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Preface

The Traditional Introduction to Statistics

A traditional introduction to statistical thinking and methods is the

two-semester probability and statistics course offered in mathematics

and statistics departments. This traditional course provides an

introduction to calculus-based probability and statistical inference.

The first half of the course is an introduction to probability including

discrete, continuous, and multivariate distributions. The chapters on

functions of random variables and sampling distributions naturally

lead into statistical inference including point estimates and

hypothesis testing, regression models, design of experiments, and

ANOVA models.

Although this traditional course remains popular, there seems to

be little discussion in this course on the application of the inferential

material in modern statistical practice. Although there are benefits in

discussing methods of estimation such as maximum likelihood, and

optimal inference such as a best hypothesis test, the students learn

little about statistical computation and simulation-based inferential

methods. As stated in Cobb (2015), there appears to be a disconnect

between the statistical content we teach and statistical practice.

Developing a New Course

The development of any new statistics course should be consistent

with current thinking of faculty dedicated to teaching statistics at

the undergraduate level. Cobb (2015) argues that we need to deeply

rethink our undergraduate statistics curriculum from the ground up.

Towards this general goal, Cobb (2015) proposes “five imperatives”



that can help the process of creating this new curriculum. These

imperatives are to: (1) flatten prerequisites, (2) seek depth in

understanding fundamental concepts, (3) embrace computation in

statistics, (4) exploit the use of context to motivate statistical

concepts, and (5) implement research-based learning.

Why Bayes?

There are good reasons for introducing the Bayesian perspective at

the calculus-based undergraduate level. First, many people believe

that the Bayesian approach provides a more intuitive and

straightforward introduction than the frequentist approach to

statistical inference. Given that the students are learning probability,

Bayes provides a useful way of using probability to update beliefs

from data. Second, given the large growth of Bayesian applied work

in recent years, it is desirable to introduce the undergraduate

students to some modern Bayesian applications of statistical

methodology. The timing of a Bayesian course is right given the

ready availability of Bayesian instructional material and increasing

amounts of Bayesian computational resources.

We propose that Cobb’s five imperatives can be implemented

through a Bayesian statistics course. Simulation provides an

attractive “flattened prerequisites” strategy in performing inference.

In a Bayesian inferential calculation, one avoids the integration issue

by simulating a large number of values from the posterior

distribution and summarizing this simulated sample. Moreover, by

teaching fundamentals of Bayesian inference of conjugate models

together with simulation-based inference, students gain a deeper

understanding of Bayesian thinking. Familiarity with simulation

methods in the conjugate case prepares students for the use of

simulation algorithms later for more advanced Bayesian models.

One advantage of a Bayes perspective is the opportunity to input

expert opinion by the prior distribution which allows students to

“exploit context” beyond a traditional statistical analysis. This text



introduces strategies for constructing priors when one has substantial

prior information and when one has little prior knowledge.

To further “exploit context”, we introduce one particular Bayesian

success story: the use of hierarchical modeling to simultaneously

estimate parameters from several groups. In many applied statistical

analyses, a common problem is to combine estimates from several

groups, often with certain groups having limited amounts of available

data. Through interesting applications, we introduce hierarchical

modeling as an effective way to achieve partial pooling of the

separate estimates.

Thanks to a number of general-purpose software programs

available for Bayesian MCMC computation (e.g. openBUGS, JAGS,

Nimble, and Stan), students are able to learn and apply more

advanced Bayesian models for complex problems. We believe it is

important to introduce the students to at least one of these programs

which “flattens the prerequisite” of computational experience and

“embraces computation”. The main task in the use of these programs

is the specification of a script defining the Bayesian model, and the

Bayesian fitting is implemented by a single function that inputs the

model description, the data and prior parameters, and any tuning

parameters of the algorithm. By writing the script defining the full

Bayesian model, we believe the students get a deeper understanding

of the sampling and prior components of the model. Moreover, the

use of this software for sophisticated models such as hierarchical

models lowers the bar for students implementing these methods. The

focus of the students’ work is not the computation but rather the

summarization and interpretation of the MCMC output. Students

interested in the nuts and bolts of the MCMC algorithms can further

their learning through directed research or independent study.

Last, we believe all aspects of a Bayesian analysis are

communicated best through interesting case studies. In a good case

study, one describes the background of the study and the inferential

or predictive problems of interest. In a Bayesian applied analysis in

particular, one learns about the construction of the prior to represent



expert opinion, the development of the likelihood, and the use of the

posterior distribution to address the questions of interest. We

therefore propose the inclusion of fully-developed case studies in a

Bayesian course for students’ learning and practice. Based on our

teaching experience, having students work on a course project is the

best way for them to learn, resonating with Cobb’s “teach through

research”.

Audience and Structure of this Text

This text is intended for students with a background in calculus but

not necessarily any experience in programming. Chapters 1 through 6

resemble the material in a traditional probability course, including

foundations, conditional probability, discrete and continuous

distributions, and joint distributions. Simulation-based

approximations are introduced throughout these chapters to get

students exposed to new and complementary ways to understand

probability and probability distributions, as well as programming in

R.

Although there are applications of Bayes’ rule in the probability

chapters, the main Bayesian inferential material begins in Chapters 7

and 8 with a discussion of inferential and prediction methods for a

single binomial proportion and a single normal mean. The

foundational elements of Bayesian inference are described in these

two chapters, including the construction of a subjective prior, the

computation of the likelihood and posterior distributions, and the

summarization of the posterior for different types of inference. Exact

posterior distributions based on conjugacy, and approximation based

on Monte Carlo simulation, are introduced and compared. Predictive

distributions are described both for predicting future data and also

for implementing model checking.

Chapters 9 through 13 are heavily dependent on simulation

algorithms. Chapter 9 provides an overview of Markov Chain Monte

Carlo (MCMC) algorithms with a focus on Gibbs sampling and

Metropolis-Hastings algorithms. We also introduce the Just Another



Gibbs Sampler (JAGS) software, enabling students to gain a deeper

understanding of the sampling and prior components of a Bayesian

model and stay focused on summarization and interpretation of the

MCMC output for communicating their findings.

Chapter 10 describes the fundamentals of hierarchical modeling

where one wishes to combine observations from related groups.

Chapters 11 and 12 illustrate Bayesian inference, prediction, and

model checking for linear and logistic regression models. Chapter 13

describes several interesting case studies motivated by some historical

Bayesian studies and our own research. JAGS is the main software in

these chapters for implementing the MCMC inference.

For the interested reader, there is a wealth of good texts describing

Bayesian modeling at different levels and directed to various

audiences. Berry (1996) is a nice presentation of Bayesian thinking

for an introductory statistics class, and Gelman, et al (2013) and

Hoff (2009) are good descriptions of Bayesian methodology at a

graduate level.

Resources

The following website hosts the datasets and R scripts for all

chapters and maintains a current errata list:

https://monika76five.github.io/ProbBayes/

A special R package, ProbBayes (Albert (2019)), containing all of the

datasets and special functions for the text, is available on GitHub.

The package can be installed by the install_github() function from

the devtools package.

 
library(devtools) 
install_github("bayesball/ProbBayes") 

Teaching material, including lecture slides and videos, homework and

labs of an undergraduate Bayesian statistics course taught at one of

the authors’ institutions, is available at:

https://monika76five.github.io/ProbBayes/


https://github.com/monika76five/BayesianStatistics
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1
 

Probability: A Measurement of
Uncertainty
 

 

1.1  Introduction

The magazine Discover once had a special issue on “Life at Risk.” In

an article, Jeffrey Kluger describes the risks of making it through one

day:

Imagine my relief when I made it out of bed alive last Monday

morning. It was touch and go there for a while, but I managed

to scrape through. Getting up was not the only death-defying

act I performed that day. There was shaving, for example; that

was no walk in the park. Then there was showering, followed by

leaving the house and walking to work and spending eight hours

at the office. By the time I finished my day – a day that also

included eating lunch, exercising, going out to dinner, and going

home – I counted myself lucky to have survived in one piece.

Is this writer unusually fearful? No. He has read mortality studies

and concludes “there is not a single thing you can do in an ordinary

day – sleeping included – that isn’t risky enough to be the last thing

you ever do.” In The Book of Risks by Larry Laudan, we learn that



1 out of 2 million people will die from falling out of bed.

1 out of 400 will be injured falling out of bed.

1 out of 77 adults over 35 will have a heart attack this year.

The average American faces a 1 in 13 risk of suffering some kind

of injury in home that necessitates medical attention.

1 out of 7000 will experience a shaving injury requiring medical

attention.

The average American faces a 1 out of 14 risk of having property

stolen this year.

1 out of 32 risk of being the victim of some violent crime.

The annual odds of dying in any kind of motor vehicle accident

is 1 in 5800.

Where do these reported odds come from? They are simply

probabilities calculated from the counts of reported accidents. Since

all of these accidents are possible, that means that there is a risk to

the average American that an accident will happen to him or her.

But fortunately, you need not worry – many of these reported risks

are too small to really take seriously or prod you to change style of

living.

Uncertainty

Everywhere we are surrounded by uncertainty. If you think about

it, there are a number of things that we are unsure about, like

What is the high temperature next Monday?

How many inches of snow will our town get next January?

What’s your final grade in this class?

Will you be living in the same state twenty years from now?

Who will win the U.S. presidential election in 2024?

Is there life on Mars?

A probability is simply a number between 0 and 1 that measures

the uncertainty of a particular event. Although many events are



uncertain, one possesses different degrees of belief about the truth of

an uncertain event. For example, most of us are pretty certain of the

statement “the sun will rise tomorrow”, and pretty sure that the

statement “the moon is made of green cheese” is false. One thinks of

a probability scale from 0 to 1.

One typically would give the statement “the sun will rise

tomorrow” a probability close to 1, and the statement “the moon is

made of green cheese” a probability close to 0. It is harder to assign

probabilities to uncertain events that have probabilities between 0

and 1. In this chapter, we first get some experience in assigning

probabilities. Then three general ways of thinking about probabilities

will be described.

 

1.2  The Classical View of a Probability

Suppose that one observes some phenomena (say, the rolls of two

dice) where the outcome is random. Suppose one writes down the list

of all possible outcomes, and one believes that each outcome in the

list has the same probability. Then the probability of each outcome

will be

Prob(Outcome) =
1

Number of outcomes
. (1.1)

Let’s illustrate this classical view of probability by a simple

example. Suppose one has a bowl with 4 white and 2 black balls



and two balls from the bowl are drawn at random. It is assumed that

the balls are drawn without replacement which means that one

doesn’t place a ball back into the bowl after it has been selected.

What are possible outcomes? There are different ways of writing

down the possible outcomes, depending if one decides to distinguish

the balls of the same color.

WAY 1: If one doesn’t distinguish between balls of the same color,

then there are three possible outcomes – essentially one chooses 0

black, 1 black, or 2 black balls.

WAY 2: If one does distinguish between the balls of the same color,

label the balls in the bowl and then write down 15 distinct outcomes

of the experiment of choosing two balls.



Which is the more appropriate way of listing
outcomes?

To apply the classical view of probability, one has to assume that

the outcomes are all equally likely. In the first list of three outcomes,

one can’t assume that they are equally likely. Since there are more

white than black balls in the basket, it is more likely to choose two

white balls than to choose two black balls. So it is incorrect to say

that the probability of each one of the three possible outcomes is 1/3.

That is, the probabilities of choosing 0 black, 1 black, and 2 blacks

are not equal to 1/3, 1/3, and 1/3.

On the other hand, since one will choosing two balls at random

from the basket, it makes sense that the 15 outcomes in the second

listing (where we assumed the balls distinguishable) are equally

likely. So one applies the classical notion and assigns a probability of

1/15 to each of the possible outcomes. In particular, the probability

of choosing two black balls (which is one of the 15 outcomes) is equal

to 1/15.

 

1.3  The Frequency View of a Probability

The classical view of probability is helpful only when we can

construct a list of outcomes of the experiment in such a way where

the outcomes are equally likely. The frequency interpretation of

probability can be used in cases where outcomes are equally likely or

not equally likely. This view of probability is appropriate in the

situation where one is able to repeat the random experiment many

times under the same conditions.

Getting out of jail in Monopoly

Suppose someone is playing the popular game Monopoly and she

lands in jail. To get out of jail on the next turn, she either pays $50



or rolls “doubles” when she rolls two fair dice. Doubles means that

the faces on the two dice are the same. If it is relatively unlikely to

roll doubles, then the player may elect to roll two dice instead of

paying $50 to get out of jail.

What is the probability of rolling doubles when she rolls two dice?

In this situation, the frequency notion can be applied to

approximate the probability of rolling doubles. Imagine rolling two

dice many times under similar conditions. Each time two dice are

rolled, we observe whether she rolls doubles or not. Then the

probability of doubles is approximated by the relative frequency

Prob(doubles) ≈
Number of doubles

Number of experiments
.

 Rolling two dice

The following R code can be used to simulate the rolling of two dice.

The two_rolls() function simulates rolls of a pair of dice and the

replicate() function repeats this process 1000 times and stores the

outcomes in the variable many_rolls.

two_rolls <- function(){ 
 sample(1:6, size = 2, replace = TRUE) 
 } 
 many_rolls <- replicate(1000, two_rolls())

The results of the first 50 experiments are shown in Table 1.1. For

each experiment, one records a match (YES) or no match (NO) in

the two numbers that are rolled.

TABLE 1.1

The results of the first 50 experiments of rolling two dice.

Die 1 Die 2 Match? Die 1 Die 2 Match?

3 3 YES 1 6 NO

2 2 YES 2 6 NO



4 6 NO 3 6 NO

6 4 NO 3 1 NO

6 6 YES 6 6 YES

4 5 NO 6 6 YES

4 1 NO 1 5 NO

4 1 NO 1 4 NO

1 2 NO 2 2 YES

5 1 NO 1 3 NO

1 1 YES 5 3 NO

2 6 NO 2 6 NO

3 6 NO 3 5 NO

5 1 NO 3 5 NO

5 3 NO 1 6 NO

3 4 NO 2 5 NO

3 3 YES 2 2 YES

5 5 YES 2 3 NO

4 3 NO 1 5 NO

1 3 NO 2 1 NO

3 2 NO 2 5 NO

5 2 NO 3 1 NO

6 2 NO 2 2 YES

2 6 NO 5 6 NO

1 3 NO 2 3 NO

We see 11 matches (YES results) in the table so

Prob(match) ≈ 11/50 = 0.22.

Let’s now roll the two dice 10,000 times with R – this time, 1662

matches are observed, so

Prob(match) ≈ 1662/10000 = 0.1662.



Is 0.1662 the actual probability of getting doubles? No, it is still

only an approximation to the actual probability. However, as one

continues to roll dice, the relative frequency

(number of doubles)/(number of experiments)

will approach the actual probability

Prob(doubles).

Here the actual probability of rolling doubles is

Prob(doubles) = 1/6,

which is very close to the relative frequency of doubles that we

obtained by rolling the dice 10,000 times.

In this example, one can show that are 6 × 6 = 36 equally likely

ways of rolling two distinguishable dice and there are exactly six

ways of rolling doubles. So using the classical viewpoint, the

probability of doubles is 6/36 = 1/6.

 

1.4  The Subjective View of a Probability

Two ways of thinking about probabilities have been described.

The classical view. This is a useful way of thinking about

probabilities when one lists all possible outcomes in such a way

that each outcome is equally likely.

The frequency view. In the situation when one repeats a random

experiment many times under similar conditions, one

approximates a probability of an event by the relative frequency

that the event occurs.

What if one can’t apply these two interpretations of probability?

That is, what if the outcomes of the experiment are not equally



likely, and it is not feasible or possible to repeat the experiment

many times under similar conditions?

In this case, one can rely on a third view of probabilities, the

subjective view. This interpretation is arguably the most general way

of thinking about a probability, since it can be used in a wide variety

of situations.

Suppose one is interested in the probability of the event: “Her team

will win the conference title in basketball next season.”

One can’t use the classical or frequency views to compute this

probability. Why? Suppose there are eight teams in the conference.

Each team is a possible winner of the conference, but these teams are

not equally likely to win – some teams are stronger than the rest. So

the classical approach won’t help in obtaining this probability.

The event of her team winning the conference next year is

essentially a one-time event. Certainly, her team will have the

opportunity to win this conference in future years, but the players on

her team and their opponents will change and it won’t be the same

basketball competition. So one can’t repeat this experiment under

similar conditions, and so the frequency view is not helpful in this

case.

What is a subjective probability in this case? The probability

Prob(Her team will win the conference in basketball next season)

represents the person’s belief in the likelihood that her team will win

the basketball conference next season. If she believes that her school

will have a great team next year and will win most of their

conference games, she would give this probability a value close to 1.

On the other hand, if she thinks that her school will have a relatively

weak team, her probability of this event would be a small number

close to 0. Essentially, this probability is a numerical statement

about the person’s confidence in the truth of this event.

There are two important aspects of a subjective probability.



1. A subjective probability is personal. One person’s belief about

her team winning the basketball conference is likely different

from another person’s belief about the team winning the

conference since the two people have different information.

Perhaps the second person is not interested in basketball and

knows little about the teams and the first person is very

knowledgeable about college basketball. That means that beliefs

about the truth of this event can be different for different people

and so the probabilities for these two would also be different.

2. A subjective probability depends on one’s current information or

knowledge about the event in question. Maybe the first person

originally thinks that this probability is 0.7 since her school had

a good team last year. But when she learns that many of the

star players from last season have graduated, this may change

her knowledge about the team, and she may now assign this

probability a smaller number.

Measuring probabilities subjectively

Although one is used to expressing one’s opinions about uncertain

events, using words like likely, probably, rare, sure, maybe, one

typically is not used to assigning probabilities to quantify one’s

beliefs about these events. To make any kind of measurement, one

needs a tool like a scale or ruler. Likewise, one needs tools to help us

assign probabilities subjectively. Next, a special tool, called a

calibration experiment, will be introduced that will help to determine

one’s subjective probabilities.

A calibration experiment

Consider the event W: “a woman will be President of the United

States in the next 20 years”.

A college student is interested in his subjective probability of W.

This probability is hard to specify precisely since he hasn’t had much



practice doing it. We describe a simple procedure that will help in

measuring this probability.

First consider the following calibration experiment – this is an

experiment where the probabilities of outcomes are clear. One has a

collection of balls, 5 red and 5 white in a box and one ball is selected

at random.

Let B denote the event that the student observes a red ball. Since

each of the ten balls is equally likely to be selected, we think he

would agree that Prob(B) = 5/10 = 0.5.

Now consider the following two bets:

BET 1 – If W occurs (a women is president in the next 20

years), the student wins $100. Otherwise, the student wins

nothing.

BET 2 – If B occurs (a red ball is observed in the above

experiment), the student wins $100. Otherwise, the student wins

nothing.

Based on the bet that the student prefers, one can determine an

interval that contains his Prob(W):

(a) If the student prefers BET 1, then his Prob(W) must be

larger than Prob(B) = 0.5 – that is, his Prob(W) must fall

between 0.5 and 1.

(b) If the student prefers BET 2, then his Prob(W) must be

smaller than Prob(B) = 0.5 – that is, his probability of W

must fall between 0 and 0.5.

What the student does next depends on his answer to part (b).

If his Prob(W) falls in the interval (0, 0.5), then consider the

“balls in box” experiment with 2 red and 8 white balls and he is

interested in the probability of choosing a red ball.

If instead his Prob(W) falls in the interval (0.5, 1), then consider

the “balls in box” experiment with 8 red and 2 white balls and



he is interested in the probability of choosing a red ball.

Let’s suppose that the student believes Prob(W) falls in the

interval (0.5, 1). Then he would make a judgment between the two

bets

BET 1 – If W occurs (a women is president in the next 20

years), he wins $100. Otherwise, he wins nothing.

BET 2 – If B occurs (observe a red ball with a box with 8 red

and 2 white balls), he wins $100. Otherwise, he wins nothing.

The student decides to prefer BET 2, which means that his

probability Prob(W) is smaller than 0.8. Based on the information on

the two comparisons, the student now believes that Prob(W) falls

between 0.5 and 0.8.

In practice, the student will continue to compare BET 1 and BET

2, where the box has a different number of red and white balls. By a

number of comparisons, he will get an accurate measurement at his

probability of W.

 

1.5  The Sample Space

A sample space lists all possible outcomes of a random experiment.

There are different ways to write down the sample space, depending

on how one thinks about outcomes. Let’s illustrate the variety of

sample spaces by the simple experiment “roll two fair dice.”

Each die is the usual six-sided object that we are familiar with,

with a number 1, 2, 3, 4, 5, or 6 on each side. Fair dice implies that

each die is constructed such that the six possible numbers are equally

likely to come up when rolled.

What can happen when you roll two dice? The collection of all

outcomes that are possible is the sample space. But there are



different ways of representing the sample space depending on what

“outcome” we are considering.

Roll two fair, indistinguishable dice

First, suppose you are interested in the sum of the numbers on the

two dice. This would be of interest to a gambler playing the casino

game craps. What are the possible sums? After some thought, it

should be clear that the smallest possible sum is 2 (if you roll two

ones) and the largest possible sum is 12 (with two sixes). Also every

whole number between 2 and 12 is a possible sum. So the sample

space, denoted by S, would be

S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Suppose instead you wish to record the rolls on each of the two

dice. One possible outcome would be

(4 on one die, 3 on the other die)

or more simply (4, 3). What are the possible outcomes? Table 1.2

displays the 21 possibilities.

TABLE 1.2

The possible outcomes of rolling two fair, indistinguishable dice.

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)

(2, 2), (2, 3), (2, 4), (2, 5), (2, 6)

(3, 3), (3, 4), (3, 5), (3, 6)

(4, 4), (4, 5), (4, 6)

(5, 5), (5, 6)

(6, 6)

Notice that one is not distinguishing between the two dice in this

list. For example, the outcome (2, 3) was written only once, although

there are two ways for this to happen – either the first die is 2 and

the second die is 3, or the other way around.



Roll two fair, distinguishable dice

Suppose we want to distinguish two dice. Perhaps one die is red and

one die is white. We are considering all possible rolls of both dice.

We illustrate two ways of showing the sample space in this case.

One way of representing possible rolls of two distinct dice is by a

tree diagram shown in Figure 1.1. On the left side of the diagram,

the six possible rolls of the red die are represented by six branches of

a tree. Then,on the right side, the six possible rolls of the white die

are represented by by six smaller branches coming out of each roll of

the red die. A single branch on the left and a single branch on the

right represent one possible outcome of this experiment.



FIGURE 1.1

Tree diagram representation of the rolls of two dice.



There are alternative ways for representing the outcomes of this

experiment of rolling two distinct dice. Suppose one writes down an

outcome by the ordered pair

(roll on white die, roll on red die).

Then, the possible outcomes are listed in Table 1.3.

TABLE 1.3

The possible outcomes of rolling two fair, distinguishable dice.

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)

Since these are ordered pairs, the order of the numbers does

matter. The outcome (5, 1) (5 on the red, 1 on the white) is different

from the outcome (1, 5) (1 on the red die and 5 on the white die).

Two representations of the sample space of possible rolls of two

dice have been illustrated. These representations differ by how one

records the outcome of rolling two dice. One either (1) records the

sum of the two dice, (2) records the individual rolls, not

distinguishing the two dice, or (3) records the individual rolls,

distinguishing the two dice.

Which one is the best sample space to use? Actually, all of the

sample spaces shown above are correct. Each sample space represents

all possible outcomes of the experiment of rolling two dice and we

cannot say that one sample space is better than another sample

space. We will see that in particular situations some sample spaces

are more convenient than other sample spaces when one wishes to

assign probabilities. In the current case of rolling two fair dice, the

sample space with distinguishable dice is desirable from the



viewpoint of computing probabilities since the outcomes are equally

likely.

When recording sample spaces, we can use whatever method we

like. We could use a tree diagram or table or list the outcomes. The

important issue is displaying all possible outcomes in S.

 

1.6  Assigning Probabilities

When one has a random experiment, the first step is to list all of the

possible outcomes in the sample space. The next step is to assign

numbers, called probabilities, to the different outcomes that reflect

the likelihoods that these outcomes can occur.

To illustrate different assignments of probabilities, suppose a

school girl goes to an ice cream parlor and plans to order a single-dip

ice cream cone. This particular parlor has four different ice cream

flavors. Which flavor will the school girl order?

First, one writes down the sample space in Table 1.4 – the possible

flavors that the school girl can order. Probabilities will be assigned to

these four possible outcomes that reflect a person’s beliefs about her

likes and dislikes.

TABLE 1.4

Writing down the sample space: step 1.

Flavor Vanilla Chocolate Butter Pecan Maple Walnut

Probability

Can our probabilities be any numbers? Not exactly. Here are some

basic facts (or laws) about probabilities:

Any probability that is assigned must fall between 0 and 1.

The sum of the probabilities across all outcomes must be equal

to 1.



An outcome will be assigned a probability of 0 if one is sure that

that outcome will never occur.

Likewise, if one assigns a probability of 1 to an event, then that

event must occur all the time.

With these facts in mind, consider some possible probability

assignments for the flavor of ice cream that this school girl will order.

Scenario 1

Suppose that the school girl likes to be surprised. She has brought a

hat in which she has placed many slips of paper – 10 slips are labeled

“vanilla”, 10 slips are labeled “chocolate”, and 10 slips are “butter

pecan”, and 10 are “maple walnut”. She makes her ice cream choice

by choosing a slip at random. In this case, each flavor would have a

probability of 10/40 = 1/4 (See Table 1.5).

TABLE 1.5

Writing down the sample space: step 2, scenario 1.

Flavor Vanilla Chocolate Butter Pecan Maple Walnut

Probability 1/4 1/4 1/4 1/4

Scenario 2

Let’s consider a different set of probabilities based on different

assumptions about the school girl’s taste preferences. She knows that

she really doesn’t like “plain” flavors like vanilla or chocolate, and she

really likes ice creams with nut flavors. In this case, we would assign

“vanilla” and “chocolate” each a probability of 0, and assign the two

other flavors probabilities that sum to one.

Table 1.6 displays one possible assignment.

TABLE 1.6

Writing down the sample space: step 1, scenario 2.

Flavor Vanilla Chocolate Butter Pecan Maple Walnut

Probability 0 0 0.7 0.3



Another possible assignment of probabilities that is consistent with

these assumptions is displayed in Table 1.7.

TABLE 1.7

Writing down the sample space: step 2, scenario 2.

Flavor Vanilla Chocolate Butter Pecan Maple Walnut

Probability 0 0 0.2 0.8

Scenario 3

Let’s consider an alternative probability assignment from a different

person’s viewpoint. The worker at the ice cream shop has no idea

what flavor the school girl will order. But the worker has been

working at the shop all day and she has kept a record of how many

cones of each type have been ordered – of 50 cones ordered, 10 are

vanilla, 14 are chocolate, 20 are butter pecan, and 6 are maple

walnut. If she believes that the school girl has similar tastes to the

previous customers, then it would be reasonable to apply the

frequency viewpoint to assign the probabilities as displayed in Table

1.8.

TABLE 1.8

Writing down the sample space: step 2, scenario 3.

Flavor Vanilla Chocolate Butter Pecan Maple Walnut

Probability 10/50 14/50 20/50 6/50

Each of the above probability assignments used a different

viewpoint of probability as described in previous sections. The first

assignment used the classical viewpoint where each of the forty slips

of paper had the same probability of being selected. The second

assignment was an illustration of the subjective view where one’s

assignment was based on one’s opinion about the favorite flavors of

one’s daughter. The last assignment was based on the frequency

viewpoint where the probabilities were estimated from the observed

flavor preferences of 50 previous customers.



 

1.7  Events and Event Operations

In this chapter, probability has been discussed in an informal way.

Numbers called probabilities are assigned to outcomes in the sample

space such that the sum of the numbers over all outcomes is equal to

one. In this section, we look at probability from a more formal

viewpoint. One defines probability as a function on events that

satisfies three basic laws or axioms. Then all of the important facts

about probabilities, including some facts that have been used above,

can be derived once these three basic axioms are defined.

Suppose that the sample space for our random experiment is S. An

event, represented by a capital letter such as A, is a subset of S.

Events, like sets, can be combined in various ways described as

follows.

A ∩ B is the event that both A and B occur (the intersection of

the two events).

A ∪ B is the event that either A or B occur (the union of the

two events).

Ā (or A
c
) is the event that A does not occur (the complement of

the event A).

To illustrate these event operations, suppose one chooses a student

at random from a class and records the month when she or he was

born. The student could have been born during 12 possible months

and the sample space S is the list of these months:

S = {January, February, March, April, May, June, July, August,

September, October, November, December}.

Define the events L that the student is born during the last half of

the year and F that the student is born during a month that is four

letters long.



L = {July, August, September, October, November, December}.

F = {June, July}.

Various event operations can be illustrated using these events.

L ∩ F  is the event that the student is born during the last half

of the year AND is born in a four-letter month = {July}.

L ∪ F , in contrast, is the event that the student is EITHER

born during the last half of the year OR born in a four-letter

month = {June, July, August, September, October, November,

December}.

L̄ (or L
c
) is the event that the student is NOT born during the

last half of the year = {January, February, March, April, May,

June}

 

1.8  The Three Probability Axioms

Now that a sample space S and events are defined, probabilities are

defined to be numbers assigned to the events. There are three basic

laws or axioms that define probabilities:

Axiom 1: For any event A, P(A) ≥ 0. That is, all probabilities

are nonnegative values.

Axiom 2: P(S) = 1. That is, the probability that you observe

something in the sample space is one.

Axiom 3: Suppose one has a sequence of events A1, A2, A3,…

that are mutually exclusive, which means that for any two

events in the sequence, say A2 and A3 , the intersection of the

two events is the empty set (i.e. A2 ∩ A3 = ∅). Then one finds

the probability of the union of the events by adding the

individual event probabilities:



P(A1 ∪ A2 ∪ A3∪. . . ) = P(A1) + P(A2) + P(A3)+. . . (1.2)

Given the three basic axioms, some additional facts about

probabilities can be proven. These additional facts are called

properties – these are not axioms, but rather additional facts that

are derived knowing the axioms. Below several familiar properties

about probabilities are stated and we prove how each property

follows logically from the axioms.

Property 1: If A is a subset of B, that is A ⊂ B, then P(A) ≤ P(B).

This property states that if one has two events, such that one

event is a subset of the other event, then the probability of the first

set cannot exceed the probability of the second. This fact may seem

pretty obvious, but how can one prove this from the axioms?

Proof: The proof begins with a Venn diagram where a set A is a

subset of set B. (See Figure 1.2.)

FIGURE 1.2

Two events where one is a subset of the other.

Note that the larger set B can be written as the union of A and 

Ā ∩ B, that is,

B = A ∪ (Ā ∩ B) (1.3)



Note that A and Ā ∩ B are mutually exclusive (i.e. they have no

overlap). So one can apply Axiom 3 and write

P(B) = P(A) + P(Ā ∩ B) (1.4)

Also, by Axiom 1, the probability of any event is nonnegative. So the

probability of B is equal to the probability of A plus a nonnegative

number. So this implies

P(B) ≥ P(A) (1.5)

which is what we wish to prove.

Property 2: P(A) ≤ 1.

This is pretty obvious – probabilities certainly cannot be larger

than 1. But how can this property be shown given our known facts

including the axioms and Property 1 that was just proved?

Proof: Actually this property is a consequence of Property 1.

Consider the two events A and the sample space S. Obviously A is a

subset of the sample space – that is,

A ⊂ S (1.6)

So applying Property 1,

P(A) ≤ P(S) = 1. (1.7)



It is known that P(S) = 1 from the second Axiom 2. So we have

proved our result.

 

1.9  The Complement and Addition Properties

There are two additional properties of probabilities that are useful in

computation. Both of these properties will be stated without proof,

but an outline of the proofs will be given in the end-of chapter

exercises. The first property, called the complement property, states

that the probability of the complement of an event is simply one

minus the probability of the event.

Complement property: For an event A,

P(Ā) = 1 − P(A). (1.8)

The second property, called the addition property, gives a formula

for the probability of the union of two events.

Addition property: For two events A and B,

P(A ∪ B) = P(A) + P(B) − P(A ∩ B). (1.9)

Both of these properties are best illustrated by an example. Let’s

revisit the example where one was interested in the birth month of a

student selected from a class. As before, let L represent the event

that the student is born during the last half of the year and F denote

the event that the student is born during a month that is four letters

long.



There are 12 possible outcomes for the birth month. One can

assume that each month is equally likely to occur, but actually in the

U.S. population, the numbers of births during the different months

do vary. Using data from the births in the U.S. in 1978, Table 1.9

displays the following probabilities for the months. We see that

August is the most likely birth month with a probability of 0.091 and

February (the shortest month) has the smallest probability of 0.075.

TABLE 1.9

Probability table of birth months in the U.S. in 1978.

Month 

Prob

Jan 

0.081

Feb 

0.075

Mar 

0.083

Apr 

0.076

May 

0.082

June 

0.081

Month July Aug Sept Oct Nov Dec

Prob 0.088 0.091 0.088 0.087 0.082 0.085

Using this probability table, one finds …

1. P(L) = P(July, August, September, October, November,

December) = 0.088 + 0.091 + 0.088 + 0.098 + 0.082 + 0.085 =

0.521.

2. P(F) = P(June, July) = 0.081 + 0.088 = 0.169.

Now we are ready to illustrate the two probability properties.

What is the probability the student is not born during the last half

of the year? This can be found by summing the probabilities of the

first six months of the year. It is easier to compute this probability

by noting that the event of interest is the complement of the event L,

and the complement property can be applied to find the probability.

P(L̄) = 1 − P(L).

What is the probability the student is either born during the last

six months of the year or a month four letters long? In Figure 1.3,

the sample space S is displayed consisting of the twelve possible birth



months, and the events F and L are shown by circling the relevant

outcomes. The event F ∪ L is the union of the two circled events.

FIGURE 1.3

Representation of two sets F and L in birthday example.

Applying the addition property, one finds the probability of F ∪ L

by adding the probabilities of F and L and subtracting the

probability of the intersection event F ∩ L :

Looking at Figure 1.3, the formula should make sense. When one

adds the probabilities of the events F and L, one adds the probability

of the month July twice, and to get the correct answer, one needs to

subtract the outcome (July) common to both F and L.

P(F ∪ L) = P(A) + P(L) − P(F ∩ L)

= 0.521 + 0.169 − 0.088

= 0.602



Special Note: Is it possible to simply add the probabilities of two

events, say A and B, to get the probability of the union A ∪ B?

Suppose the sets A and B are mutually exclusive which means they

have no outcomes in common. In this special case,A ∩ B = ∅, 

P(A ∩ B) = 0 and P(A ∪ B) = P(A) + P(B). For example, suppose

one is interested in probability that the student is born in the last

half the year (event L) or in May (event M). Here, it is not possible

to be born in the last half of the year and in May so L ∩ M = ∅. In

this case, P(L ∪ M) = P(L) + P(M) = 0.521 + 0.082 = 0.603.

 

1.10  Exercises

1. Probability Viewpoints

In the following problems, indicate if the given probability is

found using the classical viewpoint, the frequency viewpoint, or

the subjective viewpoint.

(a) Joe is doing well in school this semester – he is 90% sure

that will receive As in all his classes.

(b) Two hundred raffle tickets are sold and one ticket is a

winner. Someone purchased one ticket and the probability

that her ticket is the winner is 1/200.

(c) Suppose that 30% of all college women are playing an

intercollegiate sport. If we contact one college woman at

random, the chance that she plays a sport is 0.3.

(d) Two Polish statisticians in 2002 were questioning if the new

Belgium Euro coin was indeed fair. They had their students

flip the Belgium Euro 250 times, and 140 came up heads.

(e) Many people are afraid of flying. But over the decade 1987-

96, the death risk per flight on a US domestic jet has been

1 in 7 million.

(f) In a roulette wheel, there are 38 slots numbered 0, 00, 1, …,

36. There are 18 ways of spinning an odd number, so the



probability of spinning an odd is 18/38.

2. Probability Viewpoints

In the following problems, indicate if the given probability is

found using the classical viewpoint, the frequency viewpoint, or

the subjective viewpoint.

(a) The probability that the spinner lands in the region A is

1/4.

(b) The meteorologist states that the probability of rain

tomorrow is 0.5. You think it is more likely to rain and you

think the chance of rain is 3/4.

(c) A football fan is 100% certain that his high school football

team will win their game on Friday.

(d) Jennifer attends a party, where a prize is given to the

person holding a raffle ticket with a specific number. If

there are eight people at the party, the chance that Jennifer

wins the prize is 1/8.

(e) What is the chance that you will pass an English class? You

learn that the professor passes 70% of the students and you

think you are typical in ability among those attending the

class.

(f) If you toss a plastic cup in the air, what is the probability

that it lands with the open side up? You toss the cup 50

times and it lands open side up 32 times, so you

approximate the probability by 32/50

3. Equally Likely Outcomes

For the following experiments, a list of possible outcomes is

given. Decide if one can assume that the outcomes are equally



likely. If the equally likely assumption is not appropriate, explain

which outcomes are more likely than others.

(a) A bowl contains six marbles of which two are red, three are

white, and one is black. One marble is selected at random

from the bowl and the color is observed.

Outcomes: {red, white, black}

(b) You observe the gender of a baby born today at your local

hospital.

Outcomes: {male, female}

(c) Your school’s football team is playing the top rated school

in the country.

Outcomes: {your team wins, your team loses}

(d) A bag contains 50 slips of paper, Ten slips are assigned to

each category numbered 1 through 5. You choose a slip at

random from the bag and notice the number on the slip.

Outcomes: {1, 2, 3, 4, 5}

4. Equally Likely Outcomes

For the following experiments, a list of possible outcomes is

given. Decide if one can assume that the outcomes are equally

likely. If the equally likely assumption is not appropriate, explain

which outcomes are more likely than others.

(a) You wait at a bus stop for a bus. From experience, you

know that you wait, on average, 8 minutes for this bus to

arrive.

Outcomes: {wait less than 10 minutes, wait more than 10

minutes}

(b) You roll two dice and observe the sum of the numbers.

Outcomes: {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

(c) You get a grade for an English course in college.

Outcomes: {A, B, C, D, F}

(d) You interview a person at random at your college and ask

for his or her age.

Outcomes: {17 to 20 years, 21 to 25 years, over 25 years}



5. Flipping a Coin

Suppose you flip a fair coin until you observe heads. You repeat

this experiment many times, keeping track of the number of flips

it takes to observe heads. Here are the numbers of flips for 30

experiments.

1 3 1 2 1 1 2 6 1 2

1 1 1 1 3 2 1 1 2 1

5 2 1 7 3 3 3 1 2 3

(a) Approximate the probability that it takes you exactly two

flips to observe heads.

(b) Approximate the probability that it takes more than two

flips to observe heads.

(c) What is the most likely number of flips?

6. Driving to Work

You drive to work 20 days, keeping track of the commuting time

(in minutes) for each trip. Here are the twenty measurements.

25.4, 27.8, 26.8, 24.1, 24.5, 23.0, 27.5, 24.3, 28.4, 29.0

29.4, 24.9, 26.3, 23.5, 28.3, 27.8, 29.4, 25.7, 24.3, 24.2

(a) Approximate the probability that it takes you under 25

minutes to drive to work.

(b) Approximate the probability it takes between 25 and 28

minutes to drive to work.

(c) Suppose one day it takes you 23 minutes to get to work.

Would you consider this unusual? Why?

7. A Person Sent to Mars

Consider your subjective probability P(M) where M is the event

that the United States will send a person to Mars in the next

twenty years.

(a) Let B denote the event that you select a red ball from a box

of five red and five white balls. Consider the two bets



• BET 1 – If M occurs (United States will send a person

to Mars in the next 20 years), you win $100. Otherwise,

you win nothing.

• BET 2 – If B occurs (you observe a red ball in the

above experiment), you win $100. Otherwise, you win

nothing.

Circle the bet that you prefer.

(b) Let B represent choosing red from a box of 7 red and 3

white balls. Again compare BET 1 with BET 2 – which bet

do you prefer?

(c) Let B represent choosing red from a box of 3 red and 7

white balls. Again compare BET 1 with BET 2 – which bet

do you prefer?

(d) Based on your answers to (a), (b), (c), circle the interval of

values that contain your subjective probability P(M).

8. In What State Will You Live in the Future?

Consider your subjective probability P(S) where S is the event

that at age 60 you will be living in the same state as you

currently live.

(a) Let B denote the event that you select a red ball from a box

of five red and five white balls. Consider the two bets

• BET 1 – If S occurs (you live in the same state at age

60), you win $100. Otherwise, you win nothing.

• BET 2 – If B occurs (you observe a red ball in the

above experiment), you win $100. Otherwise, you win

nothing.

Circle the bet that you prefer.

(b) Let B represent choosing red from a box of 7 red and 3

white balls. Again compare BET 1 with BET 2 – which bet

do you prefer?

(c) Let B represent choosing red from a box of 3 red and 7

white balls. Again compare BET 1 with BET 2 – which bet

do you prefer?



(d) Based on your answers to (a), (b), (c), circle the interval of

values that contain your subjective probability P(S)

.

9. Frequency of Vowels in Huckleberry Finn

Suppose you choose a page at random from the book

Huckleberry Finn by Mark Twain and find the first vowel on the

page.

(a) If you believe it is equally likely to find any one of the five

possible vowels, fill in the probabilities of the vowels below.

Vowel a e i o u

Probability

(b) Based on your knowledge about the relative use of the

different vowels, assign probabilities to the vowels.

Vowel a e i o u

Probability

(c) Do you think it is appropriate to apply the classical

viewpoint to probability in this example? (Compare your

answers to parts a and b.)

(d) On each of the first fifty pages of Huckleberry Finn, your

author found the first five vowels. Here is a table of

frequencies of the five vowels:

Vowel a e i o u

Frequency 61 63 34 70 22

Probability

Use this data to find approximate probabilities for the

vowels.

10. Purchasing Boxes of Cereal



Suppose a cereal box contains one of four different posters

denoted A, B, C, and D. You purchase four boxes of cereal and

you count the number of posters (among A, B, C, D) that you

do not have. The possible number of “missing posters” is 0, 1, 2,

and 3.

(a) Assign probabilities if you believe the outcomes are equally

likely.

Number of missing posters 0 1 2 3

Probability

(b) Assign probabilities if you believe that the outcomes 0 and

1 are most likely to happen.

Number of missing posters 0 1 2 3

Probability

(c) Suppose you purchase many groups of four cereals, and for

each purchase, you record the number of missing posters.

The number of missing posters for 20 purchases is displayed

below. For example, in the first purchase, you had 1 missing

poster, in the second purchase, you also had 1 missing

poster, and so on.

1, 1, 1, 2, 1, 1, 0, 0, 2, 1, 
 2, 1, 3, 1, 2, 1, 0, 1, 1, 1

Using these data, assign probabilities.

Number of missing posters 0 1 2 3

Probability

(d) Based on your work in part c, is it reasonable to assume

that the four outcomes are equally likely? Why?

11. Writing Sample Spaces

For the following random experiments, give an appropriate

sample space for the random experiment. You can use any



method (a list, a tree diagram, a two-way table) to represent the

possible outcomes.

(a) You simultaneously toss a coin and roll a die.

(b) Construct a word from the five letters a, a, e, e, s.

(c) Suppose a person lives at point 0 and each second she

randomly takes a step to the right or a step to the left. You

observe the person’s location after four steps.

(d) In the first round of next year’s baseball playoff, the two

teams, say the Phillies and the Diamondbacks play in a

best-of-five series where the first team to win three games

wins the playoff.

(e) A couple decides to have children until a boy is born.

(f) A roulette game is played with a wheel with 38 slots

numbered 0, 00, 1, …, 36. Suppose you place a $10 bet that

an even number (not 0) will come up in the wheel. The

wheel is spun.

(f) Suppose three batters, Marlon, Jimmy, and Bobby, come to

bat during one inning of a baseball game. Each batter can

either get a hit, walk, or get out.

12. Writing Sample Spaces

For the following random experiments, give an appropriate

sample space for the random experiment. You can use any

method (a list, a tree diagram, a two-way table) to represent the

possible outcomes.

(a) You toss three coins.

(b) You spin the spinner (shown below) three times.

(c) When you are buying a car, you have a choice of three

colors, two different engine sizes, and whether or not to



have a CD player. You make each choice completely at

random and go to the dealership to pick up your new car.

(d) Five horses, Lucky, Best Girl, Stripes, Solid, and Jokester

compete in a race. You record the horses that win, place,

and show (finish first, second, and third) in the race.

(e) You and a friend each think of a whole number between 0

and 9.

(f) On your computer, you have a playlist of 4 songs denoted

by a, b, c, d. You play them in a random order.

(f) Suppose a basketball player takes a “one-and-one” foul shot.

(This means that he attempts one shot and if the first shot

is successful, he gets to attempt a second shot.)

13. Writing Sample Spaces

For the following random experiments, give an appropriate

sample space for the random experiment. You can use any

method (a list, a tree diagram, a two-way table) to represent the

possible outcomes.

(a) Your school plays four football games in a month.

(b) You call a “random” household in your city and record the

number of hours that the TV was on that day.

(c) You talk to an Ohio resident who has recently received her

college degree. How many years did she go to college?

(d) The political party of our next elected U.S. President.

(e) The age of our next President when he or she is

inaugurated.

(f) The year a human will next land on the moon.

14. Writing Sample Spaces

For the following random experiments, give an appropriate

sample space for the random experiment. You can use any

method (a list, a tree diagram, a two-way table) to represent the

possible outcomes.

(a) The time you arrive at your first class on Monday that

begins at 8:30 AM.



(b) You throw a ball in the air and record how high it is

thrown (in feet).

(c) Your cost of textbooks next semester.

(d) The number of children you will have.

(e) You take a five question true/false test.

(f) You drive on the major street in your town and pass

through four traffic lights.

15. Probability Assignments

Give reasonable assignments of probabilities based on the given

information.

() In the United States, there were 4.058 million babies born in

the year 2000 and 1.98 million were girls. Assign

probabilities to the possible genders of your next child.

Gender Boy Girl

Probability

(b) Next year, your school will be playing your neighboring

school in football. Your neighboring school is a strong

favorite to win the game.

Winner of Game Your school Your neighboring school

Probability

(c) You have an unusual die that shows 1 on two sides, 2 on

two sides, and 3 and 4 on the remaining two sides.

Roll 1 2 3 4 5 6

Probability

16. Probability Assignments

Based on the given information, decide if the stated probabilities

are reasonable. If they are not, explain how they should be

changed.



(a) Suppose you play two games of chess with a chess master.

You can either win 0 games, 1 game, or 2 games, so the

probability of each outcome is equal to 1/3.

(b) Suppose 10% of cars in a car show are Corvettes and you

know that red is the most popular Corvette color. So the

chance that a randomly chosen car is a red Corvette must

be larger than 10.

(c) In a Florida community, you are told that 30% of the

residents play golf, 20% play tennis, and 40% of the

residents play golf and tennis.

(d) Suppose you are told that 10% of the students in a

particular class get A, 20% get B, 20% get C, and 20% get

D. That means that 30% must fail the class.

17. Finding the Right Key

Suppose your key chain has five keys, one of which will open up

your front door of your apartment. One night, you randomly try

keys until the right one is found.

Here are the possible numbers of keys you will try until you get

the right one:

1 key, 2 keys, 3 keys, 4 keys, 5 keys

(a) Circle the outcome that you think is most likely to occur.

1 key, 2 keys, 3 keys, 4 keys, 5 keys

(b) Circle the outcome that you think is least likely to occur.

1 key, 2 keys, 3 keys, 4 keys, 5 keys

(c) Based on your answers to parts a and b, assign probabilities

to the six possible outcomes.

Outcome 1 key 2 keys 3 keys 4 keys 5 keys

Probability

18. Playing Roulette



One night in Reno, you play roulette five times. Each game you

bet $5 – if you win, you win $10; otherwise, you lose your $5.

You start the evening with $25. Here are the possible amounts of

money you will have after playing the five games.

$0, $10, $20, $30, $40, $50 .

(a) Circle the outcome that you think is most likely to occur.

$0, $10, $20, $30, $40, $50

(b) Circle the outcome that you think is least likely to occur.

$0, $10, $20, $30, $40, $50

(c) Based on your answers to parts a and b, assign probabilities

to the six possible outcomes.

Outcome $0 $10 $20 $30 $40 $50

Probability

19. Cost of Your Next Car

Consider the cost of the next new car you will purchase in the

future. There are five possibilities:

Cheapest: the car will cost less than $5000.

Cheaper: the car will cost between $5000 and $10,000.

Moderate: the car will cost between $10,000 and $20,000.

Expensive: the car will cost between $20,000 and $30,000.

Really expensive: the car will cost over $30,0000.

(a) Circle the outcome that you think is most likely to occur.

cheapest, cheaper, moderate, expensive, really expensive

(b) Circle the outcome that you think is least likely to occur.

cheapest, cheaper, moderate, expensive, really expensive

(c) Based on your answers to parts a and b, assign probabilities

to the five possible outcomes.



Outcome cheapest cheaper moderate expensive really

expensive

Probability

20. Flipping a Coin

Suppose you flip a coin twice. There are four possible outcomes

(H stands for heads and T stands for tails).

HH, HT, TH, TT

(a) Circle the outcome that you think is most likely to occur.

HH, HT, TH, TT

(b) Circle the outcome that you think is least likely to occur.

HH, HT, TH, TT

(c) Based on your answers to parts a and b, assign probabilities

to the four possible outcomes.

Outcome HH HT TH TT

Probability

21. Playing Songs in Your iPod

Suppose you play three songs, one each by Jewell (J), Madonna

(M), and Plumb (P) in a random order.

(a) Write down all possible ordering of the three songs.

(b) Let M = event that the Madonna song is played first and B

= event that the Madonna song is played before the Jewell

song. Find P(M) and P(B).

(c) Write down the outcomes in the event M ∩ B and find the

probability P(M ∩ B).
(c) By use of the complement property, find P(B̄).
(d) By use of the addition property, find P(M ∪ B).

22. Student of the Day



Suppose that students at a local high school are distributed by

grade level and gender in Table 1.10.

TABLE 1.10

Table of grade level and gender.

Freshmen Sophomores Juniors Seniors TOTAL

Male 25 30 24 19 98

Female 20 32 28 15 95

TOTAL 45 62 52 34 193

Suppose that a student is chosen at random from the school to

be the “student of the day”. Let F = event that student is a

freshman, J = event that student is a junior, and M = event

that student is a male.

(a) Find the probability P(F̄ ).
(b) Are events F and J mutually exclusive. Why?

(c) Find P(F ∪ J).
(d) Find P(F ∩ M).
(e) Find P(F ∪ M).

23. Proving Properties of Probabilities

Given the three probability axioms and the properties already

proved, prove the complement property P(Ā) = 1 − P(A). An

outline of the proof is written below.

(a) Write the sample space S as the union of the sets A and Ā.

(b) Apply Axiom 3.

(c) Apply Axiom 2.

24. Proving Properties of Probabilities

Given the three probability axioms and the properties already

proved, prove the addition property 

P(A ∪ B) = P(A) + P(B) − P(A ∩ B). A Venn diagram and an

outline of the proof are written below.



(a) Write the set A ∪ B as the union of three sets that are

mutually exclusive.

(b) Apply Axiom 2 to write P(A ∪ B) as the sum of three

terms.

(c) Write the set A as the union of two mutually exclusive sets.

(d) Apply Axiom 2 to write P(A) as the sum of two terms.

(e) By writing the set B as the union of two mutually exclusive

sets and applying Axiom 2, write P(B) as the sum of two

terms.

(f) By making appropriate substitutions to the expression in

part b, one obtains the desired result.



2
 

Counting Methods
 

 

2.1  Introduction: Rolling Dice, Yahtzee, and Roulette

Dice are one of the oldest randomization devices known to man.

Egyptian tombs, dated from 2000 BC, were found containing dice

and there is some evidence of dice in archaeological excavations

dating back to 6000 BC. It is interesting to note that dice appeared

to be invented independently by many ancient cultures across the

world. In ancient times, the result of a die throw was not just

considered luck, but determined by gods. So casting dice was often

used as a way of making decisions such as choosing rulers or dividing

inheritances. The Roman goddess, Fortuna, daughter of Zeus was

believed to bring good or bad luck to individuals.

The Game of Yahtzee

In the 19th and 20th centuries, standard six-sided dice became a

basic component of many commercial board games that were

developed. One of the most current popular games is Yahtzee that is

played with five dice. The Hasbro game company

(http://www.hasbro.com) presents the history of the game. Yahtzee

was invented by a wealthy Canadian couple to play aboard their

yacht. This “yacht” game was popular among the couple’s friends,

http://www.hasbro.com/


who wanted copies of the game for themselves. The couple

approached Mr. Edwin Lowe, who made a fortune selling bingo

games, about marketing the game. Mr. Lowe’s initial attempts to sell

the game of Yahtzee by placing ads were not successful. Lowe

thought that the game had to be played to be appreciated and he

hosted a number of Yahtzee parties and the game became very

successful. The Milton Bradley company acquired the E. S. Lowe

Company and Yahtzee in 1973 and currently more than 50 million

games are sold annually.

The Casino Game of Roulette

Roulette is one of the most popular casino games. The name roulette

is derived from the French word meaning small wheel. Although the

origin of the game is not clear, it became very popular during the

18th century when Prince Charles introduced gambling to Monaco to

alleviate the country’s financial problems. The game was brought to

America in the early part of the 19th century and is currently

featured in all casinos. In addition, roulette is a popular game among

people who like to game online.

The American version of the game discussed in this book varies

slightly from the European version. The American roulette wheel

contains 38 pockets, numbers 1 through 36 plus zero plus double

zero. The wheel is spun and a small metal ball comes to rest in one

of the 38 pockets.

Players will place chips on particular locations on a roulette table,

predicting where the ball will land when after the wheel is spun and

the ball comes to a stop. The dealer places a mark on the winning

number. The players who have bet on the winning number are

rewarded while the players who bet on losing numbers lose their

chips to the casino.

 



2.2  Equally Likely Outcomes

Assume one writes the sample space in such a way that the outcomes

are equally likely. Then, applying the classical interpretation, the

probability of each outcome will be

Prob(Outcome) =
1

Number of outcomes
. (2.1)

If one is interested in the probability of some event, then the

probability is given by

Prob(Event) =
Number of outcomes in event

Number of outcomes
. (2.2)

This simple formula should be used with caution. To illustrate the

use (and misuse) of this formula, suppose one has a box containing

five balls of which three are red, one is blue, and one is white. One

selects three balls without replacement from the box – what is the

probability that all red balls are chosen?

Let’s consider two representations of the sample space of this

experiment.

Sample space 1: Suppose one does not distinguish between balls of

the same color and does not care about the order in which the balls

are selected. Then if R, B, W denote choosing a red, blue, and white

ball respectively, then there are four possible outcomes:

S1 = {(R, R, R), (R, R, B), (R, R, W), (R, B, W)}.

If these outcomes in S1 are assumed equally likely, then the

probability of choosing all red balls is



Prob(all reds) =
1

4
.

Sample space 2: Suppose instead that one distinguishes the balls of

the same color, so the balls in the box are denoted by R1, R2, R3, B,

W. Then one writes down ten possible outcomes

S2 = {(R1, R2, R3), (R1, R2, B), (R1, R2, W), (R1, R3, B), (R1, R3,

W), (R2, R3, B), (R2, R3, W), (R1, B, W), (R2, B, W), (R3, B,

W)}.

If one assumes these outcomes are equally likely, then the

probability of choosing all reds is

Prob(all reds) =
1

10
.

If one compares the answers, one sees an obvious problem since

one obtains two different answers for the probability of choosing all

reds. What is going on? The problem is that the outcomes in the

first sample space S1 are not equally likely. In particular, the chance

of choosing three reds (R, R, R) is smaller than the chance of

choosing a red, blue and white (R, B, W) – there is only one way of

selecting three reds, but there are three ways of selecting exactly one

red. On the other hand, the outcomes in sample space S2 are equally

likely since one was careful to distinguish the five balls in the box,

and it is reasonable that any three of the five balls has the same

chance of being selected.

From this example, a couple of things have been learned. First,

when one writes down a sample space, one should think carefully

about the assumption that outcomes are equally likely. Second, when

one has an experiment with duplicate items (like three red balls), it

may be preferable to distinguish the items when one writes down the

sample space and computes probabilities.

 Sampling From a Box



One simulates this experiment on R by first creating a vector box

with the ball colors, and then using the sample() function to sample

three balls from the vector. The argument size = 3 indicates that a

sample of 3 is chosen, and the argument replace = FALSE ensures

that the sampling is done without replacement. In this particular

simulation, one observes a red, blue, and red ball in our sample.

 
box <- c("red", "red", "red", "blue", "white") 
sample(box, size = 3, replace = FALSE) 
[1] "red" "blue" "red" 

 

2.3  The Multiplication Counting Rule

To apply the equally likely recipe for computing probabilities, one

needs some methods for counting the number of outcomes in the

sample space and the number of outcomes in the event. Here we

illustrate a basic counting rule called the multiplication rule.

Suppose you are dining at your favorite restaurant. Your dinner

consists of an appetizer, an entrée, and a dessert. You can either

choose soup, fruit cup, or quesadillas for your appetizer, you have the

choice of chicken, beef, fish, or lamb for your entrée, and you can

have either pie or ice cream for your dessert. We first use a tree

diagram to write down all of your possible dinners, in Figure 2.1.

The first set of branches shows the appetizers, the next set of

branches the entrées, and the last set of branches the desserts.



FIGURE 2.1

Tree diagram of possible dinners.

Note that there are 3 possible appetizers, 4 possible entrées, and 2

possible desserts. For each appetizer, there are 4 possible entrées, and

so there are 3 × 4 = 12 possible choices of appetizer and entrée.

Using similar reasoning, for each combination of appetizer and

entrée, there are 2 possible desserts, and so the total number of

complete dinners would be

Number of dinners = 3 × 4 × 2 = 24.

The above dining example illustrates a general counting rule that we

call the multiplication rule.



Multiplication Rule: Suppose one is performing a task that

consists of k steps. One performs the first step in n1 ways, the second

step in n2 ways, the third step in n3 ways, and so on. Then the

number of ways of completing the task, denoted by n, is the product

of the different ways of doing the k steps, or

n = n1 × n2×. . . ×nk. (2.3)

 

2.4  Permutations

Suppose one places six songs, Song A, Song B, Song C, Song D, Song

E, and Song F in one’s playlist on the streaming service. The songs

are played in a random order and one listens to the first three songs.

How many different selections of three songs can one hear? In this

example, one is assuming that the order that the songs are played is

important. So hearing the selections

Song A, Song B, Song C

in that order will be considered different from hearing the selections

in the sequence

Song C, Song B, Song A.

An outcome such as this is called a permutation or arrangement of 3

out of the 6 songs. One represents possible permutations by a set of

three blanks, where songs are placed in the blanks.

         _______          _______          _______

1st Song 2nd Song 3rd Song

One computes the number of permutations as follows:



1. First, it is known that 6 possible songs can be played first. One

places this number in the first blank above.

6          _______          _______

1st Song 2nd Song 3rd Song

2. If one places a particular song, say Song A, in the first slot,

there are 5 possible songs in the second position. One places this

number in the second blank.

6 5          _______

1st Song 2nd Song 3rd Song

By use of the multiplication rule, there are 6 × 5 = 30 ways of

placing two songs in the first two slots.

3. Continuing in the same way, one sees that there are 4 ways of

putting a song in the third slot and completing the list of three

songs.

6 5 4

1st Song 2nd Song 3rd Song

Again using the multiplication rule, we see that the number of

possible permutations of six songs in the three positions is

6 × 5 × 4 = 120.

A second basic counting rule has just been illustrated.

Permutations Rule: If one has n objects (all distinguishable), then

the number of ways to arrange r of them, called the number of

permutations, is

nPr = n × (n − 1)×. . . ×(n − r). (2.4)



In this example, n = 6 and r = 3, and If three songs are played in

one’s playlist, each of the 120 possible permutations will be equally

likely to occur. So the probability of any single permutation, say

Song A, Song D, Song B

is equal to 1/120.

Suppose one listens to all six songs on the playlist. How many

possible orders are there? In this case, one is interested in finding the

number of ways of arranging the entire set of 6 objects. Here n = 6

and r = 6 and, applying the permutation rule formula, the number of

permutations is

6P6 = n! = 6 × 5 × 4×. . . ×1 = 720.

One uses the special symbol n!, pronounced “n factorial”, to denote

the product of the integers from 1 to n. So the number of ways of

arranging n distinct objects is

nPn = n! = n × (n − 1) × (n − 2)×. . . ×1. (2.5)

 Simulating a Permutation

To illustrate simulating a permutation, define a function

permutation() with arguments d and Size. Inside the function, the

sample() function takes a sample of size Size without replacement

from the vector d and the str_flatten() function creates a single

string with the arrangement of the Size values. To use this function,

a vector songs is defined containing the names of the six songs. One

applies the permutation() function with arguments songs and 3 and

the simulated arrangement of songs is F, D, and E.

 
permutation <- function(d, Size){ 
 str_flatten(sample(d, size=Size), 
 collapse = " ") 



} 
songs <- c("Song A", "Song B", "Song C", "Song D", 
 "Song E", "Song F") 
permutation(songs, Size = 3) 
[1] "Song F Song D Song E" 

 

2.5  Combinations

Suppose one has a box with five balls – three are white and two are

black. One first shakes up the box and then removes two balls

without replacement, i.e. once one takes a ball out, one does not

return it to the box before the second ball is taken out.

To make it easier to talk about outcomes, the five balls have been

labelled from 1 to 5. Remember one is choosing two balls from the

box and an outcome is the numbers of the two balls that one selects.

When one lists possible outcomes, one should decide if it matters

how one orders the selection of balls. That is, if one chooses ball 1

and then ball 2, is that different than choosing ball 2 and then ball

1?

One could say that order is important – so choosing ball 1 then

ball 2 is a different outcome from ball 2 then ball 1. But in this type

of selection problem, it is common practice not to consider the order



of the selection. Then all that matters is the collection of two balls

that we select. In this case, one calls the resulting outcome a

combination.

When order does not matter, there are 10 possible pairs of balls

that one can select. These outcomes or combinations are written

below – this list represents a sample space for this random

experiment.

There is a simple formula for counting the number of outcomes in

this situation.

Combinations Rule: Suppose one has n objects and one wishes to

take a subset of size r from the group of objects without regards to

order. Then the number of subsets or combinations is given by the

formula

number of combinations = (
n

r
) =

n!

r!(n − r)!
. (2.6)

where k! stands for k factorial k! = k × (k − 1) × (k − 2) × ... × 1. You

might have seen another notation(n

r
) when people talk about



combinations. This notation is pronounced “n choose r”, and it is the

same as (n

r
).

Let’s try the formula in our example to see if it agrees with our

number. In our setting, one has n = 5 balls and one is selecting a

subset of size r = 2 from the box of balls. Using n = 5 and r = 2 in

the formula, one obtains

(
5

2
) =

5!

2!(5 − 2)!
=

5 × 4 × 3 × 2 × 1

[2 × 1] × [3 × 2 × 1]
=

120

12
= 10.

that agrees with our earlier answer of 10 outcomes in the sample

space.

 Simulating Combinations

To illustrate combinations, define a vector Numbers containing the

integers from 1 to 5. The R function combn() generates all

combinations of a set of a specific size. The matrix all_combo is

displayed which contains all combinations of size 2 from Numbers.

 
Numbers <- c(1, 2, 3, 4, 5) 
all_combo <- t(combn(Numbers, 2)) 
all_combo 
 [,1] [,2] 
 [1,] 1 2 
 [2,] 1 3 
 [3,] 1 4 
 [4,] 1 5 
 [5,] 2 3 
 [6,] 2 4 
 [7,] 2 5 
 [8,] 3 4 
 [9,] 3 5 
[10,] 4 5 

Below the function sample() is used to simulate random rows of

the matrix all_combo and a frequency table of the ten possible

combinations is displayed. Note that the frequencies for the ten



possible combinations are similar since these outcomes are equally

likely.

 
N <- nrow(all_combo) 
df <- data.frame(Iter = 1:500, 
 Balls = all_combo[sample(N, size = 500, 
 replace = TRUE), ]) 
df %>% group_by(Balls.1, Balls.2) %>% count() 
 Balls.1 Balls.2 n 
 <dbl> <dbl> <int> 
 1 1 2 57 
 2 1 3 45 
 3 1 4 46 
 4 1 5 51 
 5 2 3 41 
 6 2 4 53 
 7 2 5 46 
 8 3 4 51 
 9 3 5 60 
10 4 5 50 

Number of subsets

Suppose one has a group of n objects and one is interested in the

total number of subsets of this group. Then this total number is

2n = (
n

0
) + (

n

1
)+. . . +(

n

n
). (2.7)

The formula 2
n
 is found by noticing there are two possibilities for

each object – either the object is in the subset or it is not – and then

applying the multiplication rule. The right hand side of the equation

is derived by first counting the number of subsets of size 0, of size 1,

of size 2, and so on, and then adding all of these subset numbers to

get the total number.



Counting the number of pizzas

To illustrate the combinations rule, consider a situation where one is

interested in ordering a pizza and there are six possible toppings.

How many toppings can there be in the pizza? Since there are six

possible toppings, one can either have 0, 1, 2, 3, 4, 5, or 6 toppings

on our pizza. Using combinations rule formula,

(a) There are ( 6
0) pizzas that have no toppings.

(b) There are ( 6
1) pizzas that have exactly one topping.

(c) There are ( 6
2) pizzas that have two toppings.

