocorrelation plot) for the specified parameter. For example, Figure 12.2 shows the



diagnostic plots for the slope parameter f; for the log income predictor using the
following code.

plot(posterior, vars = "betal")
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FIGURE 12.2
MCMC diagnostics plots for the regression slope parameter 31 for the log income predictor.

The upper left trace plot shows MCMC mixing for the 20,000 simulated draws of f;.
In this example, the lower right autocorrelation plot indicates relatively large
correlation values between adjacent posterior draws of f;. In this particular example,

since the mixing was not great, it was decided to take a larger sample of 20,000 draws
to get good estimates of the posterior distribution. In usual practice, one should
perform these diagnostics for all parameters in the model.

Summarization of the posterior

Posterior summaries of the parameters are obtained by use of the print(posterior,
digits = 3) command. Note that these summaries are based on the 20,000 iterations

from the sampling period excluding the samples from the adaption and burn-in
periods.

print(posterior, digits = 3)

Lower95 Median Upper95 Mean SD Mode MCerr
beta® 4.59 4.95 5.36 4.95 0.201 -- 0.0166
betal 0.328 0.365 0.4 0.365 0.0188 -- 0.00155
beta2 -0.482 -0.267 -0.0476 -0.269 0.112 -- 0.00112
sigma 0.735 0.769 0.802 0.769 0.0172 -- 0.000172




One way to determine if the two variables are useful predictors is to inspect the
location of the 90% probability intervals. The interval estimate for f; (corresponding to
log income) is (0.328, 0.400) and the corresponding estimate for f, (corresponding to
the rural variable) is (-0.482, — 0.048). Neither interval covers zero, thus indicating
that both log income and the rural variables are helpful in predicting log expenditure.

Several types of summaries of the posterior distribution are illustrated. Suppose one
is interested in learning about the expected log expenditure. From the regression
model, the mean log expenditure is equal to

/80 + /31 Lincome (12.6)

for urban CUs, and equal to

/BO + ﬁlwincome + ,82 12.7)

for rural CUs. Figure 12.3 displays simulated draws from the posterior of the expected
log expenditure superposed over the scatterplots of log income and log expenditure for
the urban and rural cases. Note that there is more variation in the posterior draws for
the rural units — this is reasonable since only a small portion of the data came from
rural units.

Rural: 0 Rural: 1
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FIGURE 12.3
Scatterplot of log income and log expenditure for the urban and rural groups. The superposed lines represent draws from
the posterior distribution of the expected response.



Figure 12.4 displays the posterior density of the mean log expenditure for the
predictor pairs (log Income = 9, Rural = 1), (log Income = 9, Rural = 0), (log Income
= 12, Rural = 1), and (log Income = 12, Rural = 0). It is pretty clear from this graph
that log income is the more important predictor. For both urban and rural CUs, the
log total expenditure is much larger for log income = 12 than for log income = 9.
Given a particular value of log expenditure, the log expenditure is slightly higher for
urban (Rural = 0) compared to rural units.

Al

Log Income =9 Rural = 1-

Log Income =9 Rural = 0-

Value

A

Log Income = 12 Rural = 1-

Log Income = 12 Rural = 0-
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Expected_log_TotalExp

FIGURE 12.4
Posterior distributions of the expected log expenditure for units with different income and rural variables.

12.2.4 Prediction

A related problem is to predict a CU’s log expenditure for a particular set of predictor
values. Let Y denote the future response value for the expenditure for given values of

. * * . . . .
income x;,.,,. and rural value z;, ... One represents the posterior predictive density of
Y as

F¥ =7y = / 1@ | v, B,0)w(B, 0 | w)db, 12

where 7(f, 0| y) is the posterior density and f(Y =§ |y, 8,0) is the normal sampling
density which depends on the predictor values.

R Since we have already produced simulated draws from the posterior distribution, it
is straightforward to simulate from the posterior predictive distribution. One simulates

a single draw from f(Y = § | y) by first simulating a value of (B, 0) from the posterior



— call this draw (#*), ¢*)). Then one simulates a draw of Y from a normal density with
mean ,3(()8) + ﬂ@x* + ,Bgs):l:* and standard deviation ol®). By repeating this

income rural
process for a large number of iterations, the function one predicted() simulates a
sample from the posterior prediction distribution for particular predictor values x7, .. .
*

and Lryral

one_predicted <- function(x1, x2){

lp <- post[ , "beta®"] + x1 * post[ , "betal"] +
x2 * post[, "beta2"]

y <- rnorm(5000, 1p, post[, "sigma"])
data.frame(Value = paste('"Log Income =", x1,
"Rural =", x2),

Predicted_log_TotalExp = y)

}
df <- map2_df(c(12, 12),

c(0, 1), one_predicted)

This procedure is implemented for the two sets of predictor values (log income,
rural) = (12, 1) and (log income, rural) = (12, 0). Figure 12.5 displays density
estimates of the posterior predictive distributions for the two cases. Comparing Figures
12.4 and 12.5, note the increased width of the prediction densities relative to the
expected response densities. One confirms this by computing interval estimates. For
example, for the values (log income, rural) = (12, 1), a 90% interval for the expected
log expenditure is (8.88, 9.25) and the 90% interval for the predicted log expenditure
for the same predictor values is (7.81, 10.34).

ek}
=
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Predicted_log_TotalExp
FIGURE 12.5
Predictive distributions of the log expenditure for units with different income and rural variables.



12.3 Comparing Regression Models

When one fits a multiple regression model, there is a list of inputs, i.e. potential
predictor variables, and there are many possible regression models to fit depending on
what inputs are included in the model. In the household expenditures example, there
are two possible inputs, the log total income and the rural/urban status and there are
2 x 2 = 4 possible models depending on the inclusion or exclusion of each input. When
there are many inputs, the number of possible regression models can be quite large and
so there needs to be some method for choosing the best regression model. A simple
example will be used to describe what is meant by a best model and then a general
method is outlined for selecting between models.

Learning about a career trajectory

To discuss model selection in a simple context, consider a baseball modeling problem
that will be more thoroughly discussed in Chapter 13. One is interested in seeing how a
professional athlete ages during his or her career. In many sports, an athletic enters his
or her professional career at a modest level of performance, gets better until a
particular age when peak performance is achieved, and then decreases in the level of
performance until retirement. One can use a regression model to explore the pattern of
performance over age — this pattern is typically called the athletic’s career trajectory.
We focus on a particular great historical baseball player Mike Schmidt who played in
Major League Baseball from 1972 through 1989. Figure 12.6 first displays a scatterplot
of the rate that Schmidt hit home runs as a function of his age. If y; denotes Schmidt’s
home run rate during the +th season when his age was z;, Figure 12.6 further overlays

fits from the following three career trajectory models:
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FIGURE 12.6
Scatterplot of age and home run rate for Mike Schmidt. Fits from linear, quadratic, and cubic models are overlaid.

e Model 1 - Linear:
Y; | /BO)IBb Li, O ~ Norma’l(IBO + /Bl(wz - 30)70)

e Model 2 - Quadratic:

Y; | Bos B1, Bas i, 0 ~ Normal(By + By (z; — 30) + Ba(z; — 30)%,0).

e Model 3 - Cubic:

Y | Bo, B1, B2, Bsmi, o ~ Normal(Bo + B1(z; — 30) + Ba(z; — 30) + B3(z; — 30)%, 0).

Model 1 says that Schmidt’s true home run performance is a linear function of his
age, Model 2 says that his home run performance follows a parabolic shape, and Model
3 indicates that his performance follows a cubic curve. Based on the earlier comments
about the knowledge of shapes of career trajectories, the linear function of age given in
Model 1 does not appear suitable in reflecting the “down, up, down” trend that we see
in the scatterplot. The fits of Models 2 and 3 appear to be similar in appearance, but
there are differences in the interpretation of the fits. The quadratic fit (Model 2)
indicates that Schmidt’s peak performance occurs about the age of 30 while the cubic
fit (Model 3) indicates that his peak performance occurs around the age of 33. How can
we choose between the two models?

Underfitting and overfitting

In model building, there are two ways of misspecifying a model that we call
“underfitting” and “overfitting” that are described in the context of this career
trajectory example. First, it is important to include all useful inputs in the model to
explain the variation in the response variable. Failure to include relevant inputs in the
model will result in underfitting. In our example, age is the predictor variable and the
possible inputs are age, age?, and age>. If we use Model 1 which includes only the input
age, this particular model appears to underfit the data since this model does not reflect
the increasing and decreasing pattern in the home run rates that we see in Figure 12.6.

At the other extreme, one should be careful not to include too many inputs in the
model. When one includes more inputs in our regression model than needed, one has
overfitting. Model 3 possibly overfits the data, since it may not be necessary to
represent a player’s trajectory by a cubic curve — perhaps a quadratic curve is
sufficient. In an extreme situation, by increasing the degree of the polynomial function
of age, one can find a fitted curve that goes through most of the points in the
scatterplot. This would be a severe case of overfitting since it is unlikely that a player’s
true career trajectory is represented by a polynomial of a high degree.



Cross-validation

How does one choose a suitable regression model that avoids the underfitting and
overfitting problems described above? A general method of comparing models is called
cross-validation. In this method, one partitions the dataset into two parts — the
training and testing components. One initially fits each regression model to the
training dataset. Then one uses each fitted model to predict the response variable in
the testing dataset. The model that is better in predicting observations in the future
testing dataset is the preferred model.

Let’s describe how one implements cross-validation for our career trajectory example.
In the example, Mike Schmidt had a total of 8170 at-bats for 13 seasons. One
randomly divides these 8170 at-bats into two datasets — 4085 of the at-bats (and the
associated home run and age variables) are placed in a training dataset and the

remaining at-bats become the testing dataset. Let {(:cl(l) ,ygl))} denote the age and

home run rate variables from the training dataset and {(xgz),yf?))} denote the
corresponding variables from the testing dataset.
Suppose one considers the use of Model 1 where the home run rate

Yi(l) ~ Normal(u;,0) where the mean rate is p; = Bo + (81 — 30):1;51). One places a

weakly informative prior on the vector of parameters (ff,, f;, o) and define the

likelihood using the training data. One uses JAGS to simulate from the posterior
distribution and obtain the fitted regression

H = /BO + (/Bl - 30)(6,

where Bo and Bl are the posterior means of the regression intercept and slope
respectively.

One now uses this fitted regression to predict values of the home run rate from the
testing dataset. One could simulate predictions from the posterior predictive
distribution, but for simplicity, suppose one is interested in making a single prediction.

@)

home run rate from Model 1 would be §

in the testing dataset, our best prediction of the #th
(2)

i

For the ith value of age x

where
7 = B, + (B, — 30)z”.

If one performs this computation for all ages, one obtains a set of predictions {gz@}

that one would like to be close to the actual home run rates {yl(?)} in the training
dataset. It is unlikely that the prediction will be on target so one considers the

prediction error that is the difference between the prediction and the response

73 — ).

squared prediction errors (SSPE):

One measures the closeness of the predictions by computing the sum of



SSPE = Z(gz@) . yz(z))T (12.9)

The measure SSPE describes how well the fitted model predicts home run rates from
the training dataset. One uses this measure to compare predictions from alternative
regression models. Specifically, suppose each of the regression models (Model 1, Model
2, and Model 3) is fit to the training dataset and each of the fitted models is used to
predict the home run rates of the testing dataset. Suppose the sum of squared
prediction errors for the three fitted models are SSPE,, SSPE, and SSPE;. The best

model is the model corresponding to the smallest value of SSPE. If this model turns
out to be Model 2, then we say that Model 2 is best in that it is best in predicting
home run rates in a future or out-of-sample dataset.

Approximating cross-validation by DIC

The cross validation method of assessing model performance can be generally applied
in many situations. However, there are complications in implementing cross validation
in practice. One issue is how the data should be divided into the training and testing
components. In our example, the data was divided into two datasets of equal size, but
it is unclear if this division scheme is best in practice. Another issue is that the two
datasets were divided using a random mechanism. The problem is that the predictions
and the sum of squared prediction errors can depend on the random assignment of the
two groups. That raises the question — is it necessary to perform cross validation to
compare the predictive performance of two models?

A best regression model is the one that provides the best predictions of the response
variable in an out-of-sample or future dataset. Fortunately, it is not necessary in
practice to go through the cross-validation process. It is possible to compute a
measure, called the Deviance Information Criterion or DIC, from the simulated draws
from the posterior distribution that approximates a model’s out-of-sample predictive
performance. The description and derivation of the DIC measure is outside of the scope
of this text — a brief description of this method is contained in the appendices. But we
illustrate the use of DIC measure for the career trajectory example. It can be applied
generally and is helpful for comparing the predictive performance of several Bayesian
models.

Example of model comparison

To illustrate the application of DIC, let’s return to the career trajectory example. As
usual practice, JAGS will be used to fit a specific Bayesian model. To fit the quadratic
model M,, one writes the following JAGS model description.

At the sampling stage, the home run rates y[i] are assumed to be a quadratic
function of the ages x[i], and at the prior stage, the regression coefficients betao,



betal, beta2, and the precision phi are assigned weakly informative priors. The
variable the_data is a list containing the observed home run rates, ages, and sample
size.

modelString = "
model {
for (i in 1:N){

y[i] ~ dnorm(mu[i], phi)
mu[i] <- beta® + betal * (x[i] - 30) +
beta2 * pow(x[i] - 30, 2)
}
beta® ~ dnorm(0, 0.001)
betal ~ dnorm(0, 0.001)
beta2 ~ dnorm(0, 0.001)
phi ~ dgamma(0.001, 0.001)

}
d <- filter(sluggerdata,
Player == "Schmidt", AB >= 200)
the_data <- list(y = d$HR / d$AB,
x = d$Age,
N = 16)

The model is fit by the run.jags() function. To compute DIC, it is necessary to run
multiple chains, which is indicated by the argument n.chains = 2 that two chains will
be used.

post2 <- run.jags(modelString,
n.chains = 2,

data = the_data,

monitor = c("beta®", "betal",
Ilbetazll’ Ilphill))

To compute DIC, the extract.runjags() function is applied on the runjags object
post2. In Penalized deviation, output is the value of DIC computed on the simulated
MCMC output.

extract.runjags(post2, "dic")
Mean deviance: -88.98
penalty 4.817

Penalized deviance: -84.17

The value of DIC = -84.17 for this single quadratic regression model is not
meaningful, but one compares values of DIC for competing models. Suppose one wishes
to compare models M;, M,, M; and a quartic regression where one represents the home

run rate as a polynomial of fourth degree of the age. For each model, a JAGS script is



written where the regression coefficients and the precision parameter are assigned
weakly informative priors. The run.jags() function is applied to produce a posterior
sample and the extract.runjags() with the "dic" argument to extract the value of
DIC. Table 12.2 displays the values of DIC for the four regression models. The best
model is the model with the smallest value of DIC. Looking at the values in Table
12.2, one sees that the quadratic model has the smallest value of -84.2. The
interpretation is that the quartic model is best in the sense that it will provide the best
out-of-sample predictions.

TABLE 12.2

DIC values for four regression models fit to Mike Schmidt’s home run rates.
Model DIC
Linear -80.4
Quadratic -84.2
Cubic -82.1
Quartic -79.0

12.4 Bayesian Logistic Regression

12.4.1 Example: U.S. women labor participation

The University of Michigan Panel Study of Income Dynamics (PSID) is the longest
running longitudinal household survey in the world. The study began in 1968 with a
nationally representative sample of over 18,000 individuals living in 5000 families in the
United States. Information on these individuals and their descendants has been
collected continuously, including data covering employment, income, wealth,
expenditures, health, marriage, childbearing, child development, philanthropy,
education, and numerous other topics.

The PSID 1976 survey has attracted particular attention since it interviewed wives
in the households directly in the previous year. The survey provides helpful self-
reporting data sources for studies of married women’s labor supply. A sample includes
information on family income exclusive of wife’s income (in $1000) and the wife’s labor
participation (yes or no). This PSID sample contains 753 observations and two
variables. Table 12.3 provides the description of each variable in the PSID sample.

TABLE 12.3
The variable descriptions for the PSID sample.
Variable Description
LaborParticipation Binary; labor participation of gift: 1 = year, 0 = no

FamilyIncome Continuous; family income exclusive of wife’s income, in $1000, 1975 U.S. dollars




Suppose one is interested in predicting a wife’s labor participation status from the
family income exclusive of her income. In this example, one is treating labor
participation as the response variable and the income variable as a predictor.
Furthermore, the response variable is not continuous, but binary — either the wife is
working or she is not. To analyze a binary response such as labor participation, one is
interested in estimating the probability of a labor participation (yes) as a function of
the predictor variable, family income exclusive of her income. This requires a new
model that can express the probability of a yes as a function of the predictor variable.

Figure 12.7 displays a scatterplot of the family income against the labor
participation status. Since the labor participation variable is binary, the points are
jittered in the vertical direction. From this graph, we see that roughly half of the wives
are working and it is difficult to see if the family income is predictive of the
participation status.
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FIGURE 12.7

Scatterplot of the family income against the wife’s labor participation. Since the participation value is binary, the points
have been jittered in the vertical direction.

Recall in Chapter 11, when one had a continuous-valued response variable and a
single continuous predictor, the mean response p; was expressed as a linear function of

the predictor through an intercept parameter £, and a slope parameter f;:
wi = Bo + Piz;. (12.10)

Moreover it is reasonable to use a normal regression model where the response Y; is

Normally distributed where the mean y; with a linear function as in Equation (12.10).



Y; | Ni,a%i Normal(y;,0), i =1,---,n.

However, such a normal density setup is not sensible for this labor participation
example. For a binary response Y}, the mean is a probability u, that falls in the interval
from 0 to 1. Thus the model pu; = f, + B, z; is not sensible since the linear component
fo + fi x; is on the real line, not in the interval [0, 1].

In the upcoming subsections, it is described how to construct a regression model for
binary responses using a linear function. In addition, this section describes how to
interpret regression coefficients, how to specify prior distributions for these coefficients,
and simulate posterior samples for these models.

12.4.2 A logistic regression model

Recall in Chapter 1 and Chapter 7, the definition of odds was introduced — an odds is
the ratio of the probability of some event will take place over the probability that the
event will not take place. The notion of odds will be used in how one represents the
probability of the response in the regression model.

In the PSID example, let p, be the probability of labor participation of married
woman i, and the corresponding odds of participation is lf—ipi. The probability p; falls

in the interval [0, 1] and the odds is a positive real number. If one applies the
logarithm transformation on the odds, one obtains a quantity, called a log odds or
logit, that can take both negative and positive values on the real line. One obtains a
linear regression model for a binary response by writing the logit in terms of the linear
predictor.

The binary response Y; is assumed to have a Bernoulli distribution with probability

of success p,.
Y | p; ind Bernoulli(p;), ¢ =1,---,n. (12.11)

The logistic regression model writes that the logit of the probability p; is a linear
function of the predictor variable z;

logit(p;) = 10g< 1 fip, ) = Bo + Biz;. (12.12)

It is more challenging to interpret the regression coefficients in a logistic model. In
simple linear regression with one predictor, the interpretation of the intercept and the
slope is relatively straightforward, as the linear function is directly assigned to the



mean g, With the logit function as in Equation (12.12), one sees the the regression

coefficients £, and p; are directly related to the log odds 10g<1£_ip,-> instead of p,.
pi
1-pi
predictor takes a value of 0. In the PSID example, it refers to the log odds of labor
participation of a married woman, whose family has 0 family income exclusive of her

income.
The slope p; refers to the change in the expected log odds of labor participation of a

For example, the intercept f, is the log odds log< ) for observation 7 when the

married woman who has an additional $1000 family income exclusive of her own
income.

By rearranging the logistic regression Equation (12.12), one expresses the regression
as a nonlinear equation for the probability of success p;:

log(lf—},) = Bo + Biz;
10 = exp(Bo + Bizi) (12.13)

- _exp(Bot+Puizi)
pi = 1+exp(Bo+pizs)

Equation (12.13) shows that the logit function guarantees that the probability p; lies in
the interval |0, 1].

With these building blocks, one proceeds to prior specification and MCMC posterior
inference of this logistic regression model. Note that a prior distribution is needed for
the set of regression coefficient parameters: (f,, f;). In the next subsections, a
conditional means prior approach is explored in this prior construction and the
subsequent MCMC inference.

12.4.3 Conditional means priors and inference through MCMC

A conditional means prior can be constructed in a straightforward manner for logistic
regression with a single predictor. This type of prior was previously constructed in
Chapter 11 for a normal regression problem in the gas bill example. A weakly
informative prior can always be used when little prior information is available. In
contrast, the conditional means prior allows the data analyst to incorporate useful
prior information about the probabilities at particular observation values.

The task is to construct a prior on the vector of regression coefficients f = (£, f)-
Since the linear component f, + f; z is indirectly related to the probability p, it is
generally difficult to think directly about plausible values of the intercept f, and slope
p, and think about the relationship between these regression parameters. Instead of
constructing a prior on f directly, a conditional means prior indirectly specifies a prior
by constructing priors on the probability values p; and p, corresponding to two



predictor values 7 and z3. By assuming independence of one’s beliefs about pj and ps,
this implies a prior on the probability vector (pj,p3). Since the regression coefficients £

and p; are functions of the probability values, this process essentially specifies a prior
on the vector p.

A conditional means prior

To construct a conditional means prior, one considers two values of the predictor x]
and x5 and constructs independent beta priors for the corresponding probabilities of
success.

1. For the first predictor value ], construct a beta prior for the probability p] with
shape parameters a; and b;.

2. Similarly, for the second predictor value 3, construct a beta prior for the
probability p; with shape parameters a, and b,.

If one’s beliefs about the probabilities p; and p; are independent, the joint prior for the
vector (pj,p3) has the form

7(p1,p3) = 7(p1)7(P3)-

The prior on (pj,p3) implies a prior on the regression coefficient vector (£, f;). First
write the two conditional probabilities p; and p; as function of the regression
coefficient parameters f, and f;, as in Equation (12.13). By solving these two equations
for the regression coefficient parameters, one expresses each regression parameter as a
function of the conditional probabilities.

__ logit(p})—logit(p;)
B = P ) (12.14)
/B _ 10 p’{ . IB Z'*
0 = 108 19 1Ty- (12.15)

Let’s illustrate constructing a conditional means prior for our example. Consider two
different family incomes (exclusive of the wife’s income), say $20,000 and $80,000
(predictor is in $1000 units). For each family income, a beta prior is constructed for the
probability of the wife’s labor participation. As in Chapter 7, a beta prior is assessed
by specifying two quantiles of the prior distribution and finding the values of the shape
parameters that match those specific quantile values.



e Consider the labor participation probability p] for the value z = 20, corresponding
to a $20,000 family income. Suppose one believes the median of this probability is
0.10 and the 90th percentile is equal to 0.2. Using the R function beta_select()
this belief is matched to a beta prior with shape parameters 2.52 and 20.08.

e Next, consider the participation probability p5 for the value z = 80, corresponding
to a $80,000 family income. The median and 90th percentile of this probability are
thought to be 0.7 and 0.8, respectively, and this information is matched to a beta
prior with shape parameters 20.59 and 9.01.

Figure 12.8 illustrates the conditional means prior for this example. Each bar displays
the 90% interval estimate for the participation probability for a particular value of the
family income.
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FIGURE 12.8
Illustration of the conditional means prior. Each line represents the limits of a 90% interval for the prior for the
probability of participation for a specific family income value.

Assuming independence of the prior beliefs about the two probabilities, one represents
the joint prior density function for (pj,p5) as the product of densities

7(p1, p5) = mB(p7, 2.52,20.08)7(p3, 20.59,9.01), (12.16)

where ng(y, a, b) denotes the beta density with shape parameters a and b.

As said earlier, this prior distribution on the two probabilities implies a prior
distribution on the regression coefficients. To simulate pairs (f,, f;) from the prior
distribution, one simulates values of the means p] and p; from independent beta
distributions in Equation (12.16), and applies the expressions in Equation (12.14) and
Equation (12.15). One then obtains prior draws of the regression coefficient pair (£,



py). Figure 12.9 displays a scatterplot of the simulated pairs (f), f;) from the prior.
Note that, although the two probabilities p; and p5 have independent priors, the

implied prior on the regression coefficient vector f indicates strong negative dependence
between the intercept f, and the slope f,.
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FIGURE 12.9
Scatterplot of simulated draws of the regression parameters for the conditional means prior for the logistic model.

Inference using MCMC

Once the prior on the regression coefficients is defined, it is straightforward to simulate
from the Bayesian logistic model by MCMC and the JAGS software.

The JAGS script

R As usual, the first step in using JAGS is writing a script defining the logistic
regression model, and saving the script in the character string modelString.

modelString <-"
model {
## sampling
for (i in 1:N){

y[i] ~ dbern(p[i])

logit(p[i]) <- beta® + betal*x[i]

## priors

betal <- (logit(pl) - logit(p2)) / (x1 - x2)
beta® <- logit(pl) - betal * x1

pl1 ~ dbeta(al, b1)

p2 ~ dbeta(a2, b2)

}



In the sampling section of the script, the loop goes from 1 to N, where N is the

number of observations with index i. Since Y; | p; ind Bernoulli(p;), one uses dbern()
for y[i]. In addition, since logit(p;) = fy + pi z;, logit() is written for establishing this
linear relationship.

In the prior section of the script, one expresses beta® and betal according to the
expressions in Equation (12.14) and Equation (12.15), in terms of p1, p2, x1, and x2.
One also assign beta priors to p1 and p2, according to the conditional means prior
discussed previously. Recall that the beta distribution is represented by dbeta() in the
JAGS code where the arguments are the associated shape parameters.