To compute the total number of different pizzas, one continues in

this fashion and the total number of possible pizzas is

N = (
6

0
) + (

6

1
) + (

6

2
) + (

6

3
) + (

6

4
) + (

6

5
) + (

6

6
).

The reader can confirm that N = 2 
6
 = 64.

 

2.6  Arrangements of Non-Distinct Objects

First let’s use a simple example to review the two basic counting

rules that we have discussed. Suppose one is making up silly words

from the letters “a”, “b”, “c”, “d”, “e”, “f”, like

bacedf, decabf, eabcfd

How many silly words can one make up? Here one has n = 6 objects.

Using the permutation rule, the number of possible permutations is

6! = 6 × 5 × 4×. . . ×1.

To illustrate the second counting rule, suppose one has six letters

“a”, “b”, “c”, “d”, “e”, “f”, and one is going to choose three of the letters

to construct a three-letter word. One cannot choose the same letter



twice and the order in which one chooses the letters is not important.

In this case, one is interested in the number of combinations –

applying our combination rule with n = 6 and k = 3, the number of

ways of choosing three letters from six is equal to

(
6

3
) =

6!

3! 3!
.

Now, consider a different arrangement problem. Suppose one

randomly arranges the four triangles and five squares as shown

below.

What is the chance that the first and last locations are occupied

by triangles? This is an arrangement problem with one difference –

the objects are not all distinct – one cannot distinguish the four

triangles or the five squares. So one cannot use the earlier

permutations rule that assumes the objects are distinguishable. How

can one count the number of possible arrangements? It turns out

that the combinations rule is useful here. (Surprising, but true.)

To think about possible arrangements, suppose one writes down a

list of nine slots and an arrangement is constructed by placing the

triangles and the squares in the nine slots. It is helpful to label the

slots with the numbers 1 through 9.

One constructs an arrangement in two steps. First, place the four

triangles in four slots, and then place the squares in the remaining

slots. How many ways can one put the triangles in the slots? First

note that one can specify a placement by the numbers of the slots

that are used. For example, one could place the triangles in slots 1, 3,

4, and 8.



Or one could place the four triangles in slots 2, 5, 7, and 8.

One specifies an arrangement by choosing four locations from the

slot locations {1, 2, 3, 4, 5, 6, 7, 8, 9}. How many ways can this be

done? One knows that the number of ways of selecting four objects

(here labels of locations) from a group of nine objects is

(
9

4
) =

9!

4!(9 − 4)!
= 126.

So there are 126 ways of choosing the four locations for the triangles.

Once the triangles have been placed, one finishes the arrangement by

putting in the squares. But there is only one way of doing this. For

example, if one places triangles in slots 2, 5, 6, 7, then the squares

must go in slots 1, 3, 4, 8, 9. So applying the multiplication rule, the

number of ways of arranging four triangles and five squares is 126 × 1

= 126.

A new counting rule has been derived:

Permutations Rule for Non-Distinct Objects: The number of

permutations of n non-distinct objects where r are of one type and n

− r are of a second type is

(
n

r
) =

n!

r!(n − r)!
. (2.8)



Recall the question of interest: Suppose four triangles and five

squares are randomly arranged. What is the chance that the first and

last locations are occupied by triangles?

It has already been shown that there are 126 ways of mixing up

four triangles and five squares. Each possible arrangement is equally

likely and has a chance of 1/126 of occurring.

To find the probability, one needs to count the number of ways of

arranging the triangles and squares so that the first and last

positions are filled with triangles.

If one places triangles in slots 1 and 9 (and there is only one way

of doing that), then one is free to arrange the remaining two triangles

and five squares in slots {2, 3, 4, 5, 6, 7, 8, 9}. By use of the new

arrangements formula, the number of ways of doing this is

(
7

2
) =

7!

2!(7 − 2)!
= 21

and so the probability the first and last slots are filled with triangles

is equal to 21/126.

 Simulating Arrangements of Non-Distinct Objects

The function permutation() is again used to simulate a

permutation in this non-distinct object case. A vector objects is

defined containing three x’s and two o’s, and a single random

permutation is generated by using permutation() with arguments

objects and 5. The replicate() function is used to repeat this

experiment 1000 times and the frequencies of the different

arrangements are displayed. Here the total number of arrangements



is ( 5
2) = 10 and as expected, each of the 10 possible arrangements

occurs with approximately the same frequency.

 
permutation <- function(d, Size){ 
 str_flatten(sample(d, size=Size), 
 collapse = " ") 
} 
objects <- c(’x’, ’x’, ’x’, ’o’, ’o’) 
df <- data.frame(Iter = 1:1000, 
 Arrangement = replicate(1000, 
 permutation(objects, 5))) 
df %>% group_by(Arrangement) %>% count() 
 Arrangement n 
 <fct> <int> 
 1 o o x x x 99 
 2 o x o x x 99 
 3 o x x o x 109 
 4 o x x x o 121 
 5 x o o x x 91 
 6 x o x o x 109 
 7 x o x x o 83 
 8 x x o o x 102 
 9 x x o x o 82 
 10 x x x o o 105 

Which Rule to Use?

Three important counting rules have been described, the

permutations rule for distinct objects, the combinations rule, and the

permutations rule for non-distinct objects. How can one decide which

rule to apply in a given problem? Here are some tips to help one find

the right rule.

1. Do We Care About Order? If an outcome consists of a

collection of objects, does the order in which one lists the

objects matter? If order does matter, then a permutations rule

may be appropriate. If the order of the objects does not matter,

such as choosing a subset from a larger group, then a

combinations rule is probably more suitable.



2. Are the Objects Distinguishable? There are two

permutation rules, one that applies when all of the objects are

distinguishable, and the second where there are two types of

objects and one cannot distinguish between the objects of each

type.

3. When In Doubt? If the first two tips do not seem helpful, it

may benefit to start writing down a few outcomes in the sample

space. When one looks at different outcomes, one should

recognize if order is important and if the objects are

distinguishable.

 

2.7  Playing Yahtzee

Yahtzee is a popular game played with five dice. The game is similar

to the card game poker – in both games, one is trying to achieve

desirable patterns in the dice faces or cards, and some types of

patterns are similar in the two games. In this section, some of the

dice patterns in the first roll in Yahtzee are described and the

problem of determining the chances of several of the patterns are

considered.

Outcomes of one roll of five dice

When a player rolls five dice in the game Yahtzee, the most valuable

result is when all of the five dice show the same number such as

2, 2, 2, 2, 2.

This is called a “Yahtzee” and the player scores 50 points with this

pattern. A second valuable pattern is a “four-of-a-kind’ where you

observe one number appearing four times, such as

3, 4, 3, 3, 3.



Table 2.1 gives all of the possible patterns when you roll five dice in

Yahtzee. When one plays the game, some of these patterns are worth

a particular number of points and these points are given in the right

column.

TABLE 2.1

Possible patterns of rolling five dice in Yahtzee.

Pattern Sample of pattern Point value

Yahtzee 4, 4, 4, 4, 4 50

Four-of-a-kind 6, 6, 6, 4, 6

Large straight 2, 6, 4, 5, 3 40

Small straight 4, 2, 1, 3, 2 30

Full house 5, 1, 1, 5, 1 25

Three-of-a-kind 2, 2, 3, 4, 2

Two pair 6, 3, 3, 6, 2

One pair 4, 3, 4, 1, 5

Nothing 1, 3, 2, 5, 6

Total number of outcomes

As in the case of two dice, it is useful to distinguish the five dice

when one counts outcomes. One can represent an outcome by placing

a value of individual die rolls (1 through 6) in the six slots.

                                                 

die 1 die 2 die 3 die 4 die 5

So two possible outcomes are

2, 3, 4, 5, 5 and 3, 2, 4, 5, 5.

Each die has 6 possibilities and so, applying the multiplication rule,

the total number of outcomes in the rolls of five dice is

6 × 6 × 6 × 6 × 6 = 7776.



Since all of the outcomes are equally likely, we assign a probability of

1/7776 to each outcome.

Probability of a Yahtzee

One represents the Yahtzee roll as the outcome

x, x, x, x, x

where x denotes an arbitrary roll of one die. There are six possible

choices for x, and so the number of possible Yahtzees is 6.

Since each outcome has probability 1/7776, the probability of a

Yahtzee is

Prob(Yahtzee) =
6

7776
.

Probability of four-of-a-kind

In the pattern “four of a kind”, one wants to have one number appear

four times and a second number appear once. In other words, one is

interested in counting outcomes of the form

x, x, x, x, y

where the four x’s and the single y can be in different orders. To

apply the multiplication rule, think of writing down a possible “four-

of-a-kind” in three steps.

Step 1: Choose the number for x (the number that appears four

times).

Step 2: Next choose the number for the singleton y.

Step 3: Mix up the orders of the four x’s and the one y.

For example, one chooses the outcome 5, 5, 5, 3, 5 by (1) choosing 5

to be the number that appears four times, (2) choosing 3 as the



number that appears once, and then arranging the digits 5, 5, 5, 5, 3

to get 5, 5, 5, 3, 5.

Next the number of ways of doing each of the three steps is

counted.

Step 1: There are 6 ways of choosing x.

Step 2: Once x has been chosen, there are 5 ways of choosing the

value for y.

Step 3: Last, once x and y have been selected, there are ( 5
4) = 5

ways of mixing up the x’s and y’s.

To find the number of four-of-a-kinds, one uses the multiplication

rule using the number of ways of doing each of the three steps:

Number of ways = 6 × 5 × 5 = 150.

The corresponding probability of four-of-a-kind is

Prob(four − of −a− kind) =
150

7776
.

 Simulating Yahtzee

Some of the Yahtzee probabilities are conveniently approximated

by simulation. In the following, the function four_kind() uses the

sample() function to simulate the rolls of five dice. By tabulating the

roll outcomes (using the table() function), one checks if a four-of-a-

kind is observed – if so, the string “4 kind” is returned, otherwise a

“nothing” is returned.

 
four_kind <- function()} 
 rolls <- sample(6, size = 5, replace = TRUE) 
 ifelse(max(table(rolls) == 4), 
 "4 kind", "nothing") 
} 



This Yahtzee experiment is simulated 1000 times by use of the

replicate() function. One sees below that one observed four-of-a-

kind 20 times, so the approximated probability of four-of-a-kind is

16/1000 = 0.016. This agrees closely with the exact probability of

150/7776 = 0.0193.

 
df <- data.frame(Iter = 1:1000, 
 Result = replicate(1000, four_kind())) 
df %>% group_by(Result) %>% count() 
 Result n 
 <fct> <int> 
 1 4 kind 16 
 2 nothing 984 

 

2.8  Exercises

1. Constructing a Word

Suppose you select three letters at random from {a, b, c, d, e, f}

to form a word.

(a) How many possible words are there?

(b) What is the probability the word you choose is “fad”?

(c) What is the probability the word you choose contains the

letter “a”?

(d) What is the chance that the first letter in the word is “a”?

(e) What is the probability that the word contains the letters

“d”, “e”, and “f”?

2. Running a Race

There are seven runners in a race – three runners are from Team

A and four runners are from Team B.

(a) Suppose you record which runners finish first, second, and

third. Count the number of possible outcomes of this race.



(b) If the runners all have the same ability, then each of the

outcomes in (a) is equally likely. Find the probability that

Team A runners finish first, second, and third.

(c) Find the probability that the first runner across the finish

line is from Team A.

3. Rolling Dice

Suppose you roll three fair dice.

(a) How many possible outcomes are there?

(b) Find the probability you roll three sixes.

(c) Find the probability that all three dice show the same

number.

(d) Find the probability that the sum of the dice is equal to 10.

4. Ordering Hash Browns

When you order Waffle House’s world famous hash browns, you

can order them scattered (on the grill), smothered (with onions),

chunked (with ham), topped (with chili), diced (with tomatoes),

and peppered (with peppers). How many ways can you order 5

hash browns at Waffle House?

5. Selecting Balls from a Box

A box contains 5 balls – 2 are white, 2 are black, and one is

green. You choose two balls out of the box at random without

replacement.

(a) Write down all possible outcomes of this experiment.

(Assume that the order in which you select the balls is

important.)

(b) Find the probability that you choose two white balls.

(c) Find the probability you choose two balls of the same color.

(d) Find the probability you choose a white ball second.

6. Dividing into Teams

Suppose that ten boys are randomly divided into two teams of

equal size. Find the probability that the three tallest boys are on

the same team.

7. Choosing Numbers



Suppose you choose three numbers from the set {1, 2, 3, 4, 5, 6,

7, 8} without replacement.

(a) How many possible choices can you make?

(b) What is the probability you choose exactly two even

numbers?

(c) What is the probability the three numbers add up to 10?

8. Choosing People

Suppose you choose two people from three married couples.

(a) How many selections can you make?

(b) What is the probability the two people you choose are

married to each other?

(c) What is the probability that the two people are of the same

gender?

9. Football Plays

Suppose a football team has five basic plays, and they will

randomly choose a play on each down.

(a) On three downs, find the probability that the team runs the

same play on each down.

(b) Find the probability the team runs three different plays on

the three downs.

10. Playing the Lottery

In a lottery game, you make a random guess at the winning

three-digit number (each digit can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9).

You win $200 if your guess matches the winning number, $20 if

your guess matches in exactly two positions and $2 if your guess

matches in exactly one position. Find the probabilities of

winning $200, winning $20, and winning $2.

11. Dining at a Restaurant

Suppose you are dining at a Chinese restaurant with the menu

given below. You decide to order a combination meal where you

get to order one soup or appetizer, one entrée (seafood, beef, or

poultry), and a side dish (either fried rice or noodles).



SOUP POULTRY

HOT AND SOUR SOUP KUNG PAO CHICKEN

WONTON SOUP HUNAN CHICKEN

EGG DROP SOUP CHICKEN WITH DOUBLE

NUTS

APPETIZERS CHICKEN WITH GARLIC

EGG ROLL SAUCE

BARBECUED SPARERIBS CURRY CHICKEN

FRIED CHICKEN STRIPS

BUTTERFLY SHRIMP FRIED RICE

CRAB RANGOON CHICKEN FRIED RICE

BEEF FRIED RICE

SEAFOOD SHRIMP FRIED RICE

SHRIMP WITH GARLIC SAUCE PORK FRIED RICE

CURRY SHRIMP THREE DELIGHT FRIED

KUNG PAO SCALLOPS RICE

FLOWER SHRIMP VEGETABLE FRIED RICE

SHRIMP WITH PEA PODS

NOODLES/RICE

BEEF PAN FRIED NOODLES

KUNG PAO BEEF MOO SHU PANCAKE

HUNAN BEEF CHOW MEIN NOODLES

SZECHUAN STYLE BEEF STEAMED RICE

ORANGE BEEF (HOT & SPICY)

(a) How many possible combination meals can you order?

(b) If you are able to go to this restaurant every day,

approximately how many years could you dine there and

order different combination meals?

(c) Suppose that you are allergic to seafood (this includes crab,

shrimp, and scallops). How many different combination

meals can you order?



(d) Suppose your friend orders two different entrées completely

at random. How many possible dinners can she order?

What is the probability the two entrées chosen contain the

same meat?

12. Ordering Pizza

If you buy a pizza from Papa John’s, you can you order the

following toppings: ham, bacon, pepperoni, Italian sausage,

sausage, beef, anchovies, extra cheese, baby portabella

mushrooms, onions, black olives, Roma tomatoes, green peppers,

jalapeño peppers, banana peppers, pineapple, grilled chicken.

(a) If you have the option of choosing two toppings, how many

different two topping pizzas can you order?

(b) Suppose you want your two toppings to be some meat and

some peppers. How many two-topping pizzas are of this

type?

(c) If you order a “random” two-topping pizza, what is the

chance that it will have peppers?

(d) If you are able to order at most four toppings, how many

different pizzas can you order?

13. Mixed Letters

You randomly mix up the letters “s”, “t”, “a”, “t”, “s”.

(a) Find the probability the arrangement spells the word

“stats”.

(b) Find the probability the arrangement starts and ends with

“s”.

14. Arranging CDs

Suppose you have three Taylor Swift CDs and three Lady Gaga

CDs sitting on a shelf as follows. We assume that you can’t

distinguish the CDs of a given artist.

T, T, T, L, L, L

The CDs are knocked off of the shelf and you place them back

on the shelf completely at random.



(a) What is the probability that the mixed-up CDs remain in

the same order?

(b) What is the probability that the first and last CDs on the

shelf are both Lady Gaga music?

(c) What is the probability that the Jewel CDs stay together

on the shelf?

15. Playing a Lottery Game

The Minnesota State Lottery has a game called Daily 3. A three

digit number is chosen randomly from the set 000, 001, ... , 999

and you win by guessing correctly certain characteristics of this

three digit number. The lottery website lists the following

possible plays such as First Digit, Front Pair, etc. Find the

probability of winning for each play.

First Digit: Pick one number. To win, match the first number

drawn.

Front Pair: Pick 2 numbers. To win, match the first 2 numbers

drawn in exact order

Straight: Pick 3 numbers. To win, match all 3 numbers drawn

in exact order.

3-Way Box: Pick 3 numbers, 2 that are the same. To win,

match all three numbers drawn in any order.

6-Way Box: Pick 3 different numbers. To win, match all 3

numbers drawn in any order.

16. Booking a Flight

Suppose you are booking a flight to San Francisco on Orbitz. To

save money, you agree to either leave Monday, Tuesday, or

Wednesday, and return on either Friday, Saturday, or Sunday.

Assume that Orbitz randomly assigns you a day to leave and

randomly assigns you a day to return.

(a) What is the probability you leave on Tuesday and return on

Saturday?

(b) What is the chance that your trip will be exactly three days

long?

(c) What is the most likely trip length in days?



(d) Do you think that the assumptions about Orbitz are

reasonable? Explain.

17. Assigning Grades

A math class of ten students takes an exam.

(a) If the instructor decides to give exam grades of A to two

randomly selected students, how many ways can this be

done?

(b) Of the remaining eight students, three will receive B’s and

the remaining will receive C’s. How many ways can this be

done?

(c) If the instructor assigns at random, two A’s, three B’s and

five C’s to the ten students, how many ways can this be

done?

(d) Under this grading method, what is the probability that

Jim (the best student in the class) gets an A?

18. Choosing Officers

A club consisting of 8 members has to choose three officers.

(a) How many ways can this be done?

(b) Suppose that the club needs to choose a president, a vice-

president, and a treasurer. How many ways can this be

done?

(c) If the club consists of 4 men and 4 women and the officers

are chosen at random, find the probability the three officers

are all of the same gender.

(d) Find the probability the president and the vice-president

are different genders.

19. Playing Yahtzee

Find the number of ways and the corresponding probabilities of

getting all of the following patterns in Yahtzee. Here are some

hints for the different patterns.

Four of a kind: The pattern here is x, x, x, x, y, where x is the

number that appears four times and y is the number that

appears once.



Small straight: This roll will either include the numbers 1, 2,

3, 4, the numbers 2, 3, 4, 5, or the numbers 3, 4, 5, 6. If the

numbers 1, 2, 3, 4 are the small straight, then the remaining

number can not be 5 (otherwise it would be a large straight).

Full house: The pattern here is x, x, x, y, y, where x is the

number that appears three times and y is the number that

appears twice.

Three of a kind: The pattern here is x, x, x, y, z, where x is

the number that appears three times, and y and z are the

numbers that appear only once.

One pair: The pattern here is x, x, w, y z, where x is the

number that appears two times, and w, y and z are the numbers

that appear only once.

Nothing: This is the most difficult number to count directly.

Once the number of each of the remaining patterns is found,

then the number of “nothings” can be found by subtracting the

total number of other patterns from the total number of rolls

(7776).

 Exercises

20. Sampling Letters

The built-in vector letters contains the 26 lower-case letters of

the alphabet.

(a) Using the sample() function, take a sample of 10 letters

without replacement from letters.

(a) Using the sample() function, take a sample of 10 letters

with replacement from letters.

21. Sampling Letters (continued)

(a) Write a function to take a sample of 10 letters without

replacement from letters.

(b) Add a line in the function so that the function returns the

number of vowels in the sample. (If the sample is stored in

the vector y, then the line of code



sum(y %in% c("a", "e", "i", "o", "u"))

will count the number of vowels in the sample.)

(c) Using the function replicate(), take 50 samples, storing

the number of vowels from the samples in the vector

n_vowels.

(d) Approximate the probability that there are two vowels in

your sample.

22. Simulating Permutations

Suppose a license plate in a particular state consists of two

letters followed by a number (for example, “CD9” and “EE0” are

two possible license plates).

(b) Write a function to simulate a random license plate.

(c) Using the replicate() function to simulate 50 random

license plates.

(d) From the simulated plates, approximate the probability

there is at least one vowel in the license plate.

23. Simulating Yahtzee

(a) Write a function to roll five dice and record by a 1 or 0 if

one observes a large straight.

(b) Use the replicate() function and the function found in

part (a) to approximate the probability of rolling a large

straight.

(c) By changing the function in part (a) and using the

replicate() function, approximate the probability of rolling

a small straight.

(d) In a similar fashion, approximate the probability of rolling a

full house.



3
 

Conditional Probability
 

 

3.1  Introduction: The Three Card Problem

Suppose one has three cards – one card is blue on both sides, one

card is pink on both sides, and one card is blue on one side and pink

on the other side. Suppose one chooses a card and places it down

showing “blue”. What is the chance that the other side is also blue?

This is an illustration of a famous conditional probability problem.

One is given certain information – here the information is that one

side of the card is blue – and one wishes to determine the probability

that the other side is blue.

Most people think that this probability is 1/2, but actually this is

wrong. The correct answer is demonstrated by simulating this

experiment many times. One can do this simulation by hand, but we

will illustrate this using an R script.

Suppose one thinks of this experiments are first choosing a card,

and then choosing a side from the card. There are three possible

cards, which we call “Blue”, “Pink” and “mixed”. For the blue card,

there are two blue sides; for the pink card, there are two pink sides,

and the “mixed” card has a blue side and a pink side.

 Conditional Probabilities by Simulation



We illustrate using R to perform this simulation. A data frame df

with two variables Card and Side is defined. The sample() function

randomly chooses a card and a side by choosing a random row from

the data frame. This experiment was repeated 1000 times and the

table() function is used to classify the outcomes by card and side.

 
df <- data.frame(Card = c("Blue", "Blue", 
 "Pink", "Pink", 
 "Mixed", "Mixed"), 
 Side = c("Blue", "Blue", 
 "Pink", "Pink", 
 "Blue", "Pink")) 
 cards <- df[sample(6, size = 1000, replace = TRUE), ] 
 table(cards$Card, cards$Side) 
 Blue Pink 
 Blue 326 0 
 Mixed 173 152 
 Pink 0 349

One observed side is blue and we are interested in the probability

of the event “card is blue”. In this experiment, the blue side was

observed 326 + 173 = 499 times – of these, the card was blue 326

times. So the probability the other side is blue is approximated by

326/499 which is close to 2/3. This example illustrates that one’s

intuition can be faulty in figuring out probabilities of the conditional

type.

Selecting Slips of Paper

To illustrate the conditional nature of probabilities, suppose one has

a box that has 6 slips of paper – the slips are labeled with the

numbers 2, 4, 6, 8, 10, and 12. One selects two slips at random from

the box. It is assumed that one is sampling without replacement and

the order that one selects the slips is not important. Then one lists

all of the possible outcomes. Note that since two numbers are chosen

from six, the total number of outcomes will be 6 C2 = 15.



S={(2, 4), (2, 6), (2, 8), (2, 10), (2, 12), (4, 6), (4, 8), (4, 10), (4, 12)

(6, 8), (6, 10), (6, 12), (8, 10), (8, 12), (10, 12)}.

Suppose one is interested in the probability the sum of the

numbers on the two slips is 14 or higher. Assuming that the 15

outcomes listed above are equally likely, one sees there are 9

outcomes where the sum is 14 or higher and so

Prob(sum 14 or higher) =
9

15
.

Next, suppose one is given some new information about this

experiment – both of the numbers on the slips are single digits.

Given this information, one now has only six possible outcomes. This

new sample space is called the reduced sample space based on the

new information.

S={(2, 4), (2, 6), (2, 8), (4, 6), (4, 8), (6, 8)}

One evaluates the probability Prob(sum is 14 or higher) given that

both of the slip numbers are single digits. Since there is only one way

of obtaining a sum of 14 or higher in our new sample space, one sees

Prob(sum 14 or higher) =
1

6
.

Notation: Suppose that E is our event of interest and H is our new

information. Then one writes the probability of E given the new

information H as Prob(E| H), where the vertical line “|” means

“conditional on” or given the new information. Here it was found

Prob(sum is 14 or higher | both slip numbers are single digits).

How does the probability of “14 or higher” change given the new

information? Initially, the probability of 14 and higher was pretty

high (9/15), but given the new information, the probability dropped

to 1/6. Does this make sense? Yes. If one is told that both numbers



are single digits, then one has drawn small numbers and that would

tend to make the sum of the digits small.

Independent Events

One says that events A and B are independent if the knowledge of

event A does not change the probability of the event B. Using

symbols

P(B ∣ A) = P(B). (3.1)

Rolls of Two Dice

To illustrate the concept of independence, consider an example where

one rolls a red die and a white die. Consider the following three

events:

S = the sum of the two rolls is 7

E = the red die is an even number

D = the rolls of the two dice are different

Are events S and E independent?

1. First one finds the probability one rolls a sum equal to 7, that is,

P(S). There are 36 outcomes and 6 outcomes results in a sum of

7, so P(S) = 6/36.

2. Next, one finds P(S| E). Given that the red die is an even

number (event E), note that there are 18 outcomes where E

occurs. Of these 18 outcomes, there are 3 outcomes where the

sum is equal to 7. So P(S| E) = 3/18.

3. Note P(S| E) = P(S), so events S and E are independent.

Knowing the red die is even does not change one’s probability of

rolling a 7.



Are events S and D independent?

To see if these two events are independent, one computes P(S| D)

and checks if P(S| D) = P(S). One can show that P(S| D) = 6/30.

This probability is not equal to P(S) so S and D are not independent

events.

 Conditional Probabilities by Simulation

One can demonstrate conditional probability by the use of the

filter() function in the dplyr package. To illustrate, a data frame

df is constructed with simulated rolls of two dice – the associated

variables are Roll_1 and Roll_2.

 
df <- data.frame(Roll_1 = sample(6, size = 1000, 
 replace = TRUE), 
 Roll_2 = sample(6, size = 1000, 
 replace = TRUE)) 

The mutate() function is used to define a new variable Sum that is

the sum of the two rolls. Suppose one is told that the roll of the first

die is greater than 3 – how does that information change the

probabilities for Sum? In the following script, the filter() function is

used to restrict die rolls to only the ones where Roll_1 > 3. Then the

frequencies and corresponding approximate probabilities of different

sums are found on these “restricted” die rolls. For example, one sees

that the probability Prob(Sum = 10|Roll_1 > 3) ≈ 0.164..

 
df %>% 
 mutate(Sum = Roll_1 + Roll_2) %>% 
 filter(Roll_1 > 3) %>% 
 group_by(Sum) %>% 
 summarize(Count = n()) %>% 
 mutate(Probability = Count / sum(Count)) 
 Sum Count Probability 
 <int> <int> <dbl> 
 1 5 20 0.0405 



 2 6 55 0.111 
 3 7 85 0.172 
 4 8 78 0.158 
 5 9 89 0.180 
 6 10 81 0.164 
 7 11 58 0.117 
 8 12 28 0.0567 

 

3.2  In Everyday Life

Generally one’s beliefs about uncertain events can change when new

information is obtained. Conditional probability provides a way to

precisely say how one’s beliefs change. Let’s illustrate this with a

simple example.

Suppose one is interested in estimating the population of

Philadelphia, Pennsylvania in the current year. Consider three

possible events:

A = Philadelphia’s population is under one million

B = Philadelphia’s population is between one and two million

C = Philadelphia’s population is over two million

If one knows little about Philadelphia, then one probably is not

very knowledgeable about its population. So initially the probabilities

are assigned shown in Table 3.1.

TABLE 3.1

Probabilities of events about Philadelphia’s population, P(Event| I).

Event P(Event| I)

under one million 0.3

between one and two million 0.3

over two million 0.4

TOTAL 1.0



One is assigning approximately the same probability to each of the

three events, indicating that they are all equally likely in his or her

mind. These can be viewed as conditional probabilities since they are

conditional on one’s initial information – these probabilities are

denoted by P(Event| I), where I denotes one’s initial information.

Now suppose some new information is provided about Philadelphia’s

population. One is not told the current population, but is told that

in 1990, Philadelphia was the fifth largest city in the country, and

the population of the sixth largest city, San Diego, was 1.1 million in

1990. So this tells one that in 1990, the population of Philadelphia

had to exceed 1.1 million. Now one might not be sure about how the

population of Philadelphia has changed between 1990 and 2020, but

it probably has not changed a significant amount. So one thinks that

The population of Philadelphia is most likely to be between 1

and 2 million.

It is very unlikely that Philadelphia’s population is over 2

million.

There is a small chance that Philadelphia’s population is under

1 million.

One revises his or her probabilities that reflect these beliefs as shown

in Table 3.2. These probabilities are denoted as P(Event| N), which

are probabilities of these population events conditional on the newer

information N, in Table 3.2.

TABLE 3.2

Probabilities of events about Philadelphia’s population, P(Event| N).

Event P(Event| N)

under one million 0.2

between one and two million 0.78

over two million 0.02

TOTAL 1.0



Now, additional information is provided. To find the current

population of Philadelphia, one looks up the census estimated figures

and the population of Philadelphia’s population was reported to be

1,567,872 in 2016. Even though the census number is a few years old,

one doesn’t think that the population has changed much – definitely

not enough to put in a new category of the table. So one’s

probabilities will change again as shown in Table 3.3. We call these

probabilities of events conditional on additional information A.

TABLE 3.3

Probabilities of events about Philadelphia’s population, P(Event| A).

Event P(Event| A)

under one million 0

between one and two million 1

over two million 0

TOTAL 1.0

All of us actually make many judgments every day based on

uncertainty. For example, we make decisions about the weather based

on information such as the weather report, how it looks outside, and

advice from friends. We make decisions about who we think will win

a sports event based on what we read in the paper, our knowledge of

the teams’ strengths, and discussion with friends. Conditional

probability is simply a way of quantifying our beliefs about uncertain

events given information.

 

3.3  In a Two-Way Table

It can be easier to think about, and compute conditional

probabilities when they are found from observed counts in a two-way

table.



In Table 3.4, high school athletes in 14 sports are classified with

respect to their sport and their gender. These numbers are recorded

in thousands, so the 454 entry in the Baseball/Softball – Male cell

means that 454,000 males played baseball or softball this year.

TABLE 3.4

Counts of high school athletes, by sport and gender.

Male Female TOTAL

Baseball/Softball 454 373 827

Basketball 541 456 997

Cross Country 192 163 355

Football 1048 1 1049

Gymnastics 2 21 23

Golf 163 62 225

Ice Hockey 35 7 42

Lacrosse 50 39 89

Soccer 345 301 646

Swimming 95 141 236

Tennis 145 163 308

Track and Field 550 462 1012

Volleyball 39 397 436

Wrestling 240 4 244

TOTAL 3899 2590 6489

Suppose one chooses a high school athlete at random who is

involved in one of these 14 sports. Consider several events

F = athlete chosen is female

S = athlete is a swimmer

V = athlete plays volleyball

What is the probability that the athlete is female? Of the 6489

(thousand) athletes, 2590 were female, so the probability is

P(F) = 2590/6489 = 0.3991



Likewise, the probability that the randomly chosen athlete is a

swimmer is

P(S) = 236/6489 = 0.0364.

and the probability he or she plays volleyball is

P(V) = 436/6489 = 0.0672.

Next, consider the computation of some conditional probabilities.

What is the probability a volleyball player is female? In other words,

conditional on the fact that the athlete plays volleyball, what is the

chance that the athlete is female:

P(F| V).

To find this probability, restrict attention only to the volleyball

players in the table.

Male Female TOTAL

Volleyball 39 397 436

Of the 436 (thousand) volleyball players, 397 are female, so

P(F| V) = 397/436 = 0.9106.

What is the probability a woman athlete is a swimmer? In other

words, if one knows that the athlete is female, what is the

(conditional) probability she is a swimmer, or P(S| F)?

Here since one is given the information that the athlete is female,

one restricts attention to the “Female” column of counts. There are a

total of 2590 (thousand) women who play one of these sports; of

these, 141 are swimmers. So

P(S ∣ F) = 141/2590 = 0.0544.

Are events F and V independent? One can check this several ways.

Above it was found that the probability a randomly chosen athlete is



a volleyball player is P(V) = 0.0672. Suppose one is told that the

athlete is a female (F). Will that change the probability that she is a

volleyball player? Of the 2590 women, 397 are volleyball players, and

so P(V| F) = 397/2590 = 0.1533, Note that P(V) is different from

P(V| F), that means that the knowledge the athlete is female has

increased one’s probability that the athlete is a volleyball player. So

the two events are not independent.

 Conditional Probabilities in a Two-Way Table

Suppose one has two spinners, each that will record a 1, 2, 3, or 4

with equal probabilities. Suppose the smaller of the two spins is 2 –

what is the probability that the larger spin is equal to 4? One can

answer this question by use of a simulation experiment. First one

constructs a data frame – by two uses of the sample() function, 1000

random spins of the first spinner are stored in Spin_1 and 1000 spins

of the second spinner in Spin_2.

 
df <- data.frame(Spin_1 = sample(4, size = 1000, 
 replace = TRUE), 
 Spin_2 = sample(4, size = 1000, 
 replace = TRUE)) 

By use of the mutate() function, one computes the smaller and

larger of the two spins and stores the result in the respective

variables Min and Max. Then one finds a frequency table of the

simulated values of Min and Max.

 
df %>% 
 mutate(Min = pmin(Spin_1, Spin_2), 
 Max = pmax(Spin_1, Spin_2)) %>% 
 group_by(Min, Max) %>% 
 summarize(n = n()) %>% 
 spread(Max, n) 
 Min ‘1‘ ‘2‘ ‘3‘ ‘4‘ 



 <int> <int> <int> <int> <int> 
 1 1 58 127 119 129 
 2 2 NA 67 127 123 
 3 3 NA NA 63 122 
 4 4 NA NA NA 65 

Since one is told that the smaller of the two spins is equal to 2, one

restricts attention to the row where Min = 2. One observes that Max is

equal to 2, 3, 4 with frequencies 67, 127, and 123. So

P(Max spin = 4 ∣ Min spin = 2) =
123

67 + 127 + 123
= 0.388.

 

3.4  Definition and the Multiplication Rule

In this chapter, conditional probabilities have been computed by

considering a reduced sample space. There is a formal definition of

conditional probability that is useful in computing probabilities of

complicated events.

Suppose one has two events A and B where the probability of

event B is positive, that is P(B) > 0. Then the probability of A given

B is defined as the quotient

P(A ∣ B) =
P(A ∩ B)

P(B)
. (3.2)

How many boys?

To illustrate this conditional probability definition, suppose a couple

has four children. One is told that this couple has at least one boy.

What is the chance that they have two boys?



If one lets L be the event “at least one boy” and B be the event

“have two boys”, one wishes to find P(B| L).

Suppose one represents the genders of the four children (from

youngest to oldest) as a sequence of four letters. For example, the

sequence BBGG means that the first two children were boys and the

last two were girls. If we represent outcomes this way, there are 16

possible outcomes of four births:

BBBB BGBB GBBB GGBB

BBBG BGBG GBBG GGBG

BBGB BGGB GBGB GGGB

BBGG BGGG GBGG GGGG

If one assumes that boys and girls are equally likely (is this really

true?), then each of the outcomes is equally likely and each outcome

is assigned a probability of 1/16. Applying the definition of

conditional probability, one has

P(B ∣ L) =
P(B ∩ L)

P(L)
.

There are 15 outcomes in the set L, and 6 outcomes where both

events B and L occur. So using the definition

P(B ∣ L) =
6/16

15/16
=

6

15
.

The Multiplication Rule

If one takes the conditional probability definition and multiplies both

sides of the equation by P(B), one obtains the multiplication rule

P(A ∩ B) = P(B)P(A ∣ B). (3.3)



Choosing balls from a random bowl

The multiplication rule is especially useful for experiments that can

be divided into stages. Suppose one has two bowls – Bowl 1 is filled

with one white and 5 black balls, and Bowl 2 has 4 white and 2 black

balls. One first spins the spinner below that determines which bowl

to select, and then selects one ball from the bowl. What is the chance

the ball one selects is white?

One can demonstrate the multiplication rule by the tree diagram

in Figure 3.1. The first set of branches corresponds to the spinner

result (choose Bowl 1 or choose Bowl 2) and the second set of

branches corresponds to the ball selection.



FIGURE 3.1

Tree diagram of choosing balls from a random bowl, part 1.

One places numbers on the diagram corresponding to the

probabilities that are given in the problem, shown in Figure 3.2.

Since one quarter of the spinner region is “Bowl 1”, the chance of

choosing Bowl 1 is 1/4 and so the chance of choosing Bowl 2 is 3/4 –

these probabilities are placed at the first set of branches. Also one

knows that if Bowl 1 is selected, the chances of choosing a white ball

and a black ball are respectively 1/6 and 5/6. These conditional

probabilities, P(white | Bowl 1) and P(black | Bowl 2), are placed at

the top set of branches at the second level. Also, if one selects Bowl

2, the conditional probabilities of selecting a white ball and a black

ball are given by P(white | Bowl 2) = 4/6 and P(black | Bowl 2) =

2/6 – these probabilities are placed at the bottom set of branches.



FIGURE 3.2 

Tree diagram of choosing balls from a random bowl, part 2.

Now that the probabilities are assigned on the tree, one uses the

multiplication rule to compute the probabilities of interest:

What is the probability of selecting Bowl 1 and selecting a white

ball? By the multiplication rule

One is just multiplying probabilities along the top branch of the

tree.

What is the probability of selecting a white ball? One sees from

the tree that there are two ways of selecting a white depending

on which bowl is selected. One can either (1) select Bowl 1 and

choose a white ball or (2) select Bowl 2 and choose a white ball.

One finds the probability of each of the two outcomes and add

the probabilities to get the answer.

P(Bowl 1 ∩ white ball)= P(Bowl 1)P(white ball ∣ Bowl 1)

=
1

4
×

1

6
=

1

24
.



 Simulating choosing balls from a random bowl

One simulate this balls and bowl experiment on R. Using the

sample() function, one simulates 1000 choices of the bowl where the

probabilities of choosing Bowl 1 and Bowl 2 are 1/4 and 3/4 and

places the bowl choices in variable Bowl. In a similar fashion, one

simulates 1000 ball selections from Bowl 1 (variable Color_1) and

1000 selections from Bowl 2 (variable Color_2). Last, by use of a

single ifelse() function, one lets the ball color be equal to Color_1 if

Bowl 1 is selection, or Color_2 if Bowl 2 is selected.

 
Bowl <- sample(1:2, size = 1000, replace = TRUE, 
 prob = c(1, 3) / 4) 
 Color_1 <- sample(c("white", "black"), size = 1000, 
 replace = TRUE, 
 prob = c(1, 5) / 6) 
 Color_2 <- sample(c("white", "black"), size = 1000, 
 replace = TRUE, 
 prob = c(4, 2) / 6) 
 Color <- ifelse(Bowl == 1, Color_1, Color_2) 

By use of the table() function, one categorizes all simulations by

the values of Bowl and Color.

 
table(Bowl, Color) 
 Color 
 Bowl black white 
 1 197 41 
 2 265 497 

The probability that Bowl 1 was selected and a white ball was

chosen is approximately equal to 41/1000 = 0.41. The chance of

P(white ball)= P(Bowl 1 ∩ white ball) + P(Bowl 2 ∩ white ball)

=
1

4
×

1

6
+

3

4
×

4

6
=

13

24
.



choosing a white ball is approximated by (41+497)/1000 = 0.538.

 

3.5  The Multiplication Rule under Independence

When two events A and B are independent, then the multiplication

rule takes the simple form

P(A ∩ B) = P(A) × P(B). (3.4)

Moreover, if one has a sequence of independent events, say A1, A2, · ·

· , Ak, then the probability that all events happen simultaneously is

the product of the probabilities of the individual events

P(A1 ∩ A2 ∩ ⋯ ∩ Ak) = P(A1) × P(A2) × ⋯ × P(Ak). (3.5)

By use of the assumption of independent events and multiplying,

one finds probabilities of sophisticated events. We illustrate this in

several examples.

Blood Types of Couples

Americans have the blood types O, A, B, and AB with respectively

proportions 0.45, 0.40, 0.11, and 0.04. Suppose two people in this

group are married.

1. What is the probability that the man has blood type O

and the woman has blood type A? Let OM denote the event

that the man has O blood type and AW the event that the

woman has A blood type. Since these two people are not related,



it is reasonable to assume that OM and AW are independent

events. Applying the multiplication rule, the probability the

couple have these two specific blood types is

2. What is the probability the couple have O and A blood

types? This is a different question from the first since we have

no indication which person has which blood type. Either the

man has blood type O and the woman has blood type A, or the

other way around. So the probability of interest is

One adds the probabilities since OM ∩ AW  and OW ∩ AM  are

different outcomes. One uses the multiplication rule with the

independence assumption to find the probability:

3. What is the probability the man and the woman have

the same blood type? This is a more general question than

the earlier parts since one hasn’t specified the blood types – one

is just interested in the event that the two people have the same

type. There are four possible ways for this to happen: they can

both have type O, they both have type A, they have type B, or

they have type AB. One first finds the probability of each

P(OM ∩ AW )= P(OM ) × P(AW )

= (0.45) × (0.40) = 0.18.

P(two have A, O types)= P((OM ∩ AW ) ∪ (OW ∩ AM ))

= P(OM ∩ AW ) + P(OW ∩ AM ).

P(two have A, O types)= P((OM ∩ AW ) ∪ (OW ∩ AM ))

= P(OM ∩ AW ) + P(OW ∩ AM )

= P(OM ) × P(AW ) + P(OW ) × P(AM )

= (0.45) × (0.40) + (0.45) × (0.40)

= 0.36.



possible outcome and then sums the outcome probabilities to

obtain the probability of interest. One obtains

4. What is the probability the couple have different blood

types? One way of doing this problem is to consider all of the

ways to have different blood types – the two people could have

blood types O and A, types O and B, and so on, and add the

probabilities of the different outcomes. But it is simpler to note

that the event “having different blood types” is the complement

of the event “have the same blood type”. Then using the

complement property of probability,

A Five-Game Playoff

Suppose two baseball teams play in a “best of five” playoff series,

where the first team to win three games wins the series. Suppose the

Yankees play the Angels and one believes that the probability the

Yankees will win a single game is 0.6. If the results of the games are

assumed independent, what is the probability the Yankees win the

series?

This is a more sophisticated problem than the first example, since

there are numerous outcomes of this series of games. The first thing

to note is that the playoff can last three games, four games, or five

games. In listing outcomes, one lets Y and A denote respectively the

single-game outcomes “Yankees win” and “Angels win”. Then a series

P(same type)= P((OM ∩ OW ) ∪ (AM ∩ AW )∪

(BM ∩ BW ) ∪ (ABW ∩ ABM ))

= (0.45)2 + (0.40)2 + (0.11)2 + (0.04)2

= 0.3762.

P(different type)= 1 − P(same type)

= 1 − 0.3762

= 0.6238.



result is represented by a sequence of letters. For example, YYAY

means that the Yankees won the first two games, the Angels won the

third game, and the Yankees won the fourth game and the series.

Using this notation, all of the possible outcomes of the five-game

series are written below.

Three games Four games Five games

YYY YYAY, AAYA YYAAY, AAYYA

AAA YAYY, AYAA YAYAY, AYAYA

AYYY, YAAA YAAYY, AYYAA

AYYAY, YAAYA

AYAYY, YAYAA

AAYYY, YYAAA

One is interested in the probability the Yankees win the series. All

of the outcomes above where the Yankees win are underlined. By the

assumption of independence, one finds the probability of a specific

outcome – for example, the probability of the outcome YYAY as

One finds the probability that the Yankees win the series by finding

the probabilities of each type of Yankees win and adding the outcome

probabilities. The probability of each outcome is written down in

Table 3.5.

TABLE 3.5

Table of probabilities of all Yankees winning outcomes.

Three games Four games Five games

P(YYY) = 0.216 P(YYAY) = 0.0864 P(YYAAY) = 0.0346

P(YAYY) = 0.0864 P(YAYAY) = 0.0346

P(AYYY) = .0864 P(YAAYY) = 0.0346

P(AYYAY) = 0.0346

P(AYAYY) = 0.0346

P(Y Y AY )= (0.6) × (0.6) × (0.4) × (0.6)

= 0.0864.



Three games Four games Five games

P(AAYYY) = 0.0346

So the probability of interest is given by

Playing Craps

One of the most popular casino games is craps. Here we describe a

basic version of the game, and we will use the multiplication rule

together with the use of conditional probabilities to find the

probability of winnings.

This game is based on the roll of two dice. One begins by rolling

the dice: if the sum of the dice is 7 or 11, the player wins, and if the

sum is 2, 3, or 12, the player loses. If any other sum of dice is rolled

(that is, 4, 5, 6, 8, 9, 10), this sum is called the “point”. The player

continues rolling two dice until either his point or a 7 are observed –

he wins if he sees his point and loses if he observes a 7. What is the

probability of winning at this game?

(a) On the first roll, the player can win by rolling the sum of 7 or

11, or lose by rolling the sum of 2, 3, or 12. The probabilities of

these five outcomes are placed in Table 3.6.

(b) If the player rolls initially a sum 4, 5, 6, 8, 9 or 10, he keeps

rolling. The probabilities of rolling these sums (of two dice) are

placed in the P(Roll) column of Table 3.7.

(c) Suppose the player initially rolls 4 and this becomes his or her

point. Now the player keep rolling until the point of 4 (player

wins) or a 7 (player loses) are observed. All of the other sums of

two dice are not important. In this case, there are only the

following nine possible outcomes.

(1, 3), (1, 6), (2, 2), (2, 5), (3, 1), (3, 4), (4, 3), (5, 2), (6, 1)

P(Yankees win series)= P(Y Y Y , Y Y AY , Y AY Y , . . . )

= 0.216 + 3 × 0.864 + 6 × 0.0346

= 0.683.



Of these nine outcomes, the player wins (point of 4) in three of them

– so the conditional probability P(Win | First Roll is 4) = 3/9. This

value is placed in the P(Win | Roll) column. Using a similar method,

one computes P(Win | First Roll) if the first roll is 5, if the first roll

is 6, ..., the first roll is 10. The secondary roll, the outcome (Win or

Lose), and conditional win probabilities are placed in the P(Win |

Roll ) column in Table 3.8.

(d) Using the multiplication rule, the probability of rolling a 4 first

and then winning is given by

P(Roll = 4 ∩ Win) = P(Roll = 4) P(Win | Roll = 4).

Using a similar calculation, the probabilities P(Roll = 5 ∩ Win),

P(Roll = 6 ∩ Win), P(Roll = 8 ∩ Win), P(Roll = 9 ∩ Win), P(Roll

= 10 ∩ Win) are found by multiplying entries in the P(Roll) and P

(Win | Roll) columns of Table 3.8.

(e) The probability the player wins at craps is the following sum

Is craps a fair game? In other words, who has the advantage in this

game: the player or the casino? Since the probability of the player

winning at craps is 0.493, it is not a fair game. But the advantage to

the casino is relatively small.

P(Win)= P(Roll = 7) + P(Roll = 11) + P(Roll = 4 ∩ Win)

+P(Roll = 5 ∩ Win) + P(Roll = 6 ∩ Win)

+P(Roll = 8 ∩ Win) + P(Roll = 9 ∩ Win)

+P(Roll = 10 ∩ Win)

=
6

36
+

2

36
+ (

3

36
)(

3

9
) + (

4

36
)(

4

10
)+

(
5

36
)(

5

11
) + (

5

36
)(

5

11
) + (

4

36
)(

4

10
)+

(
3

36
)(

3

9
)

= 0.493.



TABLE 3.6

Probabilities of outcomes with first roll of sum of 7, 11, 2, 3, or 12.

First roll Probability Outcome

7 6/36 Win

11 2/36 Win

2 1/36 Lose

3 2/36 Lose

12 1/36 Lose

TABLE 3.7

Probabilities of outcomes with first roll of sum of 4, 5, 6, 8, 9 or 10, part 1.

First Roll P(Roll) Second Roll Outcome P(Win | Roll)

4 3/36

4 3/36

5 4/36

5 4/36

6 5/36

6 5/36

8 5/36

8 5/36

9 4/36

9 4/36

10 3/36

10 3/36

TABLE 3.8

Probabilities of outcomes with first roll of sum of 4, 5, 6, 8, 9 or 10, part 2.

First Roll P(Roll) Second Roll Outcome P(Win | Roll)

4 3/36 4 Win 3/9

4 3/36 7 Lose

5 4/36 5 Win 4/10

5 4/36 7 Lose

6 5/36 6 Win 5/11



First Roll P(Roll) Second Roll Outcome P(Win | Roll)

6 5/36 7 Lose

8 5/36 8 Win 5/11

8 5/36 7 Lose

9 4/36 9 Win 4/10

9 4/36 7 Lose

10 3/36 10 Win 3/9

10 3/36 7 Lose

 

3.6  Learning Using Bayes’ Rule

We have seen that probabilities are conditional in that one’s opinion

about an event is dependent on our current state of knowledge. As

we gain new information, our probabilities can change. Bayes’ rule

provides a mechanism for changing our probabilities when we obtain

new data.

Suppose that you are given a blood test for a rare disease. The

proportion of people who currently have this disease is 0.1. The

blood test comes back with two results: positive, which is some

indication that you may have the disease, or negative. It is possible

that the test will give the wrong result. If you have the disease, it

will give a negative reading with probability 0.2. Likewise, it will give

a false positive result with probability 0.2. Suppose that you have a

blood test and the result is positive. Should you be concerned that

you have the disease?

In this example, you are uncertain if you have the rare disease.

There are two possible alternatives: you have the disease, or you

don’t have the disease. Before you have a blood test, you assign

probabilities to “have disease” and “don’t have disease” that reflect

the plausibility of these two models. You think that your chance of

having the disease is similar to the chance of a randomly selected



person from the population. Thus you assign the event “have disease”

a probability of 0.1 By the complement property, this implies that

the event “don’t have disease” has a probability of 1- 0.1 = 0.9.

The new information that one obtains to learn about the different

models is called data. In this example, the data is the result of the

blood test. Here the two possible data results are a positive result

(+) or a negative result (−). One is given the probabilities of the

observations for each model. If one “has the disease,” the probability

of a + observation is 0.8 and the probability of a − observation is

0.2. Since these are conditional probabilities, one writes

P(+ ∣ disease) = 0.8, P(− ∣ disease) = 0.2.

Likewise, if the result is “don’t have the disease”, the probabilities of

the outcomes are 0.2 and 0.8, respectively. Using symbols, one has

P(+ ∣ no disease) = 0.2, P(− ∣ no disease) = 0.8.

Suppose you take the blood test and the result is positive (+) – what

is the chance you really have the disease? We are interested in

computing the conditional probability

P(disease ∣ +).

This should not be confused with the earlier probability P( +

|disease) that is the probability of getting a positive result if you

have the disease. Here the focus is on the so-called inverse probability

– the probability of having the disease given a positive blood test

result.

We describe the computation of this inverse probability using two

methods. They are essentially two ways of viewing the same

calculation.

Method 1: Using a tree diagram



A person either has or does not have the disease, and given the

person’s disease state, he or she either gets a positive or negative test

result. One represents the outcomes by a tree diagram where the first

set of branches corresponds to the disease states and the second set

of branches corresponds to the blood test results. The branches of

the tree are labelled by the given probabilities, shown in Figure 3.3.

Figure 3.3 

Tree diagram of the disease problem.

By the definition of conditional probability,

P(disease ∣ +) =
P(disease ∩ +)

P(+)
.



One finds the numerator P(disease ∩ +) by use of the multiplication

rule:

In the tree diagram, one is multiplying probabilities along the

disease/+ branch to find this probability.

To find the denominator P( + ), note that there are two ways of

getting a positive blood test result – either the person has the disease

and gets a positive blood test result, or the person doesn’t have the

disease and gets a positive result. These two outcomes are the

disease/+ and no disease/+ branches of the tree. One finds the

probability by using the multiplication rule to find the probability of

each outcome, and then summing the outcome probabilities:

So the probability of having the disease, given a positive blood test

result is

P(disease ∣ +) =
P(disease ∩ +)

P(+)
=

0.08

0.26
= 0.31.

As one would expect, the new probability of having the disease (0.31)

is larger than the initial probability of having the disease (0.1) since

a positive blood test was observed.

Method 2: Using a Bayes’ box

There is an alternative way of computing the inverse probability

based on a two-way table that classifies people by the disease status

P(disease ∩ +)= P(disease)P(+ ∣ disease)

= 0.1 × 0.8 = 0.08.

P(+)= P(disease ∩ +) + P(no disease ∩ +)

= P(disease)P(+ ∣ disease) + P(no disease)P(+ ∣ no disease)

= 0.1 × 0.8 + 0.9 × 0.2

= 0.26.



and the blood test result. This is an attractive method since it based

on expected counts rather than probabilities.

Suppose there are 1000 people in the community – one places

“1000’ in the lower right corner of Table 3.9.

TABLE 3.9

Bayes’ box procedure, step 1.

Blood test result

+ − TOTAL

Disease Have disease

status Don’t have disease

TOTAL 1000

One knows that the chance of getting the disease is 10% – so one

expects 10% of the 1000 = 100 people to have the disease and the

remaining 900 people to be disease-free. One places these numbers in

the right column corresponding to “Disease status”, in Table 3.10.

TABLE 3.10

Bayes’ box procedure, step 2.

Blood test result

+ − TOTAL

Disease Have disease 100

status Don’t have disease 900

TOTAL 1000

One knows the test will err with probability 0.2. So if 100 people

have the disease, one expects 20% of 100 = 20 to have a negative test

result and 80 will have a positive result – one places these counts in

the first row of the table. Likewise, if 900 people are disease-free,

then 20% of 900 = 180 will have an incorrect positive result and the

remaining 720 will have a negative result – one places these in the

second row of Table 3.11.



TABLE 3.11

Bayes’ box procedure, step 3.

Blood test result

+ − TOTAL

Disease Have disease 80 20 100

status Don’t have disease 180 720 900

TOTAL 1000

Now one is ready to compute the probability of interest P(disease|

+ ) from the table of counts. Since one is conditioning on the event

+, one restricts attention to the + column of the table – 260 people

had positive test result. Of these 260, 80 actually had the disease, so

P(disease ∣ +) =
80

260
= 0.31.

Note that, as expected, one obtains the same answer for the inverse

probability.

 

3.7  R Example: Learning about a Spinner

The ProbBayes package is designed to illustrate Bayesian thinking.

This package is used here to learn about the identity of an unknown

spinner. It is supposed that each spinner is divided in several regions

and the outcomes of the spins are the integers 1, 2, ... and so on.

 A spinner is constructed by specifying a vector of areas of the

spinner regions. For example one spinner is defined with five

outcomes with corresponding areas 2, 1, 2, 1, 2. The spinner_plot()

function will produce the spinner as displayed in Figure 3.4.



FIGURE 3.4

A spinner with five outcomes 1, 2, 3, 4, 5 and corresponding areas 2, 1, 2, 1 and 2.

 
 library(ProbBayes) 
 areas <- c(2, 1, 2, 1, 2) 
 spinner_plot(areas) 

One figures out the probability distribution for the spins from

knowing the areas of the five outcomes. Each region area is divided

by the sum of the areas, obtaining the probabilities as displayed

using the function spinner_probs(). This data frame of probabilities

is stored in the R object p_dist.

 
(p_dist <- spinner_probs(areas)) 
 Region Prob 
 1 1 0.250 
 2 2 0.125 
 3 3 0.250 
 4 4 0.125 
 5 5 0.250 



To illustrate Bayes’ rule, suppose there are four spinners, A, B, C,

D defined by the vectors s_reg_A, s_reg_B, s_reg_C, and s_reg_D

pictured in Figure 3.5.

FIGURE 3.5

Four possible spinners in the Bayes’ rule example.

 
 s_reg_A <- c(2, 2, 2, 2) 
 s_reg_B <- c(4, 1, 1, 2) 
 s_reg_C <- c(2, 4, 2) 
 s_reg_D <- c(1, 3, 3, 1) 

A box contains four spinners, one of each type. A friend selects one

and holds it behind a curtain. Which spinner is she holding?

The identity of her spinner is called a model. There are four

possible models, the friend could be holding Spinner A, or Spinner B,

or Spinner C, or Spinner D. In R, a data frame is created with a

single variable Model and the names of these spinners are placed in

that column.



 
 (bayes_table <- data.frame(Model=c("Spinner A", "Spinner B", 
 "Spinner C", "Spinner D"))) 
 Model 
 1 Spinner A 
 2 Spinner B 
 3 Spinner C 
 4 Spinner D 

One does not know what spinner this person is holding. But one

can assign probabilities to each model that reflect her opinion about

the likelihood of these four spinners. There is no reason to think that

any of the spinners are more or less likely to be chosen so the same

probability of 1/4 is assigned to each model. These probabilities are

called the person’s prior since they reflect her beliefs before observing

any data. It is called a uniform prior since the probabilities are

spread uniformly over the four models. In the data frame, a new

column Prior is added with the values 1/4, 1/4, 1/4, 1/4.

 
 bayes_table$Prior <- rep(1/4, 4) 
 bayes_table 
 Model Prior 
 1 Spinner A 0.25 
 2 Spinner B 0.25 
 3 Spinner C 0.25 
 4 Spinner D 0.25 

The prob_plot() function graphs the prior distribution (see Figure

3.6).

 
prob_plot(bayes_table) 



FIGURE 3.6

Prior on the four spinners.

Next, our friend will spin the unknown spinner once – it turns out

to land in Region 1. The next step is to compute the likelihoods –

these are the probabilities of observing a spin in Region 1 for each of

the four spinners. In other words, the likelihood is the conditional

probability

Prob(Region 1 ∣ Model),

where model is one of the four spinners.

One figures out these likelihoods by looking at the spinners. For

example, look at Spinner A. Region 1 is one quarter of the total area

for Spinner A, so the likelihood for Spinner A is one fourth, or

Prob(Region 1 ∣ Spinner A) = 1/4.

Looking at Spinner B, Region 1 is one half of the total area so its

likelihood is one half. In a similar fashion, one determines the

likelihood for Spinner C is one fourth and the likelihood for Spinner

D is one eighth. These likelihoods are added to our bayes_table.

 
bayes_table$Likelihood <- c(1/4, 1/2, 1/4, 1/8) 



 bayes_tabel 
 Model Prior Likelihood 
 1 Spinner A 0.25 0.250 
 2 Spinner B 0.25 0.500 
 3 Spinner C 0.25 0.250 
 4 Spinner D 0.25 0.125 

Once the prior probabilities and the likelihoods are found, it is

straightforward to compute the posterior probabilities. Basically,

Bayes’ rule says that the posterior probability of a model is

proportional to the product of the prior probability and the

likelihood. That is,

Prob(model ∣ data) ∝ Prob(model) × Prob(data ∣ model)

Bayesians use the phrase “turn the Bayesian crank” to reflect the

straightforward way of computing posterior probabilities using Bayes’

rule.

An R function bayesian_crank() takes as input a data frame with

variables Prior and Likelihood and outputs a data frame with new

columns Product and Posterior. This function is applied for our

example where we observe “Region 1” outcome.

 
(bayesian_crank(bayes_table) -> bayes_table) 
 Model Prior Likelihood Product Posterior 
 1 Spinner A 0.25 0.250 0.06250 0.2222222 
 2 Spinner B 0.25 0.500 0.12500 0.4444444 
 3 Spinner C 0.25 0.250 0.06250 0.2222222 
 4 Spinner D 0.25 0.125 0.03125 0.1111111 

For each possible model, the prior probability is multiplied by its

likelihood. After finding the four products, these are changed to

probabilities by dividing each product by the sum of the products.

These are called posterior probabilities since they reflect our new

opinion about the identity of the spinner after observing the spin in

Region 1.



By using the prior_post_plot() function, the prior and posterior

distributions are graphically compared for our spinners, in Figure

3.7.

 
prior_post_plot(bayes_table) 

FIGURE 3.7

Prior and posterior distributions on the four spinners.

These calculations can be viewed from a learning perspective.

Initially, one had no reason to favor any spinner and each of the four

spinners was given the same prior probability of 0.25. Now after

observing one spin in Region 1, the person’s opinions have changed.

Now the most likely spinner behind the curtain is Spinner B since it

has a posterior probability of 0.44. In contrast, it is unlikely that

Spinner D has been spun since its new probability is only 0.11.

 



3.8  Exercises

1. Flipping Coins

Suppose you flip a fair coin four times. The 16 possible outcomes

of this experiment are shown below.

HHHH HHHT HHTT HHTH

HTHH HTHT HTTT HTTH

THHH THHT THTT THTH

TTHH TTHT TTTT TTTH

(a) Let A denote the event that you flip exactly three heads.

Find the probability of A.

(b) Suppose you are given the information N that at least two

heads are flipped. Circle the possible outcomes in the

reduced sample space based on knowing that event N is

true.

(c) Using the reduced sample space, find the conditional

probability P(A| N).

(d) Compare P(A) computed in part a with P(A| N) computed

in part (c). Based on this comparison, are events A and N

independent? Why?

2. Choosing a Committee

Suppose you randomly choose three people from the group {Sue,

Ellen, Jill, Bob, Joe, John} to be on a committee. Below we

have listed all possible committees of size three:

{Sue, Ellen, Jill} {Sue, Ellen, Bob} {Sue, Ellen, Joe}

{Sue, Jill, Bob} {Sue, Jill, Joe} {Sue, Jill, John}

{Sue, Bob, John} {Sue, Joe, John} {Ellen, Jill, Bob}

{Ellen, Jill, John} {Ellen, Bob, Joe} {Ellen, Bob, John}

{Jill, Bob, Joe} {Jill, Bob, John} {Jill, Joe, John}

{Sue, Ellen, John} {Sue, Bob, Joe} {Ellen, Jill, Joe}

{Ellen, Joe, John} {Bob, Joe, John}



(a) Find the probability of the event A that exactly two women

are in the committee (Sue, Ellen, and Jill are women; Bob,

Joe, and John are men).

(b) Suppose you are told that Jill is on the committee– call this

event J. Circle the possible outcomes in the reduced sample

space if we know that J is true.

(c) Compute the conditional probability P(A| J).

(d) Based on your computations in parts (a) and (c), are events

A and J independent?

(e) Let F denote the event that more women are on the

committee than men. Find P(F).

(f) Suppose you are given the information S that all three

people on the committee are of the same gender. Find P(F|

S).

(g) Based on your computations in parts (e) and (f), are events

F and S independent?

3. Arranging Letters

Suppose you randomly arrange the letters a, s, s, t, t. You used

a computer to do this arranging 200 times and below lists all of

the possible “words” that came up. There were 30 distinct

arrangements.

asstt astst astts atsst atsts attss

sastt satst satts ssatt sstat sstta

stast stats stsat ststa sttas sttsa

tasst tasts tatss tsast tsats tssat

tssta tstas tstsa ttass ttsas ttssa

(a) Assuming each possible arrangement is equally likely, what

is the probability that the word formed is “stats”?

(b) What is the probability that the word formed begins and

ends with an “s”?

(c) Suppose you are told that the word formed starts with “s” –

write down all of the possible words in the reduced sample



space.

(d) Given that the word begins with “s”, what is the probability

the word is “stats”?

4. Rolling Two Dice

Suppose two dice are rolled.

(a) Suppose you are told that the sum of the dice is equal to 7.

Write down the six possible outcomes.

(b) Given the sum of the dice is equal to 7, find the probability

the largest die roll is 6.

(c) Suppose you are told that the two dice have different

numbers. Write down the possible outcomes.

(d) If the two dice have different numbers, what is the

probability the largest die roll is 6?

5. Choosing Sport Balls

Suppose you have a bin in your garage with three sports balls –

four are footballs, three are basketballs, and two are tennis balls.

Suppose you take three balls from the bin – you count the

number of footballs and the number of basketballs. The first

time this is done, the following balls were selected:

basketball, basketball, football,

so the number of footballs selected was 1 and the number of

basketballs selected was 2. We repeat this sampling experiment

1000 times, each time recording the number of footballs and

basketballs we select. Table 3.12 summarizes the results of the

1000 experiments.

TABLE 3.12

Summaries of 1000 experiments of choosing sport balls.

Number of Basketballs Total

0 1 2 3

0 13 66 64 34 177

Numbers of 1 49 198 169 0 416

Footballs 2 118 180 0 0 298



Number of Basketballs Total

0 1 2 3

3 109 0 0 0 109

Total 289 444 233 34 1000

Let F1 denote that event that you have chosen exactly one

football and B1 the event that you chose exactly one basketball

from the bin.

(a) Find P(F1) and P(B1).

(b) Find P(F1| B1).

(c) Find P(B1| F1).

(d) From your calculations above, explain why F1 and B1 are

not independent events.

6. Rating Movies

On the Internet Movie Database (www.imdb.com), people are

given the opportunity to rate movies on a scale from 1 to 10.

Table 3.13 shows the ratings of the movie “Sleepless in Seattle”

for men and women who visited the website.

TABLE 3.13

Movie ratings of “Sleepless in Seattle”, by gender.

8,9,10 5,6,7 1,2,3,4

Rating (High) (Medium) (Low) TOTAL

Males 2217 3649 754 6620

Females 1059 835 178 2072

TOTAL 3276 4484 932 8692

(a) Suppose you choose at random a person who is interested in

rating this movie on the website. Find the probability that

the person gives this movie a high rating between 8 and 10

– that is, P(H).

(b) Find the conditional probabilities P(H| M) and P(H| F),

where M and F are the events that a man and a woman

http://www.imdb.com/


rated the movie, respectively.

(c) Interpret the conditional probabilities in part (b) – does this

particular movie appeal to one gender?

(d) Table 3.14 below shows the ratings of the movie “Die Hard”

for men and women who visited the website. Answer

questions (a), (b), and (c) for this movie.

TABLE 3.14

Movie ratings of “Die Hard”, by gender.

8,9,10 5,6,7 1,2,3,4

Rating (High) (Medium) (Low) TOTAL

Males 16197 6737 882 24016

Females 1720 1243 258 3221

TOTAL 17917 8180 1140 27237

7. Rating Movies (continued)

The Internet Movie Database also breaks down the movie

ratings by the age of the reviewer. For the movie “Sleepless in

Seattle”, Table 3.15 classifies the reviewers by age and their

rating.

(a) Find the probability that a reviewer gives this movie a high

rating – that is, find P(H).

(b) Define a “young adult” (YA) as a person between the ages

of 18 and 29, and a “senior” (S) as a person 45 or older.

Compute P(H| YA) and P(H| S).

(d) Based on your computations in parts (a) and (b), are

“giving a high rating” and “age of rater” independent events?

If not, explain how the probability of giving a high rating

depends on age.

TABLE 3.15

Movie ratings of “Sleepless in Seattle”, by age.

8,9,10 5,6,7 1,2,3,4

Rating (High) (Medium) (Low) TOTAL

under 18 74 76 16 166



8,9,10 5,6,7 1,2,3,4

18-29 1793 2623 555 4971

30-44 886 1280 272 2438

45+ 438 300 60 798

TOTAL 3191 4279 903 8373

8. Family Planning

Suppose a family plans to have children until they have two

boys. Suppose there are two events of interest, A = event that

they have at least five children and B = event that the first child

born is male. Assuming that each child is equally likely to be a

boy or girl, and genders of different children born are

independent, then this process of building a family was

simulated 1000 times. The results of the simulation are displayed

in Table 3.16.

(a) Use the table to find P(A).

(b) Find P(A| B) and decide if events A and B are

independent.

(c) Suppose another family plans to continue to have children

until they have at least one of each gender. Table 3.17

shows simulated results of 1000 families of this type . Again

find P(A), P(A| B) and decide if events A and B are

independent.

TABLE 3.16

Simulation results of family planning: two boys.

Gender of First Born

Female Male TOTAL

2 0 247 247

Number of 3 125 138 263

Children 4 126 58 184

5 or more 250 56 306

TOTAL 501 499 1000



TABLE 3.17

Simulation results of family planning: each gender.

Gender of First Born

Female Male TOTAL

2 235 261 496

Number of 3 106 152 258

Children 4 71 63 134

5 or more 50 62 112

TOTAL 462 538 1000

9. Conditional Nature of Probability For each of the following

problems

Make a guess at the probabilities of the three events based

on your current knowledge.

Ask a friend about this problem. Based on his or her

opinion about the event, make new probability assignments.

Do some research on the Internet to learn about the right

answer to the question. Make new probability assignments

based on your new information.

(a) What is the area of Pennsylvania?

Initial probabilities:

Event under 30,000 sq

miles

between 30,000 and 50,000 sq

miles

over 50,000 sq

miles

Probability

Probabilities after talking with a friend:

Event under 30,000 sq

miles

between 30,000 and 50,000 sq

miles

over 50,000 sq

miles

Probability

Probabilities after doing research on the Internet.



Event under 30,000 sq

miles

between 30,000 and 50,000 sq

miles

over 50,000 sq

miles

Probability

(b) Robin Williams has appeared in how many movies?

Probabilities after talking with a friend:

Event Under 15 Between 16 and 30 Over 30

Probability

Probabilities after doing research on the Internet.

Event Under 15 Between 16 and 30 Over 30

Probability

Probabilities after doing research on the Internet.

Event Under 15 Between 16 and 30 Over 30

Probability

10. Conditional Nature of Probability

For each of the following problems

Make a guess at the probabilities of the three events based

on your current knowledge.

Ask a friend about this problem. Based on his or her

opinion about the event, make new probability assignments.

Do some research on the Internet to learn about the right

answer to the question. Make new probability assignments

based on your new information.

(a) How many plays did Shakespeare write?

Initial probabilities:

Event Under 30 Between 31 and 50 Over 50

Probability



Probabilities after talking with a friend:

Event Under 30 Between 31 and 50 Over 50

Probability

Probabilities after doing research on the Internet.

Event Under 30 Between 31 and 50 Over 50

Probability

(b) What is the average temperature in Melbourne, Australia

in June?

Initial probabilities:

Event
Under 40

°
Between 40

°
 and 60

°
Over 60

°

Probability

Probabilities after talking with a friend:

Event
Under 40

°
Between 40

°
 and 60

°
Over 60

°

Probability

Probabilities after doing research on the Internet.

Event
Under 40

°
Between 40

°
 and 60

°
Over 60

°

Probability

11. Picnic Misery

Twenty boys went on a picnic. 5 got sunburned, 8 got bitten by

mosquitoes, and 10 got home without mishap. What is the

probability that the mosquitoes ignored a sunburned boy? What

is the probability that a bitten boy was also burned?

12. A Mall Survey



Suppose 30 people are surveyed at a local mall. Half of the 10

men surveyed approve the upcoming school levy and a total of

17 people do not approve of the levy. Based on the survey data,

(a) What is the probability a woman is in favor of the levy?

(b) If the person is in favor of the levy, what is the probability

the person is a woman?

13. Drawing Tickets

Have 12 tickets numbered from 1 to 12. Two tickets are drawn,

one after the other, without replacement.

(a) Find the probability that both numbers are even.

(b) Find the probability both numbers are odd.

(c) Find the probability one number is even and one is odd.

14. Testing for Steroids

Suppose that 20% of all baseball players are currently on

steroids. You plan on giving a random player a test, but the test

is not perfectly reliable. If the player is truly on steroids, he will

test negative (for steroids) with probability 0.1. Likewise, if the

player is not on steroids, he will get a positive test result with

probability 0.1.

(a) What is the probability the player is on steroids and will

test negative?

(b) If you give a player a test, what is the probability he will

test positive?

(c) If the test result is positive, what is the probability the

player is on steroids?

15. Preparing for the SAT

Suppose a student has a choice of enrolling (or not) in an

expensive program to prepare for taking the SAT exam. The

chance that she enrolls in this class is 0.3. If she takes the

program, the chance that she will do well on the SAT exam is

0.8. On the other hand, if she does not take the prep program,

the chance that she will do well on the SAT is only 0.4. Let E

denote the event “enrolls in the class” and W denote the event

“does well on the SAT exam”.



(a) Find P(W| E).

(b) Find P(E ∩ W).
(c) Find P(E| W), that is, the probability that she took the

class given that she did well on the test.

16. Working Off-Campus

At a college campus, 33% of the students are freshmen and 25%

are seniors. Also, 13% of the freshmen work over 10 hours off-

campus, and 37% of the seniors work over 10 hours off-campus.

(a) Suppose you sample a student who is either a freshman and

senior. Find the probability she works over 10 hours off-

campus.

(b) If this person does work over 10 hours off campus, find the

probability she is a senior.

17. Flipping Coins

You flip a coin three times. Let A be the event that a head

occurs on the first flip and B is the event that (exactly) one

head occurs. Are A and B independent?

18. A Two-headed Coin?

One coin in a collection of 65 has two heads. Suppose you choose

a coin at random from the collection – you toss it 6 times and

observe all heads. What is the probability it was the two-headed

coin?

19. Smoking and Gender

Suppose the proportion of female students at your school is 60%.

Also you know that 26% of the male students smoke and only

16% of the female students smoke. Suppose you randomly select

a student.

(a) Find the probability the student is a male smoker.

(b) Find the probability the student smokes.

(c) If the student smokes, what is the probability the student is

female?

20. Choosing until You Select a Red

Suppose you have a box with 4 green and 2 red balls. You select

balls from the box one at a time until you get a red, or until you



select three balls. If you do not select a red on the first draw,

find the probability that you will select three balls.

21. Mutually Exclusive and Independence

Suppose that two events A and B are mutually exclusive. Are

they independent events?

22. Blood Type of Couples

Consider the example where Americans have the blood types O,

A, B, AB with proportions .45, .40, .11, 04. If two people are

married

(a) Find the probability both people have blood type A.

(b) Find the probability the couple have A and B blood types.

(c) Find the probability neither person has an A type.

23. Five-Game Playoffs

Consider the “best of five” playoff series between the Yankees

and the Indians. We assume the probability the Yankees win a

single game is 0.6.

(a) Find the probability the Yankees win in three games.

(b) Find the probability the series lasts exactly three games.

(c) Find the probability the series lasts five games and no team

wins more than one game in a row.

24. Computer and Video Games

The Entertainment Software Association reports that of all

computer and video games sold, 53% are rated E (Everyone),

30% are rated T (Teen), and 16% are rated M (Mature).

Suppose three customers each purchase a game at a local store.

Assume that the software choices for the customers can be

regarded as independent events.

(a) Find the probability that all three customers buy games

that are rated E.

(b) Find the probability that exactly one customer purchases

an M rated game.

(c) Find the probability that the customers purchase games

with the same rating.

25. Washer and Dryer Repair



Suppose you purchase a washer and dryer from a particular

manufacturer. From reading a consumer magazine, you know

that 20% of the washers and 10% of the dryers will need some

repair during the warranty period.

(a) Find the probability that both the dryer and washer will

need repair during the warranty period.

(b) Find the probability that exactly one of the machines will

need repair.

(c) Find the probability that neither machine will need repair.

26. Basketball Shooting

In a basketball game, a player has a “one and one” opportunity

at the free-throw line. If she misses the first shot, she is done. If

instead she makes the first shot, she will have an opportunity to

make a second shot. From past data, you know that the

probability this player will make a single free-throw shot is 0.7.

(a) Find the probability the player only takes a single free-

throw.

(b) Find the probability the player makes two shots.

(c) Find the probability the player makes the first shot and

misses the second.

27. Playing Roulette

You play the game of roulette in Reno. Each game you always

bet on “red” and the chance that you win is 18/38. Suppose you

play the game four times.

(a) Find the probability you win in all games.

(b) Find the probability you win in the first and third games,

and lose in the second and fourth games.

(c) Find the probability you win in exactly two of the four

games.

28. Is a Die Fair?

Suppose a friend is about to roll a die. The die either is the

usual “fair” type or it is a “special” type that has two sides

showing 1, two sides showing 2, and two sides showing 3. You



believe that the die is the fair type with probability 0.9. Your

friend rolls the die and you observe a 1.

(a) Find the probability that a 1 is rolled.

(b) If you observe a 1, what is the probability your friend was

rolling the fair die?

29. How Many Fish?

You are interested in learning about the number of fish in the

pond in your back yard. It is a small pond, so you do not expect

many fish to live in it. In fact, you believe that the number of

fish in the pond is equally likely to be 1, 2, 3, or 4. To learn

about the number of fish, you will perform a capture-recapture

experiment. You first catch one of the fish, tag it, and return it

to the pond. After a period of time, you catch another fish and

observe that it is tagged and this fish is also tossed back into the

pond.

(a) There are two stages of this experiment. At the first stage

you have 1, 2, 3, or 4 fish in the pond, and at the second

stage, you observe either a tagged or not-tagged fish. Draw

a tree diagram to represent this experiment, and label the

branches of the tree with the given probabilities.

(b) Find the probability of getting a tagged fish.

(c) If you find a tagged fish, find the probability there was

exactly 1 fish in the pond. Also find the probabilities of

exactly 2 fish, 3 fish, and 4 fish in the pond.

30. Shopping at the Mall

Suppose that you are shopping in a large mall in a metropolitan

area. The people who shop at this mall either live downtown or

in the suburbs. Recently a market research firm surveyed mall

shoppers — from this survey, they believe that 70% of the

shoppers live in the suburbs and 30% live downtown. You know

that there is a relationship between a person’s political affiliation

and where he or she lives. You know that 40% of the adults who

live in the suburbs are registered Democrats and 80% of the

downtown residents are Democrats.



(a) If you let T = event that shopper lives downtown, S =

event that shopper lives in the suburbs and D = event that

shopper is a Democrat, write down the probabilities given

in the above paragraph.

(b) Suppose you interview a random shopper. Find the

probability that the shopper is a Democrat.

(c) If your shopper is a Democrat, find the probability he or

she lives in the suburbs.

31. What Bag?

Suppose that you have two bags in your closet. The white bag

contains four white balls and the mixed bag contains two white

and two black balls. The closet is dark and you just grab one

bag out at random and select a ball. The ball you choose can

either be white or black.

(a) Suppose there are 1000 hypothetical bags in your closet. By

use the Bayes’ box shown below, classify the 1000 bags by

the type “white” and ‘mixed” and the ball color observed.

Ball color observed

White Black TOTAL

Bag White

type Mixed

TOTAL 1000

(b) Using the Bayes’ box, find the probability that you observe

a white ball.

(c) If you observe a white ball, find the probability that you

were selecting from the white bag.

Exercises

32. Conditional Probability

Suppose you have two spinners – one spinner is equally likely to

land on the numbers 1, 2, 3, and the second spinner is equally



likely to land on 1, 2, 3, 4, 5.

(a) Using two applications of the sample() function, create a

data frame containing 1000 random spins from the first

spinner and 1000 random spins from the second spinner.

(b) Use the filter() function to take a subset of the data

frame created in part (a), keeping only the rows where the

sum of spins is fewer than 5.

(c) Using the output from part (b), approximate the

probability the first spin is equal to 1 given that the sum of

spins is fewer than 5.

(d) By use of the filter() function, approximate the

probability the sum of spins is fewer than 5 given that the

first spin is equal to 1.

33. Rolling a Random Die

Suppose you spin a spinner that is equally likely to land on the

values 1, 2, 3, 4. If the spinner lands on 1, then you roll a fair

die; otherwise (if the spinner lands on 2, 3, 4), you roll a

weighted die where an even roll is twice as likely as an odd roll.

(a) Create a data frame where Spin contains 1000 spins from

the random spinner, Die1 contains 1000 rolls from the fair

die and Die2 contains 1000 rolls from the biased die.

(b) By use of the ifelse() function, define a new variable Die

representing the roll of the “random” die, where the

outcome depends on the value of the spinner.

(c) Find the probability the random die roll is equal to 3.



4
 

Discrete Distributions
 

 

4.1  Introduction: The Hat Check Problem

Some time ago, it was common for men to wear hats when they went out for

dinner. When a man entered a restaurant, he would give his hat to an attendant

who would keep the hat in a room until his departure. Suppose the attendant

gets confused and returns hats in some random fashion to the departing men.

What is the chance that no man receives his personal hat? How many hats, on

average, will be returned to the right owners?

This is a famous “matching” probability problem. To start thinking about this

problem, it is helpful to start with some simple cases. Suppose only one man

checks his hat at the restaurant. Then obviously this man will get his hat back.

Then the probability of “no one receives the right hat” is 0, and the average

number of hats returned will be equal to 1.

Let n denote the number of men who enter the restaurant. The case n = 1 was

considered above. What if n = 2? If the two men are Barry and Bobby, then

there are two possibilities shown in Table 4.1. These two outcomes are equally

likely, so the probability of no match is 1/2. Half the time there will be 2 matches

and half the time there will be 0 matches, and so the average number of matches

will be 1.

TABLE 4.1

Possibilities of the hat check problem when n = 2.

Barry receives Bobby receives of matching hats

1. Barry’s hat Bobby’s hat 2

2. Bobby’s hat Barry’s hat 0

What if we have n = 3 men that we’ll call Barry, Bobby, and Jack. Then there

are 3! = 6 ways of returning hats to men, listed in Table 4.2. Again these



outcomes are equally likely, so the probability of no match is 2/6. One can show

that the average number of matches is again 1.

TABLE 4.2

Possibilities of the hat check problem when n = 3.

Barry receives Bobby receives Jack receives # of matching hats

1. Barry’s hat Bobby’s hat Jack’s hat 3

2. Barry’s hat Jack’s hat Bobby’s hat 1

3. Bobby’s hat Barry’s hat Jack’s hat 1

4. Bobby’s hat Jack’s hat Barry’s hat 0

5. Jack’s hat Barry’s hat Bobby’s hat 0

6. Jack’s hat Bobby’s hat Barry’s hat 1

What happens if there are a large number of hats checked? It turns out that the

probability of no matches is given by

Prob(no matches) =
1

e
,

where e is the special irrational number 2.718. Also it is interesting that the

average number of matches for any value of n is given by

Average number of matches = 1.

The reader will get the opportunity of exploring this famous problem by

simulation in the end-of-chapter exercises.

 

4.2  Random Variable and Probability Distribution

Suppose that Peter and Paul play a simple coin game. A coin is tossed. If the

coin lands heads, then Peter receives $2 from Paul; otherwise Peter has to pay $2

to Paul. The game is played for a total of five coin flips. After the five flips, what

is Peter’s net gain (in dollars)?

The answer depends on the results of the coin flips. There are two possible

outcomes of each coin flip (heads or tails) and, by applying the multiplication

rule, there are 2
5
 = 32 possibilities for the five flips. The 32 possible outcomes are

written below.



HHHHH HTHHH THHHH TTHHH

HHHHT HTHHT THHHT TTHHT

HHHTH HTHTH THHTH TTHTH

HHHTT HTHTT THHTT TTHTT

HHTHH HTTHH THTHH TTTHH

HHTHT HTTHT THTHT TTTHT

HHTTH HTTTH THTTH TTTTH

HHTTT HTTTT THTTT TTTTT

For each possible outcome of the flips, say HTHHT, there will be a

corresponding net gain for Peter. For this outcome, Peter won three times and

lost twice, so his net gain is 3(2) − 2(2) = 2 dollars. The net gain is an example of

a random variable – this is simply a number that is assigned to each outcome of

the random experiment.

Generally, a capital letter will be used to represent a random variable – here

the capital letter G denotes Peter’s gain in this experiment. For each of the 32

outcomes, one can assign a value of G – this is done in Table 4.3.

TABLE 4.3

The 32 outcomes and value of G in the 5 coin flips problem.

HHHHH, G = 10 HTHHH, G = 6 THHHH, G = 6 TTHHH, G = 2

HHHHT, G = 6 HTHHT, G = 2 THHHT, G = 2 TTHHT, G = −2

HHHTH, G = 6 HTHTH, G = 2 THHTH, G = 2 TTHTH, G = −2

HHHTT, G = 2 HTHTT, G = −2 THHTT, G = −2 TTHTT, G = −6

HHTHH, G = 6 HTTHH, G = 2 THTHH, G = 2 TTTHH, G = −2

HHTHT, G = 2 HTTHT, G = −2 THTHT, G = −2 TTTHT, G = −6

HHTTH, G = 2 HTTTH, G = −2 THTTH, G = −2 TTTTH, G = −6

HHTTT, G = −2 HTTTT, G = −6 THTTT, G = −6 TTTTT, G = −10

It is seen from the table that the possible gains for Peter are -10, -6, -2, 2, 6,

and 10 dollars. One is interested in the probability that Peter will get each

possible gain. To do this, one puts all of the possible values of the random

variable in Table 4.4. Although a capital letter will be used to denote a random

variable, a small letter will denote a specific value of the random variable. So g

refers to one specific value of the gain G, and P(G = g) refers to the

corresponding probability.

TABLE 4.4

Table of gain, number of outcomes, and corresponding probability, step 1.

Gain g (dollars) Number of outcomes P(G = g)

−10



Gain g (dollars) Number of outcomes P(G = g)

−6

−2

2

6

10

What is the probability that Peter gains $6 in this game? Looking at the table

of outcomes, one sees that Peter won $6 in five of the outcomes. Since there are

32 possible outcomes of the five flips, and each outcome has the same probability,

one sees that the probability of Peter winning $6 is 5/32.

This process is continued for all of the possible values of G. In Table 4.5, one

places the number of outcomes for each value and the corresponding probability.

This is an example of a probability distribution for G – This is simply a list of all

possible values for a random variable together with the associated probabilities.

TABLE 4.5

Table of gain, number of outcomes, and corresponding probability, step 2.

Gain g (dollars) Number of outcomes P(G = g)

−10 1 1/32

−6 5 5/32

−2 10 10/32

2 10 10/32

6 5 5/32

10 1 1/32

Probability distribution

In general, suppose X is a discrete random variable. This type of random variable

only assigns probability to a discrete set of values. In other words, the support of

X is a set of discrete values. The function f(x) is a probability mass function

(pmf) for X if the function satisfies two properties.

(1) f(x) ≥ 0 for each possible value x of X

(2) ∑x f(x) = 1

The table of values of the gain G and the associated probabilities f(g) = P(G =

g) do satisfy these two properties. Each of the assigned probabilities is positive, so

property (1) is satisfied. If one sums the assigned probabilities, one finds



∑
g

P(G = g) =
1

32
+

5

32
+

10

32
+

10

32
+

5

32
+

1

32
= 1,

and so property (2) is satisfied.

A probability distribution is a listing of the values of X together with the

associated values of the pmf. One graphically displays this probability

distribution with a bar graph. One places all of the values of G on the horizontal

axis, marks off a probability scale on the vertical scale, and then draws vertical

lines on the graph corresponding to the pmf values.

Figure 4.1 visually shows that it is most likely for Peter to finish with a net

gain of +2 or −2 dollars. Also note the symmetry of the graph – the graph looks

the same way on either side of 0. This symmetry about 0 indicates that this game

is fair. We will shortly discuss a way of summarizing this probability distribution

that confirms that this is indeed a fair game.

FIGURE 4.1

Probability distribution of the net gains for Peter in the Peter-Paul game.

 Simulating the Peter-Paul Game

It is straightforward to simulate this game in R. A function one_play() is written

which will play the game one time. The sample() function is used to flip a coin

five times and the function returns the net gain for Paul.

 
 one_play <- function(){ 
 flips <- sample(c("H", "T"), 



 size = 5, 
 replace = TRUE) 
 2 * sum(flips == "H") - 
 2 * sum(flips == "T") 
 } 

The replicate() function is used to simulate 1000 plays of the game and the

net gains for all plays are stored in the vector G. If one constructs a bar graph of

the net gains, it will resemble the graph of the probability distribution of G

showed in Figure 4.1.

 
G <- replicate(1000, one_play()) 

 

4.3  Summarizing a Probability Distribution

Once we have constructed a probability distribution – like was one above– it is

convenient to use this to find probabilities.

What is the chance that Peter will win at least $5 in this game? Looking at the

probability table, ones sees that winning “at least $5” includes the possible values

G = 6 and G = 10

One finds the probability of interest by adding the probabilities of the individual

values.

What is the probability Peter wins money in this game? Peter wins money if

the gain G is positive and this corresponds to the values G = 2, 6, 10. By adding

up the probabilities of these three values, one sees the probability that Peter wins

money is

P(G ≥ 5)= P(G = 6 or G = 10)
= P(G = 6) + P(G = 10)

=
5 + 1

32
=

6

32
.

P(Peter wins)= P(G > 0)
= P(G = 2) + P(G = 6) + P(G = 10)

=
10 + 5 + 1

32
=

1

2
.



It is easy to compute the probability Peter loses money – also 1/2. Since the

probability Peter wins in the game is the same as the probability he loses, the

game is clearly fair.

When one has a distribution of data, it is helpful to summarize the data with a

single number, such as median or mean, to get some understanding about a

typical data value. In a similar fashion, it is helpful to compute an “average” of a

probability distribution – this will give us some feeling about typical or

representative values of the random variable when one observes it repeated times.

A common measure of “average” is the mean or expected value of X, denoted μ

or E(X). The mean (or expected value) is found by

1. Computing the product of a value of X and the corresponding value of the

pmf f(x) = P(X = x) for all values of X.

2. Summing the products.

In other words, one finds the mean by the formula

μ =∑
x

xf(x). (4.1)

The computation of the mean for the Peter-Paul game is illustrated in Table

4.6. For each value of the gain G, the value is multiplied by the associated

probability – the products are given in the rightmost column of the table. Then

the products are added – one sees that the mean of G is μ = 0.

TABLE 4.6

Calculation of the mean for the Peter-Paul game.

g P(G = g) g × P(G = g)

−10 1/32 −10/32

−6 5/32 −30/32

−2 10/32 −20/32

2 10/32 20/32

6 5/32 30/32

10 1/32 10/32

SUM 1 0

How does one interpret a mean value of 0? Actually it is interesting to note

that G = 0 is not a possible outcome of the game – that is, Peter cannot break

even when this game is played. But if Peter and Paul play this game a large



number of times, then the value μ= 0 represents (approximately) the mean

winnings of Peter in all of these games.

 Simulating the Peter-Paul Game (continued)

The functions sample() and replicate() were earlier illustrated to simulate this

game 1000 times in R. Peter’s winnings in the different games are stored in the

vector G. Here is a display of Peter’s winnings in the first 100 games:

 
G[1:100] 
 [1] 6 -6 -6 -2 -6 2 6 -2 -6 -6 -10 -6 
 [13] -2 2 -2 2 10 6 2 -2 -6 6 -2 -2 
 [25] -2 -2 -2 2 10 2 -2 -2 6 -2 2 2 
 [37] 6 2 -2 -6 -6 2 -6 -2 2 -6 -10 -6 
 [49] 2 6 6 6 2 -2 -2 -2 2 -6 -2 2 
 [61] 2 -2 6 -2 6 6 2 6 -6 6 2 6 
 [73] -6 -2 2 2 6 2 6 -2 -10 -6 2 -6 
 [85] 6 2 -2 -2 6 -6 -6 -2 -10 -2 -10 -6 
 [97] -2 10 6 -2 

One approximates the mean winning μ by finding the sample mean Ḡ of the

winning values in the 1000 simulated games.

 
 mean(G) 
 [1] -0.0748 

This value is approximately equal to the mean of G, μ= 0. If Peter was able to

play this game for a much larger number of games, then one would see that his

average winning would be very close to μ = 0.

 

4.4  Standard Deviation of a Probability Distribution

Consider two dice – one we will call the “fair die” and the other one will be called

the “loaded die”. The fair die is the familiar one where each possible number (1

through 6) has the same chance of being rolled. The loaded die is designed in a

special way that 3’s or 4’s are relatively likely to occur, and the remaining

numbers (1, 2, 5, and 6) are unlikely to occur. Table 4.7 gives the probabilities of

the possible rolls for both dice.



TABLE 4.7

Probabilities of the possible rolls for a fair die and a loaded die.

Fair Die Loaded Die

Roll Probability Roll Probability

1 1/6 1 1/12

2 1/6 2 1/12

3 1/6 3 1/3

4 1/6 4 1/3

5 1/6 5 1/12

6 1/6 6 1/12

How can one distinguish the fair and loaded dice? An obvious way is to roll

each a number of times and see if we can distinguish the patterns of rolls that we

get. One first rolls the fair die 20 times with the results

3, 3, 5, 6, 6, 1, 2, 1, 4, 3, 2, 5, 6, 4, 2, 5, 6, 1, 2, 3 (mean 3.5)

Next one rolls the loaded die 20 times with the results

3, 2, 1, 4, 4, 1, 4, 3, 3, 3, 1, 3, 3, 5, 3, 3, 3, 6, 3, 4 (mean 3.1)

Figure 4.2 displays dotplots of 50 rolls from each of the two dice.



FIGURE 4.2

Dotplots of rolls from fair and loaded dice.

What doe one see? For the fair die, the rolls appear to be evenly spread out

among the six possible numbers. In contrast, the rolls for the loaded die tend to

concentrate on the values and 3 and 4, and the remaining numbers were less

likely to occur.

Can one compute a summary value to contrast the probability distributions for

the fair and loaded dice? One summary number for a random variable has already

been discussed, the mean μ. This number represents the average outcome for the

random variable when one performs the experiment many times.

Suppose the mean is computed for each of the two probability distributions.

For the fair die, the mean is given by

and for the loaded die the mean is given by

The means of the two probability distributions are the same – this means that

one will tend to get the same average roll when the fair die and the loaded die are

rolled many times.

But one knows from our rolling data that the two probability distributions are

different. For the loaded die, it is more likely to roll 3’s or 4’s. In other words, for

the loaded die, it is more likely to roll a number close to the mean value μ = 3.5.

The standard deviation of a random variable X, denoted by the Greek letter σ,

measures how close the random variable is to the mean μ. It is called a standard

deviation since it represents an “average” (or standard) distance (or deviation)

from the mean μ. This standard deviation, denoted σ is defined as follows:

σ =√Σx(x − μ)2P(X = x). (4.2)

To find the standard deviation σ for a random variable, one first computes (for

all values of X) the difference (or deviation) of x from the mean value μ. Next,

one squares each of the differences, and finds the average squared deviation by

μFairDie= (1)(
1

6
) + (2)(

1

6
) + (3)(

1

6
) + (4)(

1

6
) + (5)(

1

6
) + (6)(

1

6
)

= 3.5,

μLoadedDie= (1)(
1

12
) + (2)(

1

12
) + (3)(

1

3
) + (4)(

1

3
) + (5)(

1

12
) + (6)(

1

12
)

= 3.5.



multiplying each squared deviation by the corresponding value of the pmf and

summing the products. The standard deviation σ is the square root of the average

squared deviation.

Tables 4.8 and 4.9 illustrate the computation of the standard deviation for the

roll of the fair die and for the roll of the loaded die, where R denotes the roll

random variable.

TABLE 4.8

Computation of the standard deviation σFair Die for the fair die.

r r − μ (r − μ)2 × P(R = r)

1 1 − 3.5 = −2.5 ( − 2.5)2 × (1/6)

2 2 − 3.5 = −1.5 ( − 1.5)2 × (1/6)

3 3 − 3.5 = −0.5 ( − 0.5)2 × (1/6)

4 4 − 3.5 = 0.5 (0.5)2 × (1/6)

5 5 − 3.5 = 1.5 (1.5)2 × (1/6)

6 6 − 3.5 = 2.5 (2.5)2 × (1/6)

SUM 2.917

TABLE 4.9

Computation of the standard deviation σLoaded Die for the loaded die.

r r − μ (r − μ)2 × P(R = r)

1 1 − 3.5 = −2.5 ( − 2.5)2 × (1/12)

2 2 − 3.5 = −1.5 ( − 1.5)2 × (1/12)

3 3 − 3.5 = −0.5 ( − 0.5)2 × (1/3)

4 4 − 3.5 = 0.5 (0.5)2 × (1/3)

5 5 − 3.5 = 1.5 (1.5)2 × (1/12)

6 6 − 3.5 = 2.5 (2.5)2 × (1/12)

SUM 1.583

σFairDie = √2.917 = 1.71

σLoadedDie = √1.583 = 1.26

It is seen from our calculations that

σFairDie = 1.71,σLoadedDie = 1.26



What does this mean? Since the loaded die roll has a smaller standard deviation,

this means that the roll of the loaded die tends to be closer to the mean (3.5)

than for the fair die. When one rolls the loaded die many times, one will notice a

smaller spread or variation in the rolls than when one rolls the fair die many

times.

 Simulating Rolls of Fair and Loaded Dice

One illustrates the difference in distributions of rolls of fair and loaded dice by

an R simulation. The probabilities of 100 rolls of each of the two types of dice are

stored in the vectors die1 and die2. Two applications of the sample() function are

used to simulated rolls – the rolls for the fair and loaded dice are stored in the

vectors rolls1 and rolls2. respectively.

 
 die1 <- c(1, 1, 1, 1, 1, 1) / 6 
 die2 <- c(1, 1, 4, 4, 1, 1) / 12 
 rolls1 <- sample(1:6, prob = die1, 
 size = 100, 
 replace = TRUE) 
 rolls2 <- sample(1:6, prob = die2, 
 size = 100, 
 replace = TRUE) 

One approximates the means and standard deviations for the probability

distributions by computing sample means and sample standard deviations of the

simulated rolls.

 
 c(mean(rolls1), sd(rolls1)) 
 [1] 3.340000 1.585779 
 c(mean(rolls2), sd(rolls2)) 
 [1] 3.280000 1.246055 

Note that both types of dice display similar means, but the loaded die displays

a smaller standard deviation than the fair die.

Interpreting the standard deviation for a bell-shaped distribution

Once one has computed a standard deviation σ for a random variable, how can

one use this summary measure? One use of σ was illustrated in the dice example

above. The probabilities for the roll of the loaded die were more concentrated

about the mean than the probabilities for the roll of the fair die, and that

resulted in a smaller value of σ for the roll of the loaded die.



The standard deviation has an attractive interpretation when the probability

distribution of the random variable is bell-shaped. When the probability

distribution has the following shape:

then approximately

the probability that X falls within one standard deviation of the mean is

0.68.

the probability that X falls within two standard deviations of the mean is

0.95.

Mathematically, one writes,

Prob(μ − σ < X < μ + σ) ≈ 0.68

Prob(μ − 2σ < X < μ + 2σ) ≈ 0.95

 Simulating Rolls of Ten Dice

To illustrate this interpretation of the standard deviation, suppose ten fair dice

are rolled and the sum of the numbers appearing on the dice is recorded. It is

easy to simulate this experiment in R using the following script. The function

roll10() will roll 10 dice, the function replicate() repeats the experiment for

1000 trials, and the variable sum_rolls contains the sum of the rolls from the

experiments.

 
 roll10 <- function(){ 
 sum(sample(1:6, size = 10, replace = TRUE)) 
 } 
 sum_rolls <- replicate(1000, roll10()) 

A histogram of the results from 1000 trials of this experiment is shown in

Figure 4.3.



FIGURE 4.3 

Histogram of the sum of ten dice in 1000 simulated trials.

Note that the shape of this histogram is approximately bell shaped about the

value 35. Since this histogram is a reflection of the probability distribution of the

sum of the rolls of ten dice, this means that the shape of the probability

distribution for the sum will also be bell-shaped.

For this problem, it can be shown (as an end-of-chapter exercise) that the mean

and standard deviation for the sum of the rolls of ten fair dice are respectively

μ = 35, σ = 5.4.

Applying our rule, the probability that the sum falls between

μ − σ and μ + σ, or 35 − 5.4 = 29.6 and 35 + 5.4 = 40.4

is approximately 0.68, and the probability that the sum of the rolls falls

between

μ − 2σ and μ + 2σ, or 35 − 2(5.4) = 24.2 and 35 + 2 (5.4) = 45.8

is approximately 0.95.

 Simulating Rolls of Ten Dice (continued)

To see if these are accurate probability computations, return to our simulation

of this experiment and see how often the sum of the ten rolls fell within the above

limits. Recall that the simulation sums were stored in the vector sum_rolls.



Below the proportions of sums of ten rolls that fall between 29.6 and 40.4, and

between 24.2 and 45.8, are computed.

 
 sum(sum_rolls > 29.6 & sum_rolls < 40.4) / 1000 
 [1] 0.702 
 sum(sum_rolls > 24.2 & sum_rolls < 45.8) / 1000 
 [1] 0.955 

One sees that the proportions of values that fall within these limits are 0.702 and

0.955, respectively. Since these proportions are close to the numbers 0.68 and

0.95, we see in this example that this rule is pretty accurate.

 

4.5  Coin-Tossing Distributions

Introduction: A Galton Board

A Galton board is a physical device for simulating a special type of random

experiment. It was named after the famous scientist Sir Francis Galton who lived

from 1822 to 1911. Galton is noted for a wide range of achievements in the areas

of meteorology, genetics, psychology, and statistics. The Galton board consists of

a set of pegs laid out in the configuration shown in Figure 4.4 – one peg is in the

top row, two pegs are in the second row, three pegs in the third row, and so on.

A ball is placed above the top peg. When the ball is dropped and hits a peg, it is

equally likely to fall left or right. We are interested in the location of the ball

after striking five pegs – as shown in the figure, the ball can land in locations 0,

1, 2, 3, 4, or 5.

FIGURE 4.4 

Illustration of a Galton board.



Figure 4.5 shows the path of four balls that fall through a Galton board. The

chances of falling in the locations follow a special probability distribution that has

a strong connection with a simple coin-tossing experiment.

FIGURE 4.5 

Illustration of the path of four balls falling through a Galton board.

Consider the following random experiment. One takes a quarter and flip it ten

times, recording the number of heads one gets. There are four special

characteristics of this simple coin-tossing experiment.

1. One is doing the same thing (flip the coin) ten times. We will call an

individual coin flip a trial, and so our experiment consists of ten identical

trials.

2. On each trial, there are two possible outcomes, heads or tails.

3. In addition, the probability of flipping heads on any trial is 1/2.

4. The results of different trials are independent. This means that the

probability of heads, say, on the fourth flip, does not depend on what

happened on the first three flips.

One is interested in the number of heads one gets – this number will be

referred to X. In particular, one is interested in the probability of getting five

heads, or Prob(X = 5).

In this section, one will see that this binomial probability model applies to

many different random phenomena in the real world. Probability computations

for the binomial and the closely related negative binomial models will be

discussed and the usefulness of these models in representing the variation in real-

life experiments will be illustrated.



4.5.1  Binomial probabilities

Let’s return to our experiment where a quarter is flipped ten times, recording X,

the number of heads. One is interested in the probability of flipping exactly five

heads, that is, Prob(X = 5). To compute this probability, one first has to think of

possible outcomes in this experiment. Suppose one records if each flip is heads

(H) or tails (T). Then one possible outcome with ten flips is

Trial 1 2 3 4 5 6 7 8 9 10

Result H H T T H T T H H T

Another possible outcome is TTHHTHTHHH. The sample space consists of all

possible ordered listings of ten letters, where each letter is either an H or a T.

Next, consider computing the probability of a single outcome of ten flips such

as the HHTTHHTHHT sequence shown above. The probability of this outcome is

written as

P(“H on toss 1” AND “H on toss 2” AND … AND “T on toss 10”).

Using the fact that outcomes on different trials are independent, this

probability is written as the product

P(H on toss 1)× P(H on toss 2) ×… × P(T on toss 10).

Since the probability of heads (or tails) on a given trial is 1/2, one has

P(HHTTHHTTHT ) =
1

2
×

1

2
×. . . ×

1

2
= (

1

2
)

10

.

Actually, the probability of any outcome (sequence of ten letters with H’s or T’s)

in this experiment is equal to ( 1
2 )

10
.

Let’s return to our original question – what is the probability that one gets

exactly five heads? If one thinks of the individual outcomes of the ten trials, then

one will see that there are many ways to get five heads. For example, one could

observe

HHHHHTTTTT or HHHHTTTTTH or HHHTTTTTHH

In each of the three outcomes, note that the number of heads is five. How many

outcomes (like the ones shown above) will result in exactly five heads? As before,

label the outcomes of the individual flips by the trial number:

Trial 1 2 3 4 5 6 7 8 9 10

Outcome ______ ______ ______ ______ ______ ______ ______ ______ ______ ______



If five heads are observed, then one wishes to place five H’s in the ten slots

above. In the outcome HHHHHTTTTT, the heads occur in trials 1, 2, 3, 4, 5,

and in the outcome HHHTTTTTHH, the heads occur in trials 1, 2, 3, 9, and 10.

If one observes exactly 5 heads, then one must choose five numbers from the

possible trial numbers 1, 2, …, 10 to place the five H’s. There are ( 10
5 ) ways of

choosing these trial numbers. Note that the order in which one chooses the trial

numbers is not important. Since there are ways of getting exactly five heads, and

each outcome has probability ( 1
2 )

10
, one sees that

Prob(X = 5) = (
10

5
)(

1

2
)

10

= 0.246.

From the complement property, one sees that the Prob(five heads are not

tossed) = 1 − 0.246 = 0.754. It is interesting to note that although one expects to

get five heads when flipping a coin ten times, it is actually much more likely not

to flip five heads than to flip five heads.

Binomial experiments

Although the coin tossing experiment described above seems pretty artificial,

many random experiments share the same basic properties as coin tossing.

Consider the following binomial experiment:

1. One repeats the same basic task or trial many times – let the number of

trials be denoted by n.

2. On each trial, there are two possible outcomes, which are called “success” or

“failure”. One could call the two outcomes “black” and “white”, or “0” or “1”,

but they are usually called success and failure.

3. The probability of a success, denoted by p, is the same for each trial.

4. The results of outcomes from different trials are independent.

Here are some examples of binomial experiments.

Example: A sample survey. Suppose the Gallup organization is interested in

estimating the proportion of adults in the United States who use the popular

auction website eBay. They take a random sample of 100 adults and 45 say that

they use eBay. In this story, we see that

1. The results of this survey can be considered to be a sequence of 100 trials

where one trial is asking a particular adult if he or she uses eBay.

2. There are two possible responses to the survey question – either the adult

says “yes” (he or she uses eBay) or “no” (he or she doesn’t use eBay).



3. Suppose the proportion of all adults that use eBay is p. Then the probability

that the adult says “yes” will be p.

4. If the sampling is done randomly, then the chance that one person says “yes”

will not depend on the answers of the people who were previously asked.

This means that the responses of different adults to the question can be

regarded as independent events.

Example: A baseball hitter’s performance during a game. Suppose you

are going to a baseball game and your favorite player comes to bat five times

during the game. This particular player is a pretty good hitter and his batting

average is about 0.300. You are interested in the number of hits he will get in the

game. This can also be considered a binomial experiment:

1. The player will come to bat five times – these five at-bats can be considered

the five trials of the experiment (n = 5).

2. At each at-bat, there are two outcomes of interest – either the player gets a

hit or he doesn’t get a hit.

3. Since the player’s batting average is 0.300, the probability that he will get a

hit in a single at-bat is p = 0.300.

4. It is reasonable to assume that the results of the different at-bats are

independent. That means that the chance that the player will get a hit in his

fifth at-bat will be unrelated to his performance in the first four at-bats. We

note that this is a debatable assumption, especially if you believe that a

player can have a hot-hand.

Example: Sampling without replacement. Suppose a committee of four will

be chosen at random from a group of five women and five men. You are interested

in the number of women that will be in the committee. Is this a binomial

experiment?

1. If one thinks of selecting this committee one person at a time, then one can

think this experiment as four trials (corresponding to selecting the four

people).

2. On each trial, there are two possible outcomes – either one selects a woman

or a man. At this point, things are looking good – this may be a binomial

experiment. But…

3. Is the probability of choosing a woman the same for each trial? For the first

pick, the chance of picking a woman is 5/10. But once this first person has

been chosen, the probability of choosing a woman is not 5/10 – it will be

either 4/9 or 5/9 depending on the outcome of the first trial. So the



probability of a “success” is not the same for all trials, so this violates the

third property of a binomial experiment.

4. Likewise, in this experiment, the outcomes of the trials are not independent.

The probability of choosing a woman on the fourth trial is dependent on who

was selected in the first three trials, so again the binomial assumption is

violated.

4.5.2  Binomial computations

A binomial experiment is defined by two numbers

n = the number of trials, and

p = probability of a “success” on a single trial.

If one recognizes an experiment as being binomial, then all one needs to know is n

and p to determine probabilities for the number of successes X. Using the same

argument as was made in the coin-tossing example, one can show that the

probability of x successes in a binomial experiment is given by

P(X = x) = (
n

x
)px(1 − p)n−x, k = x. . . ,n. (4.3)

Let’s illustrate using this formula for a few examples.

Example: A baseball hitter’s performance during a game (revisited).

Remember our baseball player with a true batting average of 0.300 is coming to

bat five times during a game. What is the probability that he gets exactly two

hits? It was shown earlier that this was a binomial experiment. Since the player

has five opportunities, the number of trials is n = 5. If one regards a success as

getting a hit, the probability of success on a single trial is p = 0.3. The random

variable X is the number of hits of the player during this game. Using the

formula, the probability of exactly two hits is

P(X = 2) = (
5

2
)(0.3)2(1 − 0.4)5−2 = 0.3087.

What is the probability that the player gets at least one hit? To do this

problem, one first constructs the collection of binomial probabilities for n = 5

trials and probability of success p = 0.3. Table 4.10 shows all possible values of X



(0, 1, 2, 3, 4, 5) and the associated probabilities found using the binomial

formula.

TABLE 4.10

Possible values and associated probabilities for the baseball hitter.

x P(X = x)

0 0.168

1 0.360

2 0.309

3 0.132

4 0.029

5 0.002

One is interested in the probability that the player gets at least one hit or P(X

≥ 1). “At least one hit” means that X can be 1, 2, 3, 4, or 5. To find this one

simply sums the probabilities of X between 1 and 5:

P(X ≥ 1) = P(X = 1, 2, 3, 4, 5) = 0.360 + 0.309 + 0.132 + 0.029 + 0.002 = 0.832.

There is a simpler way of doing this computation using the complement property

of probability. We note that if the player does not get at least one hit, then he

was hitless in the game (that is, X = 0). Using the complement property

P(X ≥ 1) = 1 − P(X = 0) = 1 − 0.168 = 0.832.

 Binomial Calculations

By use of the dbinom() and pbinom() functions in R, one can perform

probability calculations for any binomial distribution. In our baseball example the

number of hits X is binomial with sample size 5 and probability of success p =

0.3. In the following R script a data frame is constructed with the possible values

of the number of hits x, and the function dbinom() with arguments size and prob

used to compute the binomial probabilities:

 
 data.frame(x = 0:5) %>% 
 mutate(Probability = dbinom(x, size = 5, prob = .3)) 
 x Probability 
 1 0 0.16807 
 2 1 0.36015 
 3 2 0.30870 
 4 3 0.13230 
 5 4 0.02835 
 6 5 0.00243 



The function pbinom() will compute cumulative probabilities of the form P(X ≤
x). For example, to find the probability that number of hits X is 2 or less, P(X ≤
2):

 
 pbinom(2, size = 5, prob = .3) 
 [1] 0.83692 

One computes the probability P(X ≥ 2) by finding the cumulative probability

P(X ≤ 1), and subtracting the result from 1:

 
 1 - pbinom(1, size = 5, prob = .3) 
 [1] 0.47178 

 Simulating Binomial Experiments

One conveniently simulates outcomes from binomial experiments by use of the

rbinom() function. The arguments to this function are the number of simulated

draws, the number of binomial trials size and the probability of success prob. To

illustrate, consider the baseball hitter who is coming to bat 5 times in a game

where the probability of a hit on each at-bat is 0.3. One simulates the number of

hits in 50 games by using arguments 50, size = 5 and prob = 0.3.

 
 (hits <- rbinom(50, size = 5, prob = 0.3)) 
 [1] 3 1 1 1 1 1 1 1 2 2 2 1 3 3 2 1 1 3 1 3 0 1 
 [23] 3 3 3 0 2 2 2 2 1 1 2 1 0 0 1 2 3 2 1 3 2 3 
 [45] 2 0 0 1 1 1 
 
 table(hits) 
 hits 
 0 1 2 3 
 6 20 13 11 

By use of the table() function, we tally the outcomes. Here this player got

exactly one hit in a game in 20 games, so the approximate probability that X = 1

is equal to 20/50 = 0.4.

4.5.3  Mean and standard deviation of a binomial

There are simple formulas for the mean and variance for a binomial random

variable. First let X1 denote the result of the first binomial trial where



X1 = {

In the end-of-chapter exercises, the reader will be asked to show that the mean

and variance of X1 are given by

E(X1) = p, V ar(X1) = p(1 − p).

If X1,…, Xn represent the results of the n binomial trials, then the binomial

random variable X can be written as

X = X1+. . . +Xn.

Using this representation, the mean and variance of X are given by

E(X) = E(X1)+. . . +E(Xn), V ar(X) = V ar(X1)+. . . +V ar(Xn).

The result about the variance is a consequence of the fact that the results of

different trials of a binomial experiment are independent. Using this result and

the previous result on the mean and variance of an individual trial outcome, we

obtain

E(X) = p+. . . +p = np, (4.4)

and

V ar(X) = p(1 − p)+. . . +p(1 − p) = np(1 − p). (4.5)

To illustrate these formulas, recall the first example where X denoted the

number of heads when a fair coin is flipped 10 times. Here the number of trials

and probability of success are given by n = 10 and p = 0.5. The expected number

of heads would be

E(X) = 10(0.5) = 5

and the variance of the number of heads would be

V (X) = 10(0.5)(1 − 0.5) = 2.5.

 Simulating Binomial Experiments (continued)

1 if we observe a success
0 if we observe a failure



In our baseball example, the number of successes X were simulated in 50

binomial experiments where n = 5 and p = 0.3. The mean and standard

deviation of X are given by μ = 5 (0.3) = 1.5 and σ = √5(.3)(1 − .3) = 1.02.

One approximates the mean and standard deviation by finding the sample mean

and standard deviation from the simulated values of X. Below one sees that these

approximate values agree closely with the exact values of μ and σ.

 
 hits <- rbinom(50, size = 5, prob = 0.3) 
 mean(hits) 
 [1] 1.58 
 sd(hits) 
 [1] 0.9707981 

4.5.4  Negative binomial experiments

The 2004 baseball season was exciting since particular players had the

opportunity to break single-season records. Let’s focus on Ichiro Suzuki of the

Seattle Mariners who had the opportunity to break the season record for the

most hits that was set by George Sisler in 1920. Sisler’s record was 257 hits and

Suzuki had 255 hits before the Mariners’ game on September 30. Was it likely

that Suzuki would tie Sisler’s record during this particular game?

One can approximate this process as a coin-tossing experiment. When Suzuki

comes to bat, there are two relevant outcomes: either he will get a hit, or he will

get an out. Note that other batting plays such as a walk or sacrifice bunt that

don’t result in a hit or an out are ignored. Assume the probability that he gets a

hit on a single at-bat is p = 0.372 (his 2004 batting average) and one assumes

(for simplicity) that the outcomes on different at-bats are independent.

Suzuki needs two more hits to tie the record. How many at-bats will it take

him to get two hits?

This is not a binomial experiment since the number of trials is not fixed.

Instead the number of successes (hits) is fixed in advance and the number of

trials to achieve this is random. Consider

Y = number of at-bats to get two hits.

One is interested in probabilities about the number of bats Y.

It should be obvious that Y has be at least 2 (he needs at least 2 at-bats to get

2 hits), but Y could be 3, 4, 5, etc. Let’s find the probability that Y = 5.

First we know that the second hit must have occurred in the fifth trial (since

Y=5). Also it is known that there must have been one hit and three outs in the



first four trials – there are ( 4
1) ways of arranging the H’s and the O’s in these

trials.

Also the probability of each possible outcome is p
2
(1 − p)

3
, where p is the

probability of a hit. So the probability that it takes 5 trials to observe 2 hits is

P(Y = 5) = (
4

1
)p2(1 − p)3.

Since p = 0.372 in this case, we get

P(Y = 5) = (
4

1
)0.3722(1 − 0.372)3 = 0.1371.

A general negative binomial experiment is described as follows:

One has a sequence of independent trials where each trial can be a success

(S) or a failure.

The probability of a success on a single trial is p.

The experiment is continued until one observes r successes, and Y = number

of trials one observes.

The probability that it takes y trials to observe r successes is

P(Y = y) = (
y − 1

r − 1
)pr(1 − p)y−r, y = r, r + 1, r + 2, . . . (4.6)

Let’s use this formula in our baseball example where r = 2 and p = 0.372.

Table 4.11 gives the probabilities for the number of at-bats y = 2, 3, …, 9.

TABLE 4.11

Probability distribution for the number of at-bats for Suzuki to get two additional hits.

y P(Y = y)



2 .1384

3 .1738

4 .1637

5 .1371

6 .1076

7 .0811

8 .0594

9 .0426

Note that it is most likely that Suzuki will only need three at-bats to get his

two additional hits, but the probability of three at-bats is only 17%. Actually

each of the values 2, 3, 4, 5, and 6 have probabilities exceeding 10%. There is a

significant probability that Suzuki will take a large number of bats – by adding

the probabilities in Table 4.11, we see that the probability that Y is at most 9 is

0.904, so the probability that Y exceeds 9 is 1 - 0.904 = 0.096.

For a negative binomial experiment where Y is the number of trials needed to

observe r successes, one can show that the mean value is

E(Y ) =
r

p
. (4.7)

For the baseball example, r = 2 and p = 0.372, so the expected number of at-bats

to get two hits would be E(Y) = 2/0.372 = 5.4. It is interesting to note that

although Y = 3 is the most probable value, Suzuki would average over 5 at-bats

to get 2 hits in many repetitions of this random experiment.

 Negative Binomial Calculations and Simulations

The R functions dnbinom() and rnbinom() can be used to compute probabilities

and simulate from negative binomial distributions. One small complication is that

these functions define the random variable to be the number of failures (instead

of the total number of trials) until the r-th success.

To illustrate the use of these functions, consider our baseball example where X

is the number of at-bats for Suzuki to get r = 2 hits where the probability of a

hit on a single at-bat is p = 0.372. The probability P(X = 5) is the same as the

probability P(Y = 3) where Y is the number of failures until the second success.

Using the function dnbinom(), one computes P(Y = 3)

 
 dnbinom(3, size = 2, prob = .372) 



 [1] 0.137096 

which is equivalent to the probability that X = 5 computed earlier. Also,

rnbinom() can be used to simulate negative binomial experiments. For example,

one can simulate the number of failures until the second success for 10

experiments as follows.

 
 rnbinom(10, size = 2, prob = .372) 
 [1] 4 1 2 3 1 3 2 15 0 1 

It is interesting to note that Suzuki had 15 outs until the second success for one

of these experiments.

 

4.6  Exercises

1. Coin-tossing Game

In the Peter-Paul coin-tossing game described in the text, let the random

variable X be the number of times Paul is in the lead. For example, if the

coin tosses are HTHHT, Paul’s running winnings are $-2, 0, $2, $4, $2, and

the number of times he is in the lead is X = 4.

HHHHH HTHHH THHHH TTHHH

HHHHT HTHHT THHHT TTHHT

HHHTH HTHTH THHTH TTHTH

HHHTT HTHTT THHTT TTHTT

HHTHH HTTHH THTHH TTTHH

HHTHT HTTHT THTHT TTTHT

HHTTH HTTTH THTTH TTTTH

HHTTT HTTTT THTTT TTTTT

(a) Find the probability distribution for X.

(b) Construct a graph of the pmf for X.

(c) What is the most likely value of X?

(d) Find the probability that X > 2.

2. Sampling Without Replacement

Suppose you choose two coins from a box with two nickels and three

quarters. Let X denote the number of nickels you draw.



(a) Write out all possible 10 outcomes of this experiment.

(b) Find the probability distribution for X.

(c) What is the most likely value of X?

(d) Find the probability that X > 1.

3. Shooting Free Throws

Suppose you watch your favorite basketball player attempt five free throw

shots during a game. You know that the chance that he is successful on a

single shot is 0.5, so that the possible sequences of successes (S) and misses

(M) shown below are equally likely. Suppose you measure the number of runs

X where a run is defined to be a streak of S’s or M’s. For example, in the

sequence MMSSM, there are three runs (one run of two misses, one run of

two successes, and one run of one miss).

SSSSS SMSSS MSSSS MMSSS

SSSSM SMSSM MSSSM MMSSM

SSSMS SMSMS MSSMS MMSMS

SSSMM SMSMM MSSMM MMSMM

SSMSS SMMSS MSMSS MMMSS

SSMSM SMMSM MSMSM MMMSM

SSMMS SMMMS MSMMS MMMMS

SSMMM SMMMM MSMMM MMMMM

(a) Find the probability distribution for X.

(b) Construct a graph of the pmf for X.

(c) What is the most likely number of runs in the sequence?

(d) Find the probability that you have at most 2 runs in the sequence.

4. Rolling Two Dice

Suppose you roll two dice and you keep track of the larger of the two rolls

which we denote by X. For example, if you roll a 4 and a 5, then X = 5.

(a) Find the probability distribution for X.

(b) Construct a graph of the pmf for X.

(c) What is the most likely value of X?

(d) Find the probability that X is either 5 or 6.

5. Spinning a Spinner

Let X denote the number you get when you spin the spinner shown below.



(a) Find the probability distribution for X.

(b) Find the probability that X ≥ 2 .

(c) Find the mean and standard deviation of X.

6. Rolling Four Dice

Suppose you are asked to roll four dice and record the sum X. A lazy student

thinks this is too much work. As a shortcut, he decides to roll only two dice,

record the sum of the dice, and then double the result – call this random

variable Y.

The probability distributions of X and Y are shown in Tables 4.12 and 4.13.

The distribution of X was obtained by simulating the rolls of four dice for

one million trials.

TABLE 4.12

Probability distribution of X.

x P(X = x) x P(X = x)

4 0.001 15 0.108

5 0.003 16 0.096

6 0.008 17 0.080

7 0.016 18 0.062

8 0.027 19 0.043

9 0.044 20 0.027

10 0.062 21 0.015

11 0.080 22 0.008

12 0.097 23 0.003

13 0.108 24 0.001

14 0.113

TABLE 4.13

Probability distribution of Y.

y P(Y = y) y P(Y = y)



y P(Y = y) y P(Y = y)

4 0.028 16 0.139

6 0.056 18 0.111

8 0.083 20 0.083

10 0.111 12 0.056

12 0.139 14 0.028

14 0.167

(a) Compute the mean and standard deviation of the probability

distributions of X and Y.

(b) Plot the probability distributions of X and Y on the same graph.

(c) Compare and contrast the two probability distributions. How are the

distributions similar? How are they different? How would you respond to

the lazy student who thinks that doubling a two-dice result is equivalent

to finding the sum of four fair dice?

7. Running a Marathon Race

Suppose three runners from college A and four runners from college B are

participating in a marathon race. Suppose that all seven runners have equal

abilities and so all possible orders of finish of the seven runners are equally

likely. For example, one possible order of finish is AAABBBB where the three

A runners finish first, second, and third. Let X denote the finish position of

the best runner from college A.

(a) Find the probability distribution of X.

(b) Find the probability that X is at most 2.

(c) Find the average finish of the best runner from college A.

8. Choosing a Slip from a Random Box

Suppose you roll a die. If the die roll is 1 or 2, you choose a slip from box 1;

otherwise you choose a slip from box 2. Let Y denote the number on the slip.

(a) Find the probability distribution for Y.

(b) Find the probability that Y is between 2 to 4.

9. A Random Walk

Suppose that a person starts at location 0 on the number line and each

minute he is equally likely to take a step to the left and to the right. Let Y

denote the person’s location after four steps.

(a) Find the probability distribution for Y.

(b) Find the probability that he is at least two steps away from his start

after four steps.

(c) Suppose there is some gravitational pull towards the 0 (home) location.

Then if he is currently at a negative location, the probability he will

take a positive step is 0.7, and likewise if he is at a positive location, the



probability he takes a negative step is 0.7. If he is at point 0, he is

equally likely to take a negative or positive step. Find the probability

distribution of Y.

(d) Compare the two probability distributions in parts (a) and (c) using the

mean and standard deviation.

10. Selecting a Prize from a Bag

Suppose you select a prize (with replacement) from a bag that contains three

prizes – one worth $1, one worth $5, and one worth $10. You have three

opportunities to select a prize and you get to keep the largest prize of the

three you select. Let X denote the value of the prize you keep.

(a) Find the probability distribution of X.

(b) Find the probability you win more than $1.

(c) Find your expected winning.

11. Playing Roulette

Suppose you place a single $5 bet on three numbers (the Trio Bet) in

roulette that has a payoff odds of 11 to 1. Let X denote your payoff. Recall

that if you win you receive 11 times your betting amount plus your $5 bet; if

you lose, your payoff is nothing.

(a) Find the probability distribution for X.

(b) Find the mean of X. On average, how much money do you lose in a

single $5 bet?

(c) Consider placing $5 instead on a Five Number Bet that pays at 6 to 1.

Find the probability distribution for the payoff Y for this bet. Compute

the mean of Y. How does this average payoff compare with the average

payoff for the Trio Bet?

(d) Find the standard deviation of the payoffs for X and Y. Which bet has

the larger standard deviation? Interpret what it means to have a large

standard deviation.

12. Sum of Independent Random Variables

Suppose you have k random variables X1,…, Xk. Each random variable has a

mean μ and a standard deviation σ. Suppose the random variables are

independent – this means that the probability that one variable, say takes a

value will not be affected by the values of the other random variables. In this

case, it can be shown that the mean and standard deviation of the sum S =

X1 + … + Xk will have mean E(S) = kμ and standard deviation 

SD(S) = √kσ.

(a) It has been shown that if X denotes the roll of a single die, then the

mean and standard deviation of X are given by μ = 3.5 and σ = 1.71.

Suppose you roll 10 dice and the outcomes of these dice are represented



by X1,…, X10. Using the above result, find the mean and standard

deviation of the sum of these 10 rolls.

(b) Suppose you spin the spinner pictured here five times and record the

sum of the five spins S. Find the mean and standard deviation of S.

[Hint: First you need to find the mean and standard deviation of X, a

single spin of the spinner. Then you can apply the above result.]

13. Selecting a Coin from a Box

Suppose you select a coin from a box containing 3 nickels, 2 dimes and one

quarter. Let X represent the value of the coin.

(a) Find the probability distribution of X.

(b) Find the mean and standard deviation of X.

(c) Suppose that your instructor will give you twice the value of the coin

that you select, so your profit is Y = 2 X. Make intelligent guesses at

the mean and standard deviation of Y.

(d) Check your guesses by actually computing the mean and standard

deviation of Y.

(e) This is an illustration of a general result. If X has mean μ and standard

deviation σand Y = c X where c is a positive constant, then the mean of

Y is equal to           and the standard deviation of Y is equal to          .

14. How Many Tries to Open the Door?

You have a ring with four keys, one of which will open your door. Suppose

you try the keys in a random order until you open the door. Let X denote

the number of wrong keys you try before you find the right one. It can be

shown that X has the following distribution.

x P(X = x)

0 1/4

1 1/4

2 1/4

3 1/4



(a) Find the mean and standard deviation of X.

(b) Suppose you record instead Y, the total number of keys you try. Note

that Y = X + 1. Find the probability distribution for Y and the mean

and standard deviation.

(c) This is an illustration of a general result. If X has mean μ and standard

deviation σ and Y = X + c for some constant c, then the mean of Y is

equal to           and the standard deviation of Y is equal to          .

15. The Hat Check Problem

Consider the hat check problem described in Section 4.1. Consider the special

case where n = 4 men are checking their hats. If the names of the four men

are represented by the initials A, B, C, D, then you can represent the hats

given to these four men by the arrangements ABCD, ABDC, and so on.

(a) Write down the 24 possible arrangements and find the probability

distribution for X, the number of matches.

(b) Find the probability of no matches.

(c) Find the expected number of matches.

16. Binomial Experiments

Is each random process described below a binomial experiment? If it is, give

values of n and p. Otherwise, explain why it is not binomial.

(a) Roll a die 20 times and count the number of sixes you roll.

(b) There is a room of 10 women and 10 men – you choose five people from

the room without replacement and count the number of women you

choose.

(c) Same process as part (b) but you sample with replacement instead of

without replacement.

(d) You flip a coin repeatedly until you observe 3 heads.

(e) The spinner below is spun 50 times – you count the number of spins in

the black region.

17. Binomial and Negative Binomial Experiments

Each of the random processes below is a binomial experiment, a negative

binomial experiment, or neither. If the process is binomial, give values of n



and p, and if the process is negative binomial, give values of r and p.

(a) Suppose that 30% of students at a college regularly commute to school.

You sample 15 students and record the number of commuters.

(b) Same scenario as part (a). You continue to sample students until you

find two commuters and record the number of students sampled.

(c) Suppose that a restaurant offers apple and orange juice. From past

experience, the restaurant knows that 30% of the breakfast customers

order apple juice, 50% order orange juice, and 20% order no juice. One

morning, the restaurant has 30 customers and the numbers ordering

apple juice, orange juice, and no juice are recorded.

(d) Same scenario as part (c). The restaurant only records the number

ordering orange juice out of the first 30 customers.

(e) Same scenario as part (c). The restaurant counts the number of

customers that order breakfast until exactly three order apple juice.

(f) Same scenario as part (c). Suppose that from past experience, the

restaurant knows that 40% of the breakfast bills will exceed $10. Of the

first 30 breakfast bills, the number of bills exceeding $10 is observed.

18. Shooting Free Throws

Suppose that Michael Jordan makes 80% of his free throws. Assume he takes

10 free shots during one game.

(a) What is the most likely number of shots he will make?

(b) Find the probability that he makes at least 8 shots.

(c) Find the probability he makes more than 5 shots.

19. Purchasing Audio CDs

Suppose you know that 20% of the audio CD’s sold in China are defective.

You travel to China and you purchase 20 CD’s on your trip.

(a) What is the probability that at least one CD in your purchase is

defective?

(b) What is the probability that between 4 and 7 CD’s are defective?

(c) Compute the “average” number of defectives in your purchase.

20. Rolling Five Dice

Suppose you roll five dice and count the number of 1’s you get.

(a) Find the probability you roll exactly two 1’s. Perform an exact

calculation.

(b) Find the probability all the dice are 1’s. Perform an exact calculation.

(c) Find the probability you roll at least two 1’s. Perform an exact

calculation.

21. Choosing Socks from a Drawer

Suppose a drawer contains 10 socks, of which 4 are brown. We select 5 socks

from the drawer with replacement.



(a) Find the probability two of the five selected are brown.

(b) Find the probability we choose more brown than non-brown.

(c) How many brown socks do we expect to select?

(d) Does the answer to part (a) change if we select socks from the drawer

without replacement? Explain.

22. Choosing Socks from a Drawer

Suppose that we select socks from the drawer with replacement until we see

two that are brown.

(a) Find the probability that it takes us four selections.

(b) Find the probability it takes more than 2 selections.