Define the data and prior parameters

The next step is to provide the observed data and the values for the prior parameters.
In the R script below, a list the_data contains the vector of binary labor participation
status values, the vector of family incomes (in $1000), and the number of observations.
It also contains the shape parameters for the beta priors on p; and p; and the values of
the two incomes, z] and 3.

y <- as.vector(LaborParticipation$Participation)
X <- as.vector(LaborParticipation$FamilyIncome)
N <- length(y)

the_data <- list("y" =y,

X" = X, IINII = N,

"al" = 2.52, "b1l" = 20.08,
"a2" = 20.59, "b2" = 9.01,
"x1" = 20, "x2" = 80)

Generate samples from the posterior distribution

The run.jags() function in the runjags package generates posterior samples by the
MCMC algorithm using the JAGS software. The script below runs one MCMC chain
with an adaption period of 1000 iterations, a burn-in period of 5000 iterations, and an
additional set of 5000 iterations to be simulated. By using the argument monitor =
c("beta®", "betal"), one keeps tracks of the two regression coefficient parameters. The
output variable posterior contains a matrix of simulated draws.

posterior <- run.jags(modelString,
n.chains = 1,

data = the_data,

monitor = c("beta®", "betal"),
adapt = 1000,

burnin 5000,

sample 5000)




MCMC diagnostics and summarization

Once the simulated values are found, one applies several diagnostic procedures to check
if the simulations appear to converge to the posterior distribution. Figures 12.10 and
12.11 display MCMC diagnostic plots for the regression parameters f, and p;. From
viewing these graphs, it appears that there is a small amount of autocorrelation in the
simulated draws and the draws appear to have converged to the posterior distributions.
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By use of the print() function, posterior summaries are displayed for the regression
parameters. One primary question is whether the family income is predictive of the
labor participation status and so the key parameter of interest is the regression slope
p;. From the output, one sees that the posterior median for f; is —0.0052 and a 90%

interval estimate is ( — 0.0143, 0.0029). This tells us several things. First, since the
regression slope is negative, there is a negative relationship between family income and
labor participation — wives from families with larger income (exclusive of the wife’s
income) tend not to work. Second, this relationship does not appear to be strong since
the value 0 is included in the 90% interval estimate.

print(posterior, digits = 3)

Lower95 Median Upper95 Mean SD Mode MCerr

beta® 0.101 0.358 0.59 0.36 0.125 -- 0.00214

betal -0.0143 -0.00524 0.00285 -0.00532 0.00438 -- 7.69e-05

One difficulty in interpreting a logistic regression model is that the linear component
fo + Py z is on the logit scale. It is easier to understand the fitted model when one

expresses the model in terms of the probability of participation p;:

_ exp(Bo + Bizi)
1+ exp(Bo + Bizi)

(12.17)

(3

For a specific value of the predictor z;, it is straightforward to simulate the posterior

distribution of the probability p, If (Bgs), Bgs) ) represents a simulated draw from the
(s)

posterior of f, and one computes p;,”’ using Equation (12.13) from the simulated draw,

(s)

then p,” is a simulated draw from the posterior of p,.

This process was used to obtain simulated samples from the posterior distribution of
the probability p, for the income variable values 10, 20, ..., 70. In Figure 12.12 the
posterior medians of the probabilities p; are displayed as a line graph and 90%
posterior interval estimates are shown as vertical bars. The takeaway message from this
figure is that the probability of labor participation is close to one-half and this
probability slightly decreases as the family income increases. Also note that the length
of the posterior interval estimate increases for larger family incomes — this is expected
since much of the data is for small income values.
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FIGURE 12.12
Posterior interval estimates for the probability of labor participation for seven values of the income variable.

12.4.4 Prediction

We have considered learning about the probability p; of labor participation for a
specific income value z;. A related problem is to predict the fraction of labor
participation for a sample of n women with a specific family income. If §, represents
the number of women who work among a sample of n with family income z;, then one
would be interested in the posterior predictive distribution of the fraction g, /n.

One represents this predictive density of §; as

FVi =g ly) = / (8| %) (F: B)dP, (218

where zn(f| y) is the posterior density of f = (), f;) and f(§;,5) is the binomial
sampling density of §j, conditional on the regression vector f.

A strategy for simulating the predictive density is implemented similar to what was
done in the linear regression setting. Suppose that one focuses on the predictor value
z; and one wishes to consider a future sample of n = 50 of women with that income
level. The simulated draws from the posterior distribution of f are stored in a matrix
post. For each of the simulated parameter draws, one computes the probability of labor
participation p(®) for that income level — these values represent posterior draws of the
probability {p(s)}. Given those probability values, one simulates binomial samples of
size n = 50 where the probabilities of success are given by the simulated {p(*)} — the
variable § represents the simulated binomial variable. By dividing § by n, one obtains
simulated proportions of labor participation for that income level. Each group of



simulated draws from the predictive distribution of the labor proportion is summarized
by the median, 5th, and 95th percentiles.

In the following R script, the function prediction_interval() obtains the quantiles
of the prediction distribution of §/n for a fixed income level, and the sapply() function
computes these predictive quantities for a range of income levels. Figure 12.13 graphs
the predictive median and interval bounds against the income variable. By comparing
Figure 12.12 and Figure 12.13, note that one is much more certain about the
probability of labor participation than the fraction of labor participation in a future
sample of 50.

prediction_interval <- function(x, post, n = 20){
lp <- post[, 1] + x * post[, 2]

p <- exp(lp) /7 (1 + exp(lp))

y <- rbinom(length(p), size = n, prob = p)
quantile(y / n,

c(.05, .50, .95))

}
out <- sapply(seq(10, 70, by = 10),
prediction_interval, post, n = 50)
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FIGURE 12.13
Prediction intervals for the fraction of labor participation of a sample of size n = 50 for seven values of the income
variable.

12.5 Exercises

1. Olympic Swimming Times
The dataset olympic_butterfly.csv contains the winning time in seconds for the
men’s and women’s 100 m butterfly race for the Olympics from 1964 through



2016. Let y; and z; denote the winning time and year for the ¢th Olympics. In
addition, let w; denote an indicator variable that is 1 for the women’s race and 0
for the men’s race. Consider the regression model Y; ~ Normal(y; o), where the

mean is given by
pi = Bo + Br(x; — 1964) + Bow;.

(a) Interpret the parameter £ in terms of the winning time in the race.

(b) Interpret the parameter f; + fo.

(c) Interpret the parameter f, + 8 f.

(d) Interpret the parameter f; + 8 f; + fo.

. Olympic Swimming Times (continued)

Consider the regression model for the 100 m butterfly race times described in
Exercise 1. Suppose the regression parameters f,, p;, f» and the precision

parameter ¢ = 1/0° are assigned weakly informative priors.

(a) Using JAGS, sample 5000 draws from the joint posterior distribution of all
parameters.

(b) Construct 90% interval estimates for each of the regression coefficients.

(c) Based on your work, describe how the mean winning time in the butterfly
race has changed over time. In addition, describe how the men times differ
from the women times.

(d) Construct 90% interval estimates for the predictive residuals r; = y; — g,
where ¢, is simulated from the posterior predictive distribution. Plot these
interval estimates and comment on any interval that does not include zero.

. Olympic Swimming Times (continued)

For the 100 m butterfly race times described in Exercise 1 consider the regression

model where the mean race time has the form

wi = Bo + B1(zi — 1964) + Bow; + Bs(z; — 1964)w;,

where z; denotes the year for the +th Olympics and w; denote an indicator variable

that is 1 for the women’s race and 0 for the men’s race.

(a) Write the expression for the mean time for the men’s race, and for the mean
time for the women’s race. Using this expressions, interpret the parameters f,
and f;.

(b) Using weakly informative priors for all parameters, use JAGS to draw a
sample of 5000 draws from the joint posterior distribution.

(c) Based on your work, is there evidence that the regression model between year
and mean race time differs between men and women?

4. Prices of Personal Computers

What factors determine the price of a personal computer in the early days? A
sample of 500 personal computer sales was collected from 1993 to 1995 in the



United States. In addition to the sale price (price in U.S. dollars of 486 PCs),
information on clock speed in MHz, size of hard drive in MB, size of RAM in MB,
and name of the manufacturer (e.g. IBM, COMPAQ) was collected. The dataset is
in ComputerPriceSample.csv. Suppose one considers the regression model Y; ~

Normal(u,, o) where

i = Bo + Brzin + Paia,

y; is the sale price, x;; is the clock speed, and x,; is the logarithm of the hard drive

size.

(a) Using a weakly informative prior on f = (fy, fi, fo) and o, use JAGS to
produce a simulated sample of size 5000 from the posterior distribution on (f,
0).

(b) Obtain 95% interval estimates for g, and f,.

(c) On the basis of your work, are both clock speed and hard drive size useful
predictors of the sale price?

. Prices of Personal Computers (continued)

(a) Suppose a consumer is interested in a computer with a clock speed of 33 MHz
and a 540 MB hard drive (so log 450 = 6.1). Simulate 5000 draws from the
expected selling price £, + p; z; + fy for computer with this clock speed and
hard drive size. Construct a 90% interval estimate for the expected sale price.

(b) Instead suppose the consumer wishes to predict the selling price of a
computer with this clock speed and hard drive size. Simulate 5000 draws from
the posterior predictive distribution and use these simulated draws to find a
90% prediction interval.

. Salaries for Professors

A sample contains the 2008-09 nine-month academic salary for Assistant

Professors, Associate Professors and Professors in a college in the U.S. The data

were collected as part of the on-going effort of the college’s administration to

monitor salary differences between male and female faculty members. In addition
to the nine-month salary (in U.S. dollars), information on gender, rank (Assistant

Professor, Associate Professor, Professor), discipline (A is “theoretical” and B is

“applied”), years since PhD, and years of service were collected. The dataset is in

ProfessorSalary.csv. Suppose that the salary of the 4th professor, vy, is

distributed normal with mean yu; and standard deviation o, where the mean is

given by
wi = Bo + Brxi1 + Paxia,

where z; is the years of service and z is the gender (where 1 corresponds to male

and 0 to female).

(a) Assuming a weakly informative prior on f and o, use JAGS to simulate a
sample of 5000 draws from the posterior distribution on (f, o).



(b) Simulate 1000 draws from the posterior of £, + 104, the mean salary among

all female professors with 10 years of service.

(c) Simulate 1000 draws from the posterior of the mean salary of male professors
with 10 years of service £, + 108, + f».

(d) By comparing the intervals computed in parts (b) and (c), is there a
substantial difference in the mean salaries of male and female professors with
10 years of service?

. Salaries for Professors (continued)

(a) Suppose the college is interested in predicting the salary of a female professor
with 10 years of service. By simulating 5000 draws from the posterior
predictive distribution, construct a 90% prediction interval for this salary.

(b) Use a similar method to obtain a 90% prediction interval for the salary of a
male professor with 10 years of service.

. Graduate School Admission

What factors determine admission to graduate school? In a study, data on 400

graduate school admission cases was collected. Admission is a binary response,

with 0 indicating not admitted, and 1 indicating admitted. Moreover, the
applicant’s GRE score, and undergraduate grade point average (GPA) are

available. The dataset is in GradSchoolAdmission.csv (GRE score is out of 800).

Let p; denote the probability that the 7th student is admitted. Consider the

logistic model

log( 1 bi ) = Bo + Bizi1 + Paxio,

1

where z;; and z,; are respectively the GRE score and the GPA for the i-th student.
(a) Assuming weakly informative priors on £, f;, and f, write a JAGS script

defining the Bayesian model.
(b) Take a sample of 5000 draws from the posterior distribution of f = (£, fi.

fa)-

(c) Consider a student with a 550 GRE score and a GPA of 3.50. Construct a
90% interval estimate for the probability that this student is admitted to
graduate school.

(d) Construct a 90% interval estimate for the probability a student with a 500
GRE score and a 3.2 GPA is admitted to graduate school.

. Graduate School Admission (continued)

Consider the logistic model described in Exercise 8 where the logit probability of

being admitted to graduate school is a linear function of GRE score and GPA. It

is assumed that JAGS is used to obtain a simulated sample from the posterior
distribution of the regression vector.

(a) Consider a student with a 580 GRE score. Construct 90% posterior interval
estimates for the probability that this student achieves admission for GPA



values equally spaced from 3.0 to 3.8. Graph these posterior interval estimates
as a function of the GPA.
(b) Consider a student with a 3.4 GPA. Find 90% interval estimates for the
probability this student is admitted for GRE score values equally spaced from
520 to 700. Graph these interval estimates as a function of the GRE score.
10. Personality Determinants of Volunteering
In a study of the personality determinants of volunteering for psychological
research, a subject’s neuroticism (scale from Eysenck personality inventory),
extraversion (scale from Eysenck personality inventory), gender, and volunteering
status were collected. One intends to find out what personality determinants affect
a person’s volunteering choice. The dataset is in Cowles.csv. Let p, denote the

probability that the i-th subject elects to volunteer. Consider the logistic model

p.
log( : ) = Po + Przir + Bami,
1—p;

where z;; and z,; are respectively the neuroticism and extraversion measures for

the #th subject.
(a) Assuming weakly informative priors on f,, £, and f,, write a JAGS script
defining the model and draw a sample of 5000 draws from the posterior

diStI‘lbution Of IB — (1307 1517 152).
(b) By inspecting the locations of the posterior distributions of f, and f,, which

personality characteristic is most important in determining a person’s
volunteering choice?

(¢c) Let O = p/(1 — p) denote the odds of volunteering. Construct a 90% interval
estimate for the odds a student with a neuroticism score of 12 and an
extraversion score of 13 will elect to volunteer.

11. The Divide by Four Rule

Suppose one considers the logistic model log(%p) = By + B1z. This model is

rewritten as

_ exp(Bo + Pix)
P=17 exp(Bo + fiz)

(a) Show that the derivative of p with respect to x is written as

(b) Suppose the probability is close to the value 0.5. Using part (a), what is the
approximate derivative of p with respect to z in this region?

(c¢) Fill in the blank in the following sentence. In this logistic model, the quantity
p;/4 can be interpreted as the change in the when z increases by one



12.

13.

unit.

(d) Suppose one is interested in fitting the logistic model log% = By + Pz
where z is the number of study hours and p is the probability of passing an
exam. One obtains the fitted model

N

log . P __ + 0.2z.

A

Using your work in parts (b) and (c), what is the (approximate) change in the
fitted pass probability if a student studies an additional hour for the exam?
Football Field Goal Kicking

The data file football _field_goal.csv contains data on field goal attempts for
professional football kickers. Focus on the kickers who played during the 2015
season. Let y; denote the response (success or failure) of a field goal attempt from
z; yards. One is interested in fitting the logistic model

log 7 5 - = Po + Bz,

)

where p, is the probability of a successful attempt.

(a) Using weakly informative priors on f, and f;, use JAGS to take a simulated
sample from the posterior distribution of (£, £,).

(b) Suppose a kicker is attempting a field goal from 40 yards. Construct a 90%
interval estimate for the probability of a success.

(c) Suppose instead that one is interested in estimating the yardage x* where the
probability of a success is equal to 0.8. First express the yardage z* as a
function of £, and f;, and then find a 90% interval estimate for x*.

(d) Suppose 50 field goals are attempted at a distance of 40 yards. Simulate from
the posterior predictive distribution to construct a 90% interval estimate for
the number of successful attempts.

Predicting Baseball Batting Averages
The data file batting_2018.csv contains batting data for every player in the 2018
Major League Baseball season. The variables AB.x and H.x in the dataset contain
the number of at-bats (opportunities) and number of hits of each player in the first
month of the baseball season. The variables AB.y and H.y in the dataset contain
the at-bats and hits of each player for the remainder of the season.
Take a random sample of size 50 from batting_2018.csv. Suppose one is interested
in predicting the players’ batting averages H.y/AB.y for the remainder of the
season. Consider the following three estimates:

o Individual Estimate: Use the player’s first month batting average H.z/AB.x.

o Pooled Estimate: Use the pooled estimate > H.z/ ) AB. z.

o Compromise Estimate: Use the shrinkage estimate



14.

15.

16.

AB.x H.z n 135 .H.z
AB.z+135 AB.x AB.x+135 Y AB.x’

For your sample, compute values of the individual, pooled, and compromise
estimates. For each set of estimates, compute the sum of squared prediction errors,
where the prediction error is defined to be the difference between the estimate and
the batting average in the remainder of the season. Which estimate do you prefer?
Why?

Predicting Baseball Batting Averages (continued)

In Exercise 13, for the #-th player in the sample of 50 one observes the number of
hits y; (variable H.x) distributed binomial with sample size n; (variable AB.x) and

probability of success p,. Consider the logistic model

] b .
0og = %i-
1—p;

Use JAGS to simulate from the following three models:
(a) Individual Model: Assume the p; values are distinct and assign each

parameter a weakly informative normal distribution.

(b) Pooled Model: Assume that p; = ... = p5y = » and assign the single p
parameter a weakly informative normal distribution.

(c) Partially Pooled Hierarchical Model: Assume that y; ~ Normal(u, t) where u

and the precision P = 1/7° are assigned weakly informative distributions.

(d) Focus on a particular player corresponding to the index k. Contrast 90%
interval for estimates for p, using the individual, pooled, and partially pooled
hierarchical models fit in parts (a), (b), and (c).

Comparing Career Trajectory Models
In Section 12.3, the Deviance Information Criterion (DIC) was used to compare
four regression models for Mike Schmidt’s career trajectory of home run rates. By
fitting the model using JAGS and using the extract.runjags() function, find the
DIC values for fitting the linear, cubic, and quartic models and compare your
answers with the values in Table 12.2. For each model, assume that the regression
parameters and the precision parameter have weakly informative priors.
Comparing Models for the CE Sample Example
For the Consumer Expenditure Survey (CE) example, the objective was to learn
about a CU’s expenditure based on the person’s income and his or her urban or
rural status. There are four possible regression models depending on the inclusion
or exclusion of each predictor. Use JAGS to fit each of the possible models and
compute the value of DIC. For each model, assume that the regression parameters
and the precision parameter have weakly informative priors. By comparing the
DIC values, decide on the most appropriate model and compare your results with
the discussion in Section 12.2.



17. Grades in a Calculus Class

18.

19.

Suppose one is interested in how the grade in a calculus class depends on the
grade in the prerequisite math course. One is interested in fitting the logistic
model

log( 1 b ) = Bo + Bz,
— D;

where p, is the probability of an A of the ith student and x; represents the grade of

the ith student in the previous math class (1 if an A was received, and 0

otherwise).

(a) Suppose one believes a Beta(12, 8) prior reflects the belief about the
probability of an A for a student who has received an A in the previous math,
and a Beta(b, 15) prior reflects the belief about the probability of an A for a
student who has not received an A in the previous course. Use JAGS to
simulate 1000 draws from the prior of (£, ;).

(b) Data for 100 students is contained in the data file calculus.grades.csv. Use
JAGS to simulate 5000 draws from the posterior of (£, ).

(¢) Construct a 90% interval estimate for f;. Is there evidence that the grade in
the prerequisite math course is helpful in explaining the grade in the calculus
class?

Grades in a Calculus Class (continued)
The traditional way of fitting the logistic model in Exercise 17 is by maximum
likelihood. The variables grade and prev.grade contain the relevant variables in
the data frame calculus.grades. The maximum likelihood is achieved by the
function gim with the family = binomial option.

fit <- glm(grade ~ prev.grade, data = calculus.grades,
family = binomial)
summary(fit)

Look at the estimates and associated standard errors of the regression coefficients
and contrast these values with the posterior means and standard deviations from
the informative prior Bayesian analysis in Exercise 17.

Logistic Model to Compare Proportions

In Exercise 19 of Chapter 7, one was comparing proportions of science majors for
two years at some liberal arts colleges. One can formulate this problem in terms of
logistic regression. Let y; denote the number of science majors out of a sample of
n; for the ith year. One assumes that y; is distributed Binomial(n,; p;) where p;
satisfies the logistic model



where z; = 0 for year 2005 and z = 1 for year 2015.

(a) Assuming that f, and f; are independent with weakly informative priors, use
JAGS to simulate a sample of 5000 from the posterior distribution. (In the
JAGS script, the dbin(p, n) denotes the Binomial distribution with
probability p and sample size n.)

(b) Find a 90% interval estimate for f;.

(¢) Use the result in (b) to describe how the proportion of science majors has
changed (on the logit scale) from 2005 to 2015,

20. Separation in Logistic Regression

Consider data in Table 12.4 that gives the number of class absences and the grade

(1 for passing and 0 for failure) for ten students. If p; denotes the probability the

ith student passes the class, then consider the logistic model

log< b )Zﬂo+ﬂ1wi,

where z; is the number of absences.

TABLE 12.4
Number of absences and grades for ten students.
Student Absences Grade Student Absences Grade
1 0 1 6 2 1
2 0 1 7 2 1
3 0 1 8 5 0
4 1 1 9 8 0
5 1 1 10 10 0

(a) Using the glm() function as shown in Exercise 18, find maximum likelihood
estimates of £, and f;.

(b) Comment on the output of implementing the gim() function. (The strange
behavior is related to the problem of separation in logistic research.) Do some
research on this topic and describe why one is observing this unusual
behavior.

(c) By use of a weakly informative prior, use JAGS to simulate a sample of 5000
from the posterior distribution.

(d) Compute posterior means and standard deviations of f; and f; and compare
your results with the traditional fit in part (a).



13

Case Studies

13.1 Introduction

This chapter provides several illustrations of Bayesian modeling that
extend some of the models described in earlier chapters. Mosteller and
Wallace (1963), in one of the early significant Bayesian applications,
explore the frequencies of word use in the well-known Federalist Papers
to determine the authorship between Alexander Hamilton and James
Madison. Section 13.2 revisits this word use application. This study
raises several interesting explorations such as determining a suitable
sampling distribution and finding suitable ways of comparing the word
use of several authors.

In sports, teams are very interested in learning about the pattern of
increase and decrease in the performance of a player, commonly called a
career trajectory. A baseball player is believed to reach a level of peak
performance at age of 30, although this “peak age” may vary between
players. Section 13.3 illustrates the use of a hierarchical model to
simultaneously estimate the career trajectories for a group of baseball
players using on-base percentage as the measure of performance.

Suppose a class is taking a multiple choice exam where there are two
groups of students. Some students are well-prepared and are familiar
with the exam content and other students have not studied and will
essentially guess at the answers to the exam questions. Section 13.4
introduces a latent class model that assumes that the class consists of



two groups of students with different success rates and the group
identifications of the students are unknown. In the posterior analysis,
one learns about the location of the two success rates and the group
classifications of the students. Using this latent class framework, the
Federalist Papers example is revisited and the frequencies of particular
filler words is used to learn about the true author identity of some
disputed authorship Federalist Papers.

13.2 Federalist Papers Study

13.2.1 Introduction

The Federalist Papers were a collection of articles written in the late
18th century by Alexander Hamilton, James Madison and John Jay to
promote the ratification of the United States Constitution. Some of
these papers are known to be written by Hamilton, other papers were
clearly written by Madison, and the true authorship of some of the
remaining papers has been in doubt.

In one of the early significant applied Bayesian papers, Mosteller and
Wallace (1963) illustrate the use of Bayesian reasoning in solving the
authorship problem. They focused on the frequencies of word counts.
Since the topic of the article may influence the frequencies of words
used, Mosteller and Wallace were careful to focus on counts of so-called
filler words such as “an”, “of”, and “upon” that are not influenced by the
topics of the articles.

In this case study, the use of different sampling distributions is
described to model word counts in a group of Federalist Papers. The
Poisson distribution is perhaps a natural choice for modeling a group of
word counts, but it will be seen that the Poisson can not accommodate
the spread of the distribution of word counts. This motivates the use of
a negative binomial sampling distribution and this model will be used to
compare rates of use of some filler words by Hamilton and Madison.

13.2.2 Data on word use



To begin our study, let’s look at the occurrences of the word “can” in all
of the Federalist Papers authored by Alexander Hamilton or James
Madison. Table 13.1 shows the format of the data. For each paper, the
total number of words, the number of occurrences of the word “can” and
the rate of use of this word per 1000 words are recorded.

TABLE 13.1
Portion of the data table counting the number of words and occurrences of the word “can” in 74 Federalist
Papers.

Name Total Count Rate Authorship
1 Federalist No. 1 1622 3 1.85 Hamilton
2 Federalist No. 10 3008 4 1.33 Madison
3 Federalist No. 11 2511 5 1.99 Hamilton
4 Federalist No. 12 2171 2 0.92 Hamilton
5 Federalist No. 13 970 4 4.12 Hamilton
6 Federalist No. 14 2159 9 4.17 Madison

Figure 13.1 displays parallel jittered dotplots of the rates (per 1000
words) of “can” for the Madison and Hamilton papers. Note the
substantial variability in the rates across papers. But it appears that
this is a slight tendency for Hamilton to use this particular word more
frequently than Madison. Later in this section we will formally perform
inference about the ratio of the true rates of use of “can” for the two
authors.
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FIGURE 13.1

Observed rates of use of the word “can” in Federalist Papers authored by Hamilton and Madison.

13.2.3 Poisson density sampling

Consider first the word use of all of the Federalist Papers written by
Hamilton. The initial task is to find a suitable sampling distribution for
the counts of a particular function word such as “can”. Since Poisson is a
popular sampling distribution for counts, it is initially assumed that for
the +th paper the count y, of the word “can” has a Poisson density with

mean n;,4/1000 where n; is the total number of words and A is the true

rate of the word among 1000 words. There are N papers in total. Using
the Poisson density expression, one writes

n;A/1000)¥ exp(—n; A /1000
fYi=yi|A) = (:4/1000) y‘f)( /1000) (13.1)

Assuming independence of word use between papers, the likelihood function is
the product of Poisson densities



N

L) =[] £@i | 2, (13.2)

=1

and the posterior density of A is given by
(A [ Y1, yn) o< LA)T(N), (13.3)

where 7() is the prior density.

R Suppose one knows little about the true rate of “can”s and to reflect
this lack of information, one assigns A a gamma density with parameters
a = 0.001 and g = 0.001. Recall in Section 8.8 in Chapter 8, a gamma
prior is conjugate to a Poisson sampling model. A JAGS script is
written to specify this Bayesian model and by use of the run.jags()
function, one obtains a simulated sample of 5000 draws from the
posterior distribution.

modelString =
mode 1{

## sampling
for (1 in 1:N) {

y[i] ~ dpois(n[i] * lambda / 1000)
}

## prior

lambda ~ dgamma(0.001, 0.001)

}

When one observes count data such as these, one general concern is
overdispersion. Do the observed counts display more variability than one
would anticipate with the use of this Poisson sampling model? One can
check for overdispersion by use of a posterior predictive check. First one
simulates one replicated dataset from the posterior predictive
distribution. This is done in two steps: 1) one simulates a value of A



from the posterior distribution; 2) given the simulated value A = A*, one
simulates counts y{%, e ,yﬁ from independent Poisson distribution with
means n3A*/1000,...,nyA*/1000. Given a replicated dataset of counts
{yﬁ}, one computes the standard deviation. In this setting a standard
deviation is a reasonable choice of a testing function since one is
concerned about the variation or spread in the data.

one_rep <- function(i){
lambda <- post[i]
sd(rpois(length(y), n * lambda / 1000))

sapply(1:5000, one_rep) -> SD

One repeats this process 5000 times, obtaining 5000 replicated
datasets from the posterior predictive distribution and 5000 values of
the standard deviation. Figure 13.2 displays a histogram of the standard
deviations from the predictive distribution and the standard deviation of
the observed counts {y,} is displayed as a vertical line. Note that the

observed standard deviation is very large relative to the standard
deviations of the counts from the predictive distribution. The takeaway
is that there is more variability in the observed counts of “can”s than
one would predict from the Poisson sampling model.
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FIGURE 13.2

Histogram of standard deviations from 5000 replicates from the posterior predictive distribution
from the Poisson sampling model. The observed standard deviation is displayed as a vertical line.

13.2.4 Negative binomial sampling

In the previous section, we presented evidence that the observed counts
of “can” from a group of Federalist Papers of Alexander Hamilton were
overdispersed in that there was more variability in the counts than
predicted by the Poisson sampling model. One way of handling this
overdispersion issue to find an alternative sampling density for the
counts that is able to accommodate this additional variation.