(c) How many selections do we expect to make?

23. Sampling Voters

In your local town, suppose that 60% of the residents are supportive of a

school levy that will be on the ballot in the next election. You take a random

sample of 15 residents.

(a) Find the probability that a majority of the sample support the levy.

(b) How many residents in the sample do you expect will support the levy?

(c) If you sample the residents one at a time, find the probability that it

will take you five residents to find three that support the levy.

24. Taking a True/False Test

Suppose you take a true/false test with twenty questions and you guess at

the answers.

(a) Find the probability you pass the test assuming that passing is 60% or

higher correct.

(b) Find the probability you get a B or higher where B is 80% correct.

(C) If you get an 80% on this test, is it reasonable to assume that you were

guessing? Explain.

25. Bernoulli Experiment

Let X1 denote the result of one binomial trial, where X1 = 1 if you observe a

success and X1 = 0 if you observe a failure. Find the mean and variance of

X1.

26. Rolling a Die

Suppose we roll a die until we observe a 6. This is a special case of a negative

binomial experiment where r = 1 and p = 1/6. When we are interested in

the number of trials until the first success, this is a geometric experiment and

Y is a geometric random variable.

(a) Find the probability that it takes you 4 rolls to get a 6.

(b) Find the probability that it takes you more than 2 rolls to get a 6.

(c) How many rolls do you need, on average, to get a 6?

27. Heights of Male Freshmen



Suppose that one third of male freshmen entering a college are over 6 feet

tall. Four men are randomly assigned to a dorm room. Let X denote the

number of men in this room that are under 6 feet tall. You can ignore the

fact that the actual sampling of men is done without replacement.

(a) Assuming X has a binomial distribution, what is a “success” and give

values of n and p.

(b) What is the most likely value of X? What is the probability of this

value?

(c) Find the probability that at least three men in this room will be under 6

feet tall.

28. Basketball Shooting

Suppose a basketball player is practicing shots from the free-throw line. She

hasn’t been playing for a while and she becomes more skillful in making

shots as she is practicing. Let X represent the number of shots she makes in

50 attempts. Explain why the binomial distribution should not be used in

finding probabilities about X.

29. Collecting Posters from Cereal Boxes

Suppose that a cereal box contains one of four posters and you are interested

in collecting a complete set. You first purchase one box of cereal and find

poster #1.

(a) Let X2 denote the number of boxes you need to purchase to find a

different poster than #1. Find the expected value of X2.

(b) Once you have found your second poster, say #2, let X3 denote the

number of boxes you need to find a different poster than #1 or #2.

Find the expected value of X3.

(c) Once you have collected posters #1, #2, #3, let X4 denote the number

of boxes you need to purchase to get poster #4. Find the expected value

of X4.

(d) How many posters do you need, on average, to get a complete set of

four?

30. Baseball Hitting

In baseball, it is important for a batter to get “on-base” and batters are rated

in terms of their on-base percentage. In the 2004 baseball season, Bobby

Abreu of the Philadelphia Phillies had 705 “plate appearances” or

opportunities to bat. Suppose we divide his plate appearances into groups of

five – we record the number of times Abreu was on-base for plate

appearances 1 through 5, for 6 through 10, for 11 through 15, and so on. If

we let X denote the number of times on-base for five plate appearances, then

we observe the following counts for X:



x 0 1 2 3 4 5 Total

Count 10 29 44 40 15 3 141

To help understand this table, note that the count for X = 1 is 29 – this

means there were 29 periods where Abreu was on-base exactly one time. The

count for X = 2 is 44 – this means that for 44 periods Abreu was on-base

two times.

Since each outcome is either a success or failure, where success is getting on-

base, one wonders if the variation in these data can be explained by a

binomial distribution.

x 0 1 2 3 4 5 TOTAL

P(X = x)

Expected

Count

(a) Find the probabilities for a binomial distribution with n = 5 and p =

0.443. This value of p is Abreu’s on-base rate for the entire 2004

baseball season. Place these probabilities in the P(X = x) row of the

table.

(b) Multiply the probabilities you found in part (a) by 141, the number of

periods in the 2004 season. Place these numbers in the Expected Count

row of the table. These represent the expected number of times Abreu

would have 0, 1, 2, .., 5 times on-base if the probabilities followed a

binomial distribution.

(c) Compare the expected counts with the actual observed counts in the

first table. Does a binomial distribution provide a good description of

these data?

31. Graphs of Binomial Distributions

Figure 4.6 shows the binomial distributions with n = 20 and p = 0.5 (above)

and n = 20 and p = 0.2 (below).



FIGURE 4.6

Histograms of two binomial distributions.

Recall in Section 4.4 that if a probability distribution is approximately bell-

shaped, then approximately 68% of the probability falls within one standard

deviation of the mean.

(a) For the binomial distribution with n = 20 and p = 0.5, find the mean μ

and standard deviation σ and compute the interval (μ − σ, μ + σ).

(b) Find the exact probability that X falls in the interval (μ − σ, μ + σ).

(c) Repeat parts (a) and (b) for the binomial distribution n = 20 and p =

0.2.

(d) For which distribution was the 68% rule more accurate? Does that make

sense based on the shapes of the two distributions?

32. Guessing on a Test

Students in a statistics class were given a five-question baseball trivia quiz.

On each question, the students had to choose one of two possible answers.

The number correct X was recorded for each student – a count table of the

values of X are shown below.

X = x Count P(X = x) Expected

0 0

1 3

2 4

3 7

4 6

5 1

(a) Suppose the students know little about baseball and so they are

guessing on each question. If this is true, find the probability



distribution of the number correct X.

(b) Using this distribution, find the probability of each value of X and place

these probabilities in the above table.

(c) By multiplying these probabilities by the number of students (21), find

the expected number of students for each value of X.

(d) Compare your expected counts with the actual counts – does a binomial

distribution seem like a reasonable assumption in this example?

33. Playing Roulette

Suppose you play the game roulette 20 times. For each game, you place a

Trio Bet on three numbers and you win with probability 3/38.

(a) Find the probability you win the game exactly two times.

(b) Find the probability that you are winless in the 20 games.

(c) Find the probability you win at least once.

(d) How many games do you expect to win?

34. The Galton Board

Consider the Galton board described in Section 4.5. A ball is placed above

the first peg and dropped. When it strikes a peg, it is equally likely to fall

left or right. The location at the bottom X is equal to the number of times

that the ball falls right.

(a) Explain why X has a binomial distribution and give the values of n and

p.

(b) Find P(X = 2).

(c) Find the probability the ball falls to the right of the location “1”.

(d) Suppose that we change the experiment so that the probability of falling

right is equal to 1/4. Explain how this changes the binomial experiment

and find P(X = 2).

35. Drug Testing

In a New York Times article “Facing Questions, Rodriguez Raises More?”

(February 21, 2008), Major League Baseball is said to have a drug-testing

policy where 600 tests are randomly given to a group of 1200 professional

ballplayers. Alex Rodriguez claimed one season that he received five random

tests.

(a) If every player is equally likely to receive a single random blood test,

what is the probability that Rodriguez gets tested?

(b) If X represents the number of tests administered to Rodriguez among

the 600 tests, then explain why X has a binomial distribution and give

the values of n and p.

(c) Compute the probability that Rodriguez receives exactly one test.

(d) Recall Rodriguez’s claim that he received five random tests. Compute

the probability of this event.



(e) You should find the probability computed in part (d) to be very small. If

Rodriguez is indeed telling the truth, what do you think about the

randomness of the drug-testing policy?

 Exercises

36. Peter-Paul Game

(a) Implement the Peter-Paul game simulation as described in the text,

storing 1000 values of the gain variable in the R variable G.

(b) Use the simulated values to estimate the probability P(G > 2).

(c) Estimate the standard deviation of G from the simulated values.

37. The Hat Check Problem (continued)

Suppose that n = 10 men are checking their hats. It would be too tedious to

write down all 10! = 3, 628, 800 possible arrangements of hats, but it is

straightforward to design a simulation experiment for this problem.

(a) Write a function to mix up the integers 1 through 10 and returning the

number of matches.

(b) Using the function written in part (a), simulate this experiment 1000

times. Approximate the probability of no matches and the expected

number of matches. Compare your answers with the “large sample”

answers given in the introduction to this chapter.

38. A Random Walk (continued)

Suppose that a person starts at location 0 on the number line and each

minute he is equally likely to take a step to the left and to the right. Let Y

denote the person’s location after four steps.

(a) Write a function to implement one random walk, returning the person’s

location after four steps.

(b) By use of the replicate() function, simulate this random walk for 1000

iterations. Summarize the simulated locations by a mean and standard

deviation.

(c) Make an adjustment to your function so that if the person is currently

at a negative location, the probability he will take a positive step is 0.7,

and likewise if he is at a positive location, the probability he takes a

negative step is 0.7. (If he is at point 0, he is equally likely to take a

negative or positive step.) Simulate this adjusted random walk 1000

iterations. Compute the mean and standard deviation of this new

random walk and compare to the values computed in part (b).

39. Dice Rolls

(a) Construct a data frame with variables roll1, roll2, …, roll5, each

containing 1000 simulated rolls of a fair die.



(b) Using the function pmax() as shown below, define a new variable Max

that is equal to the maximum among the five rolls for each of the 1000

iterations.

 
Max <- pmax(roll1, roll2, roll3, roll4, roll5) 

(c) Estimate the probability that the maximum roll is equal to 6.

(d) Estimate the mean and standard deviation of the maximum roll.

40. Binomial Experiments

(a) Suppose 25 percent of the students are commuters. You take a survey of

12 students and count X the number of commuters. Simulate 1000

surveys using the function rbinom(), storing the number of commuters

in these 1000 samples.

(b) Approximate the probability that exactly 3 people in your sample are

commuters.

(c) Compute the sample mean and standard deviation of the simulated

values and compare with the exact values of the mean μ and standard

deviation σ.



5
 

Continuous Distributions
 

 

5.1  Introduction: A Baseball Spinner Game

The baseball board game All-Star Baseball has been honored as one of the fifty

most influential board games of all time according to the Wikipedia Encyclopedia

(http://en.wikipedia.org). This game is based on a collection of spinner cards,

where one card represents the possible batting accomplishments for a single player.

The game is played by placing a card on a spinner and a spin determines the

batting result for that player.

A spinner card is constructed by use of the statistics collected for a player during

a particular season. To illustrate this process, the table below shows the batting

statistics for the famous player Mickey Mantle for the 1956 baseball season. When

Mantle comes to bat, that is called a plate appearance (PA) – we see from the

table that he had 632 plate appearances this season. There were several events

possible when Mantle came to bat – he could get a single (1B), a double (2B), a

triple (3B), or a home run (HR). Also he could walk (BB), strike out (SO), or get

other type of out.

PA 1B 2B 3B HR BB SO Other OUTS

632 109 22 5 52 99 112 233

The probability of each type of event can be found by dividing each count by the

number of plate appearances. Each probability is converted to an angle on the

spinner by multiplying each probability by the total number of degrees (360). From

these degree measurements, a spinner is constructed, displayed in Figure 5.1, where

the area of each wedge of the circle is proportional to the probability of that event

occurring. A single plate appearance of Mickey Mantle can be simulated by

spinning the spinner and observing the batting event.

http://en.wikipedia.org/


FIGURE 5.1

Spinner constructed based on Mantle’s statistics.

PA 1B 2B 3B HR BB SO Other OUTS

632 109 22 5 52 99 112 233

Probability 0.172 0.035 0.008 0.082 0.157 0.177 0.369

Degrees in spinner 62 13 3 30 57 64 133

The binomial described in Chapter 4 is an example of a discrete random variable

which takes on only values in a list, such as {0, 1,…, 10}. How can one think about

probabilities where the random variable is not discrete? As a simple example,

consider the experiment of spinning the spinner in Figure 5.2 where the random

variable X is the recorded location. Here X is a continuous random variable that

can take on any value between 0 and 100.

FIGURE 5.2

A spinner with continuous random outcomes.



In this chapter, probabilities for a continuous random variable will be shown to

be represented by means of a smooth curve where the probability that X falls in a

given interval is equal to an area under the curve. Through a series of examples, we

will illustrate probability calculations for this type of random variables.

 

5.2  The Uniform Distribution

Consider the spinner experiment described in Section 5.1 where the location of the

spinner X can be any number between 0 and 100. Our computer simulated

spinning this spinner 20 times with the following results (rounded to the nearest

tenth):

95.0 23.1 60.7 48.6 89.1 76.2 45.6 1.9 93.5 91.7

82.1 44.5 61.5 79.2 92.2 73.8 17.6 40.6 41.0 89.4

A histogram of these values of X is shown in the Figure 5.3.

FIGURE 5.3

Histogram of 20 simulated values of a spinner.

Although one thinks that any spin between 0 and 100 is equally likely to occur,

there does not appear to be any obvious shape of this histogram. But the spinner

was only spun 20 times. Let’s try spinning 1000 times– a histogram of the spins is

shown in Figure 5.4.



FIGURE 5.4

Histogram of 1000 simulated values of the spinner.

Note that since there is a large sample of values, a small interval width was

chosen for each bin in the histogram. Now a clearer shape in the histogram can be

seen – although there is variation in the bar heights, the general shape of the

histogram seems to be pretty flat or uniform over the entire interval of possible

values of X between 0 and 100.

Suppose one was able to spin the spinner a large number of times. If one does

this, then the shape of the histogram looks close to the uniform density shown in

Figure 5.5.

FIGURE 5.5

Shape of the histogram for a large number of simulated values of the spinner.

When the random variable X is continuous, such as the case of the spinner result

here, then one represents probabilities by means of a smooth curve that is called a

density curve; more formally, a probability density curve. How does one find



probabilities? When X is continuous, then probabilities are represented by areas

under the density curve.

As a simple example, what is the chance that the spinner result falls between 0

and 100? Since the scale of the spinner is from 0 to 100, one knows that all spins

must fall in this interval, so the probability of X landing in (0, 100) is 1. This

probability is represented by the total area under the flat line between 0 and 100.

Since the area of this rectangle is given by height times base, and the base is equal

to 100, the height of this density curve must be 1/100 = 0.01. This is the value

that should replace the “?” in Figure 5.5. In this case, one says that the spinner

result has a uniform distribution and the curve is a uniform density.

By means of similar area computations, one finds other probabilities about the

spinner location X.

1. What is the probability the spin falls between 20 and 60? That is, what is

P(20 < X < 60)?

This probability is equal to the shaded area under the uniform density

between 20 and 60. See Figure 5.6. Using again the formula for the area of a

rectangle, the base is 60 − 20 = 40 and the height is 0.01, so

P(20 < X < 60) = 40(0.01) = 0.4.

2. What is the probability the spin is greater than 80? That is, what is P(X >

80)? Figure 5.7 shows the area that needs to be computed to find this

probability. Note that the area under the curve only between the values 80

and 100 is shaded, since X cannot be larger than 100. Again by finding the

area of the shaded rectangle, we see that P(X > 80) = 20 (0.01) = 0.2.



FIGURE 5.6

Illustration of finding the probability of P(20 < X < 60).

FIGURE 5.7

Illustration of finding the probability of P(X > 80).

 Simulating from a Uniform Density

The R function runif() is helpful for simulating from a uniform density. The

arguments are the number of simulations and the minimum and maximum value of

the support of the density. Below 50 values of a random spinner are simulated that

fall uniformly on the interval from 0 to 50. The histogram in Figure 5.8 graphs

these simulated spins with the uniform density drawn on top.

FIGURE 5.8

Histogram of 50 simulated uniform values.



spins <- runif(50, min = 0, max = 50)

 

5.3  Probability Density: Waiting for a Bus

Consider a random experiment where a continuous random variable X is observed

such as the location of the spinner in Section 5.2. Define the support of X to be the

set of possible values for X. For example, the support of X for the spinner example

is the interval (0, 100). To describe probabilities about X, a density function

denoted by f(x) is defined. Any function f will not work – one requires that f satisfy

two properties:

Property 1. The probability density f must be nonnegative which means that

f(x) ≥ 0, for all x. (5.1)

Property 2. The total area under the probability density curve f must be equal to

1. Mathematically,

∫
∞

−∞
f(x)dx = 1. (5.2)

To illustrate a probability density, suppose that a professor has a class that

meets three times a week. To get to class, the professor walks and waits for a bus

to go to school. From past experience, the professor knows that she can wait any

time between 0 and 10 minutes for the bus, and she knows that each waiting time

between 0 and 10 minutes is equally likely.

For a given week, what’s the chance that her longest wait will be under 7

minutes?

Let W denote her longest waiting time for the week. One can show that the

density for W is given by

f(w) =
3w2

1000
, 0 < w < 10.

This density for this longest waiting time is shown in Figure 5.9.



FIGURE 5.9

Density curve for the longest waiting time W.

Before we go any further, we should check if this is indeed a legitimate

probability density:

1. Note from the graph that the density does not take on negative values, so the

first property is satisfied.

2. Second, for it to be a probability density, the entire area under the curve must

be equal to 1. One can check this by finding the integral of the density

between 0 and 10 (the region where the density is positive):

∫
10

0

3w2

1000
dw =

w3

1000
10
0 =

103

1000
−

03

1000
= 1.

The entire area under the curve is indeed equal to 1, so f is a legitimate

probability density. Now that f is known to be a probability density, one can use it

to find probabilities. To find the probability that this longest waiting time is less

than 7 minutes, P(W < 7), one wishes to compute the area under the density curve

between 0 and 7, as shown in Figure 5.10. ∣



FIGURE 5.10

Density curve for the longest waiting time W, and P(W < 7).

This is equivalent to the integral

∫
7

0

3w2

1000
dw

and, by evaluating this, one obtains the probability

∫
7

0

3w2

1000
dw =

w3

1000
7
0 =

73

1000
−

03

1000
= 0.343.

Suppose one is interested in the probability that the longest waiting time is

between 6 and 8 minutes. This is represented by the shaded area in Figure 5.11.

FIGURE 5.11

Density curve for the longest waiting time W, and P(6 < W < 8).

To compute this area, one finds the integral of the density between 6 and 8:∣



∫
8

6

3w2

1000
dw =

w3

1000
8
6 =

83

1000
−

63

1000
= 0.296.

 Simulating Waiting Times

Recall that the waiting time variable W was defined as the longest waiting time

for the week where each of the separate waiting times has a uniform distribution

from 0 to 10 minutes. By simulating the process, one simulates values of W. By use

of three applications of runif() one simulates 1000 waiting times for Monday,

Wednesday, and Friday. The pmax() function is used to simulate the longest waiting

time for each group of waiting times.

 
wait_monday <- runif(1000, min = 0, max = 10) 
wait_wednesday <- runif(1000, min = 0, max = 10) 
wait_friday <- runif(1000, min = 0, max = 10) 
longest_wait <- pmax(wait_monday, 
 wait_wednesday, 
 wait_friday) 

Figure 5.12 shows 1000 simulated values of W and the density function 3w
2
/1000

is drawn on top. It appears that the histogram is a good match to the actual

density function.

FIGURE 5.12

Histogram of 1000 simulated values of W with the density function drawn on top.

 

5.4  The Cumulative Distribution Function∣



To find any probability about the maximum waiting time, one computes an area

under the curve that is equivalent to integrating the density curve over a region.

But there is a basic function that can be computed at the beginning that will

simplify these probability computations.

Choose an arbitrary point x – the cumulative distribution function at x, or cdf

for short, is the probability that W is less than or equal to x:

F(x) = P(W ≤ x) = ∫
x

−∞
f(w)dw. (5.3)

Here suppose one chooses a value of x in the interval (0, 10). Then F(x) would be

the area under the density curve between 0 and x shown in Figure 5.13.

FIGURE 5.13

Illustration of the cumulative density function.

Writing this area as an integral, one computes F(x) as

F(x) = P(W ≤ x) = ∫
x

0

3w2

1000
dw =

w3

1000
x
0 =

x3

1000
.

This formula is valid for any value of x in the interval (0, 10).

In fact, F(x) is defined for all values of x on the real line.

If x is a value smaller than or equal to 0, then we see from the figure that the

probability that W is smaller than x is equal to 0. So F(x) = 0 for x ≤ 0.∣



On the other hand, if x is greater than or equal to 10, then the probability

that W is smaller than x is 1. So F(x) = 1 for x ≥ 10.

Putting all together, one sees that the cdf F is given by

F(x) =

illustrated in Figure 5.14.

FIGURE 5.14

The cumulative density function, F(x), of the bus waiting example.

Finding probabilities using the CDF

Once we have computed the cdf function F, probabilities are found simply by

evaluating F at different points. Fortunately, no additional integration is needed.

For example, to find the probability that the maximum waiting time W is less

than equal to 6 minutes, one just computes F(6) = P(W ≤ 6) = 6
3
/1000 = 0.216

which is shown in Figure 5.15.

⎧

⎨
⎩

0, x ≤ 0
x3/1000, 0 < x < 10
1, x ≥ 10,



FIGURE 5.15

The cumulative density function F(x) and evaluation of F(6) = P(W ≤ 6).

To compute the probability that the maximum waiting time exceeds 8 minutes,

first note that “exceeding 8 minutes” is the complement event to “less than or equal

to 8 minutes”, and so

P(W > 8) = 1 − P(W ≤ 8) = 1 − F(8) = 1 −
83

1000
= 0.488.

Likewise, if one is interested in the chance that the waiting time W falls between 2

and 4, represent the probability as the difference of two “less-than” probabilities,

and then subtract the two values of F.

P(2 < W < 4) = P(W ≤ 4) − P(W ≤ 2) = F(4) − F(2) =
43

1000
−

23

1000
= 0.056.

 Computing Probabilities by Simulation

For the waiting for a bus example, the variable longest_wait contains 1000

simulated values of our longest waiting time. This sample is used to compute

approximate probabilities. To illustrate, to find the probability that the longest

wait exceeds 8 minutes, one finds the proportion of simulated values of W that

exceeds 8.

 
mean(longest_wait > 8) 
[1] 0.502 



In a similar fashion one approximates the probability that a longest waiting time

falls between 6 and 10 minutes.

 
mean(longest_wait > 6 & longest_wait < 10) 
[1] 0.798 

 

5.5  Summarizing a Continuous Random Variable

Mean and standard deviation

One is interested in summarizing a continuous random variable. Natural summaries

are given by the mean μ and the standard deviation σ, where these quantities are

defined in a similar manner as for a discrete random variable, with the exception

that summations are replaced by integrals.

The mean μ, or equivalently the expected value of X, is given by

μ = E(X) = ∫
∞

−∞
xf(x)dx. (5.4)

Just as in the discrete random variable case, there is an attractive interpretation of

μ. If one is able to observe a large number of values of X, then μ will be

approximately equal to the sample mean X̄ of these random values of X.

To define the spread of the values of X, one first computes the average squared

deviation about the mean, the variance,

σ2 = V ar(X) = E(X − μ)2 = ∫
∞

−∞
(x− μ)2f(x)dx. (5.5)

The standard deviation of X, σ, is defined to be the square root of the variance.

Let’s illustrate the computation of the mean and standard deviation for the bus

waiting time problem. Using the definition of f, one gets that the mean is equal to

μ = ∫
10

0
x(

3x2

1000
)dx.



Performing the integration, one gets

μ = ∫
10

0
x(

3x2

1000
)dx =

3x4

4000
10
0 =

3(10)4

1000
= 7.5.

On, the average, one expects the longest wait in a week to be 7.5 minutes.

The computation of the variance is a bit more tedious, but straightforward.

σ2 = ∫
10

0
(x− μ)2(

3x2

1000
)dx = 3.75.

So the standard deviation of X is σ = √3.75 = 1.94.

 Computing the Mean and Standard Deviation by Simulation

Earlier, we demonstrated simulating 1000 values of the longest waiting time W.

To check the computations of the mean μ and standard deviation σ, one computes

the sample mean and standard deviation of the simulated values.

 
mean(longest_wait) 
[1] 7.581979 
sd(longest_wait) 
[1] 1.878144 

One sees that these empirical values are close approximations to the exact values

μ = 7.5 and σ = 1.94.

Percentiles

Another useful summary of a continuous random variable is a percentile. The 70th

percentile, for example, is the value of X, call it x, such that 70% of the probability

is to the left, shown in Figure 5.16. That is, the 70th percentile, call it x70, satisfies

the equation

P(X ≤ x70) = 0.70.∣



FIGURE 5.16

Illustration of the 70th percentile.

Since one recognizes the left hand side of the equation as equivalent to the cdf F

(which already has been computed as x
3
/1000), the equation is written as

F(x70) = 0.70,

that is,

x3
70

1000
= 0.70.

To find the 70th percentile, the above equation is solved for x70 – after some

algebra, we get

x70 = 3√700 = 8.88.

This means that approximately 70% of the longest waiting times will be shorter

than 8.88 minutes over a duration of many weeks.

 Computing Percentiles by Simulation

For the waiting for a bus example, the variable longest_wait contains 1000

simulated values of our longest waiting time. This sample is used to compute

approximate percentiles by computing sample percentiles of the simulated values.

For example, by use of the quantile() function, one finds that the 10th and 90th

percentiles of W are approximately 4.80 and 9.66 minutes.



 
quantile(longest_wait, c(0.1, 0.9)) 
 10\% 90\% 
4.798759 9.661885 

The probability a longest waiting time is between 4.79 and 9.66 minutes is

approximately 0.80.

 

5.6  Normal Distribution

Normal probability curve

One of the most popular races in the United States is marathon, a grueling 26-mile

run. Most people are familiar with the Boston Marathon that is held in Boston,

Massachusetts every April. But other cities in the U.S. hold yearly marathons.

Here we look at data collected from Grandma’s Marathon that is held in Duluth,

Minnesota every June.

In the year 2003, there were 2515 women who completed Grandma’s Marathon.

The completion times in minutes for all of these women can be downloaded from

the marathon’s website. A histogram of these times, measured in minutes, is shown

in Figure 5.17.

FIGURE 5.17

Histogram of women’s completion times in the Grandma’s Marathon.

Note that these measured times have a bell shape. Figure 5.18 superimposes a

normal curve on top of this histogram. Note that this curve is a pretty good match



to the histogram. In fact, data like this marathon time data that are measurements

are often well approximated by a normal curve.

FIGURE 5.18

Histogram of women’s completion times in the Grandma’s Marathon, with a normal curve on top.

A normal density curve has the general form

f(x) =
1

√2πσ
exp{−

(x− μ)2

2σ2
}, −∞ < x < ∞. (5.6)

This density curve is described by two parameters – the mean μ and the standard

deviation σ. The mean μ is the center of the curve. Looking at the normal curve

above, one sees that the curve is centered about 270 minutes – actually the mean

of the normal curve is μ = 274. The number σ, the standard deviation, describes

the spread of the curve. Here the normal curve standard deviation is σ = 43. If one

knows the mean and standard deviation of the normal curve, one can make

reasonable predictions where the majority of times of the women runners will fall.

Early use of the Normal curve

The famous normal curve was independently discovered by several scientists.

Abraham De Moivre in the 18th century showed that a binomial probability for a

large number of trials n could be approximated by a normal curve. Pierre Simon

Laplace and Carl Friedrich Gauss also made important discoveries about this

curve. By the 19th century, it was believed by some scientists such as Adolphe

Quetelet that the normal curve would represent the distribution of any group of



homogeneous measurements. To illustrate his thinking, Quetelet considered the

frequency measurements for the chest circumference measurements (in inches) for

5738 Scottish soldiers taken from the Edinburgh Medical and Surgical Journal

(1817). A histogram of the chest measurements is shown in Figure 5.19. Quetelet’s

beliefs were a bit incorrect – any group of measurements will not necessarily be

normal-shaped. However, it is generally true that a distribution of physical

measurements from a homogeneous group, say heights of American women or foot

lengths of Chinese men will generally have this bell shape.

FIGURE 5.19

Histogram of chest circumference measurements of Scottish soldiers.

In the previous sections of this chapter, the notion of a continuous random

variable was introduced. Here the normal curve is introduced that is a popular

model for representing the distribution of a measurement random variable. Also it

will be seen that the normal curve is helpful for computing binomial probabilities

and for representing the distributions of means taken from a random sample.

Computing normal probabilities

Suppose that the normal density with μ = 274 minutes and σ= 43 minutes

represents the distribution of women racing times. Say one is interested in the

probability that a runner completes the race less than 4 hours or 240 minutes. One

computes this probability by finding an area under the normal curve. Specifically,

as indicated in Figure 5.20, this probability is the area under the curve for all

times less than 240 minutes.



FIGURE 5.20

Normal density with μ = 274 and σ= 43, with illustration of the area under the curve less than 240 (minutes).

 Normal Probability Calculations

One expresses this area as the integral

P(X ≤ 240) = ∫
240

−∞

1

√2πσ
exp{−

(x− μ)2

2σ2
}dx

but unfortunately one cannot integrate this function analytically (as was done for a

uniform density) to find the probability. Instead one finds this area by use of the R

pnorm() function in R. This function is used for three examples, illustrating the

computation of three types of areas.

Returning to our example, recall that the marathon times were approximately

normally distributed with mean μ = 274 and standard deviation σ = 43.

1. Finding a “less than” area. Suppose one is interested in the probability

that a woman marathon runner completes the race in under 240 minutes.

That is, one wishes to find P(X < 240) which is the area under the normal

curve to the left of 240. The function value pnorm(x, m, s) gives the value of

the cdf of a normal random variable with mean μ = a and σ = s evaluated at

the value x. For our example, the mean and standard deviation are given by

274 and 43, respectively, so the desired probability is given by

 
pnorm(240, 274, 43) 
 [1] 0.2145602 



2. Finding a “between two values” area. Suppose one is interested in

computing the probability that a marathon runner completes a race between

two values, such as P(230 < X < 280), shown in Figure 5.21.

One writes this probability as the difference of two “less than” probabilities:

where F(x) is the cdf of a Normal(274, 43) random variable evaluated at x.

Therefore, by use of the pnorm() function, this probability is equal to

FIGURE 5.21

Normal density with μ = 274 and σ= 43, with illustration of the area under the curve between 230 and 280

(minutes).

 
pnorm(280, 274, 43) - pnorm(230, 274, 43) 
 [1] 0.4023928 

3. Finding a “greater than” area. Last, sometimes one will be interested in

the probability that X is greater than some value, such as P(X > 300), the

probability a runner takes more than 300 minutes to complete the race, shown

in Figure 5.22.

This probability is found by the complement property of probability, that

P(230 < X < 280) = P(X < 280) − P(X < 230)
= F(280) − F(230),

P(X > 300) = 1 − P(X ≤ 300)
= 1 − F(300).



Therefore, one uses the pnorm() function to compute the probability that X is

smaller than 300, and then subtract the answer from 1.

FIGURE 5.22

Normal density with μ = 274 and σ= 43, with illustration of the area under the curve greater than 300

(minutes).

 
1 - pnorm(300, 274, 43) 
 [1] 0.2727054 

Computing Normal percentiles

In the marathon completion times example, we were interested in computing a

probability that was equivalent to finding an area under the normal curve. A

different problem is to compute a percentile of the distribution. In the marathon

example, suppose that t-shirts will be given away to the runners who get the 25%

fastest times. How fast does a runner need to run the race to get a t-shirt?

Here one wishes to compute the 25th percentile of the distribution of times. This

is a time, call it x25, such that 25% of all times are smaller than x25. This is shown

graphically in Figure 5.23.



FIGURE 5.23

Normal density with μ = 274 and σ= 43, with illustration of the 25th percentile.

Equivalently, we wish to find the value x25 such that

P(X ≤ x25) = F(x25) = 0.25.

 Calculating Normal Percentiles

Percentiles of a normal curve are conveniently computed in R by use of the

qnorm() function. Specifically, qnorm(p, m, s) gives the percentile of a Normal(m,

s) curve corresponding to a “left area” of p. In our example, the value of p is 0.25,

and so the 25th percentile of the running times (with mean 274 minutes and

standard deviation 43 minutes) is computed to be

 
qnorm(0.25, 274, 43) 
[1] 244.9969 

This means one needs to run faster (fewer than 245.0 minutes) to get a t-shirt in

this competition.

Suppose one needs to complete the race faster than 10% of the runners to be

invited to run in the race the following year. How fast does one need to run? If one

wishes to have a 10% of the times to be larger than one’s time, this means that

90% of the times will be smaller than one’s time. That is, one wishes to find the

90th percentile, x90 of the normal distribution, shown in Figure 5.24.



FIGURE 5.24

Normal density with μ = 274 and σ= 43, with illustration of the 90th percentile.

 
qnorm(0.90, 274, 43) 
[1] 329.1067 

So 329 minutes is the time to beat if one wishes to be invited to participate in

next year’s race.

 

5.7  Binomial Probabilities and the Normal Curve

The normal curve is useful for modeling batches of data, especially when one is

collecting measurements of some process. But the normal curve actually has a

more important justification. We will explore several important results about the

pattern of binomial probabilities and sample means and we will find these results

useful in our introduction to statistical inference.

First, consider different shapes of binomial distributions. Suppose that half of

one’s student body is female and one plans on taking a sample survey of n students

to learn if they are interested in using a new recreational sports complex that is

proposed. Let X denote the number of females in the sample. Assuming a random

sample is chosen, it is known that X will be distributed binomial with parameters

n and p = 1/2. What is the shape of the binomial probabilities? Figure 5.25

displays the binomial probabilities for sample sizes n = 10, 20, 50, and 100.



FIGURE 5.25

Binomial probabilities for sample sizes n = 10, 20, 50, and 100, and success probability p = 1/2.

What does one notice about these probability graphs? First, note that each

distribution is symmetric about the mean μ = n p. But, more interesting, the

shape of the distribution seems to resemble a normal curve as the number of trials

n increases.

Perhaps this pattern happens since one started with a binomial distribution with

p = 0.5 and one would not see this behavior if a different value of p was used.

Suppose that only 10% of all students would use the new facility and let X denote

the number of students in your sample who say they would use the facility. The

random variable X would be distributed binomial with parameters n and p = 0.1.

Figure 5.26 shows the probability distributions again for the sample sizes n = 10,

20, 50, and 100. As one might expect the shapes of the probabilities for n=10 are

not very normal-shaped – the distribution is skewed right. But, note that as n

increases, the probabilities become more normal-shaped and the normal curve

seems to be a good match for n = 100.



FIGURE 5.26

Binomial probabilities for sample sizes n = 10, 20, 50, and 100, and success probability p = 0.1.

Figures 5.25 and 5.26 illustrate a basic result: if one has a binomial random

variable X with n trials and probability of success p, then, as the number of trials

n approaches infinity, the distribution of the standardized score

Z =
X − np

√np(1 − p)
(5.7)

approaches a standard normal random variable, that is a normal distribution with

mean 0 and standard deviation 1. This is a very useful result. It means, that for a

large number of trials, one can approximate a binomial random variable X by a

normal random variable with mean and standard deviation

μ = np, σ = √np(1 − p). (5.8)

This approximation result can be illustrated with our student survey example.

Suppose that 10% of the student body would use the new recreational sports



complex. One takes a random sample of 100 students — what’s the probability

that 5 or fewer students in the sample would use the new facility?

The random variable X in this problem is the number of students in the sample

that would use the facility. This random variable has a binomial distribution with

n = 100 and p = 0.1 that is pictured as a histogram in Figure 5.27. By the

approximation result, this distribution is approximated by a normal curve with μ =

100 (0.1) = 10 and σ =√100(0.1)(0.9) = 3. This normal curve is placed on top of

the probability histogram in Figure 5.27 – note that it is a pretty good fit to the

histogram.

FIGURE 5.27

Histogram of binomial probabilities with the approximated normal curve on top.

 Binomial Computations Using a Normal Curve

One is interested in the probability that at most 5 students use the facility, that is,

P(X ≤ 5). This probability is approximated by the area under a Normal(10, 3)

curve between X = 0 and X = 5. Using the R pnorm() function, we compute this

normal curve area to be

 
pnorm(5, 10, 3) - pnorm(0, 10, 3) 
[1] 0.04736129 

In this case, one can also find this probability exactly by a calculator or

computer program that computes binomial probabilities. Using the pbinom()

function, we find the probability that X is at most 5 is



 
pbinom(5, size = 100, prob = 0.10) 
[1] 0.05757689 

Normal approximation gives a similar answer to the exact binomial computation.

 

5.8  Sampling Distribution of the Mean

We have seen that binomial probabilities are well-approximated by a normal curve

when the number of trials is large. There is a more general result about the shape

of sample means that are taken from any population.

To begin our discussion about the sampling behavior of means, suppose one has

a jar filled with a variety of candies of different weights. One is interested in

learning about the mean weight of a candy in the jar. One could obtain the mean

weight by measuring the weight for every single candy in the jar, and then finding

the mean of these measurements. But that could be a lot of work. Instead of

weighing all of the candies, suppose one selects a random sample of 10 candies

from the jar and finds the mean of the weights of these 10 candies. What has one

learned about the mean weight of all candies from this sample information?

To answer this type of question, one assumes he or she knows the weights of all

candies in the jar and examines the pattern of means obtained after taking random

samples from the jar.

The group of items (here, candies) of interest is called the population. Assume

first that one knows the population – that is, we know exactly the weights of all

candies in the jar. There are five types of candies – Table 5.1 gives the weight of

each type of candy (in grams) and the proportion of candies of that type.

TABLE 5.1

Weights (in grams) and proportions of 5 types of candies.

Weight Proportion

fruity square 2 0.15

milk maid 5 0.35

jelly nougat 8 0.20

caramel 14 0.15

candy bars 18 0.15

Let X denote the weight of a randomly selected candy from the jar. Note that X

is a discrete random variable with the probability distribution given in Table 5.1.

This distribution is summarized by computing a mean μ and a standard deviation



σ. The reader can verify in the end-of-chapter exercises that μ = 8.4500 and σ =

5.3617. So if one was really able to weigh each candy in the jar, one would find the

mean weight to be 8.45 gm.

Suppose a random sample of 10 candies is selected with replacement from the jar

and the mean is computed. Note that this is called the sample mean X̄ to

distinguish it from the population mean μ.

 Sampling Candies

This sampling can be simulated using the following R code. The distribution of

candies is stored in the vectors weights and proportion. By use of the sample()

function, one obtains the following candy weights:

 
weights <- c(2, 5, 8, 14, 18) 
proportion <- c(.15, .35, .2, .15, .15) 
sample(weights, size = 10, prob = proportion, replace = TRUE) 
[1] 5 8 5 14 5 18 8 18 5 8 

One computes the sample mean

X̄ = (5 + 8 + 5 + 14 + 5 + 18 + 8 + 18 + 5 + 8)/10 = 9.4 gm.

Suppose this process is repeated two more times – in the second sample, one

obtains X̄= 6.9 gm and in the third sample, one obtains X̄= 8.8 gm. The three

sample mean values are plotted in Figure 5.28.

FIGURE 5.28

Graph of 3 sample means from 10 randomly selected candies.

Suppose that one continues to take random samples of 10 candies from the jar

and plot the values of the sample means on a graph – one obtains the sampling



distribution of the mean X̄, shown in Figure 5.29.

FIGURE 5.29

Histogram of the sampling distribution of the mean X̄.

Note that there is an interesting pattern of these sample means – they appear to

have a normal shape. This motivates an amazing result, called the Central Limit

Theorem, about the pattern of sample means. If one takes sample means from any

population with mean μ and standard deviation σ, then the sampling distribution

of the means (for large enough sample size) will be approximately normally

distributed with mean and standard deviation

E(X̄) = μ, SD(X̄) =
σ

√n
. (5.9)

Let’s illustrate this result for our candy example. Recall that the population of

candy weights had a mean and standard deviation given by μ = 8.45 and σ = 5.36,

respectively. If one takes samples of size n = 10, then, by this result, the sample

mean X̄ will be approximately normally distributed where

E(X̄) = 8.45, SD(X̄) =
5.36

√10
= 1.69.

This normal curve is drawn on top of the histogram of sample means, shown in

Figure 5.30.



FIGURE 5.30

Histogram of the sampling distribution of the mean X̄, with approximated normal curve on top.

There are two important points to mention about this result.

1. First the expected value of the sample means, E(X̄) , is equal to the

population mean μ. When one takes a random sample, it is possible that the

sample mean X̄ is far away from the population mean μ. But, if one takes

many random samples, then, on the average, the sample mean will be close to

the population mean.

2. Second, note that the spread of the sample means, as measured by the

standard deviation, is equal to σ/√n. Since the spread of the population is σ,

note that the spread of the sample means will be smaller than the spread of

the population. Moreover, if one takes random samples of a larger size, then

the spread of the sample means will decrease.

The second point can be illustrated in the context of our candy example. Above,

we selected random samples of size n = 10 and computed the sample means.

Suppose instead one selected repeated samples of size n = 25 from the candy jar –

how does the sampling distribution of means change?

Using R, one can simulate the process of taking samples of size 25 – histograms

of the sample means are shown in Figure 5.31. By the Central Limit Theorem, the

sample means will be approximately normal-shaped with mean and standard

deviation



E(X̄) = 8.45, SD(X̄) =
5.36

√25
= 1.07.

FIGURE 5.31

Histogram of the sampling distribution of the mean X̄, with sample sizes n = 10 and n = 25.

Comparing the n = 10 sample means with the n = 25 sample means in Figure

5.31, what’s the difference? Both sets of sample means are normally distributed

with an average equal to the population mean. But the n = 25 sample means have

a smaller spread – this means that as you take bigger samples, the sample mean X̄

is more likely to be close to the population mean μ. The simulation is left as an

end-of-chapter exercise.

The Central Limit Theorem works for any population

We illustrate the Central Limit Theorem for a second example where the

population has a distinctive non-normal shape. At one university, many of the

students’ hometowns are within 40 miles of the school. There also are a large

number of students whose homes are between 80-120 miles of the university. Given

the population of “distances of home” of all students, it is interesting to see what

happens when we take random samples from this population.

If we let X denote “distance from home”, imagine that the population of

distances is described by the continuous density curve in Figure 5.32. Two humps

can be seen in this density – these correspond to the large number of students

whose homes are in the ranges 0 to 40 miles and 70 to 130 miles. Suppose the

mean and standard deviation of this population are given by μ = 60 miles and σ =

41.6 miles, respectively.



FIGURE 5.32

Density curve of the population of distances.

Now imagine that one takes a random sample of n students from this population

and computes the sample mean from this sample. For example, suppose one takes

a random sample of 20 students and collect the distances from home from these

students – once one has collected the 20 distances, one computes the sample mean 

X̄. Here are two samples and the values of X̄ :

 
Sample 1: 
 102 22 23 24 114 102 114 102 22 19 
 88 31 30 100 111 105 105 17 100 21 
 xbar =67.6 mi. 
Sample 2: 
 12 127 33 34 73 19 111 99 16 20 
 22 16 24 62 22 76 91 115 117 93 
 xbar =59.1 mi. 

If this sampling process is repeated many times, what will the distribution of

sample means look like? Also, what is the effect of the sample size n? To answer

this question, one can let the computer simulate repeated samples of sizes n = 1, n

= 2, n = 5, and n = 20. The histograms in Figure 5.33 show the distributions of

sample means for the four sample sizes.



FIGURE 5.33

Histograms of random samples of distances, with sample sizes of n = 1, n = 2, n = 5, and n = 20

As one might expect, if samples of size 1 are selected, our sample means look

just like the original population. If samples of size 2 are selected, then the sample

means have a funny three-hump distribution. But, note as one takes samples of

larger sizes, the sampling distribution of means looks more like a normal curve.

This is what one expects from the Central Limit Theorem result – no matter what

the population shape, the distribution of the sample means will be approximately

normal if the sample size is large enough.

What is the distribution of the sample means when we take samples of size n =

20? One just applies the Central Limit Theorem result. The sample means will be

approximately normal with mean and standard deviation

E(X̄) = μ, SD(X̄) =
σ

√n
. (5.10)

Since one knows the mean and standard deviation of the population and the

sample size, one just substitute these quantities and obtains

E(X̄) = 60, SD(X̄) =
41.6

√20
= 9.3.

These results can be used to answer some questions.



1. What is the probability that a student’s distance from home is

between 40 and 60 miles?

Actually this is a difficult question to answer exactly, since one does not know

the exact shape of the population. But, looking at the graph of the

population, one sees that the curve takes on very small values between 40 and

60 miles. So this probability is close to zero – very few students live between

40 and 60 miles from our school.

2. What is the probability that, if one takes a sample of 20 students,

the mean distance from home for these 20 students is between 40

and 60 miles?

This is a different question than the first one. This question is asking about

the chance that the sample mean falls between 40 and 60 miles. Since the

sampling distribution of X̄ is approximately normal with mean 60 and

standard deviation 9.3, one can compute this by using R. Using the pnorm()

function, one obtains

 
pnorm(60, 60, 9.3) - pnorm(40, 60, 9.3) 
[1] 0.4842436 

It is interesting to note that although it is unlikely for students to live between

40 and 60 miles from the school, it is pretty likely for the sample mean for a

group of 20 students to fall between 40 and 60 miles.

3. What is the probability that the mean distance exceeds 100 miles?

Here one wants to find the probability that X̄ is greater than 100, that is 

P(X̄ > 100). Using R, one computes

 
1 - pnorm(100, 60, 9.3) 
[[1] 8.498565e-06 

This probability is essentially zero, which means that it is highly unlikely that

a sample mean of 20 student distances will exceed 100 miles.

 

5.9  Exercises

1. Waiting at a ATM Machine

You are waiting at your local ATM machine and as usual, you are waiting in a

line. Suppose you know that your waiting time can be between 0 to 5 minutes



and any value between 0 and 5 minutes is equally likely.

(a) The graph below shows the density function for X, the waiting time.

What is the height of this function?

(b) Find the probability you wait more than 2 minutes.

(c) Find the probability you wait between 2 and 3 minutes.

2. Morning Wake-Up

Suppose you wake up at a random time in the morning between 6 am and 12

pm.

(a) Find the probability you wake up before 11 am.

(b) Find the probability you wake up between 8 and 10 am.

(c) What is an “average” or typical time you will wake up? Explain how you

computed this number.

(d) Find the standard deviation of the time.

3. The Median Waiting Time

In the “waiting for a bus” example in Section 5.3, suppose that you record the

median time T (in minutes) that you wait for the bus on the three days. The

density function for this median time is given by

f(t) =
6t(10 − t)

1000
, 0 < t < 10.

(a) Draw a graph of this density function.

(b) Find the probability that the median time is between 5 and 7 minutes.

(c) Find the cdf F(t) for all values of t.

(d) Using the cdf you found in part c, find the probability the median time is

over 6 minutes.

(e) Find the 75% percentile of your median waiting time.

4. The Sum of Two Spins



Suppose you spin two spinners, where the location of the arrow for each

spinner is equally likely to fall between 0 and 10.

If you let S be the sum of the two spins, it can be shown that the density

function of S is given by

f(s) = {

and shown by the figure below.

(a) Check that this function satisfies the two properties of a probability

density function.

(b) Find the probability the sum of the two spins is smaller than 5.

(c) Find the cdf function F.

(d) Using the cdf function, find the probability the sum of spins falls between

8 and 12.

(e) Using the cdf function, find the probability the sum of spins exceeds 12.

5. Salaries for Professional Basketball Players

Let X denote the salary (in millions of dollars) of a professional basketball

player. A reasonable density function for X is given by

s/100, 0 < s ≤ 10
(20 − s)/100, 10 < s ≤ 20,



f(x) =
0.15

x1.3
, x ≥ 0.1

shown by the figure below.

(a) What proportion of basketball players earn more than 1 million dollars?

(b) What proportion of players earn between 1 and 2 million dollars?

(c) Find the cdf function.

(d) Using the cdf function, find the probability a player earns less than one-

half a million dollars.

(e) Find the “average” salary of a NBA player.

6. Grading on a Curve

Suppose the grades on a math test are distributed according to the curve.

f(x) =
x

5000
, 0 < x < 100.

(a) Draw a graph of this density curve.

(b) Find the mean grade on this test.

(c) What proportion of students who take this test get a grade of 90 or

higher?

(d) What proportion of students get a C grade, where C is defined to be

between 70 and 80?

(e) Is this test harder or easier than the test grades in your statistics class?

Explain.

7. Time to Clean Your Room

Suppose the time that it takes you to clean your room (in hours) is a random

variable X with the cdf function given below. A graph of the cdf is also shown.



F(x) =

(a) Find the probability you can clean your room in under one hour.

(b) Find the probability it takes you over one and a half hour to clean your

room?

(c) Using the graph, find a value M such that it is equally likely that X is

smaller than M and X is larger than M. [Hint: M is the 50th percentile of

X.]

8. Time to Complete a Race

Suppose a group of children are running a race. The times (in minutes) that

the children complete the race can be described by the density function

f(x) =
4 + (x− 3)2

21
, 3 < x < 6.

(a) Graph this density function.

(b) Looking at your graph, is it more common to have a slow time (near 6

minutes) or a fast time (near 3 minutes)?

(c) Find the probability a child completes the race in under 4 minutes.

(d) Find the probability that a child’s time exceeds 5 1/2 minutes.

(e) Find the median running time.

9. Spinning a Random Spinner

Suppose you flip a coin. If the coin lands heads, you spin a spinner that is

equally likely to fall at any point in the interval (0, 4). If the coin lands tails,

you spin a different spinner that lands at any point in the interval (2, 6). If X

denotes your spin, the density function for X is graphed below.

⎧

⎨
⎩

0, x < 0
0.75(2x3/3 − x4/4) 0 ≤ x ≤ 2
1, x > 2



(a) Check that this graphed function is indeed a probability density.

(b) Find the probability that X is greater than 5.

(c) Find the probability that X falls between 1 and 3.

10. Lifetimes of Light Bulbs

Suppose that a company is interested in the amount of time that a particular

type of light bulb will last until it burns out. After sampling the lifetimes for a

large group of light bulbs, it is decided that the lifetime X (in hours) is well-

described by the exponential distribution of the form

f(x) =
1

100
e−x/100,x > 0.

The cdf for X is drawn below.

In addition, the cdf is computed for some values of X in the following table.



x F(x) x F(x)

0 0 180 0.8347

30 0.2592 210 0.8775

60 0.4512 240 0.9093

90 0.5934 270 0.9328

120 0.6988 300 0.9502

150 0.7769

(a) Find the probability that a lifetime of a bulb will be less than 90 hours.

(b) Find the probability the lifetime is between 120 and 180 hours.

(c) From the table, approximate the median lifetime.

(d) Approximate the 95th percentile.

11. Locations of Dart Throws

Suppose you throw a dart at a circular target such that the dart is equally

likely to land in any location on the target. The locations for a large number

of dart throws are shown in the figure below.

Let X denote the distance of a throw from the bulls eye. It can be shown

that the density function of X has the form

f(x) =
x

2
, 0 < x < 2.

(a) Find the probability your throw lands within a distance of 1 unit from

the target.



(b) Find the probability your throw lands between .5 and 1.5 units from the

target.

(c) If you threw the dart many times at the target, find your average distance

from the target.

12. Heights of Men

Suppose heights of American men are approximately normally distributed

with mean 70 inches and standard deviation 4 inches.

(a) What proportion of men is between 68 and 74 inches?

(b) What proportion of men is taller than 6 feet?

(c) Find the 90th percentile of heights.

13. Test Scores

Test scores in a precalculus test are approximately normally distributed with

mean 75 and standard deviation 10. If you choose a student at random from

this class

(a) What is the probability he or she gets an A (over 90)?

(b) What is the probability he or she gets a C (between 70 and 80)?

(c) What is the letter grade of the lower quartile of the scores?

14. Body Temperatures

The normal body temperature was measured for 130 subjects in an article

published in the Journal of the American Medical Association. These body

temperatures are approximately normally distributed with mean μ = 98.2

degrees and standard deviation σ= 0.73.

(a) Most people believe that the mean body temperature of healthy

individuals is 98.6 degrees, but actually the mean body temperature is

less than 98.6. What proportion of healthy individuals have body

temperatures less than 98.6?

(b) Suppose a person has a body temperature of 96 degrees. What is the

probability of having a temperature less than or equal to 96 degrees?

Based on this computation, would you say that a temperature of 96

degrees is unusual? Why?

(c) Suppose that a doctor diagnoses a person as sick if his or her body

temperature is above the 95th percentile of the temperature of “healthy”

individuals. Find this body temperature that will give a sick diagnosis.

15. Baseball Batting Averages

Batting averages of baseball players can be well approximated by a normal

curve. The figure below displays the batting averages of players during the

2003 baseball season with at least 300 at-bats (opportunities to hit). The

mean and standard deviation of the matching normal curve shown in the

figure are μ = 0.274 and σ = 0.027, respectively.



(a) If you choose a baseball player at random, find the probability his batting

average is over 0.300. (This is a useful benchmark for a “good” batting

average.)

(b) Find the probability this player has a batting average between 0.200 and

0.250.

(c) A baseball player is said to hit below the Mendoza line (named for weak-

hitting baseball player Minnie Mendoza) if his batting average is under

0.200. Given our model, find the probability that a player hits below the

Mendoza line.

(d) Suppose that a player has an incentive clause in his contract that states

that he will earn an additional $1 million if his batting average is in the

top 15%. How well does the player have to hit to get this additional

salary?

16. Emergency Calls

Suppose that the AAA reports that the average time it takes to respond to an

emergency call on the highway is 25 minutes. Assume that the times to

respond to emergency calls are approximately normally distributed with mean

25 minutes and standard deviation 4 minutes.

(a) If your car gets stuck on a highway and you call the AAA for help, find

the probability that it will take longer than 30 minutes to get help.

(b) Find the probability that you’ll wait between 20 and 30 minutes for help.

(c) Find a time such that you are 90% sure that the wait will be smaller than

this number.

17. Buying a Battery for your iPod

Suppose you need to buy a new battery for your iPod. Brand A lasts an

average of 11 hours and Brand B lasts an average of 12 hours. You plan on

using your iPod for 8 hours on a trip and you want to choose the battery that

is most likely to last 8 hours (that is, have a life that is least as long as 8

hours).



(a) Based on this information, can you decide which battery to purchase?

Why or why not?

(b) Suppose that the battery lives for Brand A are normally distributed with

mean 11 hours and standard deviation 1.5 hours, and the battery lives for

Brand B are normally distributed with mean 12 hours and standard 2

hours. Compute the probability that each battery will last at least 8

hours.

(c) On the basis of this calculation in part (b), which battery should you

purchase?

18. Lengths of Pregnancies

It is known that the lengths of completed pregnancies are approximately

normally distributed with mean 266 days and standard deviation 16 days.

(a) What is the probability a pregnancy will last more than 270 days?

(b) Find an interval that will contain the middle 50% of the pregnancy

lengths.

(c) Suppose a doctor wishes to tell a mother that he is 90% confident that

the pregnancy will be shorter than x days. Find the value of x.

19. Attendances at Baseball Games

Attendances for home page of the Cleveland Indians for a recent baseball

season can be approximated by a normal curve with mean μ = 24,667 and

standard deviation σ = 6144.

Consider the attendance for one randomly selected game during the 2006

season.

(a) Find the probability the attendance exceeds 30,000.

(b) Find the probability the attendance is between 20,000 and 30,000.

(c) Suppose that the attendance at one game in the following season is

12,000. Based on the normal curve, compute the probability that the

attendance is at most 12,000. Based on this computation, is this

attendance unusual? Why?

20. Coin Flipping

Suppose you flip a fair coin 1000 times.

(a) How many heads do you expect to get?

(b) Find the probability that the number of heads is between 480 and 520.

(c) Suppose your friend gets 550 heads. What is the probability of getting at

least 550 heads? Do you believe that your friend’s coin really was fair?

Explain.

21. Use of Online Banking Services

Suppose that a newspaper article claims that 80% of adults currently use

online banking services. You wonder if the proportion of adults who use online

banking services in your community, p, is actually this large. You take a

sample of 100 adults and 70 tell you they use online banking.



(a) If the newspaper article is accurate, find the probability that 70 or fewer

of your sample would use on-line banking.

(b) Based on your computation, is there sufficient evidence to suggest that

less than 80% of your community use online banking services? Explain.

22. Time to Complete a Race

Suppose a group of children are running a race. The times (in minutes) that

the children complete the race can be described by the density function

f(x) =
4 + (x− 3)2

21
, 3 < x < 6.

A graph of this density is shown below. The mean and standard deviation of

this density are given by 4.83 and 0.84 minutes, respectively.

(a) Suppose 25 students run this race and you find the mean completion

time. Find the probability that the mean time exceeds 5 minutes.

(b) Find an interval that you are 90% confident contains the mean

completion time for the 25 students.

23. Snowfall Accumulation

Your local meteorologist has collected data on snowfall for the past 100 years.

Based on these data, you are told that the amount of snowfall in January is

approximately normally distributed with mean 15 inches and standard

deviation 4 inches.

(a) Find the probability you get more than 20 inches of snow this year.

(b) In the next 10 years, find the probability that the average snowfall (for

these 10 years) will exceed 20 inches.

24. Total Waiting Time at a Bank

You are waiting to be served at your bank. From past experience, you know

that your time to be served has a uniform distribution between 0 and 10



minutes.

(a) Find the mean and standard deviation of your waiting time.

(b) The Central Limit Theorem can be also stated in terms of the sum of

random variables. If the random variables X1,…, Xn represent a random

sample drawn from a population with mean μ and standard deviation σ,

then the sum of random variables S =∑n
i=1 Xi, for large sample size n,

will be approximately normally distributed with mean nμ and standard

deviation √nσ. Suppose you wait every day at the bank for a period of

30 days. Use the version of the Central Limit Theorem to find the

probability that your total waiting time will exceed three hours.

25. Total Errors in Check Recording

Suppose you record the amount of a written check to the nearest dollar. It is

reasonable to assume that the error between the actual check amount and the

written amount has a uniform distribution between −0.50 and +0.50.

(a) Find the mean and standard deviation of one error.

(b) Suppose you write 100 checks in a single month and S denotes the total

error in recording these checks. Find the probability that S is smaller

than $5. (Use the version of the Central Limit Theorem described in

Exercise 5.)

(c) Find an interval of the form ( − c, c) so that P( − c < S < c) = 0.95.

26. Distribution of Measurements

Suppose that a group of measurements is approximately normally distributed

with mean μ and standard deviation σ.

(a) Find the probability that a measurement falls within one standard

deviation of the mean.

(b) Is it likely that you collect a measurement that is larger than μ + 3σ ?

Explain.

(c) Find an interval that contains the middle 50% of the measurements.

27. Salaries of Professional Football Players

Suppose you learn that the mean salary of all professional football players this

season is 7 million dollars with a standard deviation of 2 million dollars.

(a) Do you believe that the distribution of salaries is approximately normally

distributed? If your answer is no, sketch a plausible distribution for the

salaries.

(b) From your graph, find an approximate probability that a salary is smaller

than 6 million dollars.

(c) Suppose you take a random sample of 30 salaries. Find the probability

that the mean salary for this sample is smaller than 6 million dollars.

28. Weights of Candies



In the candy bowl example, the probability distribution of the candy weight X

is given in the following table.

x P(X = x)

fruity square 2 0.15

milk maid 5 0.35

jelly nougat 8 0.20

caramel 14 0.15

candy bars 18 0.15

Verify by calculation that the mean and standard deviation of X are given

by μ = 8.4500 and σ = 5.3617, respectively.

29. Sleeping Times

Suppose sleeping times of college students are approximately normally

distributed. You are told that 25% of students sleep less than 6.5 hours and

25% of students sleep longer than 8 hours. Given this information, determine

the mean and standard deviation of the normal distribution.

 Exercises

30. A Continuous Spinner

Suppose you spin a spinner where all values from 0 to 100 are equally likely.

(a) Write down the density function for X, one spin from this spinner.

(b) Use the following command to simulate 1000 values from this uniform

distribution and store the values in the vector spinner:

 
spinner <- runif(1000, min = 0, max = 100) 

(c) Construct a histogram of the simulated spins.

(d) Use the simulated spins to approximate the probability P(X > 70).

31. Simulating a Normal Distribution

Suppose monthly snowfalls in Rochester, New York are normally distributed

with mean 25 inches and standard deviation 10 inches.

(a) Using the rnorm() function, simulate snowfalls for 1000 hypothetical

months in Rochester.

(b) Construct a graph of these snowfall amounts.

(c) Approximate from the simulated values the probability that a snowfall

falls in the interval (20, 30). Compare your answer with the exact

probability found using the pnorm() function.



(d) From the simulated values, find an interval that contains the middle 80%

of the snowfalls. Compare your answer with the exact interval found

using the qnorm() function.

32. Waiting for a Bus

In the example, the amount of time that one waits for a bus has a uniform

distribution from 0 to 10 minutes. One waits for a bus on Monday, Wednesday,

and Friday and records the minimum of the three waiting times.

(a) Write a program to simulate 1000 values of this minimum waiting time.

(b) One can show that the minimum waiting time Y has density given by

f(y) =
3

1000
(10 − y)2, 0 < y < 10.

Compare a histogram of simulated values from (a) with this density function

to confirm that you have indeed simulated from the correct distribution.

33. Weights of Candies (continued)

Suppose one takes a sample of 10 candies from the distribution of candy

weights shown in Exercise (28).

(a) Write a function to take a random sample of 10 candies from the bowl

and return the sample mean X̄.

(b) Use the replicate() function to repeat this process for 1000 iterations –

store the sample means in the vector xbars.

(c) Construct a histogram of the sample means and comment on its shape.

Also find the mean and standard deviation of the sample means.

(d) Repeat this exercise using samples of size n = 25. Are there any changes

in the mean and standard deviation of the sample means?

34. Spins and the Central Limit Theorem

Suppose you are spinning a spinner with equally likely outcomes 1, 2, 3, 4, 5.

X represents a single spin from this spinner.

(a) Find the mean μ and standard deviation σ of X.

(b) Write a function to simulate 10 spins from this spinner and compute the

sample mean X̄.

(c) Simulate 1000 samples of 10 spins, obtaining a vector of sample means.

(d) Construct a histogram of the sample means and comment on its shape.

Also find the mean and standard deviation of the sample means.

(e) Check your calculations in part (d) by finding the exact mean and

standard deviation of the sample mean X̄.
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Joint Probability Distributions
 

 

6.1  Introduction

In Chapters 4 and 5, the focus was on probability distributions for a single

random variable. For example, in Chapter 4, the number of successes in a

binomial experiment was explored and in Chapter 5, several popular

distributions for a continuous random variable were considered. In addition, in

introducing the Central Limit Theorem, the approximate distribution of a

sample mean X̄ was described when a sample of independent observations X1,

…, Xn is taken from a common distribution.

In this chapter, examples of the general situation will be described where

several random variables, e.g. X and Y, are observed. The joint probability

mass function (discrete case) and the joint density (continuous case) are used

to compute probabilities involving X and Y.

 

6.2  Joint Probability Mass Function: Sampling from a Box

To begin the discussion of two random variables, we start with a familiar

example. Suppose one has a box of ten balls – four are white, three are red,

and three are black. One selects five balls out of the box without replacement

and counts the number of white and red balls in the sample. What is the

probability one observes two white and two red balls in the sample?

This probability can be found using ideas from previous chapters.



1. First, one thinks the total number of ways of selecting five balls with

replacement from a box of ten balls. One assumes the balls are distinct

and one does not care about the order that one selects the balls, so the

total number of outcomes is

N = (
10

5
) = 252.

2. Next, one thinks about the number of ways of selecting two white and two

red balls. One does this in steps – first select the white balls, then select

the red balls, and then select the one remaining black ball. Note that five

balls are selected, so exactly one of the balls must be black. Since the box

has four white balls, the number of ways of choose two white is ( 4
2) = 6.

Of the three red balls, one wants to choose two – the number of ways of

doing that is ( 3
2) = 3. Last, the number of ways of choosing the remaining

one black ball is ( 3
1) = 3. So the total number of ways of choosing two

white, two red, and one black ball is the product

(
4

2
) × (

3

2
) × (

3

1
) = 6 × 3 × 3 = 54.

3. Each one of the ( 10
5 ) = 252 possible outcomes of five balls is equally likely

to be chosen. Of these outcomes, 54 resulted in two white and two red

balls, so the probability of choosing two white and two red balls is

P(2 white and 2 red) =
54

252
.

Here the probability of choosing a specific number of white and red balls has

been found. To do this calculation for other outcomes, it is convenient to define

two random variables

X = number of red balls selected, Y = number of white balls selected.

Based on what was found,

P(X = 2,Y = 2) =
54

252
.

Joint probability mass function



Suppose this calculation is done for every possible pair of values of X and Y.

The table of probabilities is given in Table 6.1.

TABLE 6.1

Joint pmf for (X, Y) for balls in box example.

Y = # of White

X = # of Red 0 1 2 3 4

0 0 0 6/252 12/252 3/252

1 0 12/252 54/252 36/252 3/252

2 3/252 36/252 54/252 12/252 0

3 3/252 12/252 6/252 0 0

This table is called the joint probability mass function (pmf) f(x, y) of (X,

Y). As for any probability distribution, one requires that each of the

probability values are nonnegative and the sum of the probabilities over all

values of X and Y is one. That is, the function f(x, y) satisfies two properties:

1. f(x, y) ≥ 0, for all x, y

2. Σx,y f(x, y) = 1

It is clear from Table 6.1 that all of the probabilities are nonnegative and the

reader can confirm that the sum of the probabilities is equal to one.

Using Table 6.1, one sees that some particular pairs (x, y) are not possible as

f(x, y) = 0. For example, f(0, 1) = 0 which means that it is not possible to

observe 0 red balls and 1 white ball in the sample. Note that five balls were

sampled, and if one only observed one red or white ball, that means that one

must have sampled 5 − 1 = 4 black balls which is not possible.

One finds probabilities of any event involving X and Y by summing

probabilities from Table 6.1.