One popular alternative density is the negative binomial density.
Recall that y, represents the number of “can”s in the ¢th Federalist

Papers. Conditional on parameters a and f, one assigns y; the negative
binomial density defined as

['(y; + )

f(Y;':yi‘aaﬂ): I‘(a)

ps (1 — p;)¥, (13.4)



where

_ s
P B /1000 (135
One can show that this density is a natural generalization of the Poisson
density. The mean count is given by E(y;) = p; where
o n, o
Wi = 1000 3" (13.6)

Recall that the mean count for y; the Poisson model was n/1000, so
the ratio a/f is playing the same role as A — one can regard a/f as the
true rate of the particular word per 1000 words.

One can show that the variance of the count y; is given by

n;
i) = i 1 : :
Var(y;) = p ( + 10005) (13.7)

The variance for the Poisson model is equal to p; so the negative

binomial model has the extra multiplicative term (1 + 1073—1'05). So the
negative binomial family is able to accommodate the additional
variability in the counts {y,}.

The posterior analysis using a negative binomial density is
straightforward. The counts yy,..., yy are independent negative binomial

with parameters a and £ and the likelihood function is equal to



N
L(a, ) = || f(wi | @, B). (13.8)

i=1

If little is known a priori about the locations of the positive parameter
values a and p, then it reasonable to assume the two parameters are
independent and assign to each a and f a gamma density with
parameters 0.001 and 0.001. Then the posterior density is given by

m(a, B | y1,- -, yn) < L(a, B)(cr, B) (13.9)

where 7i(a, f) is the product of gamma densities.

R One simulates the posterior with negative binomial sampling
using JAGS. The negative binomial density is represented by the JAGS
function dnegbin() with parameters p[i] and alpha. In the JAGS script
below, note that one first defines p[i] in terms of the parameter beta
and the sample size n[i], and then expresses the negative binomial
density in terms of p[i] and alpha.

modelString = "
mode 1{
## sampling
for(i in 1:N){
p[i] <- beta / (beta + n[i] / 1000)
y[i] ~ dnegbin(p[i], alpha)
}
## priors
mu <- alpha / beta
alpha ~ dgamma(.001, .001)
beta ~ dgamma(.001, .001)
¥

We earlier made a statement that the Negative Binomial density can
accommodate the extra variability in the word counts. One can check



this statement by a posterior predictive check. One replication of the
posterior predictive checking method is implemented in the R function
one_rep(). We start with a simulated value (a*, 5*) from the posterior
distribution. Then we simulated a replicated dataset y{z, . ,yﬁ where
le has a negative binomial distribution with parameters a* and
B*/(B* + ni/1000). Then we compute the standard deviation of the {y’

}.

one_rep <- function(i){
p <- post$beta[i] / (post$beta[i] + n / 1000)
sd(rnbinom(length(y), size = post$alpha[i], prob = p))
¥

By repeating this algorithm for 5000 iterations, one has 5000 draws of
the standard deviation of samples from the predictive distribution
stored in the R vector SD.

sapply(1:5000, one_rep) -> SD

Figure 13.3 displays a histogram of the standard deviations of samples
from the predictive distribution and the observed standard deviation of
the counts is shown as a vertical line. In this case the observed standard
deviation value is in the middle of the predictive distribution. The
interpretation is that predictions with a negative binomial sampling
model are consistent with the spread in the observed word counts.
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FIGURE 13.3
Histogram of standard deviations from 5000 replicates from the posterior predictive distribution in

the negative binomial sampling model. The observed standard deviation is displayed as a vertical
line.

Now that the negative binomial model seems reasonable, one performs
inferences about the mean use of the word “can” in Hamilton essays.
The parameter p = a/f represents the true rate of use of this word per
1000 words. Figure 13.4 displays MCMC diagnostic plots for the
parameter u. The trace plot and autocorrelation plot indicate good
mixing and so one believes the histogram in the lower-left section
represents the marginal posterior density for u. A 90% posterior interval
estimate for the rate of “can” is (2.20, 3.29).
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MCMC diagnostic plots for the rate u = o/ of use of the word “can” in Hamilton essays.

13.2.5 Comparison of rates for two authors

Recall that the original problem was to compare the word use of
Alexander Hamilton with that of James Madison. Suppose we collect
the counts {y;,} of the word “can” in the Federalist Papers authored by
Hamilton and the counts {y,,} of “can” in the Federalist Papers authored
by Madison. The general problem is to compare the true rates per 1000
words of the two authors.

Since a negative binomial sampling model appears to be suitable in
the one-sample situation, we extend this in a straightforward away to
the two-sample case. The Hamilton counts i1, ...,¥Y1n,, conditional on
parameters a; and p; are assumed to be independent negative binomial,
where y;, is negative binomial(py; a;) with

_— /81
B1 + n1;/1000°

D1 (13.10)



and {ny;} are the word counts for the Hamilton essays. Similarly, the
Madison counts o1, ..., ¥y2n,, conditional on parameters a, and p, are

assumed to be
independent negative binomial, where yy,; is Negative Binomial(p,;, as)

with

B
,82 + TLQZ/].OOO ’

D2; (13.11)

and {n,;} are the word counts for the Madison essays. The focus will be

to learn about p,,/uy, the ratio of the rates (per 1000 words) of use of

the word “can” of the two authors, where uy; = ay/fy and pg = a,/f;.
Assume that the observed counts of word “can” of the two authors are

independent. Moreover, assume that the prior distributions of the
parameters (a;, f;) and (ay, f,) are independent. Then the posterior

distribution is given, up to an unknown proportionality constant, by

2 T
m(a, Biy @z, B2 | {y}, {w2}) o< || (H F(Ywi | Oék,ﬁk)ﬂ(ak,ﬂk))- (13.12)
k=1 \i=1

We assume that the user has little prior information about the location
of the negative binomial parameters and we assume they are
independent with each parameter assigned a gamma prior with
parameters 0.001 and 0.001.

R The posterior sampling is implemented using the JAGS software.
The model description script is an extension of the previous script for a
single negative binomial sample. Note that the ratio parameter is
defined to be the ratio of the word rates for the two samples.

modelString = "



mode 1{
## sampling
for(i in 1:N1){
pl[i] <- betal / (betal + nli[i] / 1000)
y1[i] ~ dnegbin(p1[i], alphal)
}
for(i in 1:N2){
p2[i] <- beta2 / (beta2 + n2[i] / 1000)
y2[i] ~ dnegbin(p2[i], alpha2)
}
## priors
alphal ~ dgamma(.001, .001)
betal ~ dgamma(.001, .001)
alpha2 ~ dgamma(.001, .001)
beta2 ~ dgamma(.001, .001)
ratio <- (alpha2 / beta2) / (alphal / betal)

3

Since the focus is to compare the word use of the two authors, Figure
13.5 displays MCMC diagnostics for the ratio of “can” rates R = uy;/py-
Note that most of the posterior probability of R is found in an interval
about the value one. From the simulated draws, one finds the posterior
median is 0.92 and a 95% probability interval for R is found to be (0.71,
1.19). Since this interval contains the value one, there is no significant
evidence to conclude that Hamilton and Madison have different rates of
use of the word “can”.
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FIGURE 13.5

MCMC diagnostic plots for the ratio of rates upg/ugy of use of the word “can” Federalist Papers
essays written by Hamilton and Madison.

13.2.6 Which words distinguish the two authors?

In the previous section, it was found that the word “can” was not a
helpful discriminator between the essays written by Hamilton and the
essays written by Madison. However, other words may be useful in this
discrimination task. Following suggestions in Mosteller and Wallace
(1963), the previous two-sample analysis was repeated for each of the
following words: also, an, any, by, can, from, his, may, of, on, there, this,
to, and upon. For a given word, the counts of occurrence of that word
were collected for each of the essays authored by Hamilton and
Madison. For each word, we focus on inferences about the parameter R,
the ratio of mean rates of the particular word by Madison and
Hamilton. A ratio value of R > 1 indicates that Madison was a more
frequent user of the word, and a ratio value R < 1 indicates that
Hamilton wused it more frequently. Fourteen separate two-sample
analyses were conducted and the posterior distributions of R were
summarized by posterior medians and 95% probability intervals.

Figure 13.6 displays the locations of the posterior medians and
interval estimates for all of the 14 analyses. Intervals that are
completely on one side of the value R = 1 indicate that one author was



more likely to use that particular word. Looking at the figure, one sees
that the words “upon”, “to”, “this”, “there”, “any”, and “an” were more
likely be used by Hamilton, and the words “on”, “by”, and “also” were
more likely be used by Madison. The posterior intervals for the
remaining words (“may”, “his”, “from”, “can”, and “also”) cover the value
one, and so one cannot say from these data that one author was more
likely to use those particular words.
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FIGURE 13.6
Display of posterior median and 95% interval estimates for the ratio of rates upgups for 14

different words in Federalist Papers essays written by Hamilton and Madison.

13.3 Career Trajectories

13.3.1 Introduction

For an athlete in a professional sport, his or her performance typically
begins at a small level, increases to a level in the middle of his or her
career where the player has peak performance, and then decreases until



the player’s retirement. This pattern of performance over a player’s
career is called the career trajectory. A general problem in sports is to
predict future performance of a player and one relevant variable in this
prediction is the player’s age. Due to the ready availability of baseball
data, it is convenient to study career trajectories for baseball players,
although the methodology will apply to athletes in other sports.

13.3.2 Measuring hitting performance in baseball

Baseball is a bat and ball game first played professionally in the United
States in the mid 19th century. Players are measured by their ability to
hit, pitch, and field, and a wide variety of statistical measures have been
developed. One of the more popular measures of batting performance is
the on-base percentage or OBP. A player comes to bat during a plate
appearance and it is desirable for the batter to get on base. The OBP is
defined to be the fraction of plate appearances where the batter reaches
a base. As an example, during the 2003 season, Chase Utley had 49 on-
base events in 152 plate appearances and his OBP was 49/152 = 0.322.

13.3.3 A hitter’s career trajectory

A baseball player typically plays between 5 to 20 years in Major League
Baseball (MLB), the top-tier professional baseball league in the United
States. In this case study, we explore career trajectories of the OBP
measure of baseball players as a function of their ages. To illustrate a
career trajectory, consider Chase Utley who played in the Major
Leagues from 2003 through 2018. Figure 13.7 displays Utley’s OBP as a
function of his age for all of the seasons of his career. A quadratic
smoothing curve is added to the scatterplot. One sees that Utley’s OBP
measure increases until about age 30 and then steadily decreases
towards the end of his career.



0.38-

0.36-

OB/PA

0.33-

0.30-

27" - . ‘ g
s 24 28 32 35
Age

FIGURE 13.7

Career trajectory of Chase Utley’s on-base percentages. A quadratic smoothing curve is added to
the plot.

Figure 13.8 displays the career trajectory of OBP for another player
Josh Phelps who had a relatively short baseball career. In contrast,
Phelps does not have a clearly defined career trajectory. In fact, Phelps’
OBP values appear to be relatively constant from ages 24 to 30 and the
quadratic smoothing curve indicates that Phelps had a minimum OBP
at age 26. The purpose of this case study is to see if one can improve
the career trajectory smooth of this player by a hierarchical Bayesian
model that combines data from a number of baseball players. Recall in
Chapter 10, we have seen how hierarchical Bayesian models have the
pooling effect that could borrow information from other groups to
improve the estimation of one group, especially for groups with small
sample size.
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FIGURE 13.8
Career trajectory of Josh Phelps’ on-base percentages. A quadratic smoothing curve is added to the
plot.

13.3.4 Estimating a single trajectory

First we consider learning about a single hitter’s OBP career trajectory.

Let y; denote the number of on-base events in n; plate appearances
during a hitter’s j-th season. It is reasonable to assume that y; has a
Binomial distribution with parameters n; and probability of success pj
One represents the logit of the success probability as a quadratic

function of the player’s age:

log< : pjp > = Bo + Pi(z; — 30) + B2(z; — 30)?, (13.13)
Y

where z; represents the age of the player in the j-th season.

Note that the age value is centered by 30 in the logistic model — this
is done for ease of interpretation. The intercept £, is an estimate of the
player’s OBP performance at age 30. Specific functions of the regression
vector = (fy, By, Po) are of specific interest in this application.



e The quadratic function reaches its largest value at

b
hi(B) =30 — -
20,
This is the age where the player is estimated to have his peak on-
base performance during his career.
¢ The maximum value of the curve, on the logistic scale, is
i
ha(B) = Bo — ———-
45,

The maximum value of the curve on the probability scale is
Pmaz = €xp(h2(B))/(1 + exp(h2(B)))- (13.14)

The parameter p,,,, is the estimated largest OBP of the player over

his career.
e The coefficient f,, typically a negative value, tells us about the

degree of curvature in the quadratic function. If a player has a large
value of f,, this indicates that he more rapidly reaches his peak

level and more rapidly decreases in ability until retirement. One
simple interpretation is that f, represents the change in OBP from

his peak age to one year later.

It is straightforward to fit this Bayesian logistic model using the
JAGS software. Suppose one has little prior information about the
location of the regression vector . Then one assumes the regression
coefficients are independent with each coefficient assigned a normal prior
with mean 0 and precision 0.0001. The posterior density of £ is given, up
to an unknown proportionality constant, by



m(B8 ] {y;}) H (ng(l - Pj)nj=yj)77(ﬂ)> (13.15)

where p; is defined by the logistic model and n(f) is the prior density.