1. What is P(X = Y), the probability that one samples the same

number of red and white balls? By the table, one sees that this is

possible only when X = 1, Y = 1 or X = 2, Y = 2. So the probability

P(X = Y ) = f(1, 1) + f(2, 2) =
12

252
+

54

252
=

66

252
.

2. What is P(X > Y), the probability one samples more red balls

than white balls? From the table, one identifies the outcomes where X

> Y, and then sums the corresponding probabilities.



 Simulating sampling from a box

The variable box is a vector containing the colors of the ten balls in the box.

The function one_rep() simulates drawing five balls from the box and

computing the number of red balls and number of white balls.

 
box <- c("white", "white", "white", "white", 
 "red", "red", "red", 
 "black", "black", "black") 
one_rep <- function(){ 
 balls <- sample(box, size = 5, replace = FALSE) 
 X <- sum(balls == "red") 
 Y <- sum(balls == "white") 
 c(X, Y) 
} 

Using the replicate() function, one simulates this sampling process 1000

times, storing the outcomes in the data frame results with variable names X

and Y. Using the table() function, one classifies all outcomes with respect to

the two variables. By dividing the observed counts by the number of

simulations, one obtains approximate probabilities similar to the exact

probabilities shown in Table 6.1.

 
results <- data.frame(t(replicate(1000, one_rep()))) 
names(results) <- c("X", "Y") 
table(results$X, results$Y) / 1000 
 0 1 2 3 4 
 0 0.000 0.000 0.022 0.055 0.011 
 1 0.000 0.036 0.214 0.154 0.013 
 2 0.009 0.138 0.226 0.037 0.000 
 3 0.009 0.048 0.028 0.000 0.000 

Marginal probability functions

Once a joint probability mass function for (X, Y) has been constructed, one

finds probabilities for one of the two variables. In our balls example, suppose

one wants to find the probability that exactly three red balls are chosen, that is

P(X > Y ) = f(1, 0) + f(2, 0) + f(2, 1) + f(3, 0) + f(3, 1) + f(3, 2)

= 12
252 + 3

252 + 36
252 + 3

252 + 12
252 + 6

252

= 72
252



P(X = 3). This probability is found by summing values of the pmf f(x, y)

where x = 3 and y can be any possible value of the random variable Y, that is,

This operation is done for each of the possible values of X – the marginal

probability mass function of X, fX() is defined as follows:

fX(x) = ∑
y

f(x, y).
(6.1)

One finds this marginal pmf of X from Table 6.1 by summing the joint

probabilities for each row of the table. The marginal pmf is displayed in Table

6.2. Note that a marginal pmf is a legitimate probability function in that the

values are nonnegative and the probabilities sum to one.

TABLE 6.2

Marginal pmf for X in the balls example.

x fX(x)

0 21/252

1 105/252

2 105/252

3 21/252

One can also find the marginal pmf of Y, denoted by fY(), by a similar

operation – for a fixed value of Y = y one sums over all of the possible values

of X.

fY (y) = ∑
x

f(x, y). (6.2)

P(X = 3) = ∑
y

f(3, y)

= f(3, 0) + f(3, 1) + f(3, 2)

= 3
252 + 12

252 + 6
252

= 21
252 .



For example, if one wants to find fY(2) = P(Y = 2) in our example, one

sums the joint probabilities in Table 6.1 over the rows in the column where Y

= 2. One obtains the probability:

By repeating this exercise for each value of Y, one obtains the marginal pmf

displayed in Table 6.3.

TABLE 6.3

Marginal pmf for Y in the balls example.

y fY(y)

0 6/252

1 60/252

2 120/252

3 60/252

4 6/252

Conditional probability mass functions

In Chapter 3, the conditional probability of an event A was defined given

knowledge of another event B. Moving back to the sampling balls from a box

example, suppose one is told that exactly two red balls are sampled, that is X

= 2 – how does that information change the probabilities about the number of

white balls Y?

In this example, one is interested in finding P(Y = y| X = 2). Using the

definition of conditional probability, one has

For example, the probability of observing two white balls given that we have

two red balls is equal to

fY (2) = ∑
x

f(x, 2)

= f(0, 2) + f(1, 2) + f(2, 2) + f(3, 2)

= 6
252 + 54

252 + 54
252 + 6

252

= 120
252 .

P(Y = y ∣ X = 2) =
P(Y=y,X=2)

P(X=2) .

=
f(2,y)
fX(2)



Suppose this calculation is repeated for all possible values of Y – one obtains

the values displayed in Table 6.4.

These probabilities represent the conditional pmf for Y conditional on X = 2.

This conditional pmf is just like any other probability distribution in that the

values are nonnegative and they sum to one. To illustrate using this

distribution, suppose one is told that two red balls are selected (that is, X = 2)

and one wants to find the probability that more than one white ball is chosen.

This probability is given by

TABLE 6.4

Conditional pmf for Y given X = s in the balls example.

y fY| X(y| X = 2)

0 3/105

1 36/105

2 54/105

3 12/105

In general, the conditional probability mass function of Y conditional on X =

x, denoted by fY mid X(y| x), is defined to be

fY ∣X(y ∣ x) =
f(x, y)

fX(x)
, if fX(x) > 0. (6.3)

 Simulating sampling from a box

Recall that the data frame results contains the simulated outcomes for 1000

selections of balls from the box. By filtering on the value X = 2 and tabulating

P(Y = 2 ∣ X = 2) =
P(Y=2,X=2)

P(X=2)

=
f(2,2)

fX(2)

=
54/252

105/252
= 54

105 .

P(Y > 1 ∣ X = 2) = Σy>1 fY ∣X(y ∣ X = 2)

= fY ∣X(2 ∣ X = 2) + fY ∣X(3 ∣ X = 2)

= 54
105 + 12

105 = 66
105 .



the values of Y, one is simulating from the conditional pmf of Y conditional on

X = 2. Note that the relative frequencies displayed below are approximately

equal to the exact probabilities shown in Table 6.2.

 
results %>% 
 filter(X == 2) %>% 
 group_by(Y) %>% 
 summarize(N = n()) %>% 
 mutate(P = N / sum(N)) 
 Y   N    P 
<int> <int> <dbl> 
1 0 9 0.0220 
2 1 138 0.337 
3 2 226 0.551 
4 3 37 0.0902 

 

6.3  Multinomial Experiments

Suppose one rolls the usual six-sided die where one side shows 1, two sides

show 2, and three sides show 3. One rolls this die ten times – what is the

chance that one will observe three 1’s and five 2’s?

This situation resembles the coin-tossing experiment described in Chapter 4.

One is repeating the same process, that is rolling the die, repeated times, and

one regards the individual die results as independent outcomes. The difference

is that the coin-tossing experiment had only two possible outcomes on a single

trial, and here there are three outcomes on a single die roll, 1, 2, and 3.

Suppose a random experiment consists of a sequence of n independent trials

where there are k possible outcomes on a single trial where k ≥ 2. Denote the

possible outcomes as 1, 2, …, k, and let p1, p2,…, pk denote the associated

probabilities. If X1, X2, …, Xk denote the number of 1s, 2s, …, ks observed in

the n trials, the vector of outcomes X = (X1, X2,…, Xn) has a multinomial

distribution with sample size n and vector of probabilities p = (p1, p2,…, pk).

In our example, each die roll has k = 3 possible outcomes and the associated

vector of probabilities is p = (1/6, 2/6, 3/6). The number of observed 1’s, 2’s,

3’s in n = 10 trials, X = (X1, X2, X3) has a multinomial distribution with

parameters n and p.

By generalizing the arguments made in Chapter 4, one can show that the

probability that X1 = x1,…, Xk = xk has the general form



f(x1, . . . ,xk) = (
n!

n1!. . .nk!
)

k

∏
j=1

p
xj
j , (6.4)

where xj = 0, 1, 2,…, j = 1,… k and ∑n
j=1 xj = n.

This formula can be used to compute a probability for our example. One has

n = 10 trials and the outcome three 1’s and five 2’s is equivalent to the

outcome X1 = 3, X2 = 5. The number of 3’s X3 is not random since we know

that X1 + X2 + X3 = 10. The probability vector is p = (1/6, 2/6, 3/6). By

substituting in the formula, we have

P(X1 = 3,X2 = 5,X3 = 2) = (
10!

3! 5! 2!
)(

1

6
)

3

(
2

6
)

5

(
3

6
)

2

.

 By use of the factorial() function in R, we compute this probability to

be 0.012.

 
factorial(10) / (factorial(3) * factorial(5) * factorial(2)) * 
+ (1 / 6) ^ 3 * (2 / 6) ^ 5 * (3 / 6) ^ 2 
[1] 0.01200274 

Other probabilities can be found by summing the joint multinomial pmf over

sets of interest. For example, suppose one is interested in computing the

probability that the number of 1’s exceeds the number of 2’s in our ten dice

rolls. One is interested in the probability P(X1 > X2) which is given by

P(X1 > X2) = ∑
x1>x2

(
10!

3! 5! 2!
)(

1

6
)

x1

(
2

6
)

x2

(
3

6
)

10−x1−x2

,

where one is summing over all of the outcomes (x1, x2) where x1 > x2.

Marginal distributions

One attractive feature of the multinomial distribution is that the marginal

distributions have familiar functional forms. In the dice roll example, suppose

one is interested only in X1, the number of 1’s in ten rolls of our die. One

obtains the marginal probability distribution of X1 directly by summing out



the other variables from the joint pmf of X1 and X2. For example, one finds,

say P(X1 = 2), by summing the joint probability values over all (x1, x2) pairs

where x1 = 2:

P(X1 = 2) = ∑
x2,x1+x2≤10

f(x1,x2).

In this computation, it is important to recognize that the sum of rolls of 1 and

2, x1 + x2 cannot exceed the number of trials n = 10.

A more intuitive way to obtain a marginal distribution relies on the previous

knowledge of binomial distributions. In each die roll, suppose one records if one

gets a one or not. Then X1, the number of ones in n trials, will be binomial

distributed with parameters n and p = 1/6. Using a similar argument, X2, the

number of twos in n trials, will be binomial with n trials and p = 2/6.

Conditional distributions

One applies the knowledge about marginal distributions to compute

conditional distributions in the multinomial situation. Suppose that one is

given that X2 = 3 in n = 10 trials. What can one say about the probabilities of

X1?

One uses the conditional pmf definition to compute the conditional

probability P(X1 = x| X2 = 3). First, it is helpful to think about possible

values for X1. Since one has n = 10 rolls of the die and we know that we

observe X2 = 3 (three twos), the possible values of X1 can be 0, 1, …, 7. For

these values, we have

P(X1 = x ∣ X2 = 3) =
P(X1 = x,X2 = 3)

P(X2 = 3)
.

The numerator is the multinomial probability and since X2 has a marginal

binomial distribution, the denominator is a binomial probability. Making the

substitutions, one has

P(X1 = x ∣ X2 = 3) =
( 10!

x! 3! (10−x−3)!
)( 1

6
)
x
( 2

6
)

3
( 3

6
)

10−x−3

( 10
3 )(

2
6 )

3
(1 − 2

6 )
10−3

.

After some simplification, one obtains



P(X1 = x ∣ X2 = 3) = (
7

x
)(

1

4
)

x

(1 −
1

4
)

7−x

, x = 0, . . . , 7.

which is a binomial distribution with 7 trials and probability of success 1/4.

An alternative way to figure out the conditional distribution is based on an

intuitive argument. One is told there are three 2’s in 10 rolls of the die. The

results of the remaining 10 − 3 = 7 trials are unknown where the possible

outcomes are 1 and 3 with probabilities proportional to 1/6 and 3/6. So X1 will

be binomial with 7 trials and success probability equal to (1/6)/(1/6 + 3/6) =

1/4.

 Simulating Multinomial experiments

The function sim_die_rolls() will simulate 10 rolls of the special weighted die.

The sample() function draws values of 1, 2, 3 with replacement where the

respective probabilities are 1/6, 2/6, and 3/6. The outputs are values of X1, X2

and X3.

 
sim_die_rolls <- function(){ 
 rolls <- sample(1:3, size = 10, 
 replace = TRUE, 
 prob = c(1, 2, 3) / 6) 
 c(sum(rolls == 1), 
 sum(rolls == 2), 
 sum(rolls == 3)) 
} 

Using the replicate() function, one simulates the Multinomial experiment

for 5000 iterations. The outcomes are placed in a data frame with variable

names X1, X2 and X3.

 
results <- data.frame(t(replicate(5000, 
 sim_die_rolls()))) 
names(results) <- c("X1", "X2", "X3") 
head(results) 
 X1 X2 X3 
1 1 4 5 
2 0 7 3 
3 2 4 4 
4 1 4 5 
5 0 5 5 
6 1 2 7 



Given this simulated output, one can compute many different probabilities of

interest. For example, suppose one is interested in P(X1 + X2 < 5). One

approximates this probability by simulation by finding the proportion of

simulated pairs (X1, X2) where X1 + X2 < 5.

results %>% 
 summarize(P = sum(X1 + X2 < 5) / 5000) 
 P 
1 0.3774 

Suppose one is interested in finding the mean of the distribution of X1

conditional on X2 = 3. The filter() function is used to choose only the

Multinomial results where X2 = 3 and the summarize() function finds the mean

of X1 among these results. One estimates E(X1| X2 = 3) ≈ 1.79193. Note that it

was found earlier that the conditional distribution of X1 conditional on X2 = 3

is binomial(7, 1/4) with mean 7 (1/4) which is consistent with the simulation-

based calculation.

 
results %>% 
 filter(X2 == 3) %>% 
 summarize(X1_M = mean(X1)) 
 X1_M 
1 1.79193 

 

6.4  Joint Density Functions

One can also describe probabilities when the two variables X and Y are

continuous. As a simple example, suppose that one randomly chooses two

points X and Y on the interval (0, 2) where X < Y. One defines the joint

probability density function or joint pdf of X and Y to be the function

f(x, y) = {
1
2 , 0 < x < y < 2;

0, elsewhere.



This joint pdf is viewed as a plane of constant height over the set of points

(x, y) where 0 < x < y < 2. This region of points in the plane is shown in

Figure 6.1.

FIGURE 6.1

Region where the joint pdf f(x, y) is positive in the “choose two points” example.

In the one variable situation in Chapter 5, a function f is a legitimate density

function or pdf if it is nonnegative over the real line and the total area under

the curve is equal t to one. Similarly for two variables, any function f(x, y) is

considered a pdf if it satisfies two properties:

1. Density is nonnegative over the whole plane:

f(x, y) ≥ 0, for all x, y. (6.5)

2. The total volume under the density is equal to one:

∬ f(x, y)dxdy = 1. (6.6)

One can check that the pdf in our example is indeed a legitimate pdf. It is

pretty obvious that the density that was defined is nonnegative, but it is less

clear that the integral of the density is equal to one. Since the density is a



plane of constant height, one computes this double integral geometrically.

Using the familiar “one half base times height” argument, the area of the

triangle in the plane is (1/2) (2) (2) = 2 and since the pdf has constant height

of 1/2, the volume under the surface is equal to 2 (1/2) = 1.

Probabilities about X and Y are found by finding volumes under the pdf

surface. For example, suppose one wants to find the probability that the sum of

locations X + Y > 3, that is P(X + Y > 3). The region in the (x, y) plane of

interest is first identified, and then one finds the volume under the joint pdf

over this region. In Figure 6.2, the region where x + y > 3 has been shaded.

The probability P(X + Y > 3) is the volume under the pdf over this region.

Applying a geometric argument, one notes that the area of the shaded region is

1/4, and so the probability of interest is (1/4)(1/2) = 1/8. One also finds this

probability by integrating the joint pdf over the region as follows:

FIGURE 6.2

Shaded region where x + y > 3 in the “choose two points” example.

Marginal probability density functions

P(X + Y < 3) = ∫ 2
1.5 ∫

y

3−y
f(x, y)dxdy

= ∫ 2
1.5 ∫

y

3−y
1
2 dxdy

= ∫ 2
1.5

2y−3
2 dy

= y2−3y
2

2
1.5

= 1
8 . ∣



Given a joint pdf f(x, y) that describes probabilities of two continuous variables

X and Y, one summarizes probabilities about each variable individually by the

computation of marginal pdfs. The marginal pdf of X, fX(x), is obtained by

integrating out y from the joint pdf.

fX(x) = ∫ f(x, y)dy. (6.7)

In a similar fashion, one defines the marginal pdf of Y by integrating out x

from the joint pdf.

fY (x) = ∫ f(x, y)dx. (6.8)

Let’s illustrate the computation of marginal pdfs for our example. One has

to be careful about the limits of the integration due to the dependence between

x and y in the support of the joint density. Looking back at Figure 6.1, one sees

that if the value of x is fixed, then the limits for y go from x to 2. So the

marginal density of X is given by

By a similar calculation, one can verify that the marginal density of Y is equal

to

fY (y) =
y

2
, 0 < y < 2.

Conditional probability density functions

Once a joint pdf f(x, y) has been defined, one can also define conditional pdfs.

In our example, suppose one is told that the first random location is equal to X

= 1.5. What has one learned about the value of the second random variable Y?

To answer this question, one defines the notion of a conditional pdf. The

conditional pdf of the random variable Y given the value X = x is defined as

fX(x) = ∫ f(x, y)dy

= ∫ 2
x

1
2 dy

= 2−x
2 , 0 < x < 2.



the quotient

fY ∣X(y ∣ X = x) =
f(x, y)

fX(x)
, if fX(x) > 0. (6.9)

In our example one is given that X = 1.5. Looking at Figure 6.1, one sees that

when X = 1.5, the only possible values of Y are between 1.5 and 2. By

substituting the values of f(x, y) and fX(x), one obtains

In other words, the conditional density for Y when X = 1.5 is uniform from 1.5

to 2.

A conditional pdf is a legitimate density function, so the integral of the pdf

over all values y is equal to one. We use this density to compute conditional

probabilities. For example, if X = 1.5, what is the probability that Y is greater

than 1.7? This probability is the conditional probability P(Y > 1.7| X = 1.5)

that is equal to an integral over the conditional density fY| X(y| 1.5):

Turn the random variables around

Above, we looked at the pdf of Y conditional on a value of X. One can also

consider a pdf of X conditional on a value of Y. Returning to our example,

suppose that one learns that Y, the larger random variable on the interval is

equal to 0.8. In this case, what would one expect for the random variable X?

This question is answered in two steps – one first finds the conditional pdf of

X conditional on Y = 0.8. Then once this conditional pdf is found, one finds

the mean of this distribution.

The conditional pdf of X given the value Y = y is defined as the quotient

fY ∣X(y ∣ X = 1.5) =
f(1.5,y)
fX(1.5)

=
1/2

(2−1.5)/2

= 2, 1.5 < y < 2.

P(Y > 1.7 ∣ X = 1.5) = ∫ 2
1.7 fY ∣X(y ∣ 1.5)dy

= ∫ 2
1.7 2dy

= 0.6.



fX∣Y (x ∣ Y = y) =
f(x, y)

fY (y)
, if fY (y) > 0. (6.10)fX∣Y (x ∣ Y = y) =

f(x, y)

fY (y)
, if fY (y) > 0. (6.10)

Looking back at Figure 6.1, one sees that if Y = 0.8, the possible values of X

are from 0 to 0.8. Over these values the conditional pdf of X is given by

So if one knows that Y = 0.8, then the conditional pdf for X is Uniform on (0,

0.8).

To find the “expected” value of X knowing that Y = 0.8, one finds the mean

of this distribution.

 

6.5  Independence and Measuring Association

As a second example, suppose one has two random variables (X, Y) that have

the joint density

f(x, y) = {

This density is positive over the unit square, but the value of the density

increases in X (for fixed y) and also in Y (for fixed x). Figure 6.3 displays a

graph of this joint pdf – the density is a section of a plane that reaches its

maximum value at the point (1, 1).

fX∣Y (x ∣ 0.8) =
f(x,0.8)

fY (0.8)

=
1/2

0.8/2

= 1.25, 0 < x < 0.8.

E(X ∣ Y = 0.8) = ∫ 0.8
0 xfX∣Y (x ∣ 0.8)dx

= ∫ 0.8
0 x 1.25 dx

= (0.8)2/2 × 1.25 = 0.4.

x + y, 0 < x < 1, 0 < y < 1;

0, elsewhere.



FIGURE 6.3

Three dimensional display of the pdf of f(x, y) = x + y defined over the unit square.

From this density, one computes the marginal pdfs of X and Y. For example,

the marginal density of X is given by

Similarly, one can show that the marginal density of Y is given by 

fY (y) = y + 1
2  for 0 < y < 1.

Independence

Two random variables X and Y are said to be independent if the joint pdf

factors into a product of their marginal densities, that is

f(x, y) = fX(x)fY (y). (6.11)

for all values of X and Y. Are X and Y independent in our example? Since we

have computed the marginal densities, we look at the product

fX(x)fY (y) = (x +
1

2
)(y +

1

2
)

which is clearly not equal to the joint pdf f(x, y) = x + y for values of x and y

in the unit square. So X and Y are not independent in this example.

fX(x) = ∫ 1
0 x + ydy

= x + 1
2

, 0 < x < 1.



Measuring association by covariance

In the situation like this one where two random variables are not independent,

it is desirable to measure the association pattern. A standard measure of

association is the covariance defined as the expectation

(6.12)

For computational purposes, one writes the covariance as

(6.13)

For our example, one computes the expectation E(XY) from the joint

density:

One can compute that the means of X and Y are given by μX = 7/12 and μY =

7/12, respectively. So then the covariance of X and Y is given by

It can be difficult to interpret a covariance value since it depends on the

scale of the support of the X and Y variables. One standardizes this measure of

association by dividing by the standard deviations of X and Y resulting in the

correlation measure ρ:

Cov(X,Y ) = E((X − μX)(Y − μY ))

= ∬ (x − μX)(y − μY )f(x, y)dxdy.

Cov(X,Y ) = E(XY ) − μXμY

= ∬ (xy)f(x, y)dxdy − μXμY .

E(XY ) = ∫ 1
0 ∫

1
0 (xy)(x + y)dxdy

= ∫ y

3 + y2

2 dy

= 1
3

.

Cov(X,Y ) = E(XY ) − μXμY

= 1
3 − ( 7

12 )(
7
12 )

= − 1
144 .



ρ =
Cov(X,Y )

σXσY
. (6.14)ρ =

Cov(X,Y )

σXσY
. (6.14)

In a separate calculation one can find the variances of X and Y to be 

σ2
X = 11/144 and σ2

Y = 11/144. Then the correlation is given by

It can be shown that the value of the correlation ρ falls in the interval ( − 1, 1)

where a value of ρ = −1 or ρ = 1 indicates that Y is a linear function of X with

probability 1. Here the correlation value is a small negative value indicating

weak negative association between X and Y.

 

6.6  Flipping a Random Coin: The Beta-Binomial Distribution

Suppose one has a box of coins where the coin probabilities vary. If one selects

a coin from the box, p, the probability the coin lands heads follows the

distribution

g(p) =
1

B(6, 6)
p5(1 − p)5, 0 < p < 1,

where B(6, 6) is the beta function, which will be more thoroughly discussed in

Chapter 7. This density is plotted in Figure 6.4. A couple of things to notice

about this density. First, the density has a significant height over a range of

plausible values of the probability – this reflects the idea that we are really

unsure about the chance of observing a heads when flipped. Second, the

density is symmetric about p = 0.5, which means that the coin is equally likely

to be biased towards heads or biased towards tails.

ρ =
−1/144

√11/144√11/144

= − 1
11 .



FIGURE 6.4

Beta(6, 6) density representing the distribution of probabilities of heads for a large collection of random

coins.

One next flips this “random” coin 20 times. Denote the outcome of this

experiment by the random variable Y which is equal to the count of heads. If

we are given a value of the probability p, then Y has a binomial distribution

with n = 20 trials and success probability p. This probability function is

actually the conditional probability of observing y heads given a value of the

probability p:

f(y ∣ p) = (
20

y
)py(1 − p)20−y, y = 0, 1, . . . , 20.

Given the density of p and the conditional density of Y conditional on p, one

computes the joint density by the product

This beta-binomial density is a mixed density in the sense that one variable (p)

is continuous and one (Y) is discrete. This will not create any problems in the

computation of marginal or conditional distributions, but one should be careful

to understand the support of each random variable.

 Simulating from the beta-binomial distribution

f(y, p) = g(p)f(y ∣ p) = [ 1
B(6,6)

p5(1 − p)5][( 20
y
)py(1 − p)20−y]

= 1
B(6,6)

( 20
y
)py+5(1 − p)25−y, 0 < p < 1, y = 0, 1, . . . , 20.



Using R it is straightforward to simulate a sample of (p, y) values from the

Beta-Binomial distribution. Using the rbeta() function, one takes a random

sample of 500 draws from the beta(6, 6) distribution. Then for each probability

value p, one uses the rbinom() function to simulate the number of heads in 20

flips of this “p coin.”

 
data.frame(p = rbeta(500, 6, 6)) %>% 
 mutate(Y = rbinom(500, size = 20, prob = p)) %>% 
 ggplot(aes(p, Y)) + geom_jitter() 

A scatterplot of the simulated values of p and Y is displayed in Figure 6.5.

Note that the variables are positively correlated, which indicates that one tends

to observe a large number of heads with coins with a large probability of heads.

FIGURE 6.5

Scatterplot of 500 simulated draws from the joint density of the probability of heads p and the number of

heads Y in 20 flips.

What is the probability that one observes exactly 10 heads in the 20 flips,

that is P(Y = 10)? One performs this calculation by computing the marginal

probability function for Y. This is obtained by integrating out the probability p

from the joint density. This density is a special case of the beta-binomial

distribution.



Using this formula with the substitution y = 10, we use R to find the

probability P(Y = 10).

 
choose(20, 10) * beta(10 + 6, 26 - 10) / beta(6, 6) 
[1] 0.1065048 

 

6.7  Bivariate Normal Distribution

Suppose one collects multiple body measurements from a group of 30 students.

For example, for each of 30 students, one might collect the diameter of the

wrist and the diameter of the ankle. If X and Y denote the two body

measurements (measured in cm) for a student, then one might think that the

density of X and the density of Y are normally distributed. Moreover, the two

random variables would be positively correlated – if a student has a large wrist

diameter, one would predict her to also have a large forearm length.

A convenient joint density function for two continuous measurements X and

Y, each variable measured on the whole real line, is the bivariate normal

density with density given by

f(x, y) =
1

2πσXσY√1 − ρ
exp[−

1

2(1 − ρ2)
(z2

X − 2ρzXzY + z2
Y )], (6.15)

where zX and zY are the standardized scores

zX =
x − μX

σX
, zY =

y − μY

σY
, (6.16)

f(y) = ∫ 1
0 g(p)f(y ∣ p)dp

= ∫ 1
0

1
B(6,6)

( 20
y
)py+5(1 − p)25−ydp

= ( 20
y
) B(y+6,26−y)

B(6,6)
, y = 0, 1, 2, . . . , 20.



and μX, μY and σX, σY are respectively the means and standard deviations of X

and Y. The parameter ρ is the correlation of X and Y and measures the

association between the two variables.

Figure 6.6 shows contour plots of four bivariate normal distributions. The

bottom right graph corresponds to the values μX = 17, μY = 23, σX = 2, σY =

3 and ρ = 0.4 where X and Y represent the wrist diameter and ankle diameter

measurements of the student. The correlation value of ρ = 0.4 reflects the

moderate positive correlation of the two body measurements. The other three

graphs use the same means and standard deviations but different values of the

ρ parameter. This figure shows that the bivariate normal distribution is able to

model a variety of association structures between two continuous

measurements.

FIGURE 6.6

Contour graphs of four Bivariate Normal distributions with different correlations.

There are a number of attractive properties of the bivariate normal

distribution.

1. The marginal densities of X and Y are Normal. So X has a Normal

density with parameters μX and σX and likewise Y is Normal(μY, σY).



2. X and Y are normal, conditional densities will also be normal.

For example, if one is given that Y = y, then the conditional density of X

given Y = y is normal where

E(X ∣ Y = y) = μX + ρ
σX

σY
(y − μY ), V ar(X ∣ Y = y) = σ2

X(1 − ρ2). (6.17)

Similarly, if one knows that X = x, then the conditional density of Y given

X = x is Normal with mean μY + ρ σY
σX

(x − μX) and variance σ2
Y (1 − ρ2).

3. For a bivariate normal distribution, X and Y are independent if

and only if the correlation ρ = 0. In contrast, as the correlation

parameter ρ approaches +1 and −1, then all of the probability mass will be

concentrated on a line where Y = a X + b.

 Bivariate normal calculations

Returning to the body measurements application, different uses of the

bivariate normal model can be illustrated. Recall that X denotes the wrist

diameter, Y represents the ankle diameter and we are assuming (X, Y) has a

bivariate normal distribution with parameters μX = 17, μY = 23, σX = 2, σY =

3 and ρ = 0.4

1. Find the probability a student’s wrist diameter exceeds 20 cm.

Here one is interested in the probability P(X > 20). From the facts above,

the marginal density for X will be normal with mean μX = 17 and

standard deviation σX = 2. So this probability is computed using the

function pnorm():

 
1 - pnorm (20, 17, 2) 
[1] 0.0668072 

2. Suppose one is told that the student’s ankle diameter is 20 cm –

find the conditional probability P(X > 20| Y = 20).

By above the distribution of X conditional on the value Y = y is normal

with mean μX + ρ σX
σY

(y − μY ) and variance σ2
X(1 − ρ2). Here one is



conditioning on the value Y = 20 and one computes the mean and

standard deviation and apply the pnorm() function:

 
1 - pnorm (20, 16.2, 1.83) 
[1] 0.01892374 

3. Are X and Y independent variables?

By the properties above, for a bivariate normal distribution, a necessary

and sufficient condition for independence is that the correlation ρ = 0.

Since the correlation between the two variables is not zero, the random

variables X and Y can not be independent.

4. Find the probability a student’s ankle diameter measurement is

at 50 percent greater than her wrist diameter measurement, that

is P(Y > 1.5 X).

 Simulating Bivariate Normal measurements

The computation of the probability P(Y > 1.5 X) is not obvious from the

information provided. But simulation provides an attractive method of

computing this probability. One simulates a large number, say 1000, draws

from the bivariate normal distribution and then finds the fraction of simulated

(x, y) pairs where y > 1.5 x. Figure 6.7 displays a scatterplot of these simulated

draws and the line y = 1.5 x. The probability is estimated by the fraction of

points that fall to the left of this line. In the R script below we use a function

sim_binorm() to simulate 1000 draws from a bivariate normal distribution with

inputted parameters μX, μY, σX, σY, ϕ. The bivariate normal parameters are set

to the values in this example and using the function sim_binorm() the

probability of interest is approximated by 0.242.

E(X ∣ Y = 20) = μX + ρ
σX
σY

(y − μY )

= 17 + 0.4( 2
3 )(20 − 23)

= 16.2.

SD(X ∣ Y = 20) = √σ2
X(1 − ρ2)

= √22(1 − 0.42)

= 1.83.



 
sim_binorm <- function(mx, my, sx, sy, r){ 
 require(ProbBayes) 
 v <- matrix(c(sx ^ 2, r * sx * sy, 
 r * sx * sy, sy ^ 2), 
 2, 2) 
 as.data.frame(rmnorm(1000, mean = c(mx, my), 
 varcov = v))} 
mx <- 17; my <- 23; sx <- 2; sy <- 3; r <- 0.4 
sdata <- sim_binorm(mx, my, sx, sy, r) 
names(sdata) <- c("X", "Y") 
sdata %>% summarize(mean(Y > 1.5 * X)) 
 mean(Y > 1.5 * X) 
1 0.242 

FIGURE 6.7

Scatterplot of simulated draws from the bivariate normal in body measurement example. The probability that

Y > 1.5 X is approximated by the proportion of simulated points that fall to the left of the line y = 1.5 x.

 

6.8  Exercises

1. Coin Flips

Suppose you flip a coin three times with eight equally likely outcomes

HHH, HHT,…, TTT. Let X denote the number of heads in the first two

flips and Y the number of heads in the last two flips.

(a) Find the joint probability mass function (pmf) of X and Y and put

your answers in the following table.



y

x 0 1 2

0

1

2

(b) Find P(X > Y).

(c) Find the marginal pmf’s of X and Y.

(d) Find the conditional pmf of X given Y = 1.

2. Selecting Numbers

Suppose you select two numbers without replacement from the set {1, 2, 3,

4, 5}. Let X denote the smaller of the two numbers and Y denote the

larger of the two numbers.

(a) Find the joint probability mass function of X and Y.

(b) Find the marginal pmf’s of X and Y.

(c) Are X and Y independent? If not, explain why.

(d) Find P(Y = 3| X = 2).

3. Die Rolls

You roll a die 4 times and record O, the number of ones, and T the

number of twos rolled.

(a) Construct the joint pmf of O and T.

(b) Find the probability P(O = T).

(c) Find the conditional pmf of T given O = 1.

(d) Compute P(T > 0| O = 1).

4. Choosing Balls

Suppose you have a box with 3 red and 2 black balls. You first roll a die –

if the roll is 1, 2, you sample 3 balls without replacement from the box. If

you roll is 3 or higher, you sample 2 balls with replacement from the box.

Let X denote the number of balls you sample and Y the number of red

balls selected.

(a) Find the joint pmf of X and Y.

(b) Find the probability P(X = Y).

(c) Find the marginal pmf of Y.

(d) Find the conditional pmf of X given Y = 2.

5. Baseball Hitting

Suppose a player is equally likely to have 4, 5, or 6 at-bats (opportunities)

in a baseball game. If N is the number of opportunities, then assume that

X, the number of hits, is binomial with probability p = 0.03 and sample

size N.



(a) Find the joint pmf of N and X.

(b) Find the marginal pmf of X.

(c) Find the conditional pmf of N given X = 2.

(d) If the player gets 3 hits, what is the probability he had exactly 5 at-

bats?

6. Multinomial Density

Suppose a box contains 4 red, 3 black, and 3 green balls. You sample eight

balls with replacement from the box and let R denote the number of red

and B the number of black balls selected.

(a) Explain why this is a multinomial experiment and given values of the

parameters of the multinomial distribution for (R, B).

(a) Compute P(R = 3, B = 2).

(b) Compute the probability that you sample more red balls than black

balls.

(c) Find the marginal distribution of B.

(d) If you are given that you sampled B = 4 balls, find the probability

that you sampled at most 2 red balls.

7. Joint Density

Let X and Y have the joint density

f(x, y) = ky, 0 < x < 2, 0 < y < 2.

(a) Find the value of k so that f() is a pdf.

(b) Find the marginal density of X.

(c) Find P(Y > X).

(d) Find the conditional density of Y given X = x for any value 0 < x <

2.

8. Joint Density

Let X and Y have the joint density

f(x, y) = x + y, 0 < x < 1, 0 < y < 1.

(a) Check that f is indeed a valid pdf. If it is not, correct the definition of

f so it is valid.

(b) Find the probability P(X > 0.5, Y < 0.5).

(c) Find the marginal density of X.

(d) Are X and Y independent? Answer by a suitable calculation.

9. Random Division

Suppose one randomly chooses a values X on the interval (0, 2), and then

random choosing a second point Y from 0 to X.



(a) Find the joint density of X and Y.

(b) Are X and Y independent? Explain.

(c) Find the probability P(Y > 0.5).

(d) Find the probability P(X + Y > 2).

10. Choosing a Random Point in a Circle

Suppose (X, Y) denotes a random point selected over the unit circle. The

joint pdf of (X, Y) is given by

f(x, y) = {

(a) Find the value of the constant C so f() is indeed a joint pdf.

(b) Find the marginal pdf of Y.

(c) Find the probability P(Y > 0.5)

(d) Find the conditional pdf of X conditional on Y = 0.5.

11. A Random Meeting

Suppose John and Jill independently arrive at an airport at a random time

between 3 and 4 pm one afternoon. Let X and Y denote respectively the

number of minutes past 3 pm that John and Jill arrive.

(a) Find the joint pdf of X and Y.

(b) Find the probability that John arrives later than Jill.

(c) Find the probability that John and Jill meet within 10 minutes of

each other.

12. Defects in Fabric

Suppose the number of defects per yard in a fabric X is assumed to have a

Poisson distribution with mean λ. That is, the conditional density of X

given λ has the form

f(x ∣ λ) =
e−λλx

x!
,x = 0, 1, 2, . . .

The parameter λ is assumed to be uniformly distributed over the values

0.5, 1, 1.5, and 2.

(a) Write down the joint pmf of X and λ.

(b) Find the probability that the number of defects X is equal to 0.

(c) Find the conditional pmf of λ if you know that X = 0.

13. Defects in Fabric (continued)

Again we assume the number of defects per yard in a fabric X given λ has

a Poisson distribution with mean λ. But now we assume λ is continuous-

C, x2 + y2 ≤ 1;

0, elsewhere.



valued with the exponential density

g(λ) = exp(−λ), λ > 0.

(a) Write down the joint density of X and λ.

(b) Find the marginal density of X. [Hint: it may be helpful to use the

integral identity

∫
∞

0

exp(−a)λbdλ =
b!

ab
,

where b is a nonnegative integer.]

(c) Find the probability that the number of defects X is equal to 0.

(d) Find the conditional density of λ if you know that X = 0.

14. Flipping a Random Coin

Suppose you plan flipping a coin twice where the probability p of heads

has the density function

f(p) = 6p(1 − p), 0 < p < 1.

Let Y denote the number of heads of this “random” coin. Y given a value

of p is binomial with n = 2 and probability of success p.

(a) Write down the joint density of Y and p.

(b) Find P(Y = 2).

(c) If Y = 2, then find the probability that p is greater than 0.5.

15. Passengers on An Airport Limousine

An airport limousine can accommodate up to four passengers on any one

trip. The company will accept a maximum of six reservations for a trip,

and a passenger must have a reservation. From previous records, 30% of

all those making reservations do not appear for the trip. Answer the

following questions, assuming independence whenever appropriate.

(a) If six reservations are made, what is the probability that at least one

individual with a reservation cannot be accommodated on the trip?

(b) If six reservations are made, what is the expected number of available

places when the limousine departs?

(c) Suppose the probability distribution of the number of reservations

made is given in the following table.

Number of observations 3 4 5 6

Probability 0.13 0.18 0.35 0.34



Let X denote the number of passengers on a randomly selected trip.

Obtain the probability mass function of X.

x 0 1 2 3 4

p(x)

16. Heights of Fathers and Sons

It is well-known that heights of fathers and sons are positively associated.

In fact, if X represents the father’s height in inches and Y represents the

son’s height, then the joint distribution of (X, Y) can be approximated by

a bivariate normal with means μX = μY = 69, σX = σY = 3 and correlation

ρ = 0.4.

(a) Are X and Y independent? Why or why not?

(b) Find the conditional density of the son’s height if you know the

father’s height is 70 inches.

(c) Using the result in part (b) to find P(Y > 72| X = 70).

(d) By simulating from the bivariate normal distribution, approximate

the probability that the son will be more than one inch taller than his

father.

17. Instruction and Students’ Scores

Twenty-two children are given a reading comprehension test before and

after receiving a particular instruction method. Assume students’ pre-

instructional and post-instructional scores follow a Bivariate Normal

distribution with: μpre = 47, μpost = 53, σpre = 13, σpost = 15 and ρ = 0.7.

(a) Find the probability that a student’s post-instructional score exceeds

60.

(b) Suppose one student’s pre-instructional score is 45, find the

probability that this student’s post-instructional score exceeds 70.

(c) Find the probability that a student has increased the test score by at

least 10 points. [Hint: Use R to simulate a large number of draws

from the bivariate normal distribution. Refer to the example

sim_binorm() function in Section 6.7 for simulating Bivariate Normal

draws.]

18. Shooting Free Throws

Suppose a basketball player will take N free throw shots during a game

where N has the following discrete distribution.

N 5 6 7 8 9 10

Probability 0.2 0.2 0.2 0.2 0.1 0.1



If the player takes N = n shots, then the number of makes Y is binomial

with sample size n and probability of success p = 0.7.

(a) Find the probability the player takes 6 shots and makes 4 of them.

(b) From the joint distribution of (N, Y), find the most likely (n, y) pair.

(c) Find the conditional distribution of the number of shots N if he makes

4 shots.

(d) Find the expectation E(N| Y = 4).

19. Flipping a Random Coin

Suppose one selects a probability p uniforms from the interval (0, 1), and

then flips a coin 10 times, where the probability of heads is the probability

p. Let X denote the observed number of heads.

(a) Find the joint distribution of p and X.

(b) Use R to simulate a sample of size 1000 from the joint distribution of

(p, X).

(c) From inspecting a histogram of the simulated values of X, guess at

the marginal distribution of X.

 Exercises

20. Simulating Multinomial Probabilities

Revisit Exercise 6.

(a) Write an R function to simulate 10 balls of the special weighted box

(4 red, 3 black, and 3 green balls). [Hint: Section 6.3 introduces the

sim_die_rolls() function for the example of a special weighted die.]

(b) Use the replicate() function to simulate the multinomial experiment

in Exercise (6) for 5000 iterations, and approximate P(R = 3, B = 2).

(c) Use the 5000 simulated multinomial experiments to approximate the

probability that you sample more red balls than black balls, i.e. P(R

> B).

(d) Conditional on B = 4, approximate the mean number of red balls

that will get sampled. Compare the approximated mean value to the

exact mean. [Hint: Conditional on B = 4, the distribution of R is a

binomial distribution.]

21. Simulating from a Beta-Binomial Distribution

Consider a box of coins where the coin probabilities vary, and the

probability of a selected coin lands heads, p, follows a beta(2, 8)

distribution. Jason then continues to flip this “random” coin 10 times, and

is interested in the count of heads of the 10 flips, denoted by Y.



(a) Write an R function to simulate 5000 samples of (p, y). [Hint: Use

rbeta() and rbinom() functions accordingly.]

(b) Approximate the probability that Jason observes 3 heads out of 10

flips, using the simulated 5000 samples. Compare the approximated

probability to the exact probability. [Hint: Write out f(y) following

the work in Section 6.6, and use R to calculate the exact probability.]

22. Shooting Free Throws (continued)

Consider the free throws shooting in Exercise (18).

(a) Write an R function to simulate 5000 samples of (n, y).

(b) From the 5000 samples, find the most likely (n, y) pair. Compare your

result to Exercise (18) part (b).

(c) Approximate the expectation E(N| Y = 4), and compare your result

to Exercise (18) part (d).
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Learning about a Binomial
Probability
 

 

7.1  Introduction: Thinking Subjectively about a
Proportion

In previous chapters, we have seen many examples involving drawing color

balls from a box. In those examples, one is given the numbers of balls of

various colors in the box, and one considers questions related to calculating

probabilities. For example, there are 40 white and 20 red balls in a box. If

one draws two balls at random, what is the probability that both balls are

white?

Here we consider a new scenario where we do not know the proportions

of color balls in the box. In the previous example, one only knows that

there are two kinds of color balls in the box, but one doesn’t know 40 out

of 60 of the balls are white (proportion of white = 2/3) and 20 out of the

60 of the balls are red (proportion of red = 1/3). How can one learn about

the proportions of white and red balls? Since counting 60 balls is tedious,

how can one infer those proportions by drawing a sample of balls out of the

box and observing the colors of balls in the sample? This becomes an

inference question, because one is trying to infer the proportion p of the

population, based on a sample from the population.

Let’s continue discussing the scenario where one is told that there are 60

balls in total in a box, and the balls are either white or red. One does not

know the count of balls of each of the two colors but is given the

opportunity to learn about these counts by selecting a random sample of 10



balls. The object of interest is the quantity p, the proportion of red balls in

the 60 balls. How can one infer p, the proportion of red balls in the

population of 60 balls, based on the numbers of red and white balls

observed in the sample of 10 balls?

Proportions are like probabilities. Recall from Chapter 1 the following

three views and associated characteristics of probabilities.

1. The classical view: one needs to write down the sample space where

each outcome is equally likely.

2. The frequency view: one needs to repeat the random experiment many

times under identical conditions.

3. The subjective view: one needs to express one’s opinion about the

likelihood of a one-time event.

The classical view does not seem to work here, because one only knows

there are two kinds of color balls and the total number of balls is 60. Even

if one takes a sample of 10 balls, one only observes the proportion of red

balls in the sample. There does not seem to be a way for one to write down

the sample space where each outcome is equally likely.

The frequency view would work here. One could treat the process of

obtaining a sample (i.e. taking a random sample of 10 balls from the box)

as an experiment, and obtain a sample proportion p̂ from the experiment.

One then could repeat the experiment many times under the same

condition, get many sample proportions p̂ , and summarize all the p̂ . When

one repeats the experiment enough times (a large number), one gets a good

sense about the proportion p of red balls in the population of 60 balls in

the box. This process is doable, but tedious and time-consuming.

The subjective view is one’s personal opinion about the location of the

unknown proportion p. It does require one to express his or her opinion

about the value of p, and he or she could be skeptical or unknown about

the opinion. In Chapter 1, a calibration experiment was introduced to help

one sharpen an opinion about the likelihood of an event by comparisons

with opinion about the likelihood of other events. In this chapter and the

chapters to follow, the key ideas will be introduced and the reader will

practice thinking subjectively about unknowns and quantifying one’s

opinions about the values of these unknowns using probability

distributions.



As an example, consider plausible values for the proportion p of red

balls. As p is a proportion, it takes any possible value between 0 and 1. In

the calibration experiment introduced in Chapter 1, we focus on the

scenario where only one value of p is of interest. If we think p = 0.5, it

reflects our belief that the probability of the value p = 0.5 is equal to 1.

The statement that “the probability that p = 0.5 is 1” sounds like a very

strong opinion because p is restricted to only one possible value and the

probability assigned to it is 1. Since we do not know the exact value of the

p proportion, assigning a single possible probability value of 1 appears to

be too strong.

Instead suppose that the proportion p takes multiple values between 0

and 1. In particular, consider two scenarios, where in each scenario p takes

10 different values denoted by the set A.

Although p takes the same ten values, different probabilities are assigned

to the values.

– Scenario 1:

– Scenario 2:

To visually compare the values of two probability distributions f1(A) and

f2(A), we plot the distributions using the same scales as in Figure 7.1.

Figure 7.1 labels the x-axis with the values of p (range from 0 to 1) and the

y-axis with the probabilities (range from 0 to 1). For both panels, there are

ten bars, where the heights represent the associated probabilities of the

values of p in the set A = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

A = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

f1(A) = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)

f2(A) = (0.05, 0.05, 0.05, 0.175, 0.175, 0.175, 0.175, 0.05, 0.05, 0.05)



FIGURE 7.1 

The same ten possible values of p, but two sets of probabilities.

The probability assignment in f1(A) is called a discrete uniform

distribution where each possible value of the proportion p is equally likely.

Since there are ten possible values of p, each value gets assigned a

probability of 1/10 = 0.1. This assignment expresses the opinion that p can

be any value from the set A = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},

and each value has a probability of 0.1.

The probability assignment in f2(A) is also discrete, but the pattern of

probabilities is not uniform. What one sees is that the probabilities of the

first three proportion values (0.1, 0.2, and 0.3) and last three proportion

values (0.8, 0.9, and 1.0) are each 1/3.5 of the probabilities assigned to the

middle four values (0.4, 0.5, 0.6, and 0.7). The heights of the bars reflect

the opinion that the middle values of p are 3.5 times as likely as the

extreme values of p.

Both sets of probabilities follow the three probability axioms in Chapter

1. One sees that within each set,



1. Each probability is nonnegative,

2. The sum of the probabilities is 1,

3. The probability of mutually exclusive values is the sum of probability

of each value, e.g. probability of p = 0.1 or p = 0.2 is 0.1 + 0.1 in

f1(A), and 0.05 + 0.05 in f2(A).

In this introduction, a method has been presented to think about

proportions subjectively. This method allows multiple values of p and

probability assignments follow the three probability axioms. Each

probability distribution expresses a unique opinion about the location of

the proportion p.

To answer the inference question “what is the proportion of red balls in

the box”, a random sample of 10 balls will be sampled and the observed

proportion of red balls in that sample will be used to sharpen and update

one’s belief about p. Bayesian inference is the formal mechanism for

updating one’s belief given new information. This mode of inference has

three general steps.

Step 1: (Prior): express an opinion about the location of the

proportion p before sampling.

Step 2: (Likelihood): take the sample and record the observed

proportion of red balls.

Step 3: (Posterior): use Bayes’ rule to update the previous opinion

about p given the information from the sample.

As indicated in the parentheses, the first step “Prior” constructs prior

opinion about the quantity of interest, and a probability distribution is

used (like f1(A) and f2(A) earlier) to quantify the prior opinion. The name

“prior” indicates that the opinion should be formed before collecting any

data.

The second step “Data” is the process of collecting data, where the

quantity of interest is observed in the collected data. For example, if our

10-ball sample contains 4 red balls and 6 white balls, the observed

proportion of red balls is 4/10 = 0.4. Informally, how does this information

help us revise our opinion about p? Intuitively one would give more

probability to p = 0.4, but it is unclear how the probabilities would be

redistributed among the 10 values in A. Since the sum of all probabilities is



1, is it possible that some of the larger proportion values, such as p = 0.9

and p = 1.0, will receive probabilities of zero? To address these questions,

the third step is needed.

The third step “Posterior” combines one’s prior opinion and the collected

data, by use of Bayes’ rule, to update one’s opinion about the quantity of

interest. Just like the example of observing 4 red balls in the 10-ball

sample, one needs a structured way of updating the opinion from prior to

posterior.

Throughout this chapter, the entire inference process will be described

for learning about a proportion p. This chapter will discuss how to express

prior opinion that matches with one’s belief, how to extract information

from the likelihood, and how to update our opinion to its posterior.

Section 7.2 introduces inference when a discrete prior distribution is

assigned to the proportion p. Section 7.3 introduces the beta class of

continuous prior distributions and the inference process with a beta prior is

described in detail in Section 7.4. Section 7.5 describes some general

Bayesian inference methods for learning about the proportion, namely

Bayesian hypothesis testing, Bayesian credible intervals and Bayesian

prediction. This chapter will illustrate both the use of exact analytical

solutions and approximate simulation calculations (with the help of the R

software).

 

7.2  Bayesian Inference with Discrete Priors

7.2.1  Example: students’ dining preference

Let’s start our Bayesian inference for proportion p with discrete prior

distributions with a students’ dining preference example. A popular

restaurant in a college town has been in business for about 5 years. Though

the business is doing well, the restaurant owner wishes to learn more about

his customers. Specifically, he is interested in learning about the dining

preferences of the students. The owner plans to conduct a survey by asking

students “what is your favorite day for eating out?” In particular, he wants

to find out what percentage of students prefer to dine on Friday, so he can

plan ahead for ordering supplies and giving promotions.



Let p denote the proportion of all students whose answer is Friday.

7.2.2  Discrete prior distributions for proportion p

Before giving out the survey, let’s pause and think about the possible

values for the proportion p. Not only does one want to know about possible

values, but also the probabilities associated with the values. A probability

distribution provides a measure of belief for the proportion and it

ultimately will help the restaurant owner improve his business.

One might not know much about students’ dining preference, but it is

possible to come up with a list of plausible values for the proportion. There

are seven days a week. If each day was equally popular, then one would

expect 1/7 or approximately 15% of all students to choose Friday. The

owner recognizes that Friday is the start of the weekend, therefore there

should be a higher chance of being students’ preferred day of dining out. So

perhaps p starts with 0.3. Then what about the largest plausible value?

Letting this largest value be 1 seems unrealistic, as there are six other days

in the week. Suppose that one chooses 0.8 to be the largest plausible value,

and then comes up with the list of values of p to be the six values going

from 0.3 to 0.8 with an increment of 0.1.

(7.1)

Next one needs to assign probabilities to the list of plausible values of p.

Since one may not know much about the location of the probabilities p, a

good place to start is a discrete uniform prior (recall the discrete uniform

prior distribution for p, the proportion of red balls, in Section 7.1). A

discrete uniform prior distribution expresses the opinion that all plausible

values of p are equally likely. In the current students’ dining preference

example, if one decides on six plausible values of p as in Equation (7.1),

each of the six values gets a prior probability of 1/6. One labels this prior

as πl, where l stands for laymen (for all of us who are not in the college

town restaurant business).

p = {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}



(7.2)(7.2)

With five years of experience of running his restaurant in this college

town, the restaurant owner might have different opinions about likely

values of p. Suppose he agrees with us that p could take the 6 plausible

values from 0.3 to 0.8, but he assigns a different prior distribution for p. In

particular, the restaurant owner thinks that values of 0.5 and 0.6 are most

likely – each of these values is twice as likely as the other values. His prior

is labelled as πe, where e stands for expert.

(7.3)

 To obtain πe(p) efficiently, one can use the ProbBayes R package.

First a data frame is created by providing the list of plausible values of p

and corresponding weights assigned to each value using the function

data.frame(). As one can see here, one does not have to calculate the

probability – one only needs to give the weights (e.g. giving p = 0.3, 0.4,

0.7, 0.8 weight 1 and giving p = 0.5, 0.6 weight 2, to reflect the owner’s

opinion “0.5 and 0.6 are twice as likely as the other values”).

 
bayes_table <- data.frame(p = seq(.3, .8, by=.1), 
 Prior = c(1, 1, 2, 2, 1, 1)) 
bayes_table 
 p Prior 
1 0.3 1 
2 0.4 1 
 
3 0.5 2 
4 0.6 2 
5 0.7 1 
6 0.8 1 

One uses the function mutate() to normalize these weights to obtain the

prior probabilities in the Prior column.

πl(p) = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6)πl(p) = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6)

πe(p) = (0.125, 0.125, 0.250, 0.250, 0.125, 0.125)



 
bayes_table %>% mutate(Prior = Prior / sum(Prior)) -> bayes_table 
bayes_table 
 p Prior 
1 0.3 0.125 
2 0.4 0.125 
3 0.5 0.250 
4 0.6 0.250 
5 0.7 0.125 
6 0.8 0.125 

One conveniently plots the restaurant owner’s prior distribution by use of

ggplot2 functions. This distribution is displayed in Figure 7.2.

 
ggplot(data=bayes_table, aes(x=p, y=Prior)) + 
 geom_bar(stat="identity", fill=crcblue, width = 0.06) 

FIGURE 7.2 

The restaurant owner’s prior distribution for the proportion p.

It is left as an exercise for the reader to compute and plot the laymen’s

prior πl(p) in Equation (7.2). For the rest of this section, we will work with

the expert’s prior πe(p).



7.2.3  Likelihood of proportion p

The next step in the inference process is the data collection. The restaurant

owner gives a survey to 20 student diners at the restaurant. Out of the 20

student respondents, 12 say that their favorite day for eating out is Friday.

Recall the quantity of interest is proportion p of the population of students

choosing Friday.

The likelihood is a function of the quantity of interest, which is the

proportion p. The owner has conducted an experiment 20 times, where

each experiment involves a “yes” or “no” answer from the respondent to the

rephrased question “whether Friday is your preferred day to dine out”.

Then the proportion p is the probability a student answers “yes”.

Does this ring a bell of what we have seen before? Indeed, in Chapter 4,

one has seen this type of experiment, a binomial experiment, similar to the

dining survey. Recall that a binomial experiment needs to satisfy four

conditions:

1. One is repeating the same basic task or trial many times – let the

number of trials be denoted by n.

2. On each trial, there are two possible outcomes called “success” or

“failure”.

3. The probability of a success, denoted by p, is the same for each trial.

4. The results of outcomes from different trials are independent.

If one recognizes an experiment as being binomial, then all one needs to

know is n and p to determine probabilities for the number of successes Y.

The probability of y successes in a binomial experiment is given by

(7.4)

Assuming the dining survey is a random sample (thus independent

outcomes), this is the result of a binomial experiment. The likelihood is the

chance of 12 successes in 20 trials viewed as a function of the probability of

success p:

Prob(Y = y) = (n
y
)py(1 − p)n−y, y = 0, ⋯ ,n.



(7.5)(7.5)

Generally one uses L to denote a likelihood function — one sees in

Equation (7.5), L is a function of p. Note that the value of n, the total

number of trials, is known and the number of successes Y is observed to be

12. The proportion p, is the parameter of the binomial experiment and the

likelihood is a function of the proportion p.

The likelihood function L(p) is efficiently computed using the dbinom()

function in R. In order to use this function, we need to know the sample

size n (20 in the dining survey), the number of successes y (12 in the dining

survey), and p (the list of 6 plausible values created in Section 7.2.2; p =

{0.3, 0.4, 0.5, 0.6, 0.7, 0.8}). Note that we only need the plausible values of

p, not yet the assigned probabilities in the prior distribution. The prior will

be used in the third step to update the opinion of p to its posterior.

 Below is the example R code of finding the probability of 12 successes

in a sample of 20 for each value of the proportion p. The values are placed

in the Likelihood column of the bayes_table data frame.

 
bayes_table$Likelihood <- dbinom(12, size=20, prob=bayes_table$p) 
bayes_table 
 p Prior Likelihood 
1 0.3 0.125 0.003859282 
2 0.4 0.125 0.035497440 
3 0.5 0.250 0.120134354 
4 0.6 0.250 0.179705788 
5 0.7 0.125 0.114396740 
6 0.8 0.125 0.022160877 

7.2.4  Posterior distribution for proportion p

The posterior probabilities are found as an application of Bayes’ rule. This

recipe will be illustrated first through a step-by-step calculation process.

Next the process is demonstrated with the bayesian_crank() function in

the ProbBayes R package, which implements the Bayes’ rule calculation and

outputs the posterior probabilities.

Likelihood = L(p) = ( 20
12)p

12(1 − p)8.Likelihood = L(p) = ( 20
12)p

12(1 − p)8.



Let π(p) to be the prior distribution of p, let L(p) denote the likelihood

function, and π(p| y) to be the posterior distribution of p after observing

the number of successes y. For discrete parameters, such as the proportion

p in our case, one is able to enumerate the list of plausible values and

assign prior probabilities to the values. If pi represents a particular value of

p, Bayes’ rule for a discrete parameter has the form

(7.6)

where π(pi) is the prior probability of p = pi, L(pi) is the likelihood

function evaluated at p = pi, and π(pi| y) is the posterior probability of p =

pi given the number of successes y. By the Law of Total Probability, the

denominator gives the marginal distribution of the observation y.

Bayes’ rule can also be expressed as “prior times likelihood”:

(7.7)

Equation (7.7) ignores the denominator and states that the posterior is

proportional to the product of the prior and the likelihood. As one will see

soon, the value of the denominator is a constant, meaning that its purpose

is to normalize the numerator. It is convenient to work with Bayes’ rule as

in Equation (7.7) in later chapters. However, it is instructive to show the

exact calculation of Equation (7.6), because one has a finite sum in the

denominator and it is possible to obtain the analytical solution. In the case

where the prior is continuous, it will be more difficult to analytically

compute the normalizing constant.

Returning to the students’ dining preference example, the list of

plausible values of the proportion is p = {0.3, 0.4, 0.5, 0.6, 0.7, 0.8} and

according to the restaurant owner’s expert prior, the assigned probabilities

are πe(p) = (0.125, 0.125, 0.250, 0.250, 0.125, 0.125) (recall Figure 7.2).

After observing the number of successes, the likelihood values are

calculated for the models using dbinom() function, as presented in Section

7.2.3.

π(pi ∣ y) = π(pi)×L(pi)
∑

j
π(pj)×L(pj)

,

π(pi ∣ y) ∝ π(pi) × L(pi)



The denominator is the sum of the products of the prior and the

likelihood at each possible pi, which, given the Law of Total Probability, is

equal to the marginal probability of the data f(y). One can think of the

above formula as reweighing or normalizing the probability of π(pi| y) by

all possible values of p. In the case of discrete models like this, the

marginal probability of the likelihood is computed through 

∑j f(pj) × L(pj).
In this setup, the computation of the posterior probabilities of different

pi values is straightforward. First, one calculates the denominator and

denote the value as D.

Then the posterior probability of p = 0.3 is given by

In a similar fashion, the posterior probability of p = 0.5 is calculated as

One sees that the denominator is the same for the posterior probability

calculation of every value of p. This calculation gets tedious for a large

number of possible values of p. Relying on statistical software such as R

helps us simplify the tasks.

 To use the bayesian_crank() function, recall that we have already

created a data frame with variables p, Prior, and Likelihood. Then the

bayesian_crank() function is used to compute the posterior probabilities.

D = π(0.3) × L(0.3) + π(0.4) × L(0.4) + ⋯ + π(0.8) × L(0.8)

= 0.125 × ( 20
12)(0.3)12(1 − 0.3)8 + ⋯ + 0.125 × ( 20

12)(0.8)12(1 − 0.8)8

≈ 0.0969.

π(p = 0.3 ∣ 12) = π(0.3)×L(0.3)
D

=
0.125×( 20

12)(0.3)12(1−0.3)8

D

≈ 0.005.

π(p = 0.5 ∣ 12) = π(0.5)×L(0.5)
D

=
0.125×(

20
12)(0.5)12(1−0.5)8

D

≈ 0.310.



 
bayesian_crank(bayes_table) -> bayes_table 
bayes_table 
 p Prior Likelihood Product Posterior 
1 0.3 0.125 0.003859282 0.004824102 0.004975901 
2 0.4 0.125 0.035497440 0.0044371799 0.045768032 
3 0.5 0.250 0.120134354 0.0300335884 0.309786454 
4 0.6 0.250 0.179705788 0.0449264469 0.463401326 
5 0.7 0.125 0.114396740 0.0142995925 0.147495530 
6 0.8 0.125 0.022160877 0.0027701096 0.028572757 

As one sees in the bayes_table output, the bayesian_crank() function

computes the product of Prior and Likelihood and stores the values in the

column Product, then normalizes each product with the sum of all products

to produce the posterior probabilities, stored in the column Posterior.

Figure 7.3 compares the prior probabilities in the bottom panel with the

posterior probabilities in the top panel. Notice the difference in the two

distributions. After observing the survey results (i.e. the likelihood), the

owner is more confident that p is equal to 0.5 or 0.6, and it is unlikely for p

to be 0.3, 0.4, 0.7, and 0.8. Recall that the data gives an observed

proportion 12/20 = 0.6. Since the posterior is a combination of prior and

likelihood, it is not surprising that the likelihood helps the owner to

sharpen his belief about proportion p and place a larger posterior

probability around 0.6.



FIGURE 7.3 

Prior and posterior distributions on the proportion p.

7.2.5  Inference: students’ dining preference

Let’s revisit the posterior distribution table to perform some inference.

What is the posterior probability that over half of the students prefer

eating out on Friday? One is interested in the probability that p > 0.5, in

the posterior. Looking at the table, this posterior probability is equal to

This means the owner is reasonably confident (with probability 0.639) that

over half of the college students prefer to eat out on Friday.

 One easily obtains the probability from the R output, for example.

Prob(p > 0.5) ≈ 0.463 + 0.147 + 0.029 = 0.639.



 
sum(bayes_table$Posterior[bayes_table$p > 0.5]) 
[1] 0.6394696 

7.2.6  Discussion: using a discrete prior

Specifying a discrete prior has two steps: (1) specifying a list of plausible

values of the parameter of interest, and (2) assigning probabilities to the

plausible values. It is important to remember the three probability axioms

when specifying a discrete prior.

After the prior specification, the next component is the likelihood, which

can also be broken up into two steps. First, one constructs a suitable

experiment that works for the particular scenario. Here one has a binomial

experiment for a survey to a fixed number of respondents, the answers are

classified into “yes” and “no” or “success” and “failure”, the outcome of

interest is the number of successes and trials are independent. From the

binomial distribution, one obtains the likelihood function which is

evaluated at each possible value of the parameter of interest. In our

example, the dbinom() R function was used to calculate the likelihood

function.

Last, the posterior probabilities are calculated using Bayes’ rule. In

particular for the discrete case, follow Equation (7.6). The calculation of

the denominator is tedious s, however practice with the Bayes’ rule

calculation enhances one’s understanding of Bayesian inference. R functions

such as bayesian_crank() are helpful for implementing the Bayes’ rule

calculations. Bayesian inference follows from a suitable summarization of

the posterior probabilities. In our example, inference was illustrated by

calculating the probability that over half of the students prefer eating out

on Friday.

Let’s revisit the list of plausible values of proportion p of students

preferring Friday in dining out in the example. Although p = 1.0, that is,

everyone prefers Friday, is very unlikely, one might not want to eliminate

this proportion value from consideration. As one observes in the Bayes’ rule

calculation process shown in Sections 7.2.3 and 7.2.4, if one does not

include p = 1.0 as one of the plausible values in the prior distribution in

Section 7.2.2, this value will also be given a probability of zero in the

posterior.



Alternatively, one could choose the alternative set of values

and assign a very small prior probability (e.g. 0.05 or even smaller) for p =

1.0 to express the opinion that p = 1.0 is very unlikely. One may assign

small prior probabilities for other large values of p such as p = 0.9.

This comment illustrates a limitation of specifying a discrete prior for a

proportion p. If a plausible value is not specified in the prior distribution

(e.g. p = 1.0 is not in the restaurant owner’s prior distribution), it will be

assigned a probability of zero in the posterior (e.g. p = 1.0 is not in the

restaurant owner’s posterior distribution).

It generally is more desirable to have p to be any value in [0, 1] including

less plausible values such as p = 1.0. To make this happen, the proportion

p should be allowed to take any value between 0 and 1, which means p will

be a continuous variable. In this situation, it is necessary to construct a

continuous prior distribution for p. A popular class of continuous prior

distributions for proportion is the beta distribution which is the subject of

the next section.

 

7.3  Continuous Priors

Let’s continue our students’ dining preference example. A restaurant owner

is interested in learning about the proportion p of students whose favorite

day for eating out is Friday.

The proportion p should be a value between 0 and 1. Previously, we used

a discrete prior for p, representing the belief that p only takes the six

different values 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. An obvious limitation of this

assumption is, what if the true p is 0.55? If the value 0.55 is not specified

in the prior distribution of p (that is, a zero probability is assigned to the

value p = 0.55), then by the Bayes’ rule calculation (either by hand or by

the useful bayesian_crank() function) there will be zero posterior

probability assigned to 0.55. It is therefore preferable to specify a prior that

allows p to be any value in the interval [0, 1].

p = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},



To represent such a prior belief, it is assumed that p is continuous on [0,

1]. Suppose again that one is a layman unfamiliar with the pattern of

dining during a week. Then one possible choice of a continuous prior for p

is the continuous uniform distribution, which expresses the opinion that p

is equally likely to take any value between 0 and 1.

Formally, the probability density function of the continuous uniform on

the interval (a, b) is

(7.8)

In our situation p is a continuous uniform random variable on [0, 1], we

have π(p) = 1 for p ∈ [0, 1], and π(p) = 0 everywhere else.

What about other possible continuous prior distributions for p on [0, 1]?

Consider a prior distribution for the restaurant owner who has some

information about the location (i.e. value) of p. This owner would be

interested in a continuous version of the discrete prior distribution where

values of p between 0.3 and 0.8 are more likely than the values at the two

ends.

The beta family of continuous distributions is useful for representing

prior knowledge in this situation. A beta distribution, denoted by Beta(a,

b), represents probabilities for a random variable falling between 0 and 1.

This distribution has two shape parameters, a and b, with probability

density function given by

(7.9)

where B(a, b) is the beta function defined by B(a, b) = Γ(a)Γ(b)
Γ(a+b) , where Γ is

the Gamma function. For future reference, it is useful to know that if p ∼

Beta(a, b), its mean E[p] = a
a+b

 and its variance V (p) = ab

(a+b)2(a+b+1) . The

continuous uniform in Equation (7.8) is a special case of the beta

distribution: Uniform(0, 1) = Beta(1, 1).

π(p) = {
1

b−a for a ≤ p ≤ b,

0 for p < a or p > b.

π(p) = 1
B(a,b) p

a−1(1 − p)b−1, 0 ≤ p ≤ 1,



For the remainder of this section, Section 7.3.1 introduces the beta

distribution and beta probabilities, and Section 7.3.2 focuses on several

ways of choosing a beta prior that reflects one’s opinion about the location

of a proportion.

7.3.1  The beta distribution and probabilities

The two shape parameters a and b control the shape of the beta density

curve. Figure 7.4 shows density curves of beta distributions for several

choices of the shape parameters. One observes from this figure that the

beta density curve displays vastly different shapes for varying choices of a

and b. For example, Beta(0.5, 0.5) represents the prior belief that extreme

values of p are likely and p = 0.5 is the least probable value. In the

students’ dining preference example, specifying a Beta(0.5, 0.5) would

reflect the owner’s belief that the proportion of students dining out on

Friday is either very high (near one) or very low (near one) and not likely

to be moderate values.



FIGURE 7.4 

Illustration of nine beta density curves.

As the beta is a common continuous distribution, R functions are

available for beta distribution calculations. We provide a small example of

“beta” functions for Beta(1, 1), where the two shape parameters 1 and 1 are

the second and third arguments of the functions.

 Recall the following useful results from previous material: (1) a Beta(1,

1) distribution is a uniform density on (0, 1), (2) the density of Uniform(0,

1) is π(p) = 1 on [0, 1], and (3) if p ∼ Uniform(0, 1), then the cdf F(x) =

Prob(p ≤ x) = x for x ∈ [0, 1].

1. dbeta(): the probability density function for a Beta(a, b) which takes a

value of the random variable as its input and outputs the probability

density function at that value.



For example, we evaluate the density function of Beta(1, 1) at the

values p = 0.5 and p = 0.8, which should be both 1, and 0 at p = 1.2

which should be 0 since this value is outside of [0, 1].

 
dbeta(c(0.5, 0.8, 1.2), 1, 1) 
[1] 1 1 0 

2. pbeta(): the distribution function of a Beta(a, b) random variable,

which takes a value x and gives the value of the random variable at

that value, F(x).

For example, suppose one wishes to evaluate the distribution function

of Beta(1, 1) at p = 0.5 and p = 0.8.

 
pbeta(c(0.5, 0.8), 1, 1) 
[1] 0.5 0.8 

One calculates the probability of p between 0.5 and 0.8, i.e. Prob(0.5 ≤
p ≤ 0.8) by taking the difference of the cdf at the two values.

 
pbeta(0.8, 1, 1) - pbeta(0.5, 1, 1) 
[1] 0.3 

3. qbeta(): the quantile function of a Beta(a, b), which inputs a

probability value p and outputs the value of x such that F(x) = p.

For example, suppose one wishes to calculate the quantile of Beta(1, 1)

at p = 0.5 and p = 0.8.

 
qbeta(c(0.5, 0.8), 1, 1) 
[1] 0.5 0.8 

4. rbeta(): the random number generator for Beta(a, b), which inputs

the size of a random sample and gives a vector of the simulated

random variates.

For example, suppose one is interested in simulating a sample of size

five from Beta(1, 1).



 
rbeta(5, 1, 1) 
[1] 0.71242248 0.59102308 0.05953272 0.47189451 0.44856499 

 There are additional functions in the ProbBayes R package that aid in

visualizing beta distribution calculations. For example, suppose one has a

Beta(7, 10) curve and we want to find the chance that p is between 0.4 and

0.8. Looking at Figure 7.5, this probability corresponds to the area of the

shaded region. The special function beta_area() will compute and illustrate

this probability. Note the use of the vector c(7, 10) to input the two shape

parameters.

 
beta_area(0.4, 0.8, c(7, 10)) 

FIGURE 7.5 

Area represents the probability that a Beta(7, 10) variable lies between 0.4 and 0.8.

One could also find the chance that p is between 0.4 and 0.8 by subtracting

two pbeta() functions.

 
pbeta(0.8, 7, 10) - pbeta(0.4, 7, 10) 



The function beta_quantile() works in the same way as qbeta(), the

quantile function. However, beta_quantile() automatically produces a plot

with the shaded probability area. Figure 7.6) plots and computes the

quantile to be 0.408. The chance that p is smaller than 0.408 is 0.5.

 
beta_quantile(0.5, c(7, 10)) 

FIGURE 7.6 

Illustration of a 0.5 quantile for a Beta(7, 10) variable.

Alternatively, use the qbeta() function without returning a plot.

 
qbeta(0.5, 7, 10) 
[1] 0.4082265 

7.3.2  Choosing a beta density to represent prior opinion



One wants to use a Beta(a, b) density curve to represent one’s prior

opinion about the values of the proportion p and their associated

probabilities. It is difficult to guess at values of the shape parameters a and

b directly. However, there are indirect ways of guessing their values. We

present two general methods here.

The first method is to consider the shape parameter a as the prior count

of “successes” and the other shape parameter b as the prior count of

“failures”. Subsequently, the value a + b represents the prior sample size

comparable to n, the data sample size. Following this setup, one could

specify a beta prior with shape parameter a expressing the number of

successes in one’s prior opinion, and the other shape parameter b

expressing the number of failures in one’s prior opinion. For example, if one

believes that a priori there should be about 4 successes and 4 failures, then

one could use Beta(4, 4) as the prior distribution for the proportion p.

How can we check if Beta(4, 4) looks like what we believe a priori?

Recall that rbeta() generates a random sample from a beta distribution.

The R script below generates a random sample of size 1000 from Beta(4, 4)

and we plot a histogram and an overlapping density curve. (See left panel

of Figure 7.7.) By an inspection of this graph, one decides if this prior is a

reasonable approximation to one’s beliefs about the proportion.

 
Beta44samples <- rbeta(1000, 4, 4) 



FIGURE 7.7 

Histograms of 1000 samples of two beta density curves: Beta(4, 4) and Beta(2, 9).

As a second example, consider a belief that a priori there are 2 successes

and 9 failures, corresponding to the Beta(2, 9) prior. One can use the

rbeta() function take a random sample of 1000 from this prior.

 
Beta29samples <- rbeta(1000, 2, 9) 

Comparing the two distributions, note from Figure 7.7 that Beta(2, 9)

favors smaller proportion values than Beta(4, 4).

To further check the quantiles of the prior, one can use the quantile()

function on the simulated draws from the prior. For example, if one wishes

to check the middle 50% range of values of p from the random sample of

values from Beta(4, 4), one types

 
quantile(Beta44samples, c(0.25, 0.75)) 
 25% 75% 
0.3890909 0.6254733 

This tells us that the probability that p ≤ 0.366 is 0.25 and the

probability that p ≥ 0.616 is also 0.25. These probability statements should

be checked against one’s prior belief about p. If these quantiles do not seem



reasonable, one should make adjustments to the values of the shape

parameters a and b .

On the surface the two priors Beta(4, 4) and Beta(40, 40) seem similar in

that they both have a mean of 0.5 and represent similar breakdowns of the

success and failure counts. However, the aforementioned concept of prior

sample size tells us that Beta(4, 4) has a prior sample size of 8 while that

of Beta(40, 40) is 80. As we will see in Section 7.4, the prior sample size

determines the strength of the prior (i.e. the confidence level in the prior)

and so the Beta(40, 40) prior represents a much stronger belief that p is

close to the value 0.5.

A second indirect method of determining a beta prior is by specification

of quantiles of the distribution. Specifically, one determines the shape

parameters a and b by first specifying two quantiles of the beta density

curve, and then finding the beta density curve that matches these

quantiles. Suppose the restaurant owner uses his knowledge to specify the

0.5 and 0.9 quantiles of the proportion p as follows.

1. First, the restaurant owner thinks of a value p50 such that the

proportion p is equally likely to be smaller or larger than p50. After

some thought, he thinks that p50 = 0.55.

2. Next, the owner thinks of a value p90 that he is pretty sure (with

probability 0.90) that the proportion p is smaller than p90. After more

thought, he decides p90 = 0.80.

 One then uses the beta.select() function in the ProbBayes package to

find shape parameters a and b of the beta density curve that match this

information. Each quantile is specified by a list with values x and p. From

the output, we see Beta(3.06, 2.56) curve represents the owner’s prior

beliefs.

 
beta.select(list(x = 0.55, p = 0.5), 
 list(x = 0.80, p = 0.9)) 
[1] 3.06 2.56 

The owner’s beta density curve is shown here. To make sure this prior is

reasonable, the owner should compute several probabilities and quantiles



for his prior distribution and see if these values correspond to his opinion.

To illustrate this checking process, Figure 7.8 shows the middle 50% area of

the prior distribution. This graph shows that the probability that p ≤ 0.402

is 0.25 and the probability that p ≥ 0.692 is also 0.25. If these calculations

do not correspond to the owner’s opinion, then maybe some change in the

prior distribution would be appropriate.

FIGURE 7.8 

Illustration of the middle 50% of a Beta(3.06, 2.56) curve.

 

7.4  Updating the Beta Prior

In the previous section, we have seen that the restaurant owner thinks that

a beta curve with shape parameters 3.06 and 2.56 is a reasonable reflection

of his prior opinion about the proportion of students p whose favorite day

for eating out is Friday. Therefore, we work with Beta(3.06, 2.56) as the

prior distribution for p.

Now we have the survey results – the survey was administered to 20

students and 12 say that their favorite day for eating out is Friday. As



before in Section 7.2, the likelihood, that is the chance of getting this data

if the probability of success is p is given by the binomial formula,

In this section, the Bayes’ rule calculation of the posterior is presented

for the continuous prior case and one discovers an interesting result: if one

starts with a beta prior for a proportion p, and the data is binomial, then

the posterior will also be a beta distribution. The beta posterior is a

natural combination of the information contained in the beta prior and the

binomial sampling, as one would expect in typical Bayesian inference. This

is an illustration of the use of a conjugate prior where the prior and

posterior densities are in the same family of distributions.

7.4.1  Bayes’ rule calculation

First we demonstrate the Bayes’ rule calculation of the posterior of p

through the proportional statement:

(7.10)

The prior distribution of p, with density π(p), is beta with shape

parameters 3.06 and 2.56

The symbol “∼” is read “follows”, meaning that the random variable before

the symbol follows the distribution that is after the symbol.

For the likelihood, we introduce proper notation. Let Y be the random

variable of the number of students say that their favorite day for eating out

is Friday. We know that the sampling distribution for Y is a binomial

distribution with number of trials 20 and success probability p. Using the

notation of “∼”, we have

Likelihood = L(p) = ( 20
12)p

12(1 − p)8.

π(p ∣ y) ∝ π(p) × L(p).

p ∼ Beta(3.06, 2.56).

Y ∼ Binomial(20, p).



After the value Y = y is observed, L(p) = f(y| p) denotes the likelihood,

which is the probability of observing this sample value y viewed as a

function of the proportion p. (Note that a small letter y is used to denote

the actual data observed, as opposed to the random variable Y.) From the

dining survey, we know that y = 12.

Now we have the following prior density and the likelihood function.

The prior distribution:

The likelihood:

By Bayes’ rule, the posterior density π(p| y) is proportional to the

product of the prior and the likelihood.

Substituting the current prior and likelihood, one can perform the

algebra for the posterior density.

(7.11)

One observes that the posterior density of p given Y = 12 is, up to a

proportionality constant,

Note that in the posterior derivation, the constants ( 20
12) and 

1
B(3.06,2.56)

are dropped due to the proportional sign “∝”. That is, the expression of

π(p) = 1
B(3.06,2.56) p

3.06−1(1 − p)2.56−1.

f(Y = 12 ∣ p) = L(p) = ( 20
12)p

12(1 − p)8.

π(p ∣ y) ∝ π(p) × L(p).

π(p ∣ Y = 12) ∝ π(p) × f(Y = 12 ∣ p)

= 1
B(3.06,2.56) p

3.06−1(1 − p)2.56−1×

( 20
12)p

12(1 − p)8

[drop the constants] ∝ p12(1 − p)8p3.06−1(1 − p)2.56−1

[combine the powers] = p15.06−1(1 − p)10.56−1.

π(p ∣ Y = 12) ∝ p15.06−1(1 − p)10.56−1.



π(p| Y = 12) is computed up to some constant. In this case, Appendix A

demonstrates the calculation of the constant.

Next, one recognizes if the posterior distribution of p is recognizable as a

member of a familiar family of distributions. In the computation of the

posterior, we have intentionally kept the expression of −1 in the powers of p

and 1 − p terms, instead of using 14.06 and 9.56 directly. By doing this,

one recognizes that the posterior density has the familiar form

As the reader might have guessed, the posterior distribution turns out to

be a beta distribution with updated shape parameters. That is, the

posterior distribution of p given Y = 12 is beta with parameters 15.06 and

10.56.

7.4.2  From beta prior to beta posterior: conjugate priors

The results about a proportion p from the Bayes’ rule calculation

performed in Section 7.4.1 can be generalized. Suppose one works with the

following prior distribution and sampling density:

The prior distribution:

The sampling density:

One observes the count Y = y, the number of successes in the collected

data. Then the posterior distribution of p is another beta distribution with

shape parameters a + y and b + n − y.

The posterior distribution:

(7.12)

pa−1(1 − p)b−1.

p ∼ Beta(a, b)

Y ∼ Binomial(n, p)

p ∣ Y = y ∼ Beta(a + y, b + n − y)



The two shape parameters of the beta posterior distribution, a + y and b

+ n − y, are the sums of the prior and likelihood counts of successes and

failures, respectively. We algebraically combine the shape parameters of the

beta prior and the binomial likelihood to obtain the shape parameters of

the posterior beta distribution.

Table 7.1 demonstrates this process with three rows labelled Prior,

Likelihood, and Posterior. The Prior row contains the shape parameters of

the beta prior a and b in the Successes and Failures columns, respectively.

The Likelihood row contains the number of successes y and the number of

failures n − y. The shape parameters of the beta posterior are found by

adding the prior parameter values and the data values.

TABLE 7.1

Updating the beta prior.

Source Successes Failures

Prior a b

Likelihood y n − y

Posterior a + y b + n − y

 In the following R script we update the beta shape parameters. We

see that the owner’s posterior distribution for p is beta with shape

parameters 15.06 and 10.56.

 
ab <- c(3.06, 2.56) 
yny <- c(12, 8) 
(ab_new <- ab + yny) 
[1] 15.06 10.56 

The function beta_prior_post() in the ProbBayes R package plots the

prior and posterior beta curves together on one graph, see Figure 7.9.

 
beta_prior_post(ab, ab_new) 



FIGURE 7.9 

Prior and posterior curves for the proportion of students who prefer to dine out on Friday.

Comparing the two beta curves, several observations can be made.

One can compare the prior and posterior beta curves using the

respective means. The mean of a Beta(a, b) distribution is 
a

a+b
. Using

this formula, the posterior mean of p is 15.06 / (15.06 + 10.56) =

0.588 which is slightly larger than the prior mean 3.06 / (30.6 + 2.56)

= 0.544. Recall that the sample proportion from the survey results is

12/20 = 0.6. The posterior mean lies between the prior mean and

sample mean and it is closer to the sample mean.

Next one compares the spreads of the two curves. One sees a much

wider spread of the prior beta curve (dashed line) than that of the

posterior beta curve (solid line). Initially the owner was unsure about

the proportion of students favoring Friday to dine out. After observing

the results of the survey, the solid posterior curve indicates that he is

more certain that p is between 0.5 and 0.7. This sheds light on a

general feature of Bayesian inference: the data helps sharpen the belief

about the parameter of interest, producing a posterior distribution

with a smaller spread than the prior distribution.



The attractive combination of a beta prior and a binomial sampling

density to obtain a posterior motivates a definition of conjugate priors. If

the prior distribution and the posterior distribution come from the same

family of distributions, the prior is then called a conjugate prior. Here a

beta is a conjugate prior for a success probability p, since the posterior

distribution for p is also in the beta family. Conjugate priors are specific to

the choice of sampling density. For example, a beta prior is conjugate with

binomial sampling, but not to normal sampling which is popular for

continuous outcome. In Chapter 8 we will discover the conjugate prior

distribution for a normal sampling distribution.

Conjugate priors are desirable because they simplify the Bayesian

inference procedure. In the dining preference example, when a Beta(3.06,

2.56) prior is assigned to p, the posterior is Beta(15.06, 10.56) and

inference about p is made in a straightforward way. One can easily plot the

prior and posterior beta distributions as in Figure 7.9. One can also make

precise comparative statements about the locations of the prior and

posterior distribution using quantiles of a beta curve.

Although conjugate priors are convenient and straightforward to use,

they may not be appropriate for use in a Bayesian analysis. One should

choose a prior that fits one’s belief, not one that is convenient to use. In

some situations it may be appropriate to choose a prior distribution that

does not provide conjugacy. In Chapter 9, we will describe computational

methods to facilitate posterior inferences when non-conjugate priors are

used. Modern Bayesian posterior computations accommodate a wide

variety of choices of prior and sampling distributions. Therefore it is more

important to choose a prior that matches one’s prior belief than choosing a

prior that is computationally convenient.

 

7.5  Bayesian Inferences with Continuous Priors

We will continue with the dining preference example to illustrate different

types of Bayesian inference. The restaurant owner has taken his dining

survey and the posterior distribution Beta(15.06, 10.56) reflects his opinion

about the proportion p of students whose favorite day for eating out is

Friday.



All Bayesian inferences about the proportion p are based on various

summaries of this posterior beta distribution. The summary we compute

from the posterior will depend on the type of inference. We will focus on

three types of inference: (1) testing problems where one is interested in

assessing the likelihood of some values of p, (2) interval estimations where

one wants to find an interval that is likely to contain p, and (3) Bayesian

prediction where one wants to learn about new observation(s) in the future.

Simulation will be incorporated for all three types of Bayesian inference

problems. Since one has a conjugate prior distribution, one can derive the

exact posterior distribution (a beta) and inferences are performed with the

exact posterior beta distribution. In other situations when conjugacy is not

available, meaning that no exact representation of the posterior is

available, inferences through simulation are much more widely used. It is

instructive to present the exact solutions and the approximated simulation-

based solutions together, so one learns through practice and prepares for

future use of simulation in other settings.

There is nothing magic about simulation. In fact, simulation has been

used earlier, when the rbeta() function was used to generate simulated

samples from Beta(4, 4) and Beta(2, 9) and check the appropriateness of

the chosen beta prior (review Section 7.3.2 as needed). Information on

simulation and the relevant R code will be introduced in the description of

each inferential problem.

7.5.1  Bayesian hypothesis testing

Suppose one of the restaurant workers claims that at least 75% of the

students prefer to eat out on Friday. Is this a reasonable claim?

In traditional classical statistics, one might be interested in testing the

hypothesis H: p ≥ 0.75. From a Bayesian viewpoint, it is straightforward to

implement this test. Since the hypothesis is an interval of values, one finds

the posterior probability that p ≥ 0.75 and makes a decision based on the

value of this probability. If the probability is small, one rejects this claim.

 First the exact solution will be presented. Since the posterior

distribution is Beta(15.06, 10.56), the owner’s posterior density is graphed

and the area under the curve for values of p between 0.75 and 1 is found.

The beta_area() function is used to display and show the area; see Figure



7.10. Since the probability is only about 4%, one rejects the worker’s claim

that p is at least 0.75.

 
beta_area(lo = 0.75, hi = 1.0, shape_par = c(15.06, 10.56)) 

FIGURE 7.10 

Probability of the hypothesis from the beta posterior density.

This computation can be implemented using simulation. Since the

posterior distribution is Beta(15.06, 10.56), one generates a large number of

random values from this beta distribution, then summarizes the sample of

simulated draws to obtain the probability of p ≥ 0.75. First a sample of S =

1000 from the beta posterior is taken, storing the results in the vector

BetaSamples.

 
S <- 1000 
BetaSamples <- rbeta(S, 15.06, 10.56) 

The proportion of the 1000 simulated values of p that are at least 0.75

gives an approximation of the probability that p ≥ 0.75.



 
sum(BetaSamples >= 0.75)/S 
[1] 0.037 

The simulation-based probability estimate is 0.037 which is an accurate

approximation to the exact probability 0.04 obtained before.

It would be reasonable to question the choice of the number of

simulations S = 1000. One can change the simulation sample size to larger

or smaller values as one sees fit. In general, the larger the value of S, the

more accurate the approximation. Figure 7.11 shows that the shape of a

histogram of the simulated values of p approaches the exact posterior

density as the value of S changes from 100 to 10,000. The corresponding

simulation-based probabilities of p ≥ 0.75 are {0.02, 0.05, 0.033, 0.0422}

indicating that the accuracy of the approximation improves for larger

simulation sample sizes.

FIGURE 7.11 

Histograms of simulated draws from Beta(15.06, 10.56) with exact beta density overlaid for four

samples drawn where S = {100, 500, 1000, 10, 000}.

 One will observe variation from one simulation from another (see the

two different but similar approximated probabilities 0.037 and 0.033 when

S = 1000). To replicate one’s results one specifies the seed of the random

number simulator set.seed(). Choose any number that you like to put in –



if this set.seed() line of code is executed first, then the same sequence of

random values will be generated and one replicates the simulation-based

computation.

7.5.2  Bayesian credible intervals

Another type of inference is a Bayesian credible interval, an interval that

one is confident contains p. Such an interval provides an uncertainty

estimate for the parameter p. A 90% Bayesian credible interval is an

interval that contains 90% of the posterior probability.

 One convenient 90% credible interval is the “equal tails” interval that

contains the middle 90% of the probability content. The function

beta_interval() in ProbBayes R package illustrates and computes the

equal-tails interval. The shaded area in Figure 7.12 corresponds to 90% of

the posterior probability. The probability p falls between 0.427 and 0.741 is

exactly 90%.

 
beta_interval(0.9, c(15.06, 10.56)) 

FIGURE 7.12 

Display of 90% probability interval for the proportion p.



One obtains this middle 90% credible interval using the qbeta() function.

 
qbeta(c(0.05, 0.95), 15.06, 10.56) 
[1] 0.4266788 0.7410141 

This Bayesian credible interval differs from the interpretation of a

traditional confidence interval. With a traditional confidence interval, one

does not have confidence that one particular interval will contain p. Instead

90% confidence refers to the average coverage of the interval in repeated

sampling.

Other types of Bayesian credible intervals can be computed. For

example, instead of a credible interval covering the middle 90% of the

posterior probability, one could create a credible interval covering the lower

90%, or the upper 90%, or the middle 95%. The qbeta() function is helpful

in achieving all of these different type of intervals, as long as we know the

exact posterior distribution, that is, the two shape parameters of the

posterior beta distribution. For example, the following code computes a

credible interval that covers the lower 90% of the posterior distribution.

 
qbeta(c(0.00, 0.90), 15.06, 10.56) 
[1] 0.0000000 0.7099912 

An alternative way of creating credible intervals is by simulation. One

first takes a random sample from the Beta(15.06, 10.56) distribution, then

summarizes the simulated values by finding the two cutoff points of the

middle 90% of the sample. The quantile() function is useful for this

purpose. As a demonstration, below we simulate S = 1000 proportion

values and compute the credible interval.

 
S <- 1000 
BetaSamples <- rbeta(S, 15.06, 10.56) 
quantile(BetaSamples, c(0.05, 0.95)) 
 5% 95% 
0.4266076 0.7333957 



The approximate middle 90% credible interval is [0.427, 0.733], which is

close in value to the exact 90% credible interval [0.427, 0.741] computed

using the qbeta() and beta_interval() functions. In an end-of-chapter

exercise the reader is encouraged to practice and experiment with different

values of the size of the simulated sample S.

7.5.3  Bayesian prediction

Prediction is a typical task of Bayesian inference and statistical inference in

general. Once we are able to make inference about the parameter in our

statistical model, we may be interested in predicting future observations.

Denote a new observation by the random variable 
~
Y . In particular, if the

new survey is given to m students, the random variable 
~
Y  is the number of

students preferring Friday to dine out among the m respondents. If again

the survey is given to a random sample, the random variable 
~
Y , conditional

on p, follows a binomial distribution with the fixed total number of trails m

and success probability p. One’s knowledge about the location of p is

expressed by the posterior distribution of p.

Mathematically, to make a prediction of a new observation, one is asking

for the distribution of 
~
Y  given the observed data Y = y. That is, one is

interested in the probability function f( ~
Y = ~y ∣ Y = y) where ~y is a value

of 
~
Y . But the conditional distribution of 

~
Y  given a value of the proportion

p is binomial(m, p) and the current beliefs about p are described by the

posterior density. So one writes the joint density of 
~
Y  and p as the product

(7.13)

By integrating out p, one obtains the predictive distribution

(7.14)

The density of 
~
Y  given p is binomial with m trials and success

probability p, and the posterior density of p is Beta(a + y, b + n − y).

f( ~
Y = ~y, p ∣ Y = y) = f( ~

Y = ~y ∣ p)π(p ∣ Y = y).

f( ~
Y = ~y ∣ Y = y) = ∫ f( ~

Y = ~y ∣ p)π(p ∣ Y = y)dp.



After the substitution of densities and an integration step (see Appendix B

for the detail), one finds that the predictive density is given by

(7.15)

This is the beta-binomial distribution with parameters m, a + y and b + n

− y.

(7.16)

To summarize, Bayesian prediction of a new observation is a beta-binomial

distribution where m is the number of trials in the new sample, a and b are

shape parameters from the beta prior, and y and n are quantities from the

likelihood.

 Using this beta-binomial distribution in our example, one computes the

predictive probability that ~y students prefer Friday in a new survey of 20

students. We illustrate the use of the pbetap() function from the ProbBayes

package. The inputs to pbetap() are the vector of beta posterior shape

parameters (a, b), the sample size 20, and the values of ~y of interest.

prob <- pbetap(c(15.06, 10.56), 20, 0:20) 
prob_plot(data.frame(Y = 0:20, Probability = prob), 
 Color = crcblue, Size = 4) + 
 theme(text=element_text(size=18)) 

These predictive probabilities are displayed in Table 7.2 and graphed in

Figure 7.13.

f( ~
Y = ~y ∣ Y = y) = (m

~y )
B(a+y+~y,b+n−y+m−~y)

B(a+y,b+n−y) .

~
Y ∣ Y = y ∼ Beta − Binomial(m, a + y, b + n − y).



FIGURE 7.13 

Display of the exact predictive distribution of the number of students ~y favoring Friday in a future

sample of 20.

TABLE 7.2

Predictive distribution of the number of students preferring Friday in a future sample of 20.

Y Probability Y Probability

0 0 11 0.127

1 0 12 0.134

2 0 13 0.127

3 0.001 14 0.108

4 0.004 15 0.080

5 0.010 16 0.052

6 0.021 17 0.028

7 0.037 18 0.012

8 0.059 19 0.004

9 0.085 20 0.001

10 0.109

Looking at the table, the most likely number of students preferring

Friday is 12. Just as in the inference situation, it is desirable to construct

an interval that will contain 
~
Y  with a high probability. Suppose the desired

probability content is 0.90. One constructs this prediction interval by



putting in the most likely values of 
~
Y  until the probability content of the

set exceeds 0.90.

 This method is implemented using the following command

 
discint(cbind(0:20, prob), .9) 
$prob 
[1] 0.9185699 
$set 
[1] 7 8 9 10 11 12 13 14 15 16 

One therefore finds that

Prob(7 ≤ ~
Y ≤ 16) = 0.919.

This exact predictive distribution is based on the posterior distribution

of p, as one uses π(p| Y = y) in the integration process in Equation (7.14).

For that reason this predictive distribution is called the posterior predictive

distribution. There also exists a prior predictive distribution, a topic we will

briefly introduce in Section 7.6.

In situations where it is difficult to derive the exact predictive

distribution, one simulates values from this distribution. One implements

this predictive simulation by first simulating draws of the parameter (in

this case the proportion p) from its posterior distribution, and then

simulating values of the future observation (e.g. the new observation 
~
Y )

from the sampling density (here the binomial distribution).

We illustrate this simulation procedure with the generic beta posterior

Beta(a + y, b + n − y). To simulate a single draw from the predictive

distribution, one first simulates a single proportion value p from the beta

posterior and then simulates a new data point ~y (the number of successes

out of m trials) from a binomial distribution with sample size m and

probability of success given by the simulated draw of p.

 This process of simulating a single draw is implemented by the rbeta()

and rbinom() functions. Let m = n (the size of the future sample is the

same as the size of the observed sample).

sample p ∼ Beta(a + y, b + n − y) → sample ~
Y ∼ Binomial(m, p)



a <- 3.06; b <- 2.56 
n <- 20; y <- 12 
pred_p_sim <- rbeta(1, a + y, b + n - y) 
(pred_y_sim <- rbinom(1, n, pred_p_sim)) 
[1] 14 

Due to the ability of R to work easily with vectors, the same code is

essentially used for simulating S = 1000 draws from the predictive

distribution. In the following R script, pred_p_sim contains 1000 simulated

draws from the posterior, and for each element of this posterior sample, the

rbinom() function is used to simulate a corresponding value of 
~
Y  from the

binomial sampling density.

 
a <- 3.06; b <- 2.56 
n <- 20; y <- 12 
S = 1000 
pred_p_sim <- rbeta(S, a + y, b + n - y) 
pred_y_sim <- rbinom(S, n, pred_p_sim) 

Figure 7.14 displays predictive probabilities for the number of students

who prefer Fridays using the exact beta-binomial and simulation methods.

One observes good agreement using these two computation methods. For

example, using the simulated values of 
~
Y  one finds that

Prob(6 ≤ ~
Y ≤ 15) = 0.927

which is close in value to the range Prob(7 ≤ ~
Y ≤ 16) = 0.919 found using

the exact predictive distribution.

 
discint(as.matrix(S1[, 2:3]), .9) 
$prob 
[1] 0.927 
$set 
[1] 6 7 8 9 10 11 12 13 14 15 



FIGURE 7.14 

Display of the exact and simulated predictive probabilities for dining example.

 

7.6  Predictive Checking

Prior predictive checking

In the previous section, the use of the predictive distribution has been

illustrated in learning about future data. This is more precisely described

as the posterior predictive density as one is obtaining this density by

integrating the sampling density f( ~
Y = ~y ∣ p) over the posterior density

π(p| y).

The prior predictive density is also useful in model checking. In a

Bayesian model where p has a prior π(p) and Y has a sampling density f(Y

= y| p), one writes the joint density of (p, Y) as the product of the

sampling density and the prior:

(7.17)f(p,Y = y) = f(Y = y ∣ p)π(p).



Suppose one conditions on y instead of p and then one obtains an

alternative representation of the joint density:

(7.18)

The first term in this product, the density π(p| Y = y), is the posterior

density of p given the observation y; this density is useful for performing

inference about the proportion. The second term in this product, f(Y = y),

is the prior predictive density that represents the density of future data

before the observation y is taken. If the actual observation denoted by yobs

is not consistent with the prior predictive density f(Y = y), this indicates

some problem with the Bayesian model. Basically, this says that the

observed data is unlikely to happen if one simulates predictions of data

from our model.

To illustrate the use of prior predictive checking, recall that the

restaurant owner assigned a Beta(3.06, 2.56) prior to the proportion p of

students dining on Friday. A sample of 20 students will be taken. Based on

this information, one computes the predictive probability f(Y = y) of y

students preferring Friday dining of the sample of 20. This predictive

distribution for all possible values of y is displayed in Figure 7.15. Recall

that we actually observed yobs = 12 Friday diners — this value is shown in

Figure 7.15 as a large black dot. This value is in the middle of the

distribution – the takeaway is that the observed data is consistent with

predictions from the owner’s Bayesian model.

f(p,Y = y) = π(p ∣ Y = y)f(Y = y).



FIGURE 7.15 

Prior predictive distribution of y using the owner’s beta prior. The observed number of y is indicated

with a large black dot. In this case the observed data is consistent with the Bayesian model.

In contrast, suppose another restaurant worker is more pessimistic about

the likelihood of students dining on Friday. This worker’s prior median of

the proportion p is 0.2 and her 90th percentile is 0.4 — this information is

matched with a beta prior with shape parameters 2.07 and 7.32. Figure

7.16 displays the predictive density of the number of Friday diners of a

sample of 20 using this worker’s prior. Here one reaches a different

conclusion. The observed number 12 of Friday diners is in the tail of this

predictive distribution — this observation is not consistent with predictions

from the Bayesian model. In closer examination, one sees conflict between

the information in the worker’s prior and the data — her prior said that

the proportion p was close to 0.20 and the data result (12 out of 20

successes) indicates that the proportion is close to 0.60. Predictive checking

is helpful in this case in detecting this prior/data conflict.



FIGURE 7.16 

Prior predictive distribution of y using a worker’s beta prior. The observed number of y is indicated

with a large black dot. In this case the observed data is not consistent with the Bayesian model.

Comparing Bayesian models

The prior predictive distribution is also useful in comparing two Bayesian

models. To illustrate model comparison, suppose a second worker at the

restaurant is also asked about the fraction of students who dine on Friday.

He knows that the owner’s belief about the proportion p is described by a

Beta(3.06, 2.56) density, and the fellow worker’s belief about p is

represented by a Beta(2.07, 7.32) density. Who should the second worker

believe?

Suppose this second worker believes that both the owner’s and fellow

worker’s beliefs about the proportion p are equally plausible. So he places a

probability of 0.5 on the Beta(3.06, 2.56) prior and a probability of 0.5 on

the Beta(2.07, 7.32) prior. This second worker’s prior π(p) is written as the

mixture

(7.19)π(p) = qπ1(p) + (1 − q)π2(p),



where q = 0.5 and π1 and π2 denote the owner’s and worker’s beta priors.

Now one observes the survey data – y Fridays in a sample of size n.

Using the usual prior times likelihood procedure, the posterior density of p

is proportional to the product

(7.20)

After some manipulation, one can show that the posterior density for the

proportion p has the mixture form

(7.21)

The posterior densities π1(p| y) and π2(p| y) are the familiar beta forms.

For example, π1(p| Y = y) will be the Beta(3.06 + y, 2.56 + n − y)

posterior density combining the Beta(3.06, 2.56) prior and the sample data

of y successes in a sample of size n. Likewise, π2(p| Y = y) will be the beta

density combining the worker’s Beta(2.07, 7.32) prior and the data.

The quantity q(y) represents the posterior probability of the owner’s

prior. One expresses this probability as

(7.22)

where f1(Y = y) and f2(Y = y) denote the predictive densities

corresponding to the owner’s and worker’s priors. With a little algebra, one

represents the posterior odds of the model probabilities as follows.

(7.23)

π(p ∣ Y = y) ∝ [qπ1(p) + (1 − q)π2(p)] × (n

y
)py(1 − p)n−y.

π(p ∣ Y = y) = q(y)π1(p ∣ Y = y) + (1 − q(y))π2(p ∣ Y = y).

q(y) = qf1(Y=y)
qf1(Y=y)+(1−q)f2(Y=y)

P(Prior 1∣Y=y)
P(Prior 2∣Y=y) = q(y)

1−q(y) = [ q

1−q
][ f1(Y=y)

f2(Y=y) ]



The posterior odds of the owner’s prior P(Prior 1| Y = y)/P(Prior 2| y

= y) is written as the product of two terms.

The ratio q/(1 − q) represents the prior odds of the owner’s prior.

The term f1(Y = y)/f2(Y = y), the ratio of the predictive densities, is

called the Bayes factor. It reflects the relative abilities of the two

priors to predict the observation y.

 The function binomial.beta.mix() is used to find the Bayes factor for

our example. One inputs the prior probabilities of the two models (priors),

and the vectors of beta shape parameters that define the owner’s prior and

the worker’s prior. The displayed output is the posterior odds value of 6.77.

 
probs <- c(0.5, 0.5) 
beta_par1 <- c(3.06, 2.56) 
beta_par2 <- c(2.07, 7.32) 
beta_par <- rbind(beta_par1, beta_par2) 
output <- binomial.beta.mix(probs, beta_par, c(12, 8)) 
(posterior_odds <- output$probs[1] / output$probs[2]) 
6.777823 

Since the two priors are given equal probabilities, the prior odds q/(1 −
q) is equal to one. In this case the posterior odds is equal to the Bayes

factor. The interpretation is that for the given observation (12 successes in

20 trials), there is 6.77 times more support for the owner’s prior than for

the worker’s prior. This conclusion is consistent with the earlier work that

showed that the observed value of y was inconsistent with the Bayesian

model for the worker’s prior.

Posterior predictive checking

Although the prior predictive distribution is useful in model checking, it

has some disadvantages. One problem is that the distribution f(Y = y) may

not exist in the situation where the prior π() is not a proper probability

distribution. We will see particular situations in future chapters where a

vague or imprecise probability distribution is assigned as our prior and

then the prior predictive distribution will not be well-defined. A related

issue is that a prior may be assigned that may not accurately reflect one’s



prior beliefs about a parameter. Small errors in the specification of the

prior will result in errors in the prior predictive distribution. So there needs

to be some caution in the use of the prior predictive distribution in

assessing the goodness of the Bayesian model.

An alternative method of checking the suitability of a Bayesian model is

based on the posterior predictive distribution. In this setting, one computes

the posterior predictive distribution of a replicated dataset, that is a

dataset of the same sample size as our observed sample. One sees if the

observed value of y is in the middle of this predictive distribution. If this is

true, then this means that the observed sample is consistent with

predictions of replicated data. On the other hand, if the observed y is in

the tails of the posterior distribution, this indicates some model

misspecification which means that there is a possibility of some issue with

the specified prior or sampling density.

One attractive aspect of the posterior prediction distribution is that

replicated datasets are conveniently simulated. To simulate one replicated

dataset, we first simulate a parameter from its posterior distribution, then

simulate new data from the data model given the simulated parameter

value. In the beta-binomial situation, the posterior of the proportion p is

Beta(a + y, b + n − y). To simulate a new data point 
~
Y = ~y, one first

simulates a proportion value p
(1)

 from the beta prior and then simulates a

new data point ~y(1)
 from a binomial distribution with sample size n and

probability of success p
(1)

. If we wish to obtain a sample of size S from the

posterior predictive distribution, this process is repeated S times as showed

in the following diagram.

The sample ~y(1), . . . , ~y(S)
 is an approximation to the posterior predictive

distribution that is used for model checking. In practice, one constructs a

histogram of this sample and decides if the observed value of y is in the

central portion of this predictive distribution. The reader will be given an

sample p(1) ∼ Beta(a + y, b + n − y) → sample ~y(1) ∼ Binomial(n, p(1))

sample p(2) ∼ Beta(a + y, b + n − y) → sample ~y(2) ∼ Binomial(n, p(2))

⋮

sample p(S) ∼ Beta(a + y, b + n − y) → sample ~y(S) ∼ Binomial(n, p(S))



opportunity to use this algorithm to see if the observed data is consistent

with simulations of replicated data from this predictive distribution.

 

7.7  Exercises

1. Laymen’s Prior in the Dining Preference Example

Revisit Section 7.2.1 for the laymen’s prior in Equation (7.2) and the

expert’s prior in Equation (7.3). Follow the example R code (functions

data.frame(), mutate() and ggplot()) to obtain the Bayes table and

graph of the laymen’s prior distribution. Compare the similarities and

differences between the laymen’s prior and the expert’s prior.

2. Inference for the Dining Preference (Discrete Priors)

Revisit Section 7.2.5 where we show how to find the posterior

probability that over half of the students prefer eating out on Friday.

Find the following posterior probabilities. (Be careful about the end

points.)

(a) The probability that more than 60% of the students prefer eating

out on Friday.

(b) The probability that less than 40% of the students prefer eating

out on Friday.

(c) The probability that between 20% and 40% of the students prefer

eating out on Friday.

(d) No more than 50% of the students prefer eating out on Friday.

3. Another Dining Survey (Discrete Priors)

Suppose the restaurant owner in the college town gives another survey

to a different group of students. This time he gives the survey to 30

students – among these responses 10 of them say that Friday is their

preferred day to eat out. Use the owner’s prior (restated below) to

calculate the following posterior probabilities.

(a) The probability that 30% of the students prefer eating out on

Friday.

p = {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}
πe(p) = (0.125, 0.125, 0.250, 0.250, 0.125, 0.125)



(b) The probability that more than half of the students prefer eating

out on Friday.

(c) The probability that between 20% and 40% of the students prefer

eating out on Friday.

4. Interpreting A Beta Curve

Revisit Figure 7.4 where nine different beta curves are displayed. In

the context of students’ dining preference example where p is the

proportion of students preferring Friday, interpret the following prior

choices in terms of the opinion of p. For example, Beta(0.5, 0.5)

represents the prior belief the extreme values p = 0 and p = 1 are

more probable and p = 0.5 is the least probable. In the students’

dining preference example, specifying a Beta(0.5, 0.5) prior indicates

the owner thinks the students’ preference of dining out on Friday is

either very strong or very weak.

(a) Interpret the Beta(1, 1) curve.

(b) Interpret the Beta(0.5, 1) curve.

(c) Interpret the Beta(4, 2) curve.

(d) Compare the opinion about p expressed by the two beta curves:

Beta(4, 1) and Beta(4, 2).

5. Beta Probabilities

Use the functions dbeta(), pbeta(), qbeta(), rbeta(), beta_area(),

and beta_quantile() to answer the following questions about beta

probabilities.

(a) Compute the density of Beta(0.5, 0.5) at the values p = {0.1, 0.5,

0.9, 1.5}. Check your answers with the Beta(0.5, 0.5) curve in

Figure 7.4.

(b) If p ∼ Beta(6, 3), compute the probability Prob(0.2 ≤ p ≤ 0.6).

(c) Compute the quantiles of the Beta(10, 10) distribution at the

probability values in the set {0.1, 0.5, 0.9, 1.5}.

(d) Simulate a sample of 100 random values from Beta(4, 2).

6. Comparing Beta Distributions

Consider four Beta curves: (1) Beta(5, 5), (2) Beta(10, 10), (3)

Beta(50, 50) and (4) Beta(100, 100). Think of the shape parameters a

and b as counts of “successes” and “failures” in a prior sample. Use one

of the R beta functions (e.g. rbeta(), beta_area(), among others) to

discuss the similarities and differences between these four beta curves.

7. Specifying A Continuous Beta Prior



Consider another dining survey conducted by a restaurant owner in

New York. The owner is also interested in knowing about the

proportion p of students who prefer eating out on Friday. He believes

that its 0.4 quantile is 0.7 and 0.8 quantile is 0.9. Suppose the owner

plans on using a beta prior distribution.

(a) Find the values of the beta shape parameters a and b to represent

the restaurant owner’s belief.

(b) Confirm the choice of beta prior by taking a simulated sample

from the prior predictive simulation. [Hint: use the rbeta()

function to simulate a sample from the selected beta distribution,

and then simulate new ~y values from the binomial data model

(function rbinom()) with a sample size of 20. Graph and/or

calculate a few quantiles of the simulated ~y sample from the

predictive distribution to check the restaurant owner’s prior

belief.]

8. Deriving the Beta Posterior

Following the derivation process of the dining preference example in

Section 7.4.1, derive this more general result. If the proportion has a

Beta(a, b) prior and one samples Y from a binomial distribution with

parameters n and p, then if one observes Y = y, then the posterior

density of p is Beta(a + y, b + n − y).

9. Prior Sample Size and Strength of Priors

Another way of specifying a Beta(a, b) prior is to imagine a pre-survey

with the same question and represent the beta shape parameters in the

form of a successes and b failures in the pre-survey (see Table 7.3).

This exercise explores this prior specification method.

TABLE 7.3

Updating the beta prior.

Source Successes Failures

Prior a b

Likelihood y n − y

Posterior a + y b + n − y

(a) Recall from Section 7.3 that the mean of the Beta(a, b)

distribution is 
a

a+b
. Define the prior sample size to be np = a + b.

Consider two beta prior distributions: Beta(2, 2) and Beta(20,



20). Find the prior means and prior sample sizes of these two

prior distributions and compare the prior beliefs of these two beta

distributions.

(b) Suppose a survey yields four successes out of ten responses.

Suppose one wishes to compare the posterior inference obtained

by the two different Beta priors Beta(2, 2) and Beta(20, 20). Find

and compare the two posterior distributions corresponding to

these two priors.

(c) Consider the use of the Beta(2, 2) and Beta(20, 20) prior

distributions. Show these two priors have the same prior mean,

but different strengths of belief about the location of the

proportion. Assuming the survey results in (b), use simulation

and graphs to show how different prior sample sizes affect the

posterior inference.

(d) Suppose a survey yields 40 successes out of 100 responses. Find

the two posterior distributions corresponding to the two prior

distributions Beta(2, 2) and Beta(20, 20). Contrast the two

posterior distributions and compare with your answer to part (c).

(e) Consider the two prior distributions Beta(9, 1) and Beta(45, 5).

Contrast these two beta prior distributions with respect to the

mean and strength of belief. Compare the two posterior

distributions with data n = 20, y = 5, and with the data n = 200,

y = 50.

10. Beta Posterior Mean is a Weighted Mean

If the proportion has a Beta(a, b) prior and one observes Y from a

binomial distribution with parameters n and p, then if one observes Y

= y, then the posterior density of p is Beta(a + y, b + n − y).

Recall that the mean of a Beta(a, b) random variable following is 
a

a+b
.

Show that the posterior mean of p| Y = y ∼ Beta(a + y, b + n − y) is

a weighted average of the prior mean of p ∼ Beta(a, b) and the sample

mean p̂ = y

n
. Find the two weights and explain their implication for

the posterior being a combination of prior and data.

11. Sequential Updating

The restaurant owner’s belief about the proportion of students’

favorite dining day being Friday is represented by a Beta(15.06, 10.56)

distribution. Recall that he obtained this posterior distribution from a

Beta(3.06, 2.56) prior and a survey of 12 yes’s out of 20 responses. The



owner is interested in conducting another dining survey a few months

later with the same question and the owner is still interested in p, the

proportion of all students who say Friday or Saturday.

(a) The second survey gives a result of 8 yes’s out of 20 responses.

Use the owner’s current beliefs and this information to update the

restaurant owner’s belief about the proportion p.

(b) Suppose the two surveys are conducted at the same time and the

results are 20 yes’s (12 + 8) out of 40 responses (20 + 20).

Starting with the Beta(3.06, 2.56) prior, update the owner’s belief

about the proportion of interest.

(c) Are the two posterior distribution the same in parts (a) and (b)?

Why or why not?

(d) Suppose the two survey results are reversed. That is, the first

survey gives 8 yes’s and second survey gives 12 yes’s. Do you still

observe the same posterior as in part (b)? What does this tell you

about the order of different pieces of information shaping the

belief about a parameter?

(e) What if the two survey results are slightly different? The first

survey gives 15 yes’s and second survey gives 5 yes’s. What is the

posterior distribution in this case?

(f) Should we combine the two survey results together? Describe a

scenario in which it would be inappropriate to combine the survey

results.

12. Bayesian Hypothesis Testing

In the dining preference example, the restaurant owner’s posterior

distribution of proportion p of students preferring Friday to eat out is

Beta(15.06, 10.56). Suppose the owner’s wife claims that between 50%

and 60% of the students prefer to eat out on Friday. Conduct a

Bayesian hypothesis test of this claim.

13. Simulation Sample Size

Revisit Section 7.5.2. Use R to simulate random samples of sizes S =

{10, 100, 500, 1000, 5000} of p from the Beta(15.06, 10.56)

distribution. Use the quantile() function to find the approximate 90%

credible interval of p for each value of S. Comment on the effect of the

simulation size S on the accuracy of the simulation results. Recall that

the exact middle 90% posterior interval estimate is [0.427, 0.741].

14. Bayesian Credible Intervals



In the dining preference example, the restaurant owner’s posterior

distribution of proportion p of students preferring Friday to eat out is

Beta(15.06, 10.56). Find the exact Bayesian credible intervals for the

following cases.

(a) The middle 95% credible interval.

(b) The middle 98% credible interval.

(c) The 90% credible interval of the form (0, B).

(d) The 99% credible interval of the form (A, 1)

15. Simulating the Posterior of the Log Odds

Since one is able to compute exact posterior summaries using the

pbeta() and qbeta() functions, what is the point of using simulation

computations? To illustrate the advantage of simulation, suppose one

is interested in finding a 90% probability interval about the logit or log

odds log( p

1−p
). One can approximate the posterior of the logit by

simulation. First simulate S = 1000 values from the beta posterior for

p, and then for each simulated value of p, compute a value of the logit.

The resulting vector will be a random sample from the posterior

distribution of the logit.

(a) If the posterior distribution for p is Beta(12, 20), use R to

simulate 1000 draws from the posterior of the logit log( p

1−p
).

(b) Construct a 90% interval estimate for the logit parameter.

16. Simulating the Odds

Revisit Exercise (5). Instead of the logit or log odds of the proportion

p, suppose we are interested in the odds 
p

1−p
. If the posterior

distribution for p is Beta(12, 20), use R to simulate 1000 values from

the posterior distribution of the odds. Construct a histogram of the

simulated odds and construct a 90% interval estimate. Experiment

with different values of the simulation sample size S and comment on

the effect of the value of S on the width of the 90% interval estimates.

17. Teenagers and Televisions

In 1998, the New York Times and CBS News polled 1048 randomly

selected 13 − 17 year olds to ask them if they had a television in their

room. Among this group of teenagers, 692 of them said they had a

television in their room. Alex and Benedict both want to use the

binomial model for this dataset, but they have different prior beliefs

about p, the proportion of teenagers having a television in their room.



(a) Alex asks 10 friends the same question and 8 of them have a

television in their room. Alex decides to use this information to

construct his prior. Design a continuous beta prior reflecting

Alex’s belief.

(b) Benedict thinks the 0.2 quantile is 0.3 and the 0.9 quantile is 0.4.

Design a continuous beta prior reflecting Benedict’s belief.

(c) Calculate Alex’s posterior and Benedict’s posterior distributions.

Plot the two priors on one graph, and plot the corresponding

posteriors on another graph. In addition, obtain 95% credible

intervals for Alex and Benedict.

(d) Conduct prior predictive checks for Alex and Benedict. For each

person, is the prior consistent with the television data? Explain.

18. Teenagers and Televisions (continued)

Revisit Exercise (17). Consider the odds of having a television in the

room. Recall that if p is the probability of having a television in room,

then the odds is 
p

1−p
.

(a) Find the mean, median and 95% posterior interval of Alex’s

analysis of the odds of teenagers having a television in their room.

(b) Find the mean, median and 95% posterior interval of Benedict’s

analysis of the odds of teenagers having a television in their room.

(c) Compare the two posterior summaries from parts (a) and (b).

19. Comparing Two Proportions - Science Majors at Liberal Arts

Colleges

Many liberal arts colleges and other organizations have been

promoting science majors in recent years because of their value on the

job market. One wishes to evaluate whether such promotion has any

effect on student major preference. A college student, Clara, is

interested in this question and collects data from three liberal arts

colleges, presented in Table 7.4.

TABLE 7.4

Total numbers of science and non-science majors enrolled in three liberal arts colleges in 2005 and

2015.

Year Science Non-Science

2005 264 1496

2015 437 1495



(a) Let p2005 and p2015 denote the proportions of science majors in

2005 and 2015, respectively. Assuming that p2005 and p2015 have

independent uniform priors, obtain the joint posterior distribution

of p2005 and p2015. Recall that the Beta(1, 1) distribution is

equivalent to the Uniform(0, 1) distribution.

(b) Suppose one uses the parameter δ = p2015 − p2005 to measure the

difference in proportions. Use simulation from the posterior

distribution to answer the question “have the proportions of

science majors changed from 2005 to 2015?” [Hint: simulate a

vector s2005 of posterior samples of p2005 and another vector s2015

of posterior samples of p2015 (make sure to use the same number

of samples) and subtract s2005 from s2015 which yields a vector of

simulated values from the posterior of δ.]

(c) Did the proportion of science majors change from 2005 to 2015?

Answer this question by a posterior computation.

(d) Compile a similar dataset for your school type, and answer parts

(a) through (c).

(e) What assumption is made about the proportions p2005 and p2015 in

our assignment of priors? Do you think such assumption is

justified? If not, how do you think you can adjust the approach to

be more realistic?

20. Comparing Two Proportions - Number of Depression Cases

at a Hospital

Data are collected on depression cases at hospitals. For a particular

hospital, in the year of 1992, there were 306 diagnosed with depression

among 651 patients; in the year of 1993, there were 300 diagnosed with

depression among 705 patients. One is interested in learning whether

the probability of being diagnosed with depression changed between

1992 and 1993. Conduct a Bayesian analysis of this question. State

clearly the inference procedure, the choice of prior distributions, the

choice of data model, the posterior distributions and the conclusions.

21. Prior Predictive Checking - Pizza Popularity

Suppose a restaurant is serving pizza of two varieties, cheese and

pepperoni, and a manager is interested in the proportion p of

customers who prefer pepperoni. After some thought, the manager’s

prior beliefs about p are represented by a Beta(6, 12) distribution.



(a) Suppose a random sample of 20 customers is surveyed on their

pizza preference and let Y denote the number that prefer

pepperoni. Compute and graph the prior predictive density of Y.

(b) Suppose 20 customers are sampled and 14 prefer pepperoni. Is the

value y = 14 consistent with the Bayesian model where p has a

Beta(6, 12) distribution? Explain why or why not.

22. Bayes Factor - Pizza Popularity

In the restaurant example of Exercise (21), suppose one of the waiters

has a different opinion about the popularity of pepperoni pizza. His

prior belief about the proportion p preferring pizza is described by a

Beta(12, 6) distribution.

(a) Find and graph the prior predictive density of the number y who

prefer pizza in a sample of 20 customers.

(b) If 14 out of 20 customers prefer pepperoni, is this result consistent

with the predictive distribution?

(c) Compare the two Bayesian models where (1) p is distributed

Beta(12, 62) distribution and (2) p is distributed Beta(6, 12)

distribution by a Bayes factor. Interpret the value that you

compute.

23. Posterior Predictive Checking - Pizza Popularity

Consider the same problem as in Exercise (22) where p is the

proportion of customers who prefer pepperoni and the manager’s prior

beliefs are given by a Beta(6, 12) distribution.

(a) Suppose 14 out of 20 customers prefer pepperoni. Using the

algorithm described in Section 7.6, simulate 1000 values of ~y (out

of 20 customers) from the posterior predictive distribution.

Construct a histogram of these values.

(b) Is the observation (14 preferring pepperoni) consistent with this

predictive distribution? Explain.

(c) Repeat parts (a) and (b) using the waiter’s Beta(12, 6)

distribution.

24. Learning from a Multinomial Experiment

In Chapter 6 Section 6.3, we discussed the multinomial distribution, an

extension of the binomial distribution where each trial has more than

two outcomes. As an application of a multinomial experiment, in an

analysis of an election poll, suppose that one wants inferences for three

probabilities: θA = probability of a vote for a candidate from Party A,



θB = probability of a vote for a candidate from Party B and θC =

probability of a vote for a candidate from Party C. One assumes θA +

θB + θC = 1 as people can vote for only one party. If a random sample

of n potential voters is taken, the respective vector counts YA, YB, YC

have the probability mass function

p(YA = yA,YB = yB,YC = yC) =
n!

yA!yB!yC!
θ
yA
A
θ
yB
B θ

yC
C , (7.24)

where yA + yB + yC = n and yA, yB, yC ≥ 0. This is written

Multinomial(n;θA, θB, θC).

(a) A convenient prior distribution for (θA, θB, θC) is the Dirichlet

distribution, which has the density function

where (αA, αB, αC) are positive constants, and K = Γ(αA+αB+αC)
Γ(αA)Γ(αB)Γ(αC)

is a normalizing constant. This is written Dirichlet(αA, αB, αC).

Install the gtools R package and explore ddirichlet() and

rdirichlet() functions to evaluate the pdf and generate random

samples from Dirichlet(αA = 2, αB = 1, αC = 1).

(b) Suppose the prior distribution is Dirichlet(αA, αB, αC) and one

collects from n sampled voters, where (YA, YB, YC) ∼

Multinomial(n;θA, θB, θC). Find the posterior distribution of (θA,

θB, θC) and show that this is a Dirichlet distribution with

updated parameters.

(c) Suppose in the sample of n = 100 voters, 53 voted for Party A, 18

voted for Party B, and 29 voted for Party C (yA = 53, yB = 18,

yC = 29). Using the prior distribution Dirichlet(αA = 2, αB = 1,

αC = 1) and the generic results from part (b), obtain the posterior

distribution for (θA, θB, θC). Plot the prior and the posterior

distributions for (θA, θB, θC) and discuss your findings.

p(θA, θB, θC) = Kθ
αA−1
A θ

αB−1
B θ

αC−1
C ,



(d) Suppose one wants to compute the ratio of odds of voting for

Party A to the odds of voting for Party B, 
θA/(1−θA)
θB/(1−θB) . Compute a

95% posterior interval for this odds ratio.
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Modeling Measurement and Count Data
 

 

8.1  Introduction

We first consider the general situation where there is a hypothetical population of

individuals of interest and there is a continuous-valued measurement Y associated

with each individual. One represents the collection of measurements from all

individuals by means of a continuous probability density f(y). As discussed in

Chapter 5, one summarizes this probability density with the mean μ:

(8.1)

The value μ gives us a sense of the location of a typical value of the continuous

measurement Y.

To learn about the population of measurements, a random sample of individuals

Y1, …, Yn will be taken. The general inferential problem is to use these

measurements together with any prior beliefs to learn about the population mean μ.

In other words, the goal is to use the collected measurements to learn about a

typical value of the population of measurements.

 

8.2  Modeling Measurements

8.2.1  Examples

College applications

How many college applications does a high school senior in the United States

complete? Here one imagines a population of all American high school seniors and

μ = ∫ yf(y)dy.



the measurement is the number of completed college applications. The unknown

quantity of interest is the mean number of applications μ completed by these high

school seniors. The inferential question may be stated by asking, on average, how

many college applications does an American high school senior complete. The

answer to this question gives one a sense of the number of completed applications

for a typical high school senior. To learn about the average μ, it would be infeasible

to collect this measurement from every high school senior in the U.S. Instead, a

survey is typically conducted to a sample of high school seniors (ideally a sample

representative of all American high school seniors) and based on the measurements

from this sample, some inference is performed about the mean number of college

applications.

Household spending

How much does a household in San Francisco spend on housing every month? One

visualizes the population of households in San Francisco and the continuous

measurement is the amount of money spent on housing (either rent for renters and

mortgage for homeowners) for a resident. One can ask “on average, how much does a

household spend on housing every month in San Francisco?”, and the answer to this

question gives one a sense of the housing costs for a typical household in San

Francisco. To learn about the mean value of housing μ of all San Francisco residents,

a sample survey is conducted. The mean value of the housing costs ȳ from this

sample of surveyed households is informative about the mean housing cost μ for all

residents.

Weights of cats

Suppose you have a domestic shorthair cat weighing 14 pounds and you want to find

out if she is overweight. One imagines a population of all domestic shorthair cats

and the continuous measurement is the weight in pounds. Suppose you were able to

compute the mean weight μ of all shorthair cats. Then by comparing 14 pounds (the

weight of our cat) to this mean, you would know whether your cat is overweight, or

underweight, or close to the mean. If we were able to find the distribution of the

weights of all domestic shorthair cats, then one observes the proportion of weights

smaller than 14 pounds in the distribution and learns if the cat is severely

overweight. To learn if our cat is overweight, you can ask the vet. How does the vet

know? Extensive research has been conducted periodically to record weights of a

large sample of domestic shorthair cats, and by using these samples of weights, the

vet performs an inference about the mean μ of the weights of all domestic shorthair

cats.

Common elements of an inference problem

All three examples have common elements:



One has an underlying population of measurements, where the measurement is

an integer, such as the number of college applications, or continuous, such as a

housing cost or a cat weight.

One is interested in learning about the value of the mean μ of the population of

measurements.

It is impossible or impractical to collect all measurements from the population,

so one will collect a sample of measurements Y1, …, Yn and use the observed

measurements to learn about the unknown population mean μ.

8.2.2  The general approach

Recall the three general steps of Bayesian inference discussed in Chapter 7 in the

context of an unknown proportion p.

Step 1 Prior: We express an opinion about the location of the proportion p

before sampling.

Step 2 Likelihood: We take the sample and record the observed proportion.

Step 3 Posterior: We use Bayes’ rule to sharpen and update the previous

opinion about p given the information from the sample.

In this setting, we have a continuous population of measurements that we

represent by the random variable Y with density function f(y). It is convenient to

assume that this population has a normal shape with mean μ and standard

deviation σ. That is, a single measurement Y is assume to come from the density

function

f(y) =
1

√2πσ
exp{−

(y − μ)2

2σ2
}, −∞ < y < ∞ (8.2)

displayed in Figure 8.1. To simplify the discussion, it is convenient to assume that

the standard deviation σ of the measurement distribution is known. Then the

objective is to learn about the single mean measurement μ.



FIGURE 8.1

Normal sampling density with mean μ.

Step 1 in Bayesian inference is to express an opinion about the parameter. In this

continuous measurement setting, one constructs a prior for the mean parameter μ

that expresses one’s opinion about the location of this mean. In this chapter, we

discuss different ways to specify a prior distribution for μ. One attractive discrete

approach for expressing this prior opinion, similar to the approach in Chapter 7 for

a proportion p, has two steps. First one constructs a list of possible values of μ, and

then one assigns probabilities to the possible values to reflect one’s belief.

Alternatively, we will describe the use of a continuous prior to represent one’s belief

for μ. This is a more realistic approach for constructing a prior since one typically

views the mean as a real-valued parameter.

Step 2 of our process is to collect measurements from a random sample to gain

more information about the parameter μ. In our first situation, one collects the

number of applications from a sample of 100 high school seniors. In the second

example, one collects a sample of 2000 housing costs, each from a sampled San

Francisco household. The third example collects a sample of 200 different weights of

domestic shorthair cats, each from a sampled cat. If these measurements are viewed

as independent observations from a normal sampling density with mean μ, then one

constructs a likelihood function which is the joint density of the sampled

measurements viewed as a function of the unknown parameter.

Once the prior is specified and measurements have been collected, one proceeds to

Step 3 to use Bayes’ rule to update one’s prior opinion to obtain a posterior

distribution for the mean μ. The algebraic implementation of Bayes’ rule is a bit

more tedious when dealing with continuous data with a normal sampling density.

But we will see there is a simple procedure for computing the posterior mean and

standard deviation.



8.2.3  Outline of chapter

Throughout this chapter, the entire inferential process is described for learning

about a mean μ assuming a normal sampling density for the measurements. This

chapter discusses how to construct a prior distribution that matches one’s prior

belief, how to extract information from the data by the likelihood function, and how

to update one’s opinion in the posterior, combining the prior and data information

in a natural way.

Section 8.3 introduces inference with a discrete prior distribution for the mean μ

and Section 8.4 introduces the continuous family of normal prior distributions for

the mean. The inferential process with a normal prior distribution is described in

detail in Section 8.5. Section 8.6 describes some general Bayesian inference methods

in this normal data and normal prior setting, such as Bayesian hypothesis testing,

Bayesian credible intervals and Bayesian prediction. These sections describe the use

of both exact analytical solutions and approximation simulation-based calculations.

Section 8.7 introduces the use of the posterior predictive distribution as a general

tool for checking if the observed data is consistent with predictions from the

Bayesian model.

The chapter concludes in Section 8.8 by introducing a popular one-parameter

model for counts, the Poisson distribution, and its conjugate gamma distribution for

representing prior opinion. Although this section does not deal with the normal

mean situation, the exposure to the important gamma-Poisson conjugacy will

enhance our understanding and knowledge of the analytical process of combining the

prior and likelihood to obtain the posterior distribution.