R The JAGS model script is shown below. The dbin() function is used
to define the binomial distribution and the logit() function describes
the log odds reexpression.

modelString = "

model {

## sampling

for (j in 1:N){

y[j] ~ dbin(p[]j], n[3j])
logit(p[j]) <- beta® + betal * (x[j] - 30) +
beta2 * (x[j] - 30) * (x[j] - 30)
}

## priors

beta® ~ dnorm(0, 0.0001)

betal ~ dnorm(0, 0.0001)

beta2 ~ dnorm(0, 0.0001)

3

The JAGS software is used to simulate a sample from the posterior
distribution of the regression vector p. From this sample, it is
straightforward to learn about any function of the regression vector of
interest. To illustrate, one performs inference about the peak age
function h;(f) by computing this function on the simulated f draws —

the output is a posterior sample from the peak age function. In a similar
fashion, one obtains a sample from the posterior of the maximum value
function p,,,, by computing this function on the simulated g values.

Figure 13.9 displays density estimates of the simulated values of h;(f)
and p,,,,- From this graph, one sees that Utley’s peak performance was
most likely achieved at age 29, although there is uncertainty about this



most likely peak age. Also the posterior of the peak value p, .. indicates
that Utley’s peak on-base probability ranged from 0.38 and 0.40.
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FIGURE 13.9

Density estimates of the peak age and peak for logistic model on Chase Utley’s trajectory.

13.3.5 Estimating many trajectories by a hierarchical
model

We have focused on estimating the career trajectory of a single baseball
player such as Chase Utley. But there are many baseball players and it
is reasonable to want to simultaneously estimate the career trajectories
for a group of players. As an example, suppose one focuses on the Major
League players who were born in the year 1978 and had at least 1000
career at-bats. Figure 13.10 displays scatterplots of age and OBP with
quadratic smoothing curves for the 36 players in this group. Looking at
these curves, one notices that many of the curves follow a familiar
concave down shape with the player achieving peak performance near an
age of 30. But for some players, especially for those players who played
a small number of seasons, note that the trajectories have different



shapes. Some trajectories are relatively constant over the age variable
and other trajectories have an unusual concave up appearance.
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FIGURE 13.10
Career trajectories and individual quadratic fits for all players born in the year 1978 and having at
least 1000 career at-bats.

In this situation, it may be desirable to partially pool the data from
the 36 players using a hierarchical model to obtain improved trajectory
estimates for all players. For the i-th player, one observes the on-base
events {yzj} where y;; is binomial with sample size n;; and probability of
on-base success p;. The logit of the on-base probability for the i-th
player during the j-th season is given by



p. .
log( 1 Mp ) = Bio + Bir(xi; — 30) + Biz(zs; — 30)2, (13.16)
~ by

where z;; is the age of the i-th player during the jth season. If §; = (B,
Bi1» Pn) represents the vector regression coefficients for the ¢th player,
then one is interested in estimating the regression vectors (f,..., fy) for

the N players in the study.

One constructs a two-stage prior on these regression vectors. In
Chapter 10, one assumed that the normal means were distributed
according to a common normal distribution. In this setting, since each
regression vector has three components, at the first stage of the prior,
one assumes that f,,..., By are independently distributed from a common
multivariate normal distribution with mean vector pg and precision
matrix 7g. Then, at the second stage, vague prior distributions are
assigned to the unknown values of ug and 7.

R In our application, there are N — 36 players, so one is estimating 36
x 3 = 108 regression parameters together with unknown parameters in
the prior distributions of ug and 73 at the second stage. Fortunately the
JAGS script defining this model is a straightforward extension of the
JAGS script for a logistic regression model for a single career trajectory.
The variable player indicates the player number, and the variables
beta®[i], betal[i], and beta2[i] represent the logistic regression
parameters for the #th player. The vector B[j, 1:3] represents a vector
of parameters for one player and mu.beta and Tau.B represent
respectively the second-stage prior mean vector and precision matrix
values. The variables mean, prec, Omega are specified parameters that
indicate weak information about the parameters at the second stage.

modelString = "

model {

## sampling

for (i in 1:N){

y[i] ~ dbin(p[i], n[i])



logit(p[i]) <- betaO®[player[i]] +
betal[player[i]] * (x[i] - 30) +
beta2[player[i]] * (x[i] - 30) * (x[1i] - 30)
}
## priors
for (j in 1:3J){
beta®[j] <- B[], 1]
betal[j] <- B[], 2]
beta2[j] <- B[], 3]
B[j,1:3] ~ dmnorm (mu.beta[], Tau.B[,])
}
mu.beta[1:3] ~ dmnorm(mean[1:3],prec[1:3 ,1:3 ])
Tau.B[1:3 , 1:3] ~ dwish(Omega[1:3 ,1:3 ], 3)
¥

After JAGS is used to simulate from the posterior distribution of this
hierarchical model, a variety of inferences are possible. The player
trajectories fi,..., P3¢ are a sample from a normal distribution with mean

pg. Figure 13.11 displays draws of the posterior of pug expressed (using
equation (13.16)) as probabilities over a grid of age values from 23 to
37. The takeaway if that the career trajectories appear to be centered
about 29.5 — a typical MLB player in this group peaks in on-base
performance about age 29.5.
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FIGURE 13.11
Samples from the posterior distribution of the mean trajectory pg.

By combining data across players, the Bayesian hierarchical model is
helpful in borrowing information for estimating the career trajectories of
players with limited career data. This is illustrated in Figure 13.12 that
shows individual and hierarchical posterior mean fits of the career
trajectories for two players. For Chase Utley, the two fits are very
similar since Utley’s career trajectory was well-estimated just using his
data. In contrast, we saw that Phelps had an unrealistic concave up
individual estimated trajectory. In the hierarchical model, this career
trajectory is corrected to be more similar to the concave down
trajectory for most players.
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FIGURE 13.12
Individual (solid line) and hierarchical (dashed line) fits of the career trajectories for Josh Phelps
and Chase Utley.

13.4 Latent Class Modeling

13.4.1 Two classes of test takers

Suppose thirty people are given a 20-question true or false exam and the
number of correct responses for all people are graphed in Figure 13.13.
From this figure note that test takers 1 through 10 appear to have a low
level of knowledge about the subject matter as their scores are centered
around 10. The remaining test takers 11 through 30 seem to have a
higher level of knowledge as their scores range from 15 to 20.
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FIGURE 13.13
Scatterplot of test scores of 20 test takers. The number next to each point is the person index.

Are there really two groups of test takers, a random-guessing group
and a knowledgeable group? If so, how can one separate the people in
the two ability groups, and how can one make inferences about the
correct rate for each group? Furthermore, can one be sure that two
ability groups exist? Is it possible to have more than two groups of
people by ability level?

The above questions relate to the classification of observations and
the number of classes. In the introduction of hierarchical models in
Chapter 10, there was a natural grouping of the observations. For
example, in the animation movie ratings example in Chapter 10, each
rating was made on one animation movie, so grouping based on movie is
natural, and the group assignment of the observations was known. It
was then reasonable to specify a two-stage prior where the rating means
shared the same prior distribution at the first stage.

In contrast, in the true or false exam example, since the group
assignment is not known, it not possible to proceed with a hierarchical



model with a common prior at the first stage. In this testing example
one believes the people fall in two ability groups, however one does not
observe the actual classification of the people into groups. So it is
assumed that there exists latent or unobserved classification of
observations. The class assignments of the individuals are unknown and
can be treated as random parameters in our Bayesian approach.

If two classes exist, the class assignment parameter for the i-th
observation z; is unknown and assumed to follow a Bernoulli

distribution with probability 7 belonging to the first class, ie. z; = 1.

With probability 1 — & the +th observation belongs to the second class,
Le. z; = 0.

z; | ™ ~ Bernoulli(). (13.17)

If one believes there are more than two classes, the class assignment
parameter follows a multinomial distribution. For ease of description of
the model, we focus on the two classes situation.

Once the class assignment z; is known for observation i, the response

variable Y, follows a data model with a group-specific parameter. In the
case of a true/false exam where the outcome variable Y, is the number

of correct answers, the binomial model is a good choice for a sampling

model. The response variable Y; conditional on the class assignment

variable z; is assigned a binomial distribution with probability of success
pz;-

Y; = yi | zi,p., ~ Binomial(20, p,,). (13.18)

One writes the success probability p, with subscript z; since this

probability is class-specific. For the guessing group, the number of
correct answers is Binomial with parameter p;, and for the



knowledgeable group the number of correct answers is Binomial with
parameter p.

This model for responses to a true/false with unknown ability levels
illustrates latent class modeling. The fundamental assumption is that
two latent classes exist, and each latent class has its own sampling
model with class-specific parameters. All n observations belong to one of
the two latent classes and each observation is assigned to the latent
classes one and two with respective probabilities 7« and (1 — 7). From
Equation (13.17), once the latent class assignment is determined, the
outcome variable y, follows a class-specific data model as in Equation

(13.18).
The tree diagram below illustrates the latent class model.

i y1 ~ Bin(20,p1)
ot
z1 ~ Bern(w
=
y1 ~ Bin(20, po)
= yi ~ Bin(20, p1)
T~ g(m Zi ~ B{‘III
'{'.!I = O
yi ~ Bin(20,po)
=1 yn ~ Bin(20, p1)
“n
, ~ Bern(
=0

yn ~ Bin(20, pg)



To better understand this latent class model, consider a thought
experiment where one simulates outcomes ¥, - - -, ¥, from this model.

— Step 1: First simulate the latent class assignments of the n test
takers. One samples n values, z, - - -, 2, from a Bernoulli

distribution with probability 7. Once the latent class assignments
are simulated, one has partitioned the test takers into the
random-guessing group where z; = 1 and the knowledgeable

group where z, = 0.

— Step 2: Now that the test takers’ classifications are known, the
outcomes are simulated by the use of binomial distributions. If a
test taker’s classification is z; = 1, she guesses at each question

with success probability p; and one observes the test score which

is the Binomial outcome Y; ~ Binomial(20, p;). Otherwise if the

classification is z; = 0, she answers a question correctly with
probability p, and one observes the test score Y; ~ Binomial(20,

2
Po)-

Latent class models provide the flexibility of allowing unknown class
assignments of observations and the ability to cluster observations with
similar characteristics. In the true/false exam example, the fitted latent
class model will pool one class of observations with a lower success rate
and pool the other class with a higher success rate. This fitted model
also estimates model parameters for each class, providing insight of
features of each latent class.

13.4.2 A latent class model with two classes

This section builds on the previous section to describe the details of the
model specification of a latent class model with two classes for the
true/false exam example. The JAGS software is used for MCMC
simulation and several inferences are described such as identifying the
class for each test taker and learning about the success rate for each
class.



Suppose the true/false exam has m questions and y,; denotes the score

of observation 7, i = 1, - - -, n. Assume there are two latent classes and
each observation belongs to one of the two latent classes. Let z; be the

class assignment for observation ¢ and m be the probability of being
assigned to class 1. Given the latent class assignment z; for observation

i, the score Y, follows a Binomial distribution with m trials and a class-

specific success probability. Since there are only two possible class
assignments, all observations assigned to class 1 share the same correct
success parameter p; and all observations assigned to class 0 share the

same success rate parameter p,. The specification of the data model is
expressed as follows:

Y; = vi | zi,p., ~ Binomial(m, p..), (13.19)

z; | m ~ Bernoulli(). (13.20)

In this latent class model there are many unknown parameters. One
does not know the class assignment probability m, the class assignments

Ryeers 2y

and the probabilities p; and p, for the two binomial

distributions. Some possible choices for prior distributions are discussed

in this section.

(a) The parameters @ and (1 — n) are the latent class assignment
probabilities for the two classes. If additional information is
available which indicates, for example, that 1/3 of the observations
belong to class 1, then 7 is considered as fixed and set to the value
of 1/3. If no such information is available, one can consider 7 as
unknown and assign this parameter a prior distribution. A natural
choice for prior on a success probability is a Beta prior distribution
with shape parameters a and b.

(b) The parameters p; and p, are the success rates in the Binomial
model in the two classes. If one believes that the test takers in class



1 are simply random guessers, then one fixes p; to the value of 0.5.
Similarly, if one believes that test takers in class 0 have a higher
success rate of 0.9, then one sets p, to the value 0.9. However, if
one is uncertain about the values of p; and p,, one lets either or

both success rates be random and assigned prior distributions.

Scenario 1: known parameter values

We begin with a simplified version of this latent class model. Consider
the use of the fixed values # = 1/3 and p; = 0.5, and a random p, from
a uniform distribution between 0.5 and 1. This setup indicates that one
believes strongly that one third of the test takers belong to the random-
guessing class, while the remaining two thirds of the test takers belong
to the knowledgeable class. One is certain about the success rate of the
guessing class, but the location of the correct rate of the knowledgeable
class is unknown in the interval (0.5, 1).

R The JAGS model script is shown below. One introduces a new
variable theta[i] that indicates the correct rate value for observation i.
In the sampling section of the JAGS script, the first block is a loop over
all observations, where one first determines the rate theta[i] based on

the classification value z[i]. The equals command evaluates equality,
for example, equals(z[i], ©0) returns 1 if z[i] equals to 0, and returns
0 otherwise. This indicates that the rate theta[i] will either be equal to
pl or po depending on the value z[i].

One should note in JAGS, the classification variable z[i] takes values
of 0 and 1, corresponding to the knowledgeable and guessing classes,
respectively. As 7 is considered fixed and set to 1/3, the variable z[1] is
assigned a Bernoulli distribution with probability 1/3. To conclude the
script, in the prior section the guessing rate parameter p1 is assigned the
value 0.5 and the rate parameter po is assigned a Beta(1, 1) distribution
truncated to the interval (0.5, 1) using T(0.5, 1).

modelString<-"
model {



## sampling
for (i in 1:N){
theta[i] <- equals(z[i], 1) * pl + equals(z[i], ©) * pO
y[i] ~ dbin(theta[i], m)
}
for (1 in 1:N){
z[i] ~ dbern(1/3)
}
## priors
pl <- 0.5
p0@ ~ dbeta(1,1) T(0.5, 1)
}

One performs inference for theta and po in JAGS by looking at their
posterior summaries. Note that there are n = 30 test takers, each with
an associated theta indicating the correct success rate of test taker i.
The variable po is the estimate of the correct rate of the knowledgeable
class.