 

8.3  Bayesian Inference with Discrete Priors

8.3.1  Example: Roger Federer’s time-to-serve

Roger Federer is recognized as one of the greatest players in tennis history. One

aspect of his play that people enjoy is his businesslike way of serving to start a point

in tennis. Federer appears to be efficient in his preparation to serve and some of his

service games are completed very quickly. One measures one’s service efficiency by

the time-to-serve which is the measured time in seconds between the end of the

previous point and the beginning of the current point.

Since Federer is viewed as an efficient server, this raises the question: how long, on

average, is Federer’s time-to-serve? We know two things about his time-to-serve

measurements. First, since they are time measurements, they are continuous

variables. Second, due to a number of other variables, the measurements will vary

from serve to serve. Suppose one collects a single time-to-serve measurement in



seconds. denoted as Y. It seems reasonable to assume Y is normally distributed with

unknown mean μ and standard deviation σ. From previous data, we assume that the

standard deviation is known and given by σ = 4 seconds.

Recall the normal probability curve has the general form

f(y) =
1

√2πσ
exp{−

(y − μ)2

2σ2
}, −∞ < y < ∞. (8.3)

Since σ = 4 is known, the only parameter in Equation (8.3) is μ. We are interested

in learning about the mean time-to-serve μ.

A convenient first method of implementing Bayesian inference is by the use of a

discrete prior. One specifies a subjective discrete prior for Federer’s mean time-to-

serve by specifying a list of plausible values for μ and assigning a probability to each

of these values.

In particular suppose one thinks that values of the equally spaced values μ = 15,

16, …, 22 are plausible. In addition, one does not have any good reason to think

that any of these values for the mean are more or less likely, so a uniform prior will

be assigned where each value of μ is assigned the same probability 
1
8 .

π(μ) =
1

8
, μ = 15, 16, . . . , 22. (8.4)

Each value of μ corresponds to a particular normal sampling curve for the time-to-

serve measurement. Figure 2.1 displays the eight possible normal sampling curves.

Our prior says that each of these eight sampling curves has the same prior

probability.

To learn more about the mean μ, one collects a single time-to-serve measurement

for Federer, and suppose it is 15.1 seconds, that is, one observes Y = 15.1. The

likelihood function is the normal density of the actual observation y viewed as a

function of the mean μ (remember that it was assumed that σ = 4 was given). By

substituting in the observation y = 15.1 and the known value of σ = 4, one writes

the likelihood function as

For each possible value of μ, we substitute the value into the likelihood expression.

For example, the likelihood of μ = 15 is equal to

L(μ) = 1
√2π4

exp{− 1
2(4)2 (15.1 − μ)2}.



This calculation is repeated for each of the eight values μ = 15, 16, …, 22, obtaining

eight likelihood values.

A discrete prior has been assigned to the list of possible values of μ and one is

now able to apply Bayes’ rule to obtain the posterior distribution for μ. The

posterior probability of the value μ = μi given the data y for a discrete prior has the

form

π(μi ∣ y) =
π(μi) × L(μi)

∑j π(μj) × L(μj)
, (8.5)

where π(μi) is the prior probability of μ = μi and L(μi) is the likelihood function

evaluated at μ = μi.

If a discrete uniform prior distribution for μ is assigned, one has π(μi) = 1
8  for all

i = 1, …, 8, and π(μi) is canceled out from the numerator and denominator in

Equation (8.5). In this case one calculates the likelihood values L(μi) for all i = 1,

…, 8 and normalizes these values to obtain the posterior probabilities π(μi| y). Table

8.1 displays the values of μ and the corresponding values of Prior, Likelihood, and

Posterior. Readers are encouraged to verify the results shown in the table.

TABLE 8.1

Value, Prior, Likelihood, and Posterior for μ with a single observation.

μ Prior Likelihood Posterior

15 0.125 0.0997 0.1888

16 0.125 0.0972 0.1842

17 0.125 0.0891 0.1688

18 0.125 0.0767 0.1452

19 0.125 0.0620 0.1174

20 0.125 0.0471 0.0892

21 0.125 0.0336 0.0637

22 0.125 0.0225 0.0427

With the single measurement of time-to-serve of y = 15.1, one sees from Table 8.1

that the posterior distribution for μ favors values μ = 15, and 16. In fact, the

posterior probabilities decrease as a function of μ. The Prior column reminds us that

the prior distribution is uniform. Bayesian inference uses the collected data to

sharpen one’s belief about the unknown parameter from the prior distribution to the

L(15) = 1
√2π(4)

exp(− 1
2(4)2 (15.1 − 15)2)

≈ 0.0997.



posterior distribution. For this single observation, the sample mean is y = 15.1 and

the μ value closest to the sample mean (μ = 15) is assigned the highest posterior

probability.

Typically one collects multiple time-to-serve measurements. Suppose one collects

n time-to-serve measurements, denoted as Y1, …, Yn, that are normally distributed

with mean μ and fixed standard deviation σ = 4. Each observation follows the same

normal density

f(yi) =
1

√2πσ
exp{

−(yi − μ)2

2σ2
}, −∞ < yi < ∞. (8.6)

Again since σ = 4 is known, the only parameter in Equation (8.6) is μ and we are

interested in learning about this mean parameter μ. Suppose the same discrete

uniform prior is used as in Equation (8.4) and graphed in Figure 8.2. The mean μ

takes on the values {15, 16, …, 22} with each value assigned the same probability of

1
8 .

FIGURE 8.2

Eight possible normal sampling curves corresponding to a discrete uniform prior on μ.

Suppose one collects a sample of 20 times-to-serve for Federer:

15.1 11.8 21.0 22.7 18.6 16.2 11.1 13.2 20.4 19.2 
21.2 14.3 18.6 16.8 20.3 19.9 15.0 13.4 19.9 15.3

When multiple time-to-serve measurements are taken, the likelihood function is the

joint density of the actual observed values y1, …, yn viewed as a function of the



mean μ. After some algebra (detailed derivation in Section 8.3.2), one writes the

likelihood function as

(8.7)

where we have substituted the known values n = 20 and the standard deviation σ =

4. From our sample, we compute the sample mean 

ȳ = (15.1 + 11.8+. . . +15.3)/20 = 17.2. The value of ȳ is substituted into Equation

(8.7), and for each possible value of μ, we substitute the value to find the

corresponding likelihood. For example, the likelihood of μ = 15 is equal to

This calculation is repeated for each of the eight values μ = 15, 16, …, 22, obtaining

eight likelihood values.

One now applies Bayes’ rule to obtain the posterior distribution for μ. The

posterior probability of μ = μi given the sequence of recorded times-to-serve y1, …,

yn has the form

π(μi ∣ y1, ⋯ , yn) =
π(μi) × L(μi)

∑j π(μj) × L(μj)
, (8.8)

where π(μi) is the prior probability of μ = μi and L(μi) is the likelihood function

evaluated at μ = μi. We saw in Equation (8.7) that only the sample mean, ȳ, is

needed in the calculation of the likelihood, so ȳ is used in place of y1, …, yn in the

formula.

With a discrete uniform prior distribution for μ, again one has π(μi) = 1
8
 for all i

= 1, …, 8 and π(μi) is canceled out from the numerator and denominator in

Equation (8.8). One calculates the posterior probabilities by computing L(μi) for all

i = 1, …, 8 and normalizing these values. Table 8.2 displays the values of μ and the

corresponding values of Prior, Likelihood, and Posterior. Readers are encouraged to

verify the results shown in the table.

L(μ) = ∏n
i=1

1
√2πσ

exp{− 1
2σ2 (yi − μ)2}

∝ exp{− n
2σ2 (ȳ − μ)2}

= exp{− 20
2(4)2 (ȳ − μ)2},

L(15) = exp{− 20
2(4)2 (17.2 − 15)2}

≈ 0.022.



TABLE 8.2

Value, Prior, Likelihood, and Posterior for μ with n observations.

μ Prior Likelihood Posterior

15 0.125 0.0217 0.0217

16 0.125 0.1813 0.1815

17 0.125 0.4350 0.4353

18 0.125 0.2990 0.2992

19 0.125 0.0589 0.0589

20 0.125 0.0033 0.0033

21 0.125 0.0001 0.0001

22 0.125 0.0000 0.0000

It is helpful to construct a graph (see Figure 8.3) where one contrasts the prior

and probability probabilities for the mean time-to-serve μ. While the prior

distribution is flat, the posterior distribution for μ favors the values μ = 16, 17, and

18 seconds. Bayesian inference uses the observed data to revise one’s belief about

the unknown parameter from the prior distribution to the posterior distribution.

Recall that the sample mean ȳ = 17.2 seconds. From Table 8.2 and Figure 8.3 one

sees the clear effect of the observed sample mean – μ is likely to be close to the

value 17.2.

FIGURE 8.3

Prior and posterior probabilities of the normal mean μ with a sample of observations.

8.3.2  Simplification of the likelihood



The likelihood function is the joint density of the observations y1, …, yn, viewed as a

function of the mean μ (since σ = 4 is given). With n observations being identically

and independently distributed (i.i.d.) as Normal(μ, 4), the likelihood function is the

product of normal density terms. In the algebra work that will be done shortly, the

likelihood, as a function of μ, is found to be normal with mean ȳ and standard

deviation σ/√n.

 The calculation of the posterior probabilities is an application of Bayes’ rule

illustrated in earlier chapters. One creates a data frame of values mu and

corresponding probabilities Prior. One computes the likelihood values in the

variable Likelihood and the posterior probabilities are found using the

bayesian_crank() function.

 
df <- data.frame(mu = seq(15, 22, 1), 
Prior = rep(1/8, 8)) %>% 
mutate(Likelihood = dnorm(mu, 17.2, 4 / sqrt(20))) 
df <- bayesian_crank(df) 
round(df, 4) 
 
mu Prior Likelihood Product Posterior 
1 15 0.125 0.0217 0.0027 0.0217 
2 16 0.125 0.1813 0.0227 0.1815 
3 17 0.125 0.4350 0.0544 0.4353 
4 18 0.125 0.2990 0.0374 0.2992 
5 19 0.125 0.0589 0.0074 0.0589 
6 20 0.125 0.0033 0.0004 0.0033 
7 21 0.125 0.0001 0.0000 0.0001 
8 22 0.125 0.0000 0.0000 0.0000

Derivation of L(μ) ∝ exp(− n
2σ2 (ȳ − μ)2)

In the following, we combine the terms in the exponent, expand all of the

summation terms, and complete the square to get the result.



(8.9)

Sufficient statistic

There are different ways of writing and simplifying the likelihood function. One can

choose to keep the product sign and each yi term, and leave the likelihood function

as

L(μ) =
n

∏
i=1

1

√2πσ
exp{−

1

2σ2
(yi − μ)2}. (8.10)

Doing so requires one to calculate the individual likelihood from each time-to-serve

measurement yi and multiply these values to obtain the function L(μ) used to obtain

the posterior probability.

If one instead simplifies the likelihood to be

L(μ) ∝ exp{−
n

2σ2
(ȳ − μ)2}, (8.11)

all the proportionality constants drop out in the calculation of the posterior

probabilities for different values of μ. In the application of Bayes’ rule, one only

L(μ) =
n

∏
i=1

1
√2πσ

exp{− 1
2σ2 (yi − μ)2}

= ( 1
√2πσ

)
n

exp{− 1
2σ2

n

∑
i=1

(yi − μ)2}

∝ exp{− 1
2σ2

n

∑
i=1

(y2
i − 2μyi + μ2)}

[expand the ∑ terms] = exp{− 1
2σ2 (

n

∑
i=1

y2
i − 2μ

n

∑
i=1

yi + nμ2)}

∝ exp{− 1
2σ2 (−2μ

n

∑
i=1

yi + nμ2)}

[replace ∑ with nȳ] = exp{− 1
2σ2 (−2nμȳ + nμ2)}

[complete the square] = exp{− n
2σ2 (μ2 − 2μȳ + ȳ2) + n

2σ2 ȳ
2}

∝ exp{− n
2σ2 (ȳ − μ)2}



needs to know the number of observations n and the mean time to serve ȳ to

calculate the posterior. Since the likelihood function depends on the data only

through the value ȳ, the statistic ȳ is called a sufficient statistic for the mean μ.

8.3.3  Inference: Federer’s time-to-serve

What has one learned about Federer’s mean time-to-serve from this Bayesian

analysis? Our prior said that any of the eight possible values of μ were equally likely

with probability 0.125. After observing the sample of 20 measurements, one believes

μ is most likely 16, 17, and 18 seconds, with respective probabilities 0.181, 0.425,

and 0.299. In fact, if one adds up the posterior probabilities, one says that μ is in

the set {16, 17, 18} seconds with probability 0.915.

This region of values of μ is called a 91.5% posterior probability region for the mean

time-to-serve μ.

 

8.4  Continuous Priors

8.4.1  The normal prior for mean μ
Returning to our example, one is interested in learning about the time-to-serve for

the tennis player Roger Federer. His serving times are believed to be normally

distributed with unknown mean μ and known standard deviation σ = 4. The focus is

on learning about the mean value μ.

In the prior construction in Section 8.3, we assumed μ was discrete, taking only

integer values from 15 to 22. However, the mean time-to-serve μ does not have to be

an integer. In fact, it is more realistic to assume μ is continuous-valued. One widely-

used approach for representing one’s belief about a normal mean is based on a

normal prior density with mean μ0 and standard deviation σ0, that is

There are two parameters for this normal prior: the value μ0 represents one’s best

guess at the mean time-to-serve μ and σ0 indicates how sure one thinks about the

guess.

To illustrate the use of different priors for μ, let’s consider the opinion of one

tennis fan Joe who has strong prior information about the mean. His best guess at

Federer’s mean time-to-serve is 18 seconds so he lets μ0 = 18. He is very sure of this

guess and so he chooses σ0 to be the relatively small value of 0.4. In contrast, a

Prob(16 ≤ μ ≤ 18) = 0.181 + 0.435 + 0.299 = 0.915

μ ∼ Normal(μ0,σ0).



second tennis fan Kate also thinks that Federer’s mean time-to-serve is 18 seconds,

but does not have a strong belief in this guess and chooses the large value 2 of the

standard deviation σ0. Figure 8.4 shows these two normal priors for the mean time-

to-serve μ.

FIGURE 8.4

Two priors for the normal mean μ.

Both curves are symmetric and bell-shaped, centered at μ0 = 18. The main

difference is the spread of the two curves: a Normal(8, 0.4) curve is much more

concentrated around the mean μ0 = 18 compared to the Normal(8, 2) curve. Since

the value of the probability density function at a point reflects the probability at

that value, the Normal(8, 0.4) prior reflects the belief that the mean time to serve

will most likely be around μ0 = 18 seconds, whereas the Normal(8, 2) prior indicates

that the mean μ could be as small as 15 seconds and as large as 20 seconds.

8.4.2  Choosing a normal prior

Informative prior

How does one in practice choose a normal prior for μ that reflects prior beliefs about

the location of this parameter? One indirect strategy for selecting values of the prior

parameters μ0 and σ0 is based on the specification of quantiles. On the basis of one’s

prior beliefs, one specifies two quantiles of the normal density. Then the normal

parameters are found by matching these two quantiles to a particular normal curve.

Recall the definition of a quantile — in this setting it is a value of the mean μ

such that the probability of being smaller than that value is a given probability. To

construct one’s prior for Federer’s mean time-to-serve, one thinks first about two

quantiles. Suppose one specifies the 0.5 quantile to be 18 seconds — this means that



μ is equally likely to be smaller or larger than 18 seconds. Next, one decides that the

0.9 quantile is 20 seconds. This means that one’s probability that μ is smaller than

20 seconds is 90%. Given values of these two quantiles, the unique normal curve is

found that matches this information.

 The matching is performed by the R function normal.select(). One inputs two

quantiles by list statements, and the output is the mean and standard deviation of

the normal prior.

 
normal.select(list(p = 0.5, x = 18), list(p = 0.9, x = 20)) 
$mu 
[1] 18 
 
$sigma 
[1] 1.560608

The normal curve with mean μ0 = 18 and σ0 = 1.56, displayed in Figure 8.5,

matches the prior information stated by the two quantiles.

FIGURE 8.5

A person’s normal prior for Federer’s mean time-to-serve μ.

Since our measurement skills are limited, this prior is just an approximation to

our beliefs about μ. We recommend in practice that one perform several checks to

see if this normal prior makes sense. Several functions are available to help in this

prior checking.

For example, we find the 0.25 quantile of our prior using the qnorm() function.

 
qnorm(0.25, 18, 1.56) 



[1] 16.9478

This prior says that the prior probability that μ is smaller than 16.95 is 25%. If

this does not seem reasonable, one would make adjustments in the values of the

normal mean and standard deviation until a reasonable normal prior is found.

Weakly informative prior

We have been assuming that we have some information about the mean parameter μ

that is represented by a normal prior. What would we do in the situation where

little is known about the location on μ? For a normal prior, the standard deviation

σ0 represents the sureness of our belief in our guess μ0 at the value of the mean. If

we are really unsure about any guess at μ, then we can assign the standard

deviation σ0 a large value. Then the choice of the prior mean will not matter, so we

suggest using a Normal(0, σ0) with a large value for σ0. This prior indicates that μ

may plausibly range over a large interval and represents weakly informative prior

belief about the parameter.

As will be seen later in this chapter, when a vague prior is chosen, the posterior

inference for μ will largely be driven by the data. This behavior is desirable since we

know little about the location of μ a priori in this situation and we want the data to

inform about the location of μ with little influence by the prior.

 

8.5  Updating the Normal Prior

8.5.1  Introduction

Continuing our discussion on learning about the mean time-to-serve for Roger

Federer, the current prior beliefs about Federer’s mean time-to-serve μ are

represented by a normal curve with mean 18 seconds and standard deviation 1.56

seconds.

Next some data is collected — Federer’s time-to-serves are recorded for 20 serves

and the sample mean is 17.2 seconds. Recall that we are assuming the population

standard deviation σ = 4 seconds. The likelihood is given by

L(μ) ∝ exp{−
n

2σ2
(ȳ − μ)2}, (8.12)

and with substitution of the values ȳ = 17.2, n = 20, and σ = 4, we obtain



(8.13)(8.13)

Viewing the likelihood as a function of the parameter μ as in Equation (8.13), the

likelihood is recognized as a normal density with mean ȳ = 17.2 and standard

deviation σ/√n = 4/√20 = 0.89.

The Bayes’ rule calculation is very familiar to the reader — one obtains the

posterior density curve by multiplying the normal prior by the likelihood. If one

writes down the product of the normal likelihood and the normal prior density and

works through some messy algebra, one will discover that the posterior density also

has the normal density form.

The normal prior is said to be conjugate since the prior and posterior densities

come from the same distribution family: normal. To be more specific, suppose the

observation has a normal sampling density with unknown mean μ and known

standard deviation σ. If one specifies a normal prior for the unknown mean μ with

mean μ0 and standard deviation σ0, one obtains a normal posterior for μ with

updated parameters μn and σn.

In Section 8.5.2, we provide a quick peak at this posterior updating without

worrying about the mathematical derivation and Section 8.5.3 describes the details

of the Bayes’ rule calculation. Section 8.5.4 looks at the conjugacy more closely and

provides some insight on the effects of prior and likelihood on the posterior

distribution.

8.5.2  A quick peak at the update procedure

It is convenient to describe the updating procedure by use of a table. In Table 8.3,

there are rows corresponding to Prior, Likelihood, and Posterior and columns

corresponding to Mean, Precision, and Standard Deviation. The mean and standard

deviation of the normal prior are placed in the “Prior” row, and the sample mean

and standard error are placed in the “Likelihood” row.

TABLE 8.3

Updating the normal prior: step 1.

Type Mean Precision Stand_Dev

Prior 18.00 1.56

Likelihood 17.20 0.89

Posterior

L(μ) ∝ exp{− 20
2(4)2 (17.2 − μ)2}

= exp{− 1
2(4/√20)2

(μ − 17.2)2}.

L(μ) ∝ exp{− 20
2(4)2 (17.2 − μ)2}

= exp{− 1

2(4/√20)2
(μ − 17.2)2}.



We define the precision, ϕ, to be the reciprocal of the square of the standard

deviation. We compute the precisions of the prior and data from the given standard

deviations:

ϕprior =
1

σ2
0

=
1

1.562
= 0.41, ϕdata =

1

σ2/n
=

1

0.892
= 1.21.

We enter the precisions in the corresponding rows of Table 8.4.

TABLE 8.4

Updating the normal prior: step 2.

Type Mean Precision Stand_Dev

Prior 18.00 0.41 1.56

Likelihood 17.20 1.26 0.89

Posterior

We will shortly see that the Posterior precision is the sum of the Prior precision

and the Likelihood precisions:

ϕpost = ϕprior + ϕdata = 0.41 + 1.26 = 1.67.

Once the posterior precision is computed, the posterior standard deviation is computed as
the reciprocal of the square root of the precision.

σn =
1

√ϕpost

=
1

√1.67
= 0.77.

These precisions and standard deviations are entered into Table 8.5.

TABLE 8.5

Updating the normal prior: step 3.

Type Mean Precision Stand_Dev

Prior 18.00 0.41 1.56

Likelihood 17.20 1.26 0.89

Posterior 1.67 0.77

The posterior mean is a weighted average of the Prior and Likelihood means

where the weights are given by the corresponding precisions. That is, the formula is

given by

(8.14)μn =
ϕprior×μ0+ϕdata×ȳ

ϕprior+ϕdata
.



By making appropriate substitutions, we obtain the posterior mean:

The posterior density is normal with mean 17.40 seconds and standard deviation

0.77 seconds. See Table 8.6 for the final update step.

TABLE 8.6

Updating the normal prior: step 4.

Type Mean Precision Stand_Dev

Prior 18.00 0.41 1.56

Likelihood 17.20 1.26 0.89

Posterior 17.40 1.67 0.77

 The normal updating is performed by the R function normal_update(). One

inputs two vectors – prior is a vector of the prior mean and standard deviation and

data is a vector of the sample mean and standard error. The output is a vector of

the posterior mean and posterior standard deviation.

 
prior <- c(18, 1.56) 
data <- c(17.20, 0.89) 
normal_update(prior, data) 
 
[1] 17.3964473 0.7730412

The prior and posterior densities are displayed in Figure 8.6. As usually the case,

the posterior density has a smaller spread since the posterior has more information

than the prior about Federer’s mean time-to-serve. More information about a

parameter indicates less uncertainty and a smaller spread of the posterior density. In

the process from prior to posterior, one sees how the data modifies one’s initial

belief about the parameter μ.

μn = 0.41×18.00+1.26×17.20
0.41+1.26 = 17.40.



FIGURE 8.6

Prior and posterior curves for Federer’s mean time-to-serve μ.

8.5.3  Bayes’ rule calculation

Section 8.5.2 gave an overview of the updating procedure for a normal prior and

normal sampling. In this section we explain (1) why it is preferable to work with the

precisions instead of the standard deviations; (2) why the precisions act as the

weights in the calculation of the posterior mean and (3) why the posterior is a

normal distribution.

Recall a precision is the reciprocal of the square of the standard deviation. We use

ϕ = 1
σ2  to represent the precision of a single observation in the normal likelihood,

and ϕ0 = 1
σ2

0
 to represent the precision in the normal prior.

We write down the likelihood of μ, combining terms, and writing the expression

in terms of the precision ϕ.

(8.15)y1, ⋯ , yn ∣ μ,σ
i.i.d.
∼ Normal(μ,σ)



(8.16)

Note that σ is assumed known, therefore the likelihood function is only in terms

of μ, i.e. L(μ).

In similar fashion, we write down the prior density for μ including the prior

precision ϕ0.

(8.17)

(8.18)

Bayes’ rule is applied by multiplying the prior by the likelihood to obtain the

posterior. In deriving the posterior of μ, the manipulations require careful

consideration regarding what is known. The only unknown variable is μ, so any

“constants” or known quantities not depending on μ can be added or dropped

with the proportionality sign “∝”.

(8.19)

L(μ) = f(y1, ⋯ , yn ∣ μ,σ) =
n

∏
i=1

1
√2πσ

exp{− 1
2σ2 (yi − μ)2}

=
n

∏
i=1

1
√2π

ϕ
1
2 exp{− ϕ

2 (yi − μ)2)}

= ( 1
√2π

)
n

ϕ
n
2 exp{− ϕ

2

n

∑
i=1

(yi − μ)2)}

μ ∼ Normal(μ0,σ0)

π(μ) = 1
√2πσ0

exp{− 1
2σ2

0

(μ − μ0)2)}

= 1
√2π

ϕ
1
2
0 exp{−

ϕ0

2 (μ − μ0)2}

π(μ ∣ y1, ⋯ , yn,σ) ∝ π(μ)L(μ)

∝ exp{− ϕ0

2
(μ − μ0)2}× exp{− nϕ

2
(μ − ȳ)2}

∝ exp{− 1
2 (ϕ0 + nϕ)μ2 + 1

2 (2μ0ϕ0 + 2nϕȳ)μ}

[complete the square] ∝ exp{− 1
2

(ϕ0 + nϕ)(μ − ϕ0μ0+nϕȳ

ϕ0+nϕ
)2}



Looking closely at the final expression, one recognizes that the posterior for μ is

a normal density with mean and precision parameters. Specifically we recognize

(ϕ0 + nϕ) as the posterior precision and ( ϕ0μ0+nϕȳ

ϕ0+nϕ
) as the posterior mean.

Summarizing, we have derived the following posterior distribution of μ,

(8.20)

In passing, it should be noted that the same result would be attained using the

standard deviations, σ and σ0, instead of the precisions, ϕ and ϕ0. It is preferable to

work with the precisions due to the relative simplicity of the notation. In particular,

one sees in Table 8.5 that the posterior precision is the sum of the prior and

likelihood precisions, that is, the posterior precision ϕn = ϕ0 + nϕ.

8.5.4  Conjugate normal prior

Let’s summarize our calculations in Section 8.5.3. We collect a sequence of

continuous observations that are assumed identically and independently distributed

as Normal(μ, σ), and a normal prior is assigned to the mean parameter μ.

The sampling model:

(8.21)

When σ (or ϕ) is known, and mean μ is the only parameter in the likelihood.

The prior distribution:

(8.22)

After Y1 = y1, …, Yn = yn are observed, the posterior distribution for the mean

μ is another normal distribution with mean 
ϕ0μ0+nϕȳ

ϕ0+nϕ
 and precision ϕ0 + nϕ

(thus standard deviation √ 1
ϕ0+nϕ

):

(8.23)

μ ∣ y1, ⋯ , yn,σ ∼ Normal( ϕ0μ0+nϕȳ

ϕ0+nϕ
,√ 1

ϕ0+nϕ
).

Y1, ⋯ ,Yn ∣ μ,σ
i.i.d.
∼ Normal(μ,σ)

μ ∼ Normal(μ0,σ0)

μ ∣ y1, ⋯ , yn,σ ∼ Normal( ϕ0μ0+nϕȳ

ϕ0+nϕ
,√ 1

ϕ0+nϕ
).



In this situation where the sampling standard deviation σ is known, the normal

density is a conjugate prior for the mean of a normal distribution, as the posterior

distribution for μ is another normal density with updated parameters. Conjugacy is

a convenient property as the posterior distribution for μ has a convenient functional

form. Conjugacy allows one to conduct Bayesian inference through exact analytical

solutions and simulation. Also conjugacy provides insight on how the data and prior

are combined in the posterior distribution.

The posterior compromises between the prior and the sample

Recall that Bayesian inference is a general approach where one initializes a prior

belief for an unknown quantity, collects data expressed through a likelihood

function, and combines prior and likelihood to give an updated belief for the

unknown quantity. In Chapter 7, we have seen how the posterior mean of a

proportion is a compromise between the prior mean and sample proportion (refer to

Section 7.4.2 as needed). In the current normal mean case, the posterior mean is

similarly viewed as an estimate that compromises between the prior mean and

sample mean. One rewrites the posterior mean in Equation (8.23) as follows:

(8.24)

The prior precision is equal to ϕ0 and the precision in the likelihood for any yi is ϕ.
Since there are n observations, the precision in the joint likelihood is nϕ. The

posterior mean is a weighted average of the prior mean μ0 and sample mean ȳ where

the weights are proportional to the associated precisions.

The posterior accumulates information in the prior and the sample

In addition, the precision of the posterior mean is the sum of the precisions of the

prior and likelihood. That is,

ϕn = ϕ0 + nϕ. (8.25)

The implication is that the posterior standard deviation will always be smaller than

either the prior standard deviation or the sampling standard error:

σn < σ0, σn <
σ

√n
.

μn =
ϕ0μ0+nϕȳ

ϕ0+nϕ
= ϕ0

ϕ0+nϕ
μ0 + nϕ

ϕ0+nϕ
ȳ.



 

8.6  Bayesian Inferences for Continuous Normal Mean

Continuing with the example about Federer’s time-to-serve, our normal prior had

mean 18 seconds and standard deviation 1.56 seconds. After collecting 20 time-to-

serve measurements with a sample mean of 17.2, the posterior distribution

Normal(17.4, 0.77) reflects our opinion about the mean time-to-serve.

Bayesian inferences about the mean μ are based on various summaries of this

posterior normal distribution. Because the exact posterior distribution of mean μ is

normal, it is convenient to use R functions such as pnorm() and qnorm() to conduct

Bayesian hypothesis testing and construct Bayesian credible intervals. Simulation-

based methods utilizing functions such as rnorm() are also useful to provide

approximations to those inferences. A sequence of examples are given in Section

8.6.1.

Predictions of future data are also of interest. For example, one might want to

predict the next time-to-serve measurement based on the posterior distribution of μ

being Normal(17.4, 0.77). In Section 8.6.2, details of the prediction procedure and

examples are provided.

8.6.1  Bayesian hypothesis testing and credible interval

A testing problem

In a testing problem, one is interested in checking the validity of a statement about

a population quantity. In our tennis example, suppose someone says that Federer

takes on average at least 19 seconds to serve. Is this a reasonable statement?

 The current beliefs about Federer’s mean time-to-serve are summarized by a

normal distribution with mean 17.4 seconds and standard deviation 0.77 seconds. To

assess if the statement “μ is 19 seconds or more” is reasonable, one simply computes

its posterior probability, Prob(μ ≥ 19|μn = 17.4, σn = 0.77).

 
1 - pnorm(19, 17.4, 0.77) 
[1] 0.01885827

This probability is about 0.019, a small value, so one would conclude that this

person’s statement is unlikely to be true.

This is the exact solution using the pnorm() function with mean 17.4 and standard

deviation 0.77. As seen in Chapter 7, simulation provides an alternative approach to

obtaining the probability Prob(μ ≥ 19 | μn = 17.4, σn = 0.77). To implement the



simulation approach, recall that one generates a large number of values from the

posterior distribution and summarizes this simulated sample. In particular, using

the following R script, one generates 1000 values from the Normal(17.4, 0.77)

distribution and approximates the probability of “μ is 19 seconds or more” by

computing the percentage of values that falls above 19.

 
S <- 1000 
NormalSamples <- rnorm(S, 17.4, 0.77) 
sum(NormalSamples >= 19) / S 
[1] 0.024

The reader might notice that the approximated value of 0.024 differs from the

exact answer of 0.019 using the pnorm() function. One way to improve the accuracy

of the approximation is by increasing the number of simulated values. For example,

increasing S from 1000 to 10,000 provides a better approximation to the exact

probability 0.019.

 
S <- 10000 
NormalSamples <- rnorm(S, 17.4, 0.77) 
sum(NormalSamples >= 19) / S 
[1] 0.0175

A Bayesian interval estimate

Bayesian credible intervals for the mean parameter μ can be achieved both by exact

calculation and simulation. Recall that a Bayesian credible interval is an interval

that contains the unknown parameter with a certain probability content. For

example, a 90% Bayesian credible interval for the parameter μ is an interval

containing μ with a probability of 0.90.

 The exact interval is obtained by using the R function qnorm(). For example,

with the posterior distribution for μ being Normal(17.4, 0.77), the following R script

shows that a 90% central Bayesian credible interval is (16.133, 18.667). That is, the

posterior probability of μ falls between 16.133 and 18.667 is exactly 90%.

 
qnorm(c(0.05, 0.95), 17.4, 0.77) 
[1] 16.13346 18.66654

For simulation-based inference, one generates a large number of values from its

posterior distribution, then finds the 5th and 95th sample quantiles to obtain the



middle 90% of the generated values. Below one sees that a 90% credible interval for

posterior of μ is approximately (16.151, 18.691).

 
S <- 1000 
NormalSamples <- rnorm(S, 17.4, 0.77) 
quantile(NormalSamples, c(0.05, 0.95)) 
5% 95% 
16.15061 18.69062

The Bayesian credible intervals can also be used for testing hypothesis. Suppose

one again wants to evaluate the statement “ Federer takes on average at least 19

seconds to serve.” One answers this question by computing the 90% credible interval.

One notes that the values of μ “at least 19” are not included in the exact 90%

credible interval (16.15, 18.69). The interpretation is that the probability is at least

0.90 that Federer’s average time-to-service is smaller than 19 seconds. One could

obtain a wider credible interval, say by computing a central 95% credible interval

(see the R output below), and observe that 19 is out of the interval. This indicates

we are 95% confident that 19 seconds is not the value of Federer’s average time-to-

serve.

 
qnorm(c(0.025, 0.975), 17.4, 0.77) 
[1] 15.89083 18.90917

On the basis of this credible interval calculation, one concludes that the statement

about Federer’s time-to-serve is unlikely to be true. This conclusion is consistent

with the typical Bayesian hypothesis testing procedure given at the beginning of this

section.

8.6.2  Bayesian prediction

Suppose one is interested in predicting Federer’s future time-to-serve. Since one has

already updated the belief about the parameter, the mean μ, the prediction is made

based on its posterior predictive distribution.

How to make one future prediction of Federer’s time-to-serve? In Chapter 7, we

have seen two different approaches for predicting of a new survey outcome of

students’ dining preferences. One approach in Chapter 7 is based on the derivation

of the exact posterior predictive distribution f(
~
Y = ~y ∣ Y = y) which was shown to

be a beta-binomial distribution. The second approach is a simulation-based

approach, which involves two steps: first, sample a value of the parameter from its

posterior distribution (a beta distribution), and second, sample a prediction from

the data model based on the sampled parameter draw (a binomial distribution).



When the sample size in the simulation-based approach is sufficiently large, a

prediction interval from the simulation-based approach is an accurate approximation

to the exact prediction interval.

Exact predictive distribution

We first describe the exact posterior predictive distribution. Consider making a

prediction of a single Federer’s time-to-serve 
~
Y . In general, suppose the sampling

density of 
~
Y  given μ and σ is f(

~
Y = ~y ∣ μ) and suppose the current beliefs about μ

are represented by the density π(μ). The joint density of (~y,μ) is given by the

product

f(
~
Y = ~y,μ) = f(

~
Y = ~y ∣ μ)π(μ), (8.26)

and by integrating out μ, the predictive density of ~
Y  is given by

f(
~
Y = ~y) = ∫ f(

~
Y = ~y ∣ μ)π(μ)dμ. (8.27)

The computation of the predictive density is possible for this normal sampling

model with a normal prior. It is assumed that f(
~
Y = ~y ∣ μ) is normal with mean μ

and standard deviation σ and that the current beliefs about μ are described by a

normal density with mean μ0 and standard deviation σ0. Then it is possible to

integrate out μ from the joint density of (~y,μ) and one finds that the predictive

density for 
~
Y  is normal with mean and standard deviation given by

E(
~
Y ) = μ0, SD(

~
Y ) = √σ2 + σ2

0. (8.28)

This result can be used to derive the posterior predictive distribution of 

f( ~
Y = ~y ∣ Y1, ⋯ ,Yn), where 

~
Y  is a future observation and Y1, …, Yn are n i.i.d.

observations from a normal sampling density with unknown mean μ and known

standard deviation σ. After observing the sample values y1, …, yn, the current beliefs

about the mean μ are represented by a Normal(μn, σn) density, where the mean and

standard deviation are given by



μn =
ϕ0μ0 + nϕȳ

ϕ0 + nϕ
,σn = √

1

ϕ0 + nϕ
. (8.29)μn =

ϕ0μ0 + nϕȳ

ϕ0 + nϕ
,σn = √

1

ϕ0 + nϕ
. (8.29)

Then by applying our general result in Equation (8.28), the posterior predictive

density of the single future observation 
~
Y  is normal with mean μn and standard

deviation √σ2 + σ2
n. That is,

(8.30)

An important aspect of the predictive distribution for 
~
Y  is on the variance term 

σ2 + σ2
n. The variability of a future prediction comes from two sources: (1) the data

model variance σ
2
, and (2) the posterior variance σ2

n. Recall that the posterior

variance σ2
n = 1

ϕ0+nϕ
. If one fixes values of ϕ0 and ϕ and allows the sample size n to

grow, the posterior variance will approach zero. In this “large n” case, the

uncertainty in inference about the population mean μ will decrease – essentially we

are certain about the location of μ. However the uncertainty in prediction will not

decrease towards zero. In contrast, in this large sample case, the variance of 
~
Y  will

decrease and approach the sampling variance σ
2
.

Predictions by simulation

The alternative method of computing the predictive distribution is by simulation. In

this setting, there are two unknowns – the mean parameter μ and the future

observation 
~
Y . One simulates a value from the predictive distribution in two steps:

first, one simulates a value of the parameter μ from its posterior distribution;

second, use this simulated parameter draw to simulate a future observation 
~
Y  from

the data model. In particular, the following algorithm is used to simulate a single

value from the posterior predictive distribution.

1. Sample a value of μ from its posterior distribution

(8.31)

2. Sample a new observation 
~
Y  from the data model (i.e. a prediction)

~
Y = ~y ∣ y1, ⋯ , yn,σ ∼ Normal(μn,√σ2 + σ2

n).

μ ∼ Normal( ϕ0μ0+nϕȳ

ϕ0+nϕ
,√ 1

ϕ0+nϕ
),



(8.32)(8.32)

 This two-step procedure is implemented for our time-to-serve example using

the following R script.

 
sigma <- 4 
mu_n <- 17.4 
sigma_n <- 0.77 
pred_mu_sim <- rnorm(1, mu_n, sigma_n) 
(pred_y_sim <- rnorm(1, pred_mu_sim, sigma)) 
[1] 16.04772

The script can easily be updated to create S = 1000 predictions, which is helpful to

make summary about predictions.

 
S <- 1000 
pred_mu_sim <- rnorm(S, mu_n, sigma_n) 
pred_y_sim <- rnorm(S, pred_mu_sim, sigma)

The vector pred_y_sim contains 1000 predictions of Federer’s time-to-serve.

To evaluate the accuracy of the simulation-based predictions, Figure 8.7 displays

the exact and a density estimate of the simulation-based predictive densities for a

single time-to-serve measurement. One observes pretty good agreement using these

two computation methods in this example.

~
Y ∼ Normal(μ,σ).
~
Y ∼ Normal(μ,σ).



FIGURE 8.7

Display of the exact and simulated predictive time-to-serve for Federer’s example.

 

8.7  Posterior Predictive Checking

In Section 8.6, the use of the posterior predictive distribution for predicting a future

time-to-serve measurement was described. As discussed in Chapter 7, this

distribution is also helpful for assessing the suitability of the Bayesian model.

In our example, we observed 20 times-to-serve for Federer. The question is

whether these observed times are consistent with replicated data from the posterior

predictive distribution. In this setting, replicated refers to the same sample size as

our original sample. In other words, if one takes samples of 20 from the posterior

predictive distribution, do these replicated datasets resemble the observed sample?

Since the population standard deviation is known as σ = 4 seconds, the sampling

distribution of Y is normal with mean μ and standard deviation σ. One simulates

replicated data 
~
Y 1, . . . , ~

Y 20 from the posterior predictive distribution in two steps:

1. Sample a value of μ from its posterior distribution

(8.33)

2. Sample 
~
Y 1, . . . ,

~
Y 20 from the data model

(8.34)

 This method is implemented in the following R script to simulate 1000

replicated samples from the posterior predictive distribution. The vector

pred_mu_sim contains draws from the posterior distribution and the matrix ytilde

contains the simulated predictions where each row of the matrix is a simulated

sample of 20 future times.

 
sigma <- 4 
mu_n <- 17.4 
sigma_n <- 0.77 
S <- 1000 
pred_mu_sim <- rnorm(S, mu_n, sigma_n) 
sim_ytilde <- function(j){ 

μ ∼ Normal( ϕ0μ0+nϕȳ

ϕ0+nϕ
,√ 1

ϕ0+nϕ
).

~
Y ∼ Normal(μ,σ).



rnorm(20, pred_mu_sim[j], sigma) 
} 
ytilde <- t(sapply(1:S, sim_ytilde))

To judge goodness of fit, we wish to compare these simulated replicated datasets

from the posterior predictive distribution with the observed data. One convenient

way to implement this comparison is to compute some “testing function”, T (~y), on

each replicated dataset. If we have 1000 replicated datasets, one has 1000 values of

the testing function. One constructs a graph of these values and overlays the value

of the testing function on the observed data T(y). If the observed value is in the tail

of the posterior predictive distribution of T (~y), this indicates some misfit of the

observed data with the Bayesian model.

To implement this procedure, one needs to choose a testing function T (~y).
Suppose, for example, one decides to use the sample mean T (~y) = ∑ ~yj/20. In the

R script, we compute the sample mean on each row of the simulated prediction

matrix.

pred_ybar_sim <- apply(ytilde, 1, mean)

Figure 8.8 displays a density estimate of the simulated values from the posterior

predictive distribution of Ȳ  and the observed value of the sample mean Ȳ = 17.20 is

displayed as a vertical line. Since this observed mean is in the middle of this

distribution, one concludes that this observation is consistent with samples predicted

from the Bayesian model. It should be noted that this conclusion about model fit is

sensitive to the choice of checking function T(). In the end-of-chapter exercises, the

reader will explore the suitability of this model using alternative choices for the

checking function.



FIGURE 8.8

Display of the posterior predictive mean time-to-serve for twenty observations. The observed mean time-to-serve

value is displayed by a vertical line.

 

8.8  Modeling Count Data

To further illustrate the Bayesian approach to inference for measurements, consider

Poisson sampling, a popular model for count data. One assumes that one observes a

random sample from a Poisson distribution with an unknown rate parameter λ. The

conjugate prior for the Poisson mean is the gamma distribution. This scenario

provides further practice in various Bayesian computations, such as computing the

likelihood function and posterior distribution, and obtaining the predictive

distribution to learn about future data. In this section, we focus on the main results

and the detailed derivations are left as end-of-chapter exercises.

8.8.1  Examples

Counts of patients in an emergency room

A hospital wants to determine how many doctors and nurses to assign on its

emergency room (ER) team between 10 pm and 11 pm during the week. An

important piece of information is the count of patients arriving in the ER in this

one-hour period.

For a count measurement variable such as the count of patients, a popular

sampling model is the Poisson distribution. This distribution is used to model the

number of times an event occurs in an interval of time or space. In the current

example, the event is a patient’s arrival to the ER, and the time interval is the

period between 10 pm and 11 pm. The hospital wishes to learn about the average

count of patients arriving to the ER each hour. Perhaps more importantly, the

hospital wants to predict the patient count since that will directly address the

scheduling of doctors and nurses question.

Counts of visitors to a website

As a second example, suppose one is interested in monitoring the popularity of a

particular blog focusing on baseball analytics. Table 8.7 displays the number of

visitors viewing this blog for 28 days during June of 2019. In this setting, the event

of interest is a visit to the blog website and the time interval is a single day. The

blog author is particularly interested in learning about the average number of

visitors during the days Monday through Friday and predicting the number of visits

for a future day in the summer of 2019.



TABLE 8.7

Count of visitors to blog during 28 days in June 2019.

Fri Sat Sun Mon Tue Wed Thu

Week 1 95 81 85 100 111 130 113

Week 2 92 65 78 96 118 120 104

Week 3 91 91 79 106 91 114 110

Week 4 98 61 84 96 126 119 90

8.8.2  The Poisson distribution

Let the random variable Y denote the number of occurrences of an event in an

interval with sample space {0, 1, 2, … }. In contrast to the normally distributed

continuous measurement, note that Y only takes integer values from 0 to infinity.

The variable Y follows a Poisson distribution with rate parameter λ when the

probability mass function (pmf) of observing y events in an interval is given by

(8.35)

where λ is the average number of events per interval, e = 2.71828… is Euler’s

number, and y! is the factorial of y.

The Poisson sampling model is based on several assumptions about the sampling

process. One assumes that the time interval is fixed, counts of arrivals occurring

during different time intervals are independent, and the rate λ at which the arrivals

occur is constant over time. To check the suitability of the Poisson distribution for

the examples, one needs to check the conditions individually.

1. The time interval is fixed in the ER example as we observe patient arrivals

during a one hour period between 10 pm and 11 pm. For the blog visits

example, the fixed time period is one day.

2. In both examples, one assumes that events occur independently during different

time intervals. In the ER example it is reasonable to assume that the time of

one patient’s arrival does not influence the time of another patient’s arrival. For

the website visits example, if different people are visiting the website on

different days, then the number of visits in a single day would be independent

of the number of visits on another day.

3. Is it reasonable to assume the rate λ at which events occur is constant through

the time interval? In the ER example, one might not think that the rate of

patient arrivals would change much through one hour during the evening, so it

seems reasonable to assume that the average number of events is constant in

the fixed interval. Similarly, if one focuses on weekdays, then for the website

f(Y = y ∣ λ) = e−λ λy

y! , y = 0, 1, 2, . . .



visits example, it is reasonable to assume that the average number of visits

remains constant across days.

In some situations, the second and third conditions will be violated. In our ER

example, the occurrence of serious accidents may bring multiple groups of patients

to the ER at certain time intervals. In this case, arrival times of patients may not be

independent and the arrival rate λ in one subinterval will be higher than the arrival

rate of another subinterval. When such situations occur, one needs to decide about

the severity of the violation of the conditions and possibly use an alternative

sampling model instead of the Poisson.

As evident in Equation (8.35), the Poisson distribution has only one parameter,

the rate parameter λ, so the Poisson sampling model belongs to the family of one-

parameter sampling models. The binomial data model with success probability p

and the normal data model with mean parameter μ (with known standard

deviation) are two other examples of one-parameter models. One distinguishes these

models by the type of possible sample values, discrete or continuous. The binomial

random variable is the number of successes and the Poisson random variable is a

count of arrivals, so they both are discrete one-parameter models. In contrast, the

normal sampling data model is a continuous one-parameter model.

8.8.3  Bayesian inferences

The reader should be familiar with the typical procedure of Bayesian inference and

prediction for one-parameter models. We rewrite this procedure in the context of the

Poisson sampling model.

Step 1 One constructs a prior expressing an opinion about the location of the

rate λ before any data is collected.

Step 2 One takes the sample of intervals and records the number of arrivals in

each interval. From this data, one forms the likelihood, the probability

of these observations expressed as a function of λ.

Step 3 One uses Bayes’ rule to compute the posterior – this distribution

updates the prior opinion about λ given the information from the data.

In addition, one computes the predictive distribution to learn about the

number of arrivals in future intervals. The posterior predictive

distribution is also useful in checking the appropriateness of our model.

Gamma prior distribution

One begins by constructing a prior density to express one’s opinion about the rate

parameter λ. Since the rate is a positive continuous parameter, one needs to

construct a prior density that places its support only on positive values. The



convenient choice of prior distributions for Poisson sampling is the gamma

distribution which has a density function given by

(8.36)

where Γ(α) is the gamma function evaluated at α. The gamma density is a

continuous density where the support is on positive values. It depends on two

parameters, a positive shape parameter α and a positive rate parameter β.

The gamma density is a flexible family of distributions that can reflect many

different types of prior beliefs about the location of the parameter λ. One chooses

values of the shape α and the rate β so that the gamma density matches one’s prior

information about the location of λ. In R, the function dgamma() gives the density,

pgamma() gives the distribution function and qgamma() gives the quantile function for

the gamma distribution. These functions are helpful in graphing the prior and

choosing values of the shape and rate parameters that match prior statements about

gamma percentiles and probabilities. We provide an illustration of choosing a

subjective gamma prior in the example.

Sampling and the likelihood

Suppose that Y1, …, Yn represent the observed counts in n time intervals where the

counts are independent and each Yi follows a Poisson distribution with rate λ. The

joint mass function of Y1, …, Yn is obtained by multiplying the Poisson densities.

(8.37)

Once the counts y1, …, yn are observed, the likelihood of λ is the joint probability of

observing this data, viewed as a function of the rate parameter λ.

L(λ) = λ∑
n
i=1 yie−nλ. (8.38)

The Gamma posterior

If the rate parameter λ in the Poisson sampling model follows a gamma prior

distribution, then it turns out that the posterior distribution for λ will also have a

π(λ ∣ α,β) = βα

Γ(α)
λα−1e−βλ, for λ > 0, and α,β > 0,

f(Y1 = y1, . . . ,Yn = yn ∣ λ) =
n

∏
i=1

f(yi ∣ λ)

∝ λ∑
n
i=1 yie−nλ.



gamma density with updated parameters. This demonstrates that the gamma

density is the conjugate distribution for Poisson sampling as the prior and posterior

densities both come from the same family of distribution: gamma.

We begin by assuming that the Poisson parameter λ has a gamma distribution

with shape and rate parameters α and β, that is, λ ∼ Gamma(α, β). If one multiplies

the gamma prior by the likelihood function L(λ), then in an end-of-chapter exercise

you will show that the posterior density of λ is Gamma(αn, βn), where the updated

parameters αn and βn are given by

αn = α +
n

∑
i=1

yi, βn = β + n. (8.39)

Inference about λ

Once the posterior distribution has been derived, then all inferences about the

Poisson parameter λ are performed by computing particular summaries of the

gamma posterior distribution. In particular, one may be interested in testing if λ

falls in a particular region by computing a posterior probability. All of these

computations are facilitated using the pgamma(), qgamma(), and rgamma() functions.

Or one may be interested in constructing an interval estimate for λ. In the end-of-

chapter exercises, there are opportunities to perform these inferences using a dataset

containing a sample of ER arrival counts.

Prediction of future data

One advantage of using a conjugate prior is that the predictive density for a future

observation 
~
Y  is available in closed form. Suppose λ is assigned a Gamma(α, β)

prior. Then the prior predictive density of 
~
Y  is given by

(8.40)

In addition, the posterior distribution of λ also has the gamma form with updated

parameters αn and βn. So Equation (8.40) also provides the posterior predictive

distribution for a future count 
~
Y  using the updated parameter values.

f(
~
Y = ~y) = ∫ f(

~
Y = ~y ∣ λ)π(λ)λ

= ∫ e−λλ
~y

~y!
βα

Γ(α) λ
α−1e−βλdλ

=
Γ(α+~y)

Γ(α)
βα

(β+1)~y+α .



For prediction purposes, there are several ways of summarizing the predictive

distribution. One can use the formula in Equation (8.40) to directly compute f( ~
Y )

for a list of values of 
~
Y  and then one uses the computed probabilities to form a

prediction interval for 
~
Y . Alternately, one simulates values of 

~
Y  in a two-step

process. For example, if one wants to simulate a draw from the posterior predictive

distribution, one would first simulate a value λ from its posterior distribution, and

given that simulated draw λ∗
, simulate 

~
Y  from a Poisson distribution with mean λ∗

.

Repeating this process for a large number of iterations provides a sample from the

posterior prediction distribution that one uses to construct a prediction interval.

8.8.4  Case study: Learning about website counts

Let’s return to the website example where one is interested in learning about the

average weekday visits to a baseball analytics blog site. One observes the counts y1,

…, y20 displayed in the “Mon”, “Tue”, “Wed”, “Thu”, “Fri” columns of Table 8.7. We

assume the {yi} represent a random sample from a Poisson distribution with mean

parameter λ.

Suppose one’s prior guess at the value of λ is 80 and one wishes to match this

information with a Gamma(α, β) prior. Two helpful facts about the gamma

distribution are that the mean and variance are equal to μ = α/β and σ
2
 = α/β

2
 =

μ/β, respectively. Figure 8.9 displays three gamma curves for values (α, β) = (80, 1),

(40, 0.5), and (20, 0.25). Each of these gamma curves has a mean of 80 and the

curves become more diffuse as the parameter β moves from 1 to 0.25. After some

thought, the user believes that the Gamma(80, 1) matches her prior beliefs. To

check, she computes a prior probability interval. Using the qgamma() function, she

finds that her 90% prior probability interval is Prob(65.9 < λ < 95.3) = 0.90 and

this appears to be a reasonable approximation to her prior beliefs.



FIGURE 8.9

Three Gamma(α, β) plausible prior distributions for the average number of weekday visits to the website.

From the data, we compute ∑20
i=1 yi = 2120 and the sample size is n = 20. The

posterior distribution is Gamma(αn, βn) where the updated parameters are

αn = 80 + 2120 = 2200, βn = 1 + 20 = 21.

Figure 8.10 displays the gamma posterior curve for λ. This figure displays a 90%

probability interval which is found using the qgamma() function to be (101.1, 108.5).

The interpretation is that the average number of visits lies between 101.1 and 108.5

with probability 0.90.



FIGURE 8.10

Posterior curve for the mean number of visits λ to the website. The shaded region shows the limits of a 90% interval

estimate.

Suppose the user is interested in predicting the number of blog visits 
~
Y  at a

future summer weekday. One simulates the posterior predictive distribution by first

simulating 1000 values from the gamma posterior, and then simulating values of 
~
Y

from Poisson distributions where the Poisson means come from the posterior. Figure

8.11 displays a histogram of the simulated values from the predictive distribution.

The 5th and 95th quantiles of this distribution are computed to be 88 and 123 –

there is a 90% probability that that the number of visitors in a future weekday will

fall in the interval (88, 123).

FIGURE 8.11

Histogram of a simulated sample from the posterior predictive distribution of the number of visitors to the website

on a future day.

 

8.9  Exercises

1. Another Set of Federer’s Time-to-Serve Measurements (Discrete

Priors)

Suppose another set of thirty Federer’s time-to-serve measurements are

collected with an observed mean of 19 seconds. Assume the same discrete

uniform prior on the values μ = 15, 16, …, 22. The prior and the likelihood

function are displayed below.



π(μ) =
1

8
, μ = 15, 16, . . . , 22,

L(μ) ∝ exp(−
n

2σ2
(ȳ − μ)2).

(a) Assuming σ = 4, perform the Bayes’ rule calculation to find the posterior

distribution for μ.

(b) Using the posterior, find a “best” estimate at μ and an interval of values

that contains μ with probability 0.5.

2. Temperature in Bismarck

Suppose one is interested in learning about the average January daily

temperature (in degrees Fahrenheit) in Bismarck, North Dakota. One assumes

that the daily temperature Y is normally distributed with mean μ and known

standard deviation σ = 10. Suppose that one’s prior is uniformly distributed

over the values μ = 5, 10, 15, 20, 25, 30, 25. Suppose one observes the

temperature for one January day to be 28 degrees. Find the posterior

distribution of μ and compute the posterior probability the mean is at least as

large as 30 degrees.

3. Choosing A Normal Prior

(a) Suppose Sam believes that the 0.25 quantile of the mean of Federer’s time-

to-serve μ is 14 seconds and the 0.8 quantile is 21 seconds. Using the

normal.select() function, construct a normal prior distribution to match

this belief.

(b) Suppose Sam also believes that the 0.10 quantile of his prior is equal to

10.5 seconds. Is this statement consistent with the normal prior chosen in

part (a)? If not, how could you adjust the prior to reconcile this statement

about the 0.10 quantile?

4. Choosing A Normal Prior

Another way of choosing a normal prior for Federer’s mean time-to-serve μ is to

specify statements about the prior predictive distribution for a future time-to-

serve measurement 
~
Y . Using results from Section 8.5.2, if μ has a normal prior

with mean μ0 and σ0, then the predictive density of 
~
Y  is normal with mean μ0

and standard deviation √σ2 + σ2
0, where we are assuming that the sampling

standard deviation σ = 4 seconds.

(a) Suppose your best guess at 
~
Y  is 15 seconds, and you are 90 percent

confident that 
~
Y  is smaller than 25 seconds. Find the normal prior for μ

that matches this prior information about the future time-to-serve.

(b) Suppose instead that you are 90% confident that the future time-to-serve

is between 18 and 24 seconds. Find the normal prior for μ that matches

this prior belief.



5. Bayesian Hypothesis Testing

The posterior distribution for the mean time-to-serve μ for Federer is normal

with mean 17.4 seconds and standard deviation 0.77 seconds.

(a) Using this posterior, evaluate the plausibility of the statement “Federer’s

mean time-to-serve is at least 16.5 seconds.”

(b) Is it reasonable to say that Federer’s mean time-to-serve falls between 17

and 18 seconds? Explain.

6. Bayesian Credible Interval

The posterior distribution for the mean time-to-serve μ for Federer is normal

with mean 17.4 seconds and standard deviation 0.77 seconds.

(a) Construct a central 98% credible interval for μ.

(b) Can you use the credible interval to test the hypothesis “Federer’s mean

time-to-serve is 16.5 seconds”? Explain.

7. Posterior Predictive Distribution

Write an R script to generate S = 1000 predictions of a single time-to-serve of

Federer based on the posterior predictive distribution using the results given in

Equation (8.31) and Equation (8.32).

(a) Compare the exact posterior predictive distribution (Equation (8.30)) with

the density estimate of the simulated predictions.

(b) Construct a 90% prediction interval for the future time-to-serve.

8. Posterior Predictive Checking

The posterior predictive distribution can be used to check the suitability of the

normal sampling and normal prior model for Federer’s time-to-serve data. The

function post_pred_check() simulates samples of n = 20 from the posterior

predictive function, and for each sample, computes a value of the checking

function T (~y).

 
post_pred_check <- function(test_function){ 
mu_n <- 17.4 
sigma_n <- 0.77 
sigma <- 4 
n <- 20 
one_sim <- function(){ 
mu <- rnorm(1, mu_1, sigma_1) 
test(rnorm(n, mu, sigma)) 
} 
replicate(1000, one_sim()) 
}

The output of the function is 1000 draws from the posterior predictive

distribution of T. If the checking function is max (y), then one would obtain

1000 draws from the posterior predictive distribution by typing



post_pred_check(max)

If the value of the checking function on the observed time-to-serves T(y) is

unusual relative to this posterior predictive distribution of T, this would cast

doubt on the model. The observed times-to-serve for Federer are displayed in

Section 8.3.1. and repeated below.

 
15.1 11.8 21.0 22.7 18.6 16.2 11.1 13.2 20.4 19.2 
21.2 14.3 18.6 16.8 20.3 19.9 15.0 13.4 19.9 15.3

(a) Use the function post_pred_check() with the checking function T(y) =

max (y) to check the suitability of the Bayesian model.

(b) Use the function post_pred_check() with the checking function T(y) =

sd(y) to check the suitability of the Bayesian model.

9. Taxi Cab Fares

Suppose a city manager is interested in learning about the mean fare μ for taxi

cabs in New York City.

(a) Suppose the manager believes that μ is smaller than $8 with probability

0.25, and that μ is smaller than $12 with probability 0.75. Find a normal

prior that matches this prior information.

(b) The manager reviews 20 fares and observes the values (in dollars): 7.5, 8.5,

9.5, 6.5, 7.0, 6.0, 7.0, 16.0, 8.0, 8.5, 9.5, 13.5, 4.5, 8.5, 7.5, 13.0, 6.5, 9.5,

21.0, 6.5. Assuming these fares are normally distributed with mean μ and

standard deviation σ = 4, find the posterior distribution for the mean μ.

(c) Construct a 90% interval estimate for the mean fare μ.

10. Taxi Cab Fares (continued)

Suppose that a visitor to New York City has little knowledge about the mean

taxi cab fare.

(a) Construct a weakly informative prior for μ.

(b) Use the data from Exercise 9 to compute the posterior distribution for the

mean fare.

(c) Construct a 90% interval estimate for the mean fare and compare your

interval with the interval computed in Exercise 9 using an informative

prior.

11. Taxi Cab Fares (continued)

(a) In Exercise 9, one finds the posterior distribution for the mean fare μ.

Write an R function to simulate a sample of twenty fares from the

posterior predictive distribution.

(b) Looking at the observed data, one sees an unusually large fare of $21. To

see if this fare is unusual for our model, first revise your function in part



(a) to simulate the maximum fare of a sample of twenty fares from the

posterior predictive distribution. Then repeat this process 1000 times,

collecting the maximum fares for 1000 predictive samples.

(c) Construct a graph of the maximum fares. Is the fare of $21 large relative to

the prediction distribution of maximum fares?

(d) Based on the answer to part (c), what does that say about the suitability

of our model?

12. Student Sleeping Times

How many hours do college students sleep, on the average? Recently, some

introductory students were asked when they went to bed and when they woke

the following morning. A following random sample of 14 sleeping times (in

hours) were recorded: 9.0, 7.5, 7.0, 8.0, 5.0, 6.5, 8.5, 7.0, 9.0, 7.0, 5.5, 6.0, 8.5,

7.5. Assume that these measurements follow a normal sampling distribution

with mean μ and standard deviation σ, where we are given that σ = 1.5.

(a) Suppose that John believes a priori that the mean amount of sleep μ is

normal with mean 8 hours and standard deviation 1 hour. Find the

posterior distribution of μ.

(b) Construct a 90% interval estimate for the mean μ.

(c) Let y∗
 denote the sleeping time for a randomly selected student. Find the

predictive distribution for y∗
 and use this to construct a 90% prediction

interval.

13. Student Sleeping Times (continued)

Suppose two other people are interested in learning about the mean sleeping

times of college students. Mary’s prior is normal with mean 8 hours and

standard deviation 0.1 – she is pretty confident that the mean sleeping time is

close to 8 hours. In contrast, Larry is very uncertain about the location of μ

and assigns a normal prior with mean 8 hours and standard deviation 3 hours.

(a) Find the posterior distributions of μ using Mary’s prior and using Larry’s

prior.

(b) Construct 90% interval estimates for μ using Mary’s and Larry’s priors.

(c) Compare the interval estimates with the interval estimates constructed in

Exercise 12(b) using Mary’s prior. Is the location of the interval estimate

sensitive to the choice of prior? If so, explain the differences.

14. Comparing Two Means - IQ Tests on School Children

Do teachers’ expectations impact academic development of children? To find

out, researchers gave an IQ test to a group of 12 elementary school children.

They randomly picked six children and told teachers that the test predicts them

to have high potential for accelerated growth (accelerated group); for the other

six students in the group, the researchers told teachers that the test predicts

them to have no potential for growth (no growth group). At the end of school

year, they gave IQ tests again to all 12 students, and the change in IQ scores of



each student is recorded. Table 8.8 shows the IQ score change of students in the

accelerated group and the no growth group.

TABLE 8.8

Data from IQ score change of 12 students; 6 are in the accelerated group, and 6 are in the no growth group.

Group IQ score change

Accelerated 20, 10, 19, 15, 9, 18

No growth 3, 2, 6, 10, 11, 5

The sample means of the accelerated group and the no growth group are

respectively ȳA = 15.2 and ȳN = 6.2. Consider independent sampling models,

where the IQ scores for the accelerated group (no growth group) are assumed

normal with mean μA (μN) with known standard deviation σ = 4.

where nA = nN = 6.

(a) Assuming independent sampling, write down the likelihood function of the

means (μA, μN).

(b) Assume that one’s prior beliefs about μA and μN are independent, where μA

∼ Normal(γA, τA) and μN ∼ Normal(γN, τN). Show that the posterior

distributions for μA and μN are independent normal and find the mean and

standard deviation parameters for each distribution.

15. Comparing Two Means - IQ Tests on School Children (continued)

In Exercise 14, you should have established that the mean IQ score changes μA

and μN have independent normal posterior distributions. Assume that one has

vague prior beliefs and μA ∼ Normal(0, 20) and μN ∼ Normal(0, 20).

(a) Is the average improvement for the accelerated group larger than that for

the no growth group? Consider the parameter δ = μA − μN to measure the

difference in means. The question now becomes finding the posterior

probability of δ > 0, i.e. p(μA − μN > 0|yA, yN), where yA and yN are the

vectors of recorded IQ score change. [Hint: simulate a vector sA of posterior

samples of μA and another vector sN of posterior samples of μN (make sure

to use the same number of samples) and subtract sN from sA, which gives

us a vector of posterior differences between sN and sA. This vector of

posterior differences serves as an approximation to the posterior

distribution of δ.]

(b) What is the probability that a randomly selected child assigned to the

accelerated group will have larger improvement than a randomly selected

YA,i
i.i.d.
∼ Normal(μA, 4), for i = 1, ⋯nA,

YN ,i
i.i.d.
∼ Normal(μN , 4), for i = 1, ⋯nN ,



child assigned to the no growth group? Consider 
~
Y A and 

~
Y N  to be random

variables for predicted IQ score change for the accelerated group and the

no growth group, respectively. The question now becomes finding the

posterior predictive probability of 
~
Y A >

~
Y N , i.e. p(

~
Y A >

~
Y N ∣ yA, yN),

where yA and yN are the vectors of recorded IQ score change, each of

length 6. [Hint: Show that the posterior predictive distributions of 
~
Y A and 

~
Y N  are independent. Simulate predicted IQ score changes from the

posterior predictive distributions for the two groups, then simulate the

posterior predictive distribution of 
~
Y A − ~

Y N  by taking the difference of

simulated draws.]