How are the correct rates estimated for different test takers by the
latent class model? Before looking at the results, let’s revisit the dataset
as shown in Figure 13.13. Among the test takers with lower scores, it is
obvious that test taker #6 with a score of 6 is likely to be assigned to
the random-guessing class, whereas test takers #4 and #5 with a score
of 13 are probably assigned to the knowledgeable class. Among test
takers with higher scores, test takers #15 and #17 with respective
scores of 20 and 19 are most likely to be assigned to the knowledgeable
class, and test taker #24 with a score of 14 is also likely assigned to the
knowledgeable class.

The latent class model assigns observations to one of the two latent
classes at each MCMC iteration, and the posterior summaries of theta
provide estimates of the correct rate of each test taker. Table 13.2
provides posterior summaries for six specific test takers. The posterior
summaries of the correct rate of test taker # 6 indicate that the model
assigns this test taker to the random-guessing group and the posterior
mean and median of the correct rate is at 0.5. Test takers #4 and #b5
have similar posterior summaries and are classified as random-guessing
most of the time with posterior mean of correct rate around 0.55. Test



taker #24 has a higher posterior mean than the test takers #4 and #5.
But with a posterior mean 0.69, the posterior probability for the true
rate for #24 is somewhat split between random guessing and
knowledgeable states. Test takers #15 and #17 are always classified as
knowledgeable with posterior mean and median of correct rate around
0.88.

TABLE 13.2
Posterior summaries of the correct rate 8; of six selected test takers.

Test Taker Score Mean Median 90% Credible Interval
#4 13 0.553 0.500 (0.500, 0.876)
#5 13 0.555 0.500 (0.500, 0.875)
#6 6 0.500 0.500 (0.500, 0.500)
#15 20 0.879 0.879 (0.841,0.917)
#17 19 0.878 0.879 (0.841,0.917)
#24 14 0.690 0.831 (0.500, 0.897)

One also summarizes the posterior draws of p, corresponding to the

success rate for the knowledgeable students. Figure 13.14 provides
MCMC diagnostics of p,. Its posterior mean, median, and 90% credible
interval are 0.879, 0.879, and (0.841, 0.917). These estimates are very
close to the correct rate of test takers #15 and #17. These test takers
are always classified in the knowledgeable class and their correct rate
estimates are the same as p.
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FIGURE 13.14
MCMC diagnostic plots for correct rate of the knowledgeable class, p().

Scenario 2: all parameters unknown

It is straightforward to generalize this latent class model relaxing some
of the fixed parameter assumptions in Scenario 1. It was originally
assumed that the class assignment parameter # = 1/3. It is more
realistic to assume that the probability of assigning an individual into
the first class n is unknown and assign this parameter a beta
distribution with specific shape parameters. Here one assumes little is
known about this classification parameter and so n is assigned a Beta(1,
1), i.e. a uniform distribution on (0, 1). In addition, previously it was
assumed that it was known that the success rate for the “guessing”
group p; was equal to 1/2. Here this assumption is relaxed by assigning

the success rate p; a uniform prior on the interval (0.4, 0.6). If one
knows only that that the success rate for the “knowing” group is p, is

larger than p;, then one assumes p, is uniform on the interval (p;, 1).

R The JAGS script for this more general model follows. We introduce
the parameter q as 7z, that is the class assignment parameter and assign



it a beta distribution with parameters 1 and 1. The prior distributions
for p1 and po are modified to reflect the new assumptions.

modelString<-"
model {
## sampling
for (i in 1:N){
theta[i] <- equals(z[i], 1) * pl1 + equals(z[i], ©) * pO
y[i] ~ dbin(theta[i], m)

for (1 in 1:N){
z[i] ~ dbern(q)
¥
## priors
pl ~ dbeta(1, 1) T(0.4, 0.6)
pe@ ~ dbeta(1,1) T(p1, 1)
g ~ dbeta(1, 1)
}

n

In Scenario 1, the posterior distributions of the correct rates theta[i]
were summarized for all individuals. Here we instead focus on the
classification parameters z[i] where z[i] = 1 indicates a person
classified into the random-guessing group. Figure 13.15 displays the
posterior means of the z; for all individuals. As expected, individuals #1
through #10 are classified as guessers and most individuals with labels
12 and higher are classified as knowledgeable. Individuals #11 and #24
have posterior classification means between 0.25 and 0.75 indicating
some uncertainty about the correct classification for these people.
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FIGURE 13.15
Posterior means of classification parameters { Prob(z;= 1|{y;})} for all test takers.

Figure 13.16 displays density estimates of the simulated draws from
the posterior distributions of the class assignment parameter ;m and the
rate parameters p; and p;. As one might expect, the posterior
distributions of p; and p, are centered about values of 0.54 and 0.89.
There is some uncertainty about the class assignment parameter as
reflected in a wide density estimate for z (¢ in the figure).
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Posterior density plots of parameters 7, p| and py.

13.4.3 Disputed authorship of the Federalist Papers

Returning to the Federalist Papers example of Section 13.2, the
discussion focused on learning about the true rates of filler words for
papers written by Alexander Hamilton and James Madison. But
actually the true authorship of some of the papers was in doubt, and
the primary task in Mosteller and Wallace (1963) was to learn about the
true authorship of these disputed authorship papers from the data. This
problem of disputed authorship can be considered a special case of
latent data modeling where the latent variable is the authorship of a
disputed paper. We describe how the Bayesian model of Section 13.2
can be generalized to learn about both the rates of a particular filler
word and the identities of the authors of the papers of disputed
authorship.

In our sample there are a total of 74 Federalist Papers. We assume
that 49 of these papers are known to be written by Hamilton, 15 of the
papers are known to be written by Madison, and the authorship of the
remaining 10 papers is disputed between the two authors. We focus on



the use of the filler word “can” in these papers. Let {(y;;, ny;)} denote
the frequencies of “can” and total words in the Hamilton papers, {(ys;,
ny;)} denote the frequencies and total words in the Madison papers, and
{(y;, n;)} denote the corresponding quantities in the disputed papers. As
in Section 13.2, we assume {y;,} are Negative Binomial(p,; a;) where p;;
= f/(p; + ny;/1000), and {ys;} are Negative Binomial(ps,, ay) where py;
= Po/ (Py + 1;/1000).

The distribution of the frequencies {y;} is unknown (out of the total
number of words {n;}) since these correspond to the papers of disputed
authorship. Let z; denote the unknown authorship of paper ¢ among the
disputed papers — if z; = 0, the paper was written by Hamilton and if z;
= 1, the paper was written by Madison. If one knows the value of z;, the
distribution of the frequency y, is known. If z; = 0, then y; is Negative
Binomial(p;, a;) where p, = p,/(f; + n,;/1000), and z; = 1, then y; is
Negative Binomial(p;, as) where p; = f,/(f, + n;/1000). To complete the
model, one needs to assign a prior distribution to the latent authorship
indicators {z;}. It is assumed z; ~ Bernoulli(0.5) which means that z;
from the prior is equally likely to be 0 or 1.

The JAGS script for the disputed authorship problem is shown below.
The data is structured so that N1 papers are known to be written by
Hamilton, N2 papers are known to be written by Madison, and the
authorship of the remaining N3 papers are in doubt. The data includes
the number of occurrences of the word “can” and the total number or
words in each group of papers. Note that, as in Section 13.2, weakly
informative priors are placed on the gamma priors for ay, f;, as and f,.

modelString = "
mode 1{
for(i in 1:N1){
pl[i] <- betal / (betal + ni[i] / 1000)
y1[i] ~ dnegbin(p1[i], alphail)
}
for(i in 1:N2){
p2[i] <- beta2 / (beta2 + n2[i] / 1000)
y2[i] ~ dnegbin(p2[i], alpha2)



}
for(i in 1:N3){

theta[i] <- equals(z[i], ©0) * alphal +
equals(z[i], 1) * alpha2

gamma[i] <- equals(z[i], ©) * betal +
equals(z[i], 1) * beta2

p[i] <- gamma[i] / (gamma[i] + n[i] / 1000)
y[1i] ~ dnegbin(p[i], theta[i])

z[i] ~ dbern(0.5)

}

alphal ~ dgamma(.001, .001)
betal ~ dgamma(.001, .001)
alpha2 ~ dgamma(.001, .001)
beta2 ~ dgamma(.001, .001)

¥

Using this script, a sample of 5000 draws were taken from the
posterior distribution and Figure 13.17 displays posterior means of the
classification parameters z;,..., 2z, for the ten disputed authorship

parameters. Since z; = 1 if the author is Madison, this graph is showing

the posterior probability the author is James Madison for each paper.
Note that most of these posterior means are located near 0.5, with the
one exception of Paper 4 where the posterior probability of Madison
authorship is 0.174. So really one has not learned much about the
identity of the true author from this data.
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FIGURE 13.17
Posterior means of classification parameters for authorship problem using rates of the filler word
“Can”.

But we have only looked at the frequencies of one particular filler
word in our analysis. In a typical study such as the one done by
Mosteller and Wallace (1963), a number of filler words are used. One
can extend the analysis to include a number of filler words; the
approach is outlined below and the implementation details are left to
the end-of-chapter exercises.

Suppose yj; denotes the number of occurrences of the word w in the ¢
th paper written by Hamilton. Similarly, 5, denotes the word count of
w in the ¢th paper written by Madison and ¥}’ denotes the word count
of w in the +th paper of disputed authorship. It is assumed that each
word count follows a Negative Binomial distribution where the
parameters of the distribution depend on the author and the word. So,
for example, for a Hamilton paper, ¢}, is distributed Negative Binomial(
pY¥,ay’) where py = pY/(BY + n1;/1000). For a Madison paper, y4. is
distributed Negative Binomial(p¥, o’) where py = BY/(8Y + ng;/1000).
For a paper of disputed authorship, the count ¥ will either be
distributed according to one of the Negative Binomial distributions
where the distribution depends on the value of the classification variable
2;.

A JAGS script can be written to fit this model with multiple filler
words. In the script, one defines the matrix variable y1 where y1[i, j]
is defined to be the number of words of type j in the #th paper of
Hamilton. In a similar fashion one defines the matrices y2 and y where
y2[i, j] and y[i, j] denote respectively the counts of the j-th word of
the +th Madison and #th disputed authorship paper. One will be
learning about vectors a;, f;, as, f» where each vector has W values

where W is the number of words in the study. As before z[i] denotes
the classification variable where z[i] = 1 denotes authorship of the ith
disputed paper by Madison. In an end-of-chapter exercise, the reader
will be asked to implement the model fitting using a selection of filler
words. One would anticipate that one would be able to discriminate
between the two authors on the basis of a large group of filler words.



13.5 Exercises

1. Federalist Papers Word Study
The frequencies of word use of Madison and Hamilton are stored in
the data file fed_word_data.csv. Consider the counts of the word
“there” in the 50 Federalist Papers authored by Hamilton. Suppose
the count y; in the ¢th paper is distributed Poisson with mean
n;A/1000 where n, is the number of words in the paper and A is the
rate of the word “there” per 1000 words.
(a) Assuming a weakly informative prior for A, use JAGS to fit this
Poisson sampling model.
(b) Compute a 90% probability interval for the rate A.
(c) Consider a new essay with 1000 words. By simulating 1000
draws from the posterior predictive distribution, construct a
90% prediction interval for the number of occurrences of the
word “there” in this essay.
2. Federalist Papers Word Study (continued)
Instead of Poisson sampling, suppose the count of the word y;

“there” in the +th Federalist paper is distributed negative binomial

with parameters p;, and a, where p, = f/(f + n;/1000) where n, is

the number of words in the paper and a/f is the rate of the word

“there” per 1000 words.

(a) Using a suitable weakly informative prior for a and pf, use
JAGS to simulate 1000 draws from the posterior distribution.

(b) Construct a 90% interval estimate for the rate parameter a/p.

(c) By simulating from the posterior predictive distribution,
construct a 90% prediction interval for the number of uses of
“there” in a new essay of 1000 words.

(d) Compare your answers with the answers in FExercise 1
assuming Poisson sampling.

3. Comparing Word Use
Using negative binomial sampling models, compare the average

9 W«

word use of Hamilton and Madison for the words “this”, “on”, “his”,



and “by”. Suppose the mean rate per 1000 words is measured by a;/
p; and ay/f» for Hamilton and Madison, respectively. For each

word, construct a 90% interval estimate for the difference in use
rates D = ay/f; — ay/f». By looking at the locations of these

interval estimates, which words were more often used by Hamilton
and which ones were more likely to be used by Madison? The data
file is fed_word_data.csv.

. Comparing Word Use (continued)

As in Exercise 3, using negative binomial sampling models, compare
the average word use of Hamilton and Madison for the words “this”,
“on”, “his”, and “by”. If the mean rate per 1000 words is measured
by a,/pf; and a,/p, for Hamilton and Madison, respectively, suppose

one is interested in comparing the rates using the ratio

/B
R = o2/ Bs”

Construct and graph 90% interval estimates for R for each word in
the study.

. Basketball Shooting Data

Table 13.3 displays the number of free throw attempts FTA and the
number of successful free throws FT for all the seasons of Isiah
Thomas, a great basketball point guard who played in the National
Basketball Association from 1982 to 1994. This data is contained in
the file nba_guards.csv where the Player variable is equal to
“THOMAS.” Let p; denote the probability of a successful free throw

for the jth season. Consider the quadratic logistic model

g T2 ) = o+ Bule; 30) + Bale; - 30)%
J

TABLE 13.3
Free throw shooting data for the basketball player Isiah Thomas.

Age FTA FT Age FTA FT
20 429 302 27 351 287




Age FTA FT Age FTA FT

21 518 368 28 377 292
22 529 388 29 229 179
23 493 399 30 378 292
24 462 365 31 377 278
25 521 400 32 258 181
26 394 305

where z; is Thomas’ age during the j-th season.

(a) By using JAGS with a reasonable choice of weakly informative
prior on the regression parameters, collect 5000 draws from the
posterior distribution on g = (£, f1, fo)-

(b) Construct a density estimate and a 90% interval estimate for
the age h;(f) where Thomas attained peak performance.

(c) Construct a density estimate and a 90% interval estimate for
the probability p that Thomas makes a free throw at age 28.

6. Basketball Shooting Data (continued)
The dataset nba_guards.csv contains the number of free throw
attempts FTA and the number of successful free throws FT for all
of the seasons played by fifteen great point guards in the National
Basketball Association. Let p;; denote the probability of a successful
free throw of the #th player during the j-th season. Suppose the
probabilities {p;} for the i-th player satisfy the quadratic model

log( 1 prij ) = Bio + Bir(zs; — 30) + Biz(zi; — 30)7,

where z;; is the age of the ¢th player during the j-th season and p;

= (B, Pi1» Pio) denotes the vector of regression coefficients for the -

th player.

(a) Construct a hierarchical prior for the regression vectors f,...,
p15 analogous to the one used for baseball hitters in the
chapter.



(b) Use JAGS to simulate a sample of 5000 draws from the
posterior distribution of the f; and also of the second stage
prior fig.

(c) For one player, consider the age hi(f) where he attained peak

performance in free-throw shooting. Compare the posterior
distributions of h;(f) using an individual logistic model and

using the hierarchical model.
7. Football Field Goal Kicking
The data file football field_goal.csv contains data on field goal

attempts for professional football kickers. Let y; denote the response
(success or failure) of a field goal attempt from z; yards. One is

interested in fitting the logistic model

D
log<1 ’ ) = Bo + Biz;,

where p; is the probability of a successful attempt. Figure 13.18

displays individual logistic fits for ten kickers in the 2005 season.
These fits were found using weakly informative priors on the
regression parameters /4, and f; on individual fits for each player.
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FIGURE 13.18
Individual logistic model fits for ten professional football kickers in the 2005 season.

(a) Looking at Figure 13.18, do you believe these individual fits of
success probability against distance are suitable for all players?
Explain.

(b) For the player Brown, assuming this logistic model and a
weakly informative prior on the regression coefficients, use
JAGS to simulate from the posterior distribution. From the
output to construct a 90 percent interval estimate for the
probability of success at 30 yards.

(c) Pool the data for all 10 players, and use JAGS to fit from the
logistic model where the probability of success is a function of
the distance. Use JAGS to simulate from the posterior and
from the output construct a 90 percent interval estimate for
the probability of success at 30 yards.

(d) Compare your answers to parts (b) and (c).

8. Football Field Goal Kicking (continued)
In the logistic model predicting success on a field goal attempt
based on the distance in feet, suppose f; = (fy, f;;) denotes the

regression vector for the logistic model on the #-th player.

(a) Write down a hierarchical prior for the ten regression vectors
Bis--- Pro similar to what was used for the baseball hitters in
the chapter.

(b) Using JAGS, simulate a sample of 5000 from the posterior
distribution of f,..., fo-

(c) Display the posterior means of the probabilities of success for
all kickers as a function of distance similar to Figure 13.18.

(d) For the player Brown, construct a 90 percent interval estimate
for the probability of success at 30 yards. Compare your
answer to the individual fit (part (b) of Exercise (7)) and the
pooled data fit (part (c) of Exercise (7)).

9. Checking for Overdispersion
In the hitter’s career trajectory example in Section 13.3.4, it was
assumed that the number of on-base events in season y; was

distributed binomial with a specific probability of success p; where



the { pj} satisfy a logistic quadratic model. If one views a scatterplot

of the observed rates OB/PA against age for Chase Utley (Figure

13.7), one notices some variation about the fitted curve. It is

natural to ask if the variability about this line is greater than one

would predict from the binomial model.

(a) Following the example in Section 13.3.4, obtain a posterior
sample from the posterior distribution of f using Utley’s data
and a weakly informative choice of prior distribution.

(b) Compute the posterior mean of f and obtain an estimate for
the on-base probability for all of Utley’s ages.

(c) Write a function to simulate one replicated sample of yf from

the posterior predictive distribution. Compute the sum of
squares of the rates yf/nj about the fitted on-base

probabilities.

(d) Using the function written in part (c), repeat this simulation
1000 times, obtaining 1000 sum of squares values from the
posterior predictive distribution.

(e) By comparing the posterior predictive sample in part (d) with
the observed sum of squares about the fitted curve, comment
about the suitability of the binomial sampling model.

10. Moby Dick Word Study

Project Gutenberg offers a large number of free electronic books

and the gutenbergr R package facilitates reading in these books

into R for textual analysis. Use this package to download the
famous novel Moby Dick by Herman Melville and collect all of the
distinct words in this novel in a data frame.

(a) Divide the words of the novel into 1000-word groups and count
the number of occurrences of a particular filler word in each
group.

(b) Use a negative binomial distribution to model the counts of
the filler word across groups.

(c) Consider the use of a different filler word, and use a Negative
Binomial distribution to model the counts of this new word
across 1000-word groups.



11.

12.

(d) By use of a suitable model, compare the rates (per 1000
words) of the two types of filler words. Construct a 90%
interval estimate for the ratio of rates of use of the two words.

An Outlier Model

Suppose one observes a sample measurement data where there is a

small possibility of an outlier. One observes y; which is either

Normal(u, o) with probability p or Normal(y, 30) with probability 1
— p. Assume a weakly informative prior on p and p is Beta(2, 20).
Introduce latent class assignments where z; = 0 or z; = 1 depending

if the observation is Normal(u, o) or Normal(u, 30). Use JAGS with
a script similar to used to Section 13.4 to fit this model. The
dataset darwin.csv in the ProbBayes R package contains
measurements on the differences of the heights of cross and self
fertilized plants quoted by Fisher (1960). Compute the posterior
probability that each observation is an outlier. Plot the
measurements against these posterior outlier probabilities and
comment on the pattern in the scatterplot.

Another Latent Data Model

Suppose n students are taking a multiple-choice exam of m
questions. As in Section 13.4, suppose there are two types of
students, the “guessing” students and the “knowledgeable” students
who answer each question correctly with respective probabilities of
po and p;. The following R code will simulate some data in this

scenario where n = 50, m = 20, py = 04, p; = 0.7 and the
probability that a student is a guesser is 7 = 0.2 (p in the JAGS
script).

Shaded 12

set.seed(123)

po <- 0.40; pl <- 0.70

m<- 20; n <- 50; p <- 0.2

z <- sample(0:1, size = m, prob = c(p, 1-p),
replace = TRUE)

prob <- (z == 0) * p0 + (z == 1) * p1

y <- rbinom(m, size = n, prob)
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By use of a latent class model similar to what was used in Section
13.4, simulate from the joint posterior distribution of all
parameters. Estimate values of py, p;, and & from the posterior and

compare these estimates with the “true” values of the parameters
used in the simulation.

Determining Authorship From a Single Word

In the dataset federalist_word_study.csv, the variable Authorship
indicates the authorship of the Federalist Papers and the variable
Disputed indicates the papers where the authorship is disputed.
Following the work in Section 13.4.3 and the JAGS script, fit a
latent variable model using the filler word “from”. Using this
particular word, examine the posterior probabilities of authorship
for the ten papers of disputed authorship. Is this single word helpful
for determining authorship for any of the papers? Repeat this
analysis using the filler word “this”.

Determining Authorship From Multiple Words

Suppose one wishes to use all of the filler words “by”, “from”, “to”,
“an”, “any”, “may”, “his”, “upon”, “also”’, “can”, “of”, “on”, “there”,
and“this” to determine authorship of the ten disputed papers. Using
the approach described at the end of Section 13.4.3, write a JAGS
script to fit the latent variable model. Collect a posterior sample
from the posterior distribution of the classification variables. Use
the posterior means of the classification variables to determine
authorship for each of the ten variables.
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Appendices

14.1 Appendix A: The posterior predictive
distribution

In the dining survey example of Chapter 7, it was claimed that the

posterior n(p| Y = 12) ~ Beta(15.06, 10.56) by recognizing that the
product of the prior and likelihood was proportional to p!>971(1 -

p> 10.56-1

density is

. Here it is shown that the normalizing constant of the
. That is, it is shown that

1
B(15.06,10.56)

1 06— 56—
m(p|Y =12) = B(15.06,10.56) p'* %71 (1 —p)**o L. (14.1)

The more general derivation of the normalizing constant is
presented assuming the prior is p ~ Beta(a, b) and the sampling
density is Y ~ Binomial(n, p). Using Bayes’ rule,
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The key to the derivation is to recognize that

a+y)— n+b—uy)— T'(a+y)T(n+b—
fpp( TW-1(] — p)ntd-)-1gp = (;r(szr(a;) y)’ (14.3)

because of the fact that the beta distribution is proper, therefore it
integrates to 1. That is,

I'(n+a+b) ata)— ntb—)—
fp ['(a+y)T'(n+b—y) p( v 1(1 _p)( - 1dp =1 (14.4)

14.2 Appendix B: The posterior predictive
distribution



In Chapter 7, we considered the situation where Y ~ Binomial(n, p)
and the proportion p ~ Beta(a, b). One observes Y = y and one is
interested in the posterior predictive distribution of the number of
successes Y in a future sample of size m. We provide a detailed
derivation below, showing that this predictive mass function
f(Y | Y = g) is a special case of the beta-binomial distribution.

Y| Y=y =[f¥,p|Y =y)dp
J f(

_ (Y m)\ 37 m—y __ L(atb+n)
‘V%<@p%1_m eyt )
1
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r

m T'(a+b+n)
Y
_|_

integrates to 1]

z! when z is integer]

14.3 Appendix C: Comparing Bayesian models using
a mixture of priors

using a mixture of priors

Chapter 7 considers the situation where the observation Y ~
Binomial(n, p) and a mixture of beta priors of the form



m(p) = gmi(p) + (1 — ¢)ma(p),

where m; is Beta(ay, b;), m, is Beta(ay, by), and ¢ is a constant
between 0 and 1. After observing Y = y, we show that the posterior
density can also be represented as a mixture of two beta
distributions.

One can write the posterior density as

m Y=
o | Y =) = SHE

{gmi(p)+(1—q)m2(p)} (Z)py(l_p)n—y
f(Y=y)

)

where f{Y = y) is the marginal density of Y evaluated at Y = y.

One finds the marginal density of Y by integrating out p from the
joint density of (Y, p). By performing several calculations similar to
the derivation in Appendix A, one obtains

@) = Jylam @) + (1 - ama(p)} (1 )p"(1 - p)"vdp

— (Z)[qB(al + v, bl +n — y) + (1 — Q)B(a2 + ¥, b2 +n — y)])

where B(a, b) is the beta function

['(a)T'(b)

B(a,b) = T@ib)

If one substitutes the expression for f(z) in the posterior density,
one obtains

_ _ {gmi(p)+(1—q)m2(p)}p¥(1—p)" ¥
7T(p | Y = y) — @Blaty,bi+n—y)+(1—q)B(az+y,b2+n—y)

_ gB(artybitn—y)m(ply)+(1—q)B(az+ybatn—y)m(ply) (14.6)
qB(a1+y,b1+n—y)+(1—q) B(az+y,b2+n—y)

=q(y)m(p | y) + (1 —q(y))m(p | v),




where m; is a beta density with shape parameters a; + y and b; + n
— 1, M, is a beta density with shape parameters ay, + y and by + n —
y, and ¢(y) is the constant

gB(a1 +y,b1 +n —y)
gB(a1+y,bi+n—y)+(1—q)Blaz+y,bs+n—y)

q(y) =

This shows that a mixture of beta densities is a conjugate density in
that both the prior and posterior densities have the same mixture of
beta functional forms.

Using the Deviance Information Criteria (DIC)

Chapter 12 describes the problem of choosing between a number of
regression models. The deviance information criteria or DIC is a
popular method for model selection. In a general Bayesian model, let
n() denote the prior density, L(d| y) denote the likelihood, and (|
y) denote the posterior density. Define the deviation to be minus two
times the log likelihood function

D(6) = —2log L(0 | y). (14.7)

After one observes the data y, one can summarize the model fit by
computing the posterior expectation of the deviance

D= /D(9)7r(9)0. (14.8)

Generally as one chooses a model with more parameters, the value
of D will decrease and so the value of D by itself is not useful in
comparing models with different number of parameters. One has to
balance the value of D with an additional term that measures the



complexity of the model. One can measure model complexity by the
effective number of parameters defined by the expected deviance
minus the deviance evaluated at the posterior expectation:

pp = D — D(0), (14.9)

where @ is the posterior mean.
One defines the DIC as the sum of D and the effective number of
parameters.

DIC = D + pp. (14.10)

When one has a number of plausible models, one computes the value
of DIC from the simulated posterior sample for each model, and
chooses the model with the smallest value of DIC.
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