16. Comparing Two Means - Prices of Diamonds

Weights of diamonds are measured in carats. The difference between the size of

a 0.99 carat diamond and a 1 carat diamond is most likely undetectable to the

naked human eye, but the price of a 1 carat diamond tends to be much higher

than the price of a 0.99 carat diamond. To find out if it is truly the case, data

on point prices (the prices of 0.99 carat diamonds divided by 99, and the prices

of 1 carat diamonds divided by 100) of n99 = 23 of 0.99 carat diamonds and

n100 = 25 of 1 carat diamonds were collected and stored in the files

pt99price.csv and pt100price.csv.

(a) Explore the two datasets by making plots and computing summary

statistics. What are the findings?

(b) Consider independent normal sampling models for these datasets with a

fixed and known value of the standard deviation. From your exploratory

work, choose a value for the standard deviation.

(c) Choose appropriate weakly informative prior distributions, and use

posterior simulation to answer whether the average point price of the 1

carat diamonds is higher than that of the 0.99 diamonds.

(d) Perform posterior predictive checks of the Bayesian inferences obtained in

part (c).

17. Gamma-Poisson Conjugacy Derivation

Section 8.8.3 presents the Bayesian update results for Poisson sampling with

the use of the gamma conjugate prior.

(a) Verify the equation for the likelihood in Equation (8.37). [Hint:

the joint sampling density of n i.i.d. Poisson distributed random variables.]

f(Y1 = y1, . . . ,Yn = yn ∣ λ) =
n

∏
i=1

f(yi ∣ λ)

=
n

∏
i=1

1
yi!
λyie−λ,



(b) Assuming that the Poisson parameter λ has a gamma prior with shape α

and rate β, show that the posterior distribution of λ has a gamma

functional form and find the parameters of this gamma distribution.

18. The Number of ER Visits: the Prior

Suppose two people, Pedro and Mia, have different prior beliefs about the

average number of ER visits during the 10 pm - 11 pm time period. Pedro’s

prior information is matched to a gamma distribution with parameters α = 70

and β = 10, and Mia’s beliefs are matched to a gamma distribution with α =

33.3 and β = 3.3. The two gamma priors are displayed in Figure 8.12.

(a) Compare the priors of Pedro and Mia with respect to average value and

spread. Which person believes that there will be more ER visits, on

average? Which person is more confident of his or her best guess at the

average number of ER visits?

FIGURE 8.12

Two gamma priors for the average number of visits to ER during a particular hour in the evening.

(b) Using the qgamma() function, construct 90% interval estimates for λ using

Pedro’s prior and Mia’s prior.

(c) After some thought, Pedro believes that his best prior guess at λ is correct,

but he is less confident in this new guess. Explain how Pedro can adjust

the parameters of his gamma prior to reflect this new prior belief.

(d) Mia also revisits her prior. Her best guess at the average number of ER

visits is now 3 larger than her previous best guess, but the degree of

confidence in this guess hasn’t changed. Explain how Mia can adjust the

parameters of her gamma prior to reflect this new prior belief.

19. The Number of ER Visits



A hospital collects the number of patients in the emergency room (ER)

admitted between 10 pm and 11 pm for each day of a week. Table 8.9 records

the day and the number of ER visits for the given day.

TABLE 8.9

Data for ER visits in a given week.

Day Number of ER visits

Sunday 8

Monday 6

Tuesday 6

Wednesday 9

Thursday 8

Friday 9

Saturday 7

Suppose one assumes Poisson sampling for the counts, and a conjugate gamma

prior with parameters α = 70 and β = 10 for the Poisson rate parameter λ.

(a) Given the sample shown in Table 8.9, obtain the posterior distribution for

λ through the gamma-Poisson conjugacy. Obtain a 95% posterior credible

interval for λ.

(b) Suppose a hospital administrator states that the average number of ER

visits during any evening hour does not exceed 6. By computing a

posterior probability, evaluate the validity of the administrator’s

statement.

(c) The hospital is interested in predicting the number of ER visits between 10

pm and 11 pm for another week. Use simulations to generate posterior

predictions of the number of ER visits for another week (seven days).

20. Times Between Traffic Accidents

The exponential distribution is often used as a model to describe the time

between events, such as traffic accidents. A random variable Y has an

Exponential distribution if its pdf is as follows.

f(y ∣ λ) = { (8.41)

Here, the parameter λ > 0, considered as the rate of event occurrences.

This is a one-parameter model.

(a) The gamma distribution is a conjugate prior distribution for the rate

parameter λ in the Exponential data model. Use the prior distribution λ ∼

λ exp (−λy), if y ≥ 0.
0, if y < 0.



Gamma(a, b), and find its posterior distribution π(λ| y1, …, yn), where 

yi
i.i.d.
∼ Exponential(λ) for i = 1, …, n.

(b) Suppose 10 times between traffic accidents are collected: 1.5, 15, 60.3, 30.5,

2.8, 56.4, 27, 6.4, 110.7, 25.4 (in minutes). With the posterior distribution

derived in part (a), use Monte Carlo approximation to calculate the

posterior mean, median, and a middle 95% credible interval for the rate λ.

[Hint: choose the appropriate R functions from dgamma(), pgamma(),

qgamma(), and rgamma().]

(c) Use Monte Carlo approximation to generate another set of 10 predicted

times between events. [Hint: rexp() generates random draws from an

Exponential distribution.]

21. Modeling Survival Times

The Weibull distribution is often used as a model for survival times in

biomedical, demographic, and engineering analyses. A random variable Y has a

Weibull distribution if its pdf is as follows.

(8.42)

Here, α > 0 and λ > 0 are parameters of the distribution. For this problem,

assume that α = α0 is known, but λ is not known, i.e. a simplified case of a one-

parameter model. Also assume that software routines for simulating from

Weibull distributions are available (e.g. rweibull())

(a) Assuming a prior distribution π(λ|α = α0) ∝ 1, find its posterior 

π(λ ∣ y1, … , yn,α = α0), where yi
i.i.d.
∼ Weibull(λ,α = α0) for i = 1, …, n.

Write the name of the distribution and expressions for its parameter

values.

(b) Using the posterior distribution derived in part (a), explain step-by-step

how you would use Monte Carlo simulation to approximate the posterior

median survival time, assuming that α = α0.

(c) What family of distributions represents the conjugate prior distributions

for λ, assuming that α = α0.

f(y ∣ α,λ) = λαyα−1 exp (−λyα) for y > 0.
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9.1  Introduction

9.1.1  The Bayesian computation problem

The Bayesian models in Chapters 7 and 8 describe the application of conjugate

priors where the prior and posterior belong to the same family of distributions.

In these cases, the posterior distribution has a convenient functional form such

as a beta density or normal density, and the posterior distributions are easy to

summarize. For example, if the posterior density has a normal form, one uses

the R functions pnorm() and qnorm() to compute posterior probabilities and

quantiles.

In a general Bayesian problem, the data Y comes from a sampling density f(y|

θ) and the parameter θ is assigned a prior density π(θ). After Y = y has been

observed, the likelihood function is equal to L(θ) = f(y|θ) and the posterior

density is written as

π(θ ∣ y) =
π(θ)L(θ)

∫ π(θ)L(θ)dθ
. (9.1)

If the prior and likelihood function do not combine in a helpful way, the

normalizing constant ∫ π(θ)L(θ)dθ can not be evaluated analytically. In

addition, summaries of the posterior distribution are expressed as ratios of

integrals. For example, the posterior mean of θ is given by



E(θ ∣ y) =
∫ θπ(θ)L(θ)dθ

∫ π(θ)L(θ)dθ
. (9.2)E(θ ∣ y) =

∫ θπ(θ)L(θ)dθ

∫ π(θ)L(θ)dθ
. (9.2)

Computation of the posterior mean requires the evaluation of two integrals,

each not expressible in closed-form.

The following sections illustrate this general problem where integrals of the

product of the likelihood and prior can not be evaluated analytically and so

there are challenges in summarizing the posterior distribution.

9.1.2  Choosing a prior

Suppose you are planning to move to Buffalo, New York. You currently live on

the west coast of the United States where the weather is warm and you are

wondering about the snowfall you will encounter in Buffalo in the following

winter season.

Suppose you focus on the quantity μ, the average snowfall during the month

of January. After some reflection, you are 50 percent confident that μ falls

between 8 and 12 inches. That is, the 25th percentile of your prior for μ is 8

inches and the 75th percentile is 12 inches.

A normal prior

Once you have figured out your prior information, you construct a prior density

for μ that matches this information. In one of the end-of-chapter exercises, you

can confirm that one possible density matching this information is a normal

density with mean 10 and standard deviation 3.

We collect data for the last 20 seasons in January. Assume that these

observations of January snowfall are normally distributed with mean μ and

standard deviation σ. For simplicity we assume that the sampling standard

deviation σ is equal to the observed standard deviation s. The observed sample

mean ȳ and corresponding standard error are given by ȳ = 26.785 and 

se = s/√n = 3.236.

 With this normal prior and normal sampling, results from Chapter 8 are

applied to find the posterior distribution of μ. The normal_update() function is

used to find the mean and standard deviation of the normal posterior

distribution.



(post1 <- normal_update(c(10, 3), c(ybar, se))) 
[1] 17.75676 2.20020

In Figure 9.1 the prior, likelihood, and posterior are displayed on the same

graph. Initially you believed that μ was close to 10 inches, the data says that

the mean is in the neighborhood of 26.75 inches, and the posterior is a

compromise, where μ is in an interval about 17.75 inches.

FIGURE 9.1

Prior, likelihood, and posterior of a normal mean with a normal prior.

An alternative prior

Looking at Figure 9.1, there is some concern about this particular Bayesian

analysis. Since the the main probability contents of the prior and likelihood

functions have little overlap, there is serious conflict between the information in

your prior and the information from the data.

Since we have a prior-data conflict, it would make sense to revisit our choice

for a prior density on μ. Remember you specified the quartiles for μ to be 8 and

12 inches. Another symmetric density that matches this information is a Cauchy

density with location 10 inches and scale parameter 2 inches. The reader can

confirm that the quantiles of a Cauchy(10, 2) do match your prior information.

[Hint: use the qcauchy() R command.]

In Figure 9.2 we compare the normal and Cauchy priors graphically.

Remember these two densities have the same quartiles at 8 and 12 inches. But



the two priors have different shapes – the Cauchy prior is more peaked near the

median value 10 and has tails that decrease to zero at a slower rate than the

normal. In other words, the Cauchy curve has flatter tails than the normal

curve.

FIGURE 9.2

Two priors for representing prior opinion about a normal mean.

With the use of a Cauchy(10, 2) prior and the same normal likelihood, the

posterior density of μ is

π(μ ∣ y) ∝ π(μ)L(μ) ∝
1

1 + ( μ−10
2 )

2
× exp{−

n

2σ2
(ȳ − μ)2}.

(9.3)

In contrast with a normal prior, one can not algebraically simplify this

likelihood times prior product to obtain a “nice” functional expression for the

posterior density in terms of the mean μ. That raises the question – how does

one implement a Bayesian analysis when one can not easily express the

posterior density in a convenient functional form?

9.1.3  The two-parameter normal problem



In the problem in learning about a normal mean μ in Chapter 8, it was assumed

that the sampling standard deviation σ was known. This is unrealistic – in most

settings, if one is uncertain about the mean of the population, then likely the

population standard deviation will also be unknown. From a Bayesian

perspective, since we have two unknown parameters μ and σ, this situation

presents new challenges. One needs to construct a joint prior π(μ, σ) for the two

parameters – up to this point, we have only discussed constructing a prior

distribution for a single parameter. Also, although one can compute the

posterior density by the usual “prior times likelihood” recipe, it may be difficult

to get nice analytic answers with this posterior to obtain particular inferences of

interest.

9.1.4  Overview of the chapter

In Chapters 7 and 8, we illustrated the use of simulation to summarize posterior

distributions of a specific functional form such as the beta and normal. In this

chapter, we introduce a general class of algorithms, collectively called Markov

chain Monte Carlo (MCMC), that can be used to simulate the posterior from

general Bayesian models. These algorithms are based on a general probability

model called a Markov chain and Section 9.2 describes this probability model

for situations where the possible models are finite. Section 9.3 introduces the

Metropolis sampler, a general algorithm for simulating from an arbitrary

posterior distribution. Section 9.4 describes the implementation of this

simulation algorithm for the normal sampling problem with a Cauchy prior.

Section 9.5 introduces another MCMC simulation algorithm, Gibbs sampling,

that is well-suited for simulation from posterior distributions of many

parameters. One issue in the implementation of these MCMC algorithms is that

the simulation draws represent an approximate sample from the posterior

distribution. Section 9.6 describes some common diagnostic methods for seeing

if the simulated sample is a suitable exploration of the posterior distribution.

Finally in Section 9.7, we describe the use of a general-purpose software

program Just Another Gibbs Sampler (JAGS) and R interface for implementing

these MCMC algorithms.

 

9.2  Markov Chains

9.2.1  Definition



Since our simulation algorithms are based on Markov chains, we begin by

defining this class of probability models in the situation where the possible

outcomes are finite. Suppose a person takes a random walk on a number line on

the values 1, 2, 3, 4, 5, 6. If the person is currently at an interior value (2, 3, 4,

or 5), in the next second she is equally likely to remain at that number or move

to an adjacent number. If she does move, she is equally likely to move left or

right. If the person is currently at one of the end values (1 or 6), in the next

second she is equally likely to stay still or move to the adjacent location.

This is a simple example of a discrete Markov chain. A Markov chain

describes probabilistic movement between a number of states. Here there are six

possible states, 1 through 6, corresponding to the possible locations of the

walker. Given that the person is at a current location, she moves to other

locations with specified probabilities. The probability that she moves to another

location depends only on her current location and not on previous locations

visited. We describe movement between states in terms of transition

probabilities – they describe the likelihoods of moving between all possible

states in a single step in a Markov chain. We summarize the transition

probabilities by means of a transition matrix P:

P =

The first row in P gives the probabilities of moving to all states 1 through 6 in a

single step from location 1, the second row gives the transition probabilities in a

single step from location 2, and so on.

There are several important properties of this particular Markov chain. It is

possible to go from every state to every state in one or more steps – a Markov

chain with this property is said to be irreducible. Given that the person is in a

particular state, if the person can only return to this state at regular intervals,

then the Markov chain is said to be periodic. This example is aperiodic since the

walker cannot return to the current state at regular intervals.

9.2.2  Some properties

We represent the person’s current location as a probability row vector of the

form

⎡⎢⎣.50 .50 0 0 0 0

.25 .50 .25 0 0 0

0 .25 .50 .25 0 0

0 0 .25 .50 .25 0

0 0 0 .25 .50 .25

0 0 0 0 .50 .50

⎤⎥⎦



p = (p1, p2, p3, p4, p5, p6),

where pi represents the probability that the person is currently in state i. If p
(j)

represents the location of the person at step j, then the location of the person at

the j + 1 step is given by the matrix product

p(j+1) = p(j)P .

Moreover, if p
(j)

 represents the location at step j, then the location of the

traveler after m additional steps, p
(j+m)

, is given by the matrix product

p(j+m) = p(j)Pm,

where P
m
 indicates the matrix multiplication P × P × ... × P (the matrix P

multiplied by itself m times).

 To illustrate for our example using R, suppose that the person begins at

state 3 that is represented in R by the vector p with a 1 in the third entry:

p <- c(0, 0, 1, 0, 0, 0)

We also define the transition matrix by use of the matrix() function.

P <- matrix(c(.5, .5, 0, 0, 0, 0, 
 .25, .5, .25, 0, 0, 0, 
 0, .25, .5, .25, 0, 0, 
 0, 0, .25, .5, .25, 0, 
 0, 0, 0, .25, .5, .25, 
 0, 0, 0, 0, .5, .5), 
 nrow=6, ncol=6, byrow=TRUE)

If one multiplies this vector by the matrix P, one obtains the probabilities of

being in all six states after one move.

print(p %*% P, digits = 5) 
 [,1] [,2] [,3] [,4] [,5] [,6] 
[1,] 0 0.25 0.5 0.25 0 0

After one move (starting at state 3), our walker will be at states 2, 3, and 4

with respective probabilities 0.25, 0.5, and 0.25. If one multiplies p by the



matrix P four times, one obtains the probabilities that the walker will be in the

different states after four moves.

print(p %*% P %*% P %*% P %*% P, digits = 5) 
 [,1] [,2] [,3] [,4] [,5] [,6] 
[1,] 0.10938 0.25 0.27734 0.21875 0.11328 0.03125

Starting from state 3, this person will most likely be in states 2, 3, and 4 after

four moves.

For an irreducible, aperiodic Markov chain, there is a limiting behavior of the

matrix power P
m
 as m approaches infinity. Specifically, this limit is equal to

W = lim
m→∞

Pm, (9.4)

where W has common rows equal to w. The implication of this result is that, as

one takes an infinite number of moves, the probability of landing at a particular

state does not depend on the initial starting state.

One can demonstrate this result empirically for our example. Using a loop, we

take the transition matrix P to the 100th power by repeatedly multiplying the

transition matrix by itself. From this calculation below, note that the rows of

the matrix Pm appear to be approaching a constant vector. Specifically, it

appears the constant vector w is equal to (0.1, 0.2, 0.2, 0.2, 0.2, 0.1).

Pm <- diag(rep(1, 6)) 
for(j in 1:100){ 
 Pm <- Pm %*% P 
} 
print(Pm, digits = 5) 
 [,1] [,2] [,3] [,4] [,5] [,6] 
[1,] 0.100009 0.20001 0.20001 0.19999 0.19999 0.099991 
[2,] 0.100007 0.20001 0.20000 0.20000 0.19999 0.099993 
[3,] 0.100003 0.20000 0.20000 0.20000 0.20000 0.099997 
[4,] 0.099997 0.20000 0.20000 0.20000 0.20000 0.100003 
[5,] 0.099993 0.19999 0.20000 0.20000 0.20001 0.100007 
[6,] 0.099991 0.19999 0.19999 0.20001 0.20001 0.100009

From this result about the limiting behavior of the matrix power P
m
, one can

derive a rule for determining this constant vector. Suppose we can find a

probability vector w such that wP = w. This vector w is said to be the

stationary distribution. If a Markov chain is irreducible and aperiodic, then it



has a unique stationary distribution. Moreover, as illustrated above, the limiting

distribution of this Markov chain, as the number of steps approaches infinity,

will be equal to this stationary distribution.

9.2.3  Simulating a Markov chain

Another method for demonstrating the existence of the stationary distribution

of our Markov chain is by running a simulation experiment. We start our

random walk at a particular state, say location 3, and then simulate many steps

of the Markov chain using the transition matrix P. The relative frequencies of

our traveler in the six locations after many steps will eventually approach the

stationary distribution w.

 In R we have already defined the transition matrix P. To begin the

simulation exercise, we set up a storage vector s for the locations of our traveler

in the random walk. We indicate that the starting location for our traveler is

state 3 and perform a loop to simulate 10,000 draws from the Markov chain. We

use the sample() function to simulate one step – the arguments to this function

indicate that we are sampling a single value from the set {1, 2, 3, 4, 5, 6} with

probabilities given by the s1
j  row of the transition matrix P, where s1

j  is the

current location of our traveler.

s <- vector("numeric", 10000) 
s[1] <- 3 
for (j in 2:10000) 
s[j] <- sample(1:6, size=1, prob=P[s[j - 1], ])

Suppose that we record the relative frequencies of each of the outcomes 1, 2,

..., 6 after each iteration of the simulation. Figure 9.3 graphs the relative

frequencies of each of the outcomes as a function of the iteration number. It

appears from Figure 9.3 that the relative frequencies of the states are

converging to the stationary distribution w = (0.1, 0.2, 0.2, 0.2, 0.2, 0.1). We

confirm that this specific vector w is indeed the stationary distribution of this

chain by multiplyingw by the transition matrix P and noticing that the product

is equal to w.

w <- matrix(c(.1,.2,.2,.2,.2,.1), nrow=1, ncol=6) 
 w %*% P 
[,1] [,2] [,3] [,4] [,5] [,6] 
[1,] 0.1 0.2 0.2 0.2 0.2 0.1



FIGURE 9.3

Relative frequencies of the states 1 through 6 as a function of the number of iterations for Markov chain

simulation. As the number of iterations increases, the relative frequencies appear to approach the probabilities

in the stationary distribution w = (0.1, 0.2, 0.2, 0.2, 0.2, 0.1).

 

9.3  The Metropolis Algorithm

9.3.1  Example: Walking on a number line

Markov chains can be used to sample from an arbitrary probability distribution.

To introduce a general Markov chain sampling algorithm, we illustrate sampling

from a discrete distribution. Suppose one defines a discrete probability

distribution on the integers 1, ..., K.

 As an example, we write a short function pd() in R taking on the values 1,

..., 8 with probabilities proportional to the values 5, 10, 4, 4, 20, 20, 12, and 5.

Note that these probabilities don’t sum to one, but we will shortly see that only

the relative sizes of these values are relevant in this algorithm. A line graph of

this probability distribution is displayed in Figure 9.4.



pd <- function(x){ 
 values <- c(5, 10, 4, 4, 20, 20, 12, 5) 
 ifelse(x %in% 1:length(values), values[x], 0) 
} 
prob_dist <- data.frame(x = 1:8, 
 prob = pd(1:8))

FIGURE 9.4

A discrete probability distribution on the values 1, ..., 8.

To simulate from this probability distribution, we will take a simple random

walk described as follows.

1. We start at any possible location of our random variable from 1 to K = 8.

2. To decide where to visit next, a fair coin is flipped. If the coin lands heads,

we think about visiting the location one value to the left, and if coin lands

tails, we consider visiting the location one value to right. We call this the

“candidate” location.

3. We compute

R =
pd(candidate)

pd(current)
, (9.5)

the ratio of the probabilities at the candidate and current locations.



4. We spin a continuous spinner that lands anywhere from 0 to 1 – call the

random spin X. If X is smaller than R, we move to the candidate location,

and otherwise we remain at the current location.

Steps 1 through 4 define an irreducible, aperiodic Markov chain on the state

values {1, 2, ..., 8} where Step 1 gives the starting location and the transition

matrix P is defined by Steps 2 through 4. One way of “discovering” the discrete

probability distribution pd is by starting at any location and walking through

the distribution many times repeating Steps 2, 3, and 4 (propose a candidate

location, compute the ratio, and decide whether to visit the candidate location).

If this process is repeated for a large number of steps, the distribution of our

actual visits should approximate the probability distribution pd.

 A R function random_walk() is written implementing this random walk

algorithm. There are three inputs to this function, the probability distribution

pd, the starting location start and the number of steps of the algorithm s.

random_walk <- function(pd, start, num_steps){ 
 y <- rep(0, num_steps) 
 current <- start 
 for (j in 1:num_steps){ 
 candidate <- current + sample(c(-1, 1), 1) 
 prob <- pd(candidate) / pd(current) 
 if (runif(1) < prob) current <- candidate 
 y[j] <- current 
 } 
 return(y) 
}

We have already defined the probability distribution by use of the function

pd(). Below, we implement the random walk algorithm by inputting this

probability function, starting at the value X = 4 and running the algorithm for

s = 10,000 iterations.

out <- random_walk(pd, 4, 10000) 
data.frame(out) %>% group_by(out) %>% 
 summarize(N = n(), Prob = N / 10000) -> S

In Figure 9.5 a histogram of the simulated values from the random walk is

compared with the actual probability distribution. Note that the collection of

simulated draws appears to be a close match to the true probabilities.



FIGURE 9.5

Histogram of simulated draws from the random walk compared with the actual probabilities of the

distribution.

9.3.2  The general algorithm

A popular way of simulating from a general continuous posterior distribution is

by using a generalization of the discrete Markov chain setup described in the

random walk example in the previous section. The Markov chain Monte Carlo

sampling strategy sets up an irreducible, aperiodic Markov chain for which the

stationary distribution equals the posterior distribution of interest. This

method, called the Metropolis algorithm, is applicable to a wide range of

Bayesian inference problems.

Here the Metropolis algorithm is presented and illustrated. This algorithm is

a special case of the Metropolis-Hastings algorithm, where the proposal

distribution is symmetric (e.g. uniform or normal).

Suppose the posterior density is written as

πn(θ) ∝ π(θ)L(θ),

where π(θ) is the prior and L(θ) is the likelihood function. In this algorithm, it

is not necessary to compute the normalizing constant – only the product of

likelihood and prior is needed.



1. (START) As in the random walk algorithm, we begin by selecting any θ

value where the posterior density is positive – the value we select θ
(0)

 is the

starting value.

2. (PROPOSE) Given the current simulated value θ
(j)

 we propose a new value

θ
P
 which is selected at random in the interval (θ

(j)
 − C, θ

(j)
 + C) where C

is a preselected constant.

3. (ACCEPTANCE PROBABILITY) One computes the ratio R of the

posterior density at the proposed value and the current value:

R =
πn(θP )

πn(θ(j))
. (9.6)

The acceptance probability is the minimum of R and 1:

PROB =min {R, 1}. (9.7)

4. (MOVE OR STAY?) One simulates a uniform random variable U. If U is

smaller than the acceptance probability PROB, one moves to the proposed

value θ
P
; otherwise one stays at the current value θ

(j)
. In other words, the

next simulated draw θ
(j+1)

θ(j+1) = { (9.8)

5. (CONTINUE) One continues by returning to Step 2 – propose a new

simulated value, compute an acceptance probability, decide to move to the

proposed value or stay, and so on.

Figure 9.6 illustrates how the Metropolis algorithm works. The bell-shaped

curve is the posterior density of interest. In the top-left panel, the solid dot

represents the current simulated draw and the black bar represents the proposal

region. One simulates the proposed value represented by the “P” symbol. One

computes the probability of accepting this proposed value – in this case, this

probability is 0.02. By simulating a uniform draw, one decides not to accept this

θp if U < PROB,

θ(j) elsewhere.



proposal and the new simulated draw is the current value shown in the top-right

panel. A different scenario is shown in the bottom panels. One proposes a value

corresponding to a higher posterior density value. The probability of accepting

this proposal is 1 and the bottom left graph shows that the new simulated draw

is the proposed value.

FIGURE 9.6

Illustration of the Metropolis algorithm. The left graphs show the proposal region and two possible proposal

values and the right graphs show the result of either accepting or rejecting the proposal.

9.3.3  A general function for the Metropolis algorithm

Since the Metropolis is a relatively simple algorithm, one writes a short function

in R to implement this sampling for an arbitrary probability distribution.

 The function metropolis() has five inputs: logpost is a function defining the

logarithm of the density, current is the starting value, C defines the

neighborhood where one looks for a proposal value, iter is the number of

iterations of the algorithm, and ... denotes any data or parameters needed in

the function logpost().



metropolis <- function(logpost, current, C, iter, ...){ 
 S <- rep(0, iter) 
 n_accept <- 0 
 for(j in 1:iter){ 
 candidate <- runif(1, min=current - C, 
 max=current + C) 
 prob <- exp(logpost(candidate, ...) - 
 logpost(current, ...)) 
 accept <- ifelse(runif(1) < prob, "yes", "no") 
 current <- ifelse(accept == "yes", 
 candidate, current) 
 S[j] <- current 
 n_accept <- n_accept + (accept == "yes") 
 } 
 list(S=S, accept_rate=n_accept / iter) 
}

 

9.4  Example: Cauchy-Normal Problem

To illustrate using the metropolis() function, suppose we wish to simulate 1000

values from the posterior distribution in our Buffalo snowfall problem where we

use a Cauchy prior to model our prior opinion about the mean snowfall amount.

Recall that the posterior density of μ is proportional to

π(μ ∣ y) ∝
1

1 + ( μ−10
2
)

2
× exp{−

n

2σ2
(ȳ − μ)2}.

(9.9)

There are four inputs to this posterior – the mean ȳ and corresponding

standard error σ/√n, and the location parameter 10 and the scale parameter 2

for the Cauchy prior. Recall that for the Buffalo snowfall, we observed 

ȳ = 26.785 and σ/√n = 3.236.

 First we need to define a short function defining the logarithm of the

posterior density function. Ignoring constants, the logarithm of this density is

given by



logπ(μ ∣ y) = − log{1 + (
μ − 10

2
)

2

}−
n

2σ2
(ȳ − μ)2. (9.10)logπ(μ ∣ y) = − log{1 + (

μ − 10

2
)

2

}−
n

2σ2
(ȳ − μ)2. (9.10)

The function lpost() returns the value of the logarithm of the posterior

where s is a list containing the four inputs ybar, se, loc, and scale.

lpost <- function(theta, s){ 
 dcauchy(theta, s$loc, s$scale, log = TRUE) + 
 dnorm(s$ybar, theta, s$se, log = TRUE) 
}

A list named s is defined that contains these inputs for this particular

problem.

s <- list(loc = 10, scale = 2, 
 ybar = mean(data$JAN), 
 se = sd(data$JAN) / sqrt(20))

Now we are ready to apply the Metropolis algorithm as coded in the function

metropolis(). The inputs to this function are the log posterior function lpost,

the starting value μ = 5, the width of the proposal density C = 20, the number

of iterations 10,000, and the list s that contains the inputs to the log posterior

function.

out <- metropolis(lpost, 5, 20, 10000, s)

The output variable out has two components – S is a vector of the simulated

draws and accept_rate gives the acceptance rate of the algorithm.

9.4.1  Choice of starting value and proposal region

In implementing this Metropolis algorithm, the user has to make two choices.

He or she needs to select a starting value for the algorithm and select a value of

C which determines the width of the proposal region.

Assuming that the starting value is a place where the density is positive, then

this particular choice in usual practice is not critical. In the event where the



probability density at the starting value is small, the algorithm will move

towards the region where the density is more probable.

The choice of the constant C is more critical. If one chooses a very small

value of C, then the simulated values from the algorithm tend to be strongly

correlated and it takes a relatively long time to explore the entire probability

distribution. In contrast, if C is chosen too large, then it is more likely that

proposal values will not be accepted and the simulated values tend to get stuck

at the current values. One monitors the choice of C by computing the

acceptance rate, the proportion of proposal values that are accepted. If the

acceptance rate is large, that indicates that the simulated values are highly

correlated and the algorithm is not efficiently exploring the distribution. If the

acceptance rate is low, then few candidate values are accepted and the

algorithm tends to be “sticky” or stuck at current draws.

We illustrate different choices of C for the mean amount of Buffalo snowfall

problem. In each case, we start with the value μ = 20 and try the C values 0.3,

3, 30, and 200. In each case, we simulate 5000 values of the MCMC chain.

Figure 9.7 shows in each case a line graph of the simulated draws against the

iteration number and the acceptance rate of the algorithm is displayed.

FIGURE 9.7

Trace plots of simulated draws using different choices of the constant C.



When one chooses a small value C = 0.3 (top-left panel in Figure 9.7), note

that the graph of simulated draws has a snake-like appearance. Due to the

strong autocorrelation of the simulated draws, the sampler does a relatively

poor job of exploring the posterior distribution. One measure that this sampler

is not working well is the large acceptance rate of 0.9702. On the other hand, if

one uses a large value C = 200 (bottom-right panel in Figure 9.7), the flat-

portions in the graph indicates there are many occurrences where the chain will

not move from the current value. The low acceptance rate of 0.0272 indicates

this problem. The more moderate values of C = 3 and C = 30 (top-right and

bottom-left panels in Figure 9.7) produce more acceptable streams of simulated

values, although the respective acceptance rates (0.8158 and 0.179) are very

different.

In practice, it is recommended that the Metropolis algorithm has an

acceptance rate between 20% and 40%. For this example, this would suggest

trying an alternative choice of C between 2 and 20.

9.4.2  Collecting the simulated draws

Using MCMC diagnostic methods that will be described in Section 9.6, one sees

that the simulated draws are a reasonable approximation to the posterior

density of μ. One displays the posterior density by computing a density estimate

of the simulated sample. In Figure 9.8, we plot the prior, likelihood, and

posterior density for the mean amount of Buffalo snowfall μ using the Cauchy

prior. Recall that we have prior-data conflict, the prior says that the mean

snowfall is about 10 inches and the likelihood indicates that the mean snowfall

was around 27 inches. When a normal prior was applied, we found that the

posterior mean was 17.75 inches – actually the posterior density has little

overlap with the prior or the likelihood in Figure 9.1. In contrast, it is seen from

Figure 9.8 that the posterior density using the Cauchy density resembles the

likelihood. Essentially this posterior analysis says that our prior information was

off the mark and the posterior is most influenced by the data.



FIGURE 9.8

Prior, likelihood, and posterior of a normal mean with a Cauchy prior.

 

9.5  Gibbs Sampling

In our examples, we have focused on the use of the Metropolis sampler in

simulating from a probability distribution of a single variable. Here we introduce

an MCMC algorithm for simulating from a probability distribution of several

variables based on conditional distributions: the Gibbs sampling algorithm. As

we will see, it facilitates parameter estimation in Bayesian models with more

than one parameter, providing data analysts much flexibility in specifying

Bayesian models.

9.5.1  Bivariate discrete distribution

To introduce the Gibbs sampling method, suppose that the random variables X

and Y each take on the values 1, 2, 3, 4, and the joint probability distribution is

given in the following table.



X

Y 1 2 3 4

1 0.100 0.075 0.050 0.025

2 0.075 0.100 0.075 0.050

3 0.050 0.075 0.100 0.075

4 0.025 0.050 0.075 0.100

Suppose it is of interest to simulate from this joint distribution of (X, Y). We

set up a Markov chain by taking simulated draws from the conditional

distributions f(x| y) and f(y| x). Let’s describe this Markov chain by example.

Suppose the algorithm starts at the value X = 1.

Step 1 One simulates Y from the conditional distribution f(y| X = 1). This

conditional distribution is represented by the probabilities in the

first column of the probability matrix.

Y Probability

1 0.100

2 0.075

3 0.050

4 0.025

(Actually these values are proportional to the distribution f(y| X = 1).)

Suppose we perform this simulation and obtain Y = 2.

Step 2 Next one simulates X from the conditional distribution of f(x| Y =

2). This distribution is found by looking at the probabilities in the

second row of the probability matrix.

X 1 2 3 4

Probability 0.075 0.100 0.075 0.050

Suppose the simulated draw from this distribution is X = 3.

By implementing Steps 1 and 2, we have one iteration of Gibbs sampling,

obtaining the simulated pair (X, Y) = (3, 2). To continue this algorithm, we

repeat Steps 1 and 2 many times where we condition in each case on the most

recently simulated values of X or Y.

By simulating successively from the distributions f(y| x) and f(x| y), one

defines a Markov chain that moves from one simulated pair (X
(j)

, Y
(j)

) to the

next simulated pair (X
(j+1)

, Y
(j+1)

). In theory, after simulating from these two



conditional distributions a large number of times, the distribution will converge

to the joint probability distribution of (X, Y).

 We write a short R function gibbs_discrete() to implement Gibbs sampling

for a two-parameter discrete distribution where the probabilities are represented

in a matrix. One inputs the matrix p and the output is a matrix of simulated

draws of X and Y where each row corresponds to a simulated pair. By default,

the sampler starts at the value X = 1 and 1000 iterations of the algorithm will

be taken.

gibbs_discrete <- function(p, i = 1, iter = 1000){ 
 x <- matrix(0, iter, 2) 
 nX <- dim(p)[1] 
 nY <- dim(p)[2] 
 for(k in 1:iter){ 
 j <- sample(1:nY, 1, prob = p[i, ]) 
 i <- sample(1:nX, 1, prob = p[, j]) 
 x[k, ] <- c(i, j) 
 } 
 x 
}

The function gibbs_discrete() is run using the probability matrix for our

example. The output is converted to a data frame and we tally the counts for

each possible pair of values of (X, Y), and then divide the counts by the

simulation sample size of 1000. One can check that the relative frequencies of

these pairs are good approximations to the joint probabilities.

sp <- data.frame(gibbs_discrete(p)) 
names(sp) <- c("X", "Y") 
table(sp) / 1000 
 Y 
X 1 2 3 4 
 1 0.086 0.058 0.050 0.020 
 2 0.061 0.081 0.079 0.048 
 3 0.046 0.070 0.090 0.079 
 4 0.017 0.036 0.068 0.111

9.5.2  Beta-binomial sampling

The previous example demonstrated Gibbs sampling for a two-parameter

discrete distribution. In fact, the Gibbs sampling algorithm works for any two-

parameter distribution. To illustrate, consider a familiar Bayesian model

discussed in Chapter 7. Suppose we flip a coin n times and observe y heads



where the probability of heads is p, and our prior for the heads probability is

described by a beta curve with shape parameters a and b. It is convenient to

write X| Y = y as the conditional distribution of X given Y = y. Using this

notation we have

Y ∣ p ∼ Binomial(n, p), (9.11)

p ∼ Beta(a, b). (9.12)

To implement Gibbs sampling for this situation, one needs to identify the two

conditional distributions Y| p and p| Y. First write down the joint density of (Y,

p) which is found by multiplying the marginal density π(p) with the conditional

density f(y| p).

(9.13)

1. The conditional density f(Y = y| p) is found by fixing a value of the

proportion p and then the only random variable is Y. This distribution is

Binomial(n, p) which actually was given in the statement of the problem.

2. Turning things around, the conditional density π(p| y) takes the number of

successes y and views the joint density as a function only of the random

variable p. Ignoring constants, we see this conditional density is

proportional to

py+a−1(1 − p)n−y+b−1, (9.14)

which we recognize as a beta distribution with shape parameters y + a and

n − y + b. Using our notation, we have p| y ∼ Beta(y + a, n − y + b).

 Once these conditional distributions are identified, it is straightforward to

write an algorithm to implement Gibbs sampling. For example, suppose n = 20

f(Y = y, p) = π(p)f(Y = y ∣ p)

= [ 1
B(a,b) p

a−1(1 − p)b−1][(n

y
)py(1 − p)n−y].



and the prior density for p is Beta(5, 5). Suppose that the current simulated

value of p is p
(j)

.

1. Simulate Y
(j)

 from a Binomial(20, p
(j)

) distribution.

y <- rbinom(1, size = 20, prob = p)

2. Given the current simulated value y
(j)

, simulate p
(j+1)

 from a beta

distribution with shape parameters y
(j)

 + 5 and 20 − y
(j)

 + 5.

p <- rbeta(1, y + a, n - y + b)

The R function gibbs_betabin() will implement Gibbs sampling for this

problem. One inputs the sample size n and the shape parameters a and b. By

default, one starts the algorithm at the proportion value p = 0.5 and one takes

1000 iterations of the algorithm.

gibbs_betabin <- function(n, a, b, p = 0.5, iter = 1000){ 
 x <- matrix(0, iter, 2) 
 for(k in 1:iter){ 
 y <- rbinom(1, size = n, prob = p) 
 p <- rbeta(1, y + a, n - y + b ) 
 x[k, ] <- c(y, p) 
 } 
 x 
}

Below we run Gibbs sampling for this beta-binomial model with n = 20, a =

5, and b = 5. After performing 1000 iterations, one regards the matrix sp as an

approximate simulated sample from the joint distribution of Y and p. A

histogram is constructed of the simulated draws of Y in Figure 9.9. This graph

represents an approximate sample from the marginal distribution f(y) of Y.

sp <- data.frame(gibbs_betabin(20, 5, 5))



FIGURE 9.9

Histogram of simulated draws of Y from Gibbs sampling for the beta-binomial model with n = 20, a = 5, and b

= 5.

9.5.3  Normal sampling – both parameters unknown

In Chapter 8, we considered the situation of sampling from a normal

distribution with mean μ and standard deviation σ. To simplify this to a one-

parameter model, we assumed that the value of σ was known and focused on the

problem of learning about the mean μ. Since Gibbs sampling allows us to

simulate from posterior distributions of more than one parameter, we can

generalize to the more realistic situation where both the mean and the standard

deviation are unknown.

Suppose we take a sample of n observations Y1,.., Yn from a normal

distribution with mean μ and variance σ
2
. Recall the sampling density of Yi has

the form

f(yi ∣ μ,σ) =
1

√2πσ
exp{−

1

2σ2
(yi − μ)2}. (9.15)

It will be convenient to reexpress the variance σ by the precision ϕ where



ϕ =
1

σ2
. (9.16)ϕ =

1

σ2
. (9.16)

The precision ϕ reflects the strength in knowledge about the location of the

observation Yi. If Yi is likely to be close to the mean μ, then the variance σ
2

would be small and so the precision ϕ would be large. So we restate the

sampling model as follows. The observations Y1,.., Yn are a random sample

from a normal density with mean μ and precision ϕ, where the sampling density

of Yi is given by

f(yi ∣ μ,ϕ) =
√ϕ

√2π
exp{−

ϕ

2
(yi − μ)2}. (9.17)

The next step is to construct a prior density on the parameter vector (μ, ϕ).
A convenient choice for this prior is to assume that one’s opinion about the

location of the mean μ is independent of one’s belief about the location of the

precision ϕ. So we assume that μ and ϕ are independent, so one writes the joint

prior density as

π(μ,ϕ) = πμ(μ)πϕ(ϕ), (9.18)

where πμ() and πϕ() are marginal densities. For convenience, each of these

marginal priors are assigned conjugate forms: we assume that μ is normal with

mean μ0 and precision ϕ0:

πμ(μ) =
√ϕ0

√2π
exp{−

ϕ0

2
(μ − μ0)2}. (9.19)

The prior for the precision parameter ϕ is assumed gamma with parameters a

and b:



πϕ(ϕ) =
ba

Γ(a)
ϕa−1 exp(−bϕ), ϕ > 0. (9.20)πϕ(ϕ) =

ba

Γ(a)
ϕa−1 exp(−bϕ), ϕ > 0. (9.20)

Once values of y1,..., yn are observed, the likelihood is the density of these

normal observations viewed as a function of the mean μ and the precision

parameter ϕ. Simplifying the expression and removing constants, one obtains:

(9.21)

To implement Gibbs sampling, one first writes down the expression for the

posterior density as the product of the likelihood and prior where any constants

not involving the parameters are removed.

(9.22)

Next, the two conditional posterior distributions π(μ|ϕ, y1, · · · , yn) and π(ϕ|
μ, y1, · · · , yn) are identified.

1. The first conditional density π(μ|ϕ, y1, · · · , yn) follows from the work in

Chapter 8 on Bayesian inference about a mean with a conjugate prior when

the sampling standard deviation was assumed known. One obtains that this

conditional distribution π(μ|ϕ, y1, · · · , yn) is normal with mean

μn =
ϕ0μ0 + nϕȳ

ϕ0 + nϕ
. (9.23)

and standard deviation

L(μ,ϕ) = ∏n
i=1

√ϕ

√2π
exp{− ϕ

2
(yi − μ)2}

∝ ϕn/2 exp{− ϕ

2 ∑
n
i=1(yi − μ)2}.

π(μ,ϕ ∣ y1, ⋯ , yn) ∝ ϕn/2 exp{− ϕ

2 ∑
n
i=1(yi − μ)2}

× exp{− ϕ0

2 (μ − μ0)2}ϕa−1 exp(−bϕ).



σn = √
1

ϕ0 + nϕ
. (9.24)σn = √

1

ϕ0 + nϕ
. (9.24)

2. Collecting terms, the second conditional density π(ϕ|μ, y1, · · · , yn) is

proportional to

π(ϕ ∣ μ, y1, ⋯ yn) ∝ ϕn/2+a−1 exp{−ϕ[
1

2

n

∑
i=1

(yi − μ)2 + b]}. (9.25)

The second conditional distribution π(ϕ|μ, y1, · · · , yn) is seen to be a

gamma density with parameters

an =
n

2
+ a, (9.26)

bn =
1

2

n

∑
i=1

(yi − μ)2 + b. (9.27)

 An R function gibbs_normal() is written to implement this Gibbs sampling

simulation. The inputs to this function are a list s containing the vector of

observations y and the prior parameters mu0, phi0, a, and b, the starting value

of the precision parameter ϕ, phi, and the number of Gibbs sampling iterations

S. This function is similar in structure to the gibbs_betabin() function – the

two simulations in the Gibbs sampling are accomplished by use of the rnorm()

and rgamma() functions.

gibbs_normal <- function(s, phi = 0.002, iter = 1000){ 
 ybar <- mean(s$y) 
 n <- length(s$y) 
 mu0 <- s$mu0 
 phi0 <- s$phi0 
 a <- s$a 
 b <- s$b 



 x <- matrix(0, iter, 2) 
 for(k in 1:iter){ 
 mun <- (phi0 * mu0 + n * phi * ybar) / 
 (phi0 + n * phi) 
 sigman <- sqrt(1 / (phi0 + n * phi)) 
 mu <- rnorm(1, mean = mun, sd = sigman) 
 an <- n / 2 + a 
 bn <- sum((s$y - mu) ^ 2) / 2 + b 
 phi <- rgamma(1, shape = an, rate = bn) 
 x[k, ] <- c(mu, phi) 
 } 
 x 
}

We run this function for our Buffalo snowfall example where now the

sampling model is normal with both the mean μ and standard deviation σ

unknown. The prior distribution assumes that μ and the precision ϕ are

independent, where μ is normal with mean 10 and standard deviation 3 (i.e.

precision 1/3
2
), and ϕ is gamma with a = b = 1. The output of this function is

a matrix out where the two columns of the matrix correspond to random draws

of μ and ϕ from the posterior distribution.

s <- list(y = data$JAN, mu0 = 10, phi0 = 1/3^2, a = 1, b = 1) 
 out <- gibbs_normal(s, iter=10000)

By performing the transformation σ = √1/ϕ, one obtains a sample of the

simulated draws of the standard deviation σ. Figure 9.10 displays a scatterplot

of the posterior draws of μ and σ.



FIGURE 9.10

Scatterplot of simulated draws of the posterior distribution of μ and σ from Gibbs sampling for the normal

sampling model with independent priors on μ and the precision ϕ.

 

9.6  MCMC Inputs and Diagnostics

9.6.1  Burn-in, starting values, and multiple chains

In theory, the Metropolis and Gibbs sampling algorithms will produce simulated

draws that converge to the posterior distribution of interest. But in typical

practice, it may take a number of iterations before the simulation values are

close to the posterior distribution. So in general it is recommended that one run

the algorithm for a number of “burn-in” iterations before one collects iterations

for inference. The JAGS software that is introduced in Section 9.7 will allow the

user to specify the number of burn-in iterations.

In the examples, we have illustrated running a single “chain” where one has a

single starting value and one collects simulated draws from many iterations. It is

possible that the MCMC sample will depend on the choice of starting value. So

a general recommendation is to run the MCMC algorithm several times using

different starting values. In this case, one will have multiple MCMC chains. By

comparing the inferential summaries from the different chains one explores the

sensitivity of the inference to the choice of starting value. Although we will

focus on the use of a single chain, we will explore the use of different starting

values and multiple chains in an example in this chapter. The JAGS software

and other programs to implement MCMC will allow for different starting values

and several chains.

9.6.2  Diagnostics

The output of a single chain from the Metropolis and Gibbs algorithms is a

vector or matrix of simulated draws. Before one believes that a collection of

simulated draws is a close approximation to the posterior distribution, some

special diagnostic methods should be initially performed.

Trace plot

It is helpful to construct a trace plot which is a line plot of the simulated draws

of the parameter of interest graphed against the iteration number. Figure 9.11

displays a trace plot of the simulated draws of μ from the Metropolis algorithm

for our Buffalo snowfall example for normal sampling (known standard



deviation) with a Cauchy prior. Section 9.4.1 shows some sample trace plots for

Metropolis sampler. As discussed in that section, it is undesirable to have a

snake-like appearance in the trace plot indicating a high acceptance rate. Also,

Section 9.4.1 displays a trace plot with many flat portions that indicates a

sampler with a low acceptance rate. From the authors’ experience, the trace

plot in Figure 9.11 indicates that the sampler is using a good value of the

constant C and efficiently sampling from the posterior distribution.

FIGURE 9.11

Trace plot of simulated draws of μ using the Metropolis algorithm with C = 20.

Autocorrelation plot

Since one is simulating a dependent sequence of values of the parameter, one is

concerned about the possible strong correlation between successive draws of the

sampler. One visualizes this dependence by computing the correlation of the

pairs {θ
(j)

, θ
(j+l)

} and plotting this “lag-correlation” as a function of the lag

value l. This autocorrelation plot of the simulated draws from our example is

displayed in Figure 9.12. If there is a strong degree of autocorrelation in the

sequence, then there will be a large correlation of these pairs even for large

values of the lag value. Figure 9.12 is an example of a suitable autocorrelation

graph where the lag correlation values quickly drop to zero as a function of the

lag value. This autocorrelation graph is another indication that the Metropolis

algorithm is providing an efficient sampler of the posterior.



FIGURE 9.12

Autocorrelation plot of simulated draws of μ using the Metropolis algorithm with C = 20.

9.6.3  Graphs and summaries

If the trace plot or autocorrelation plot indicate issues with the Metropolis

sampler, then the width of the proposal C should be adjusted and the algorithm

run again. Since we believe that the Metropolis simulation stream is reasonable

with the use of the value C = 20, then we use a histogram of simulated draws,

as displayed in Figure 9.13 to represent the posterior distribution. Alternatively,

a density estimate of the simulated draws can be used to show a smoothed

representation of the posterior density. Figure 9.13 places a density estimate on

top of the histogram of the simulated values of the parameter μ.



FIGURE 9.13

Histogram of simulated draws of μ using the Metropolis algorithm with C = 20. The solid curve is a density

estimate of the simulated values.

One estimates different summaries of the posterior distribution by computing

different summaries of the simulated sample. In our Cauchy-normal model, one

estimates, for example, the posterior mean of μ by computing the mean of the

simulated posterior draws:

E(μ ∣ y) ≈
∑S

j=1 μ
(j)

S
. (9.28)

One typically wants to estimate the simulation standard error of this MCMC

estimate. If the draws from the posterior were independent, then the Monte

Carlo standard error of this posterior mean estimate would be given by the

standard deviation of the draws divided by the square root of the simulation

sample size:

se =
sd({μ(j)})

√S
. (9.29)



However, this estimate of the standard error is not correct since the MCMC

sample is not independent (the simulated value μ
(j)

 depends on the value of the

previous simulated value μ
(j−1)

). One obtains a more accurate estimate of Monte

Carlo standard error by using time-series methods. As we will see in the

examples of Section 9.7, this standard error estimate will be larger than the

“naive” standard error estimate that assumes the MCMC sample values are

independent.

 

9.7  Using JAGS

Sections 9.3 and 9.5 have illustrated general strategies for simulating from a

posterior distribution of one or more parameters. Over the years, there has been

an effort to develop general-purpose Bayesian computing software that would

take a Bayesian model (i.e. the specification of a prior and sampling density as

input), and use an MCMC algorithm to output a matrix of simulated draws

from the posterior. One of the earliest Bayesian simulation-based computing

software was BUGS (for Bayesian inference Using Gibbs Sampling) and we

illustrate in this text applications of a similar package JAGS (for Just Another

Gibbs Sampler).

The use of JAGS has several attractive features. One defines a Bayesian

model for a particular problem by writing a short script. One then inputs this

script together with data and prior parameter values in a single R function from

the runjags package that decides on the appropriate MCMC sampling algorithm

for the particular Bayesian model. In addition, this function simulates from the

MCMC algorithm for a specified number of samples and collects simulated

draws of the parameters of interest.

9.7.1  Normal sampling model

To illustrate the use of JAGS, consider the problem of estimating the mean

Buffalo snowfall assuming a normal sampling model with both the mean and

standard deviation unknown, and independent priors placed on both

parameters. As in Section 9.5.3 one expresses the parameters of the normal

distribution as μ and ϕ, where the precision ϕ is the reciprocal of the variance ϕ
= 1/σ

2
. One then writes this Bayesian model as

Sampling, for i = 1, · · · , n:



Yi
i.i.d.
∼ Normal(μ,√1/ϕ). (9.30)Yi
i.i.d.
∼ Normal(μ,√1/ϕ). (9.30)

Independent priors for μ and ϕ:

μ ∼ Normal(μ0,√1/ϕ0), (9.31)

ϕ ∼ Gamma(a, b). (9.32)

The JAGS program parameterizes a normal density in terms of the precision, so

the prior precision is equal to ϕ0 = 1/σ2
0. As in Section 9.5.3, the parameters of

the normal and gamma priors are set at μ0 = 10, ϕ0 = 1/3 
2
, a = 1, b = 1.

Describe the model by a script

 To begin, one writes the following script defining this model. The model is

saved in the character string modelString.

modelString = " 
model{ 
## sampling 
for (i in 1:N) { 
 y[i] ~ dnorm(mu, phi) 
} 
## priors 
mu ~ dnorm(mu0, phi0) 
phi ~ dgamma(a, b) 
sigma <- sqrt(pow(phi, -1)) 
} 
"

Note that this script closely resembles the statement of the model. In the

sampling part of the script, the loop structure starting with for (i in 1:N) is

used to assign the distribution of each value in the data vector y the same

normal distribution, represented by dnorm. The ~ operator is read as “is

distributed as”.



In the priors part of the script, in addition to setting the normal prior and

gamma prior for mu and phi respectively, sigma <- sqrt(pow(phi, -1)) is added

to help track sigma directly.

Define the data and prior parameters

The next step is to define the data and provide values for parameters of the

prior. In the script below, a list the_data is used to collect the vector of

observations y, the number of observations N, and values of the normal prior

parameters mu0, phi0, and of the gamma prior parameters a and b.

buffalo <- read.csv("../data/buffalo_snowfall.csv") 
data <- buffalo[59:78, c("SEASON", "JAN")] 
y <- data$JAN 
N <- length(y) 
the_data <- list("y" = y, "N" = N, 
 "mu0"=10, "phi0"=1/3^2, 
 "a"=1,"b"=1)

Define initial values

One needs to supply initial values in the MCMC simulation for all of the

parameters in the model. To obtain reproducible results, one can use the

initsfunction() function shown below to set the seed for the sequence of

simulated parameter values in the MCMC.

initsfunction <- function(chain){ 
 .RNG.seed <- c(1,2)[chain] 
 .RNG.name <- c("base::Super-Duper", 
 "base::Wichmann-Hill")[chain] 
 return(list(.RNG.seed=.RNG.seed, 
 .RNG.name=.RNG.name)) 
}

Alternatively, one can specify the initial values by means of a function – this

will be implemented when multiple chains are discussed. If no initial values are

specified, then JAGS will select initial values – these are usually a “typical”

value such as a mean or median from the prior distribution.

Generate samples from the posterior distribution

Now that the model definition and data have been defined, one is ready to draw

samples from the posterior distribution. The runjags provides the R interface to

the use of the JAGS software. The run.jags() function sets up the Bayesian



model defined in modelString. The input n.chains = 1 indicates that one

stream of simulated values will be generated. adapt = 1000 says that 1000

simulated iterations are used in “adapt” period to prepare for MCMC, burnin =

1000 indicates 5000 simulated iterations are used in a “burn-in” period where the

iterations are approaching the main probability region of the posterior

distribution. The sample = 5000 arguments indicates that 5000 additional

iterations of the MCMC algorithm will be collected. The monitor arguments

says that we are collecting simulated values of the mean mu and the standard

deviation sigma. The output variable posterior includes a matrix of the

simulated draws. The inits = initsfunction argument indicates that initial

parameter values are chosen by the initsfunction() function.

posterior <- run.jags(modelString, 
 n.chains = 1, 
 data = the_data, 
 monitor = c("mu", "sigma"), 
 adapt = 1000, 
 burnin = 5000, 
 sample = 5000, 
 inits = initsfunction)

MCMC diagnostics and summarization

Before summarizing the simulated sample, some graphical diagnostics methods

should be implemented to judge if the sample appears to “mix” or move well

across the space of likely values of the parameters. The plot() function in the

runjags package constructs a collection of four graphs for a parameter of

interest. By running plot() for mu and sigma, we obtain the graphs displayed in

Figures 9.14 and 9.15.

plot(posterior, vars = "mu") 
plot(posterior, vars = "sigma")



FIGURE 9.14

Diagnostic plots of simulated draws of μ using the JAGS software with the runjags package.



FIGURE 9.15

Diagnostic plots of simulated draws of σ using the JAGS software with the runjags package.

The trace and autocorrelation plots in the top left and bottom right sections

of the display are helpful for seeing how the sampler moves across the posterior

distribution. In Figures 9.14 and 9.15, the trace plots show little autocorrelation

in the streams of simulated draws and both simulated samples of μ and σ

appear to mix well. In the autocorrelation plots, the value of the autocorrelation

drops sharply to zero as a function of the lag which confirms that we have

modest autocorrelation in these samples. In each display, the bottom left graph

is a histogram of the simulated draws and the top right graph is an estimate at

the cumulative distribution function of the variable.

Since we are encouraged by these diagnostic graphs, we go ahead and obtain

summaries of the simulated samples of μ and σ by the print() function on our

MCMC object. The posterior mean of μ is 16.5. The standard error of this

simulation estimate is the “MCerr” value of 0.0486 – this standard error takes in

account the correlated nature of these simulated draws. A 90% probability

interval for the mean μ is found from the output to be (10.8, 21.4). For σ, it has

a posterior mean of 17.4, and a 90% probability interval (11.8, 24).

print(posterior, digits = 3) 
 Lower95 Median Upper95 Mean SD Mode MCerr 
mu 10.8 16.5 21.4 16.5 2.68 -- 0.0486 
sigma 11.8 17.1 24 17.4 3.18 -- 0.0576

9.7.2  Multiple chains

In Section 9.6.1, we explained the benefit of trying different starting values and

running several MCMC chains. This is facilitated by arguments in the

run.jags() function. Suppose one considers the very different pairs of starting

values, (μ, ϕ) = (2, 1/4) and (μ, ϕ) = (30, 1/900). Note that both pairs of

parameter values are far outside of the region where the posterior density is

concentrated. One defines InitialValues as containing two lists, each containing

a starting value.

InitialValues <- list( 
 list(mu = 2, phi = 1 / 4), 
 list(mu = 30, phi = 1 / 900) 
)



The run.jags() function is run with two modifications – one chooses n.chains

= 2 and the initial values are input through the inits = InitialValues option.

posterior <- run.jags(modelString, 
 n.chains = 2, 
 data = the_data, 
 monitor = c("mu", "sigma"), 
 adapt = 1000, 
 burnin = 5000, 
 sample = 5000, 
 inits = InitialValues)

The output variable posterior contains a component mcmc which is a list of

two components where posterior$mcmc[[1]] contains the simulated draws from

the first chain and posterior$mcmc[[2]] contains the simulated draws from the

second chain. To see if the MCMC run is sensitive to the choice of starting

value, one compares posterior summaries from the two chains. Below, we display

posterior quantiles for the parameters μ and σ for each chain. Note that these

quantiles are very close in value indicating that the MCMC run is insensitive to

the choice of starting value.

summary(posterior$mcmc[[1]], digits = 3) 
2. Quantiles for each variable: 
 2.5% 25% 50% 75% 97.5% 
mu 10.99 14.64 16.49 18.35 21.62 
sigma 12.26 15.15 17.03 19.31 25.07 
summary(posterior$mcmc[[2]], digits = 3) 
2. Quantiles for each variable: 
 2.5% 25% 50% 75% 97.5% 
mu 10.97 14.59 16.55 18.33 21.54 
sigma 12.21 15.08 16.96 19.18 24.99

9.7.3  Posterior predictive checking

In Chapter 8 Section 8.7, we illustrated the usefulness of the posterior predictive

checking in model checking. The basic idea is to simulate a number of replicated

datasets from the posterior predictive distribution and see how the observed

sample compares to the replications. If the observed data does resemble the

replications, one says that the observed data is consistent with predicted data

from the Bayesian model.

For our Buffalo snowfall example, suppose we wish to simulate a replicated

sample from the posterior predictive distribution. Since our original sample size

was n = 20, the intent is to simulate a sample of values ~y1, . . . , ~y20 from the



posterior predictive distribution. A single replicated sample is simulated in the

following two steps.

1. We draw a set of parameter values, say μ∗,σ∗
 from the posterior

distribution of (μ, σ).

2. Given these parameter values, we simulate ~y1, . . . , ~y20 from the normal

sampling density with mean μ∗
 and standard deviation σ∗

.

 Recall that the simulated posterior values are stored in the matrix post. We

write a function postpred_sim() to simulate one sample from the predictive

distribution.

post <- data.frame(posterior$mcmc[[1]]) 
postpred_sim <- function(j){ 
 rnorm(20, mean = post[j, "mu"], 
 sd = post[j, "sigma"]) 
} 
print(postpred_sim(1), digits = 3) 
 [1] 5.37 10.91 40.87 15.94 16.93 43.49 22.48 
 [8] -6.43 3.26 7.30 35.27 20.79 21.47 16.62 
[15] 5.45 44.69 23.10 -18.18 26.51 6.84

If this process is repeated for each of the 5000 draws from the posterior

distribution, then one obtains 5000 samples of size 20 drawn from the predictive

distribution. In R, the function sapply() is used together with postpred_sim()

to simulate 5000 samples that are stored in the matrix ypred.
ypred <- t(sapply(1:5000, postpred_sim))

Figure 9.16 displays histograms of the predicted snowfalls from eight of these

simulated samples and the observed snowfall measurements are displayed in the

lower right panel. Generally, the center and spread of the observed snowfalls

appear to be similar in appearance to the eight predicted snowfall samples from

the fitted model. Can we detect any differences between the distribution of

observed snowfalls and the distributions of predicted snowfalls? One concern is

that some of the predictive samples contain negative snowfall values. Another

concern from this inspection is that we observed a snowfall of 65.1 inches in our

sample and none of our eight samples had a snowfall this large. Perhaps there is

an outlier in our sample that is not consistent with predictions from our model.



FIGURE 9.16

Histograms of eight simulated predictive samples and the observed sample for the snowfall example.

When one notices a possible discrepancy between the observed sample and

simulated prediction samples, one thinks of a checking function T() that will

distinguish the two types of samples. In this situation since we noticed the

extreme snowfall of 65.1 inches, that suggests that we use T(y) = max y as a

checking function.

Once one decides on a checking function T(), then one simulates the posterior

predictive distribution of T (~y). This is conveniently done by evaluating the

function T() on each simulated sample from the predictive distribution. In R,

this is conveniently done using the apply() function and the values of T (~y) are

stored in the vector postpred_max.

postpred_max <- apply(ypred, 1, max)

If the checking function evaluated at the observed sample T(y) is not

consistent with the distribution of T (~y), then predictions from the model are

not similar to the observed data and there is some issue with the model

assumptions. Figure 9.17 displays a histogram of the predictive distribution of



T(y) in our example where T() is the maximum function, and the observed

maximum snowfall is shown by a vertical line. Here the observed maximum is in

the right tail of the posterior predictive distribution – the interpretation is that

this largest snowfall of 65.1 inches is not predicted from the model. In this case,

one might want to think about revising the sampling model, say, by assuming

that the data follow a distribution with flatter tails than the normal.

FIGURE 9.17

Histogram of the posterior predictive distribution of T (~y) where T() is the maximum function. The vertical

line shows the location of the observed value T(y).

9.7.4  Comparing two proportions

To illustrate the usefulness of the JAGS software, we consider a problem

comparing two proportions from independent samples. The model is defined in a

JAGS script, the data and values of prior parameters are entered through a list,

and the run.jags() function is used to simulate from the posterior of the

parameters by an MCMC algorithm.

To better understand the behavior of Facebook users, a survey was

administered in 2011 to 244 students. Each student was asked his or her gender

and the average number of Facebook visits in a day. We say that the number of

daily visits is “high” if the number of visits is 5 or more; otherwise it is “low”. If

we classify the sample by gender and daily visits, we obtain the two by two

table of counts as shown in Table 9.1.

TABLE 9.1

Two-way table of counts of students by gender and Facebook visits.



Visits to Facebook

Gender High Low

Male yM nM − yM

Female yF nF − yF

In Table 9.1, the random variable YM represents the number of males who

have a high number of Facebook visits in a sample of nM, and YF and nM are

the analogous count and sample size for women. Assuming that the sample

survey represents a random sample from all students using Facebook, then it is

reasonable to assume that YM and YF are independent with YM distributed

binomial with parameters nM and pM, and YF is binomial with parameters nF

and pF.

The probabilities pM and pF are displayed in Table 9.2. In this type of data

structure, one is interested in the association between gender and Facebook

visits. Define the odds as the ratio of the probability of high to the probability

of low. The odds of high for the men and odds of high for the women are

defined by

pM

1 − pM
, (9.33)

and

pF

1 − pF
, (9.34)

respectively. The odds ratio

α =
pM/(1 − pM)

pF/(1 − pF )
, (9.35)

is a measure of association in this two-way table. If α = 1, this means that pM =

pL – this says that tendency to have high numbers of visits to Facebook does

not depend on gender. If α > 1, this indicates that men are more likely to have



high numbers of visits to Facebook, and a value α < 1 indicates that women are

more likely to have high numbers of visits. Sometimes association is expressed

on a log scale – the log odds ratio λ is written as

λ = logα = log(
pM

1 − pM
)− log(

pF

1 − pF
). (9.36)

That is, the log odds ratio is expressed as the difference in the logits of the men

and women probabilities, where the logit of a probability p is equal to logit(p) =

log (p) − log (1 − p). If gender is independent of Facebook visits, then λ = 0.

TABLE 9.2

Probability structure in two-way table.

Visits to Facebook

Gender High Low

Male pM 1 − pM

Female pF 1 − pF

One’s prior beliefs about association in the two-way table is expressed in

terms of logits and the log odds ratio. If one believes that gender and Facebook

visits are independent, then the log odds ratio is assigned a normal prior with

mean 0 and standard deviation σ. The mean of 0 reflects the prior guess of

independence and σ indicates the strength of the belief in independence. If one

believed strongly in independence, then one would assign σ a small value.

In addition, let

θ =
logit(pM) + logit(pF)

2
(9.37)

be the mean of the logits, and assume that θ has a normal prior with mean θ0

and standard deviation σ0 (precision ϕ0). The prior on θ reflects beliefs about

the general size of the proportions on the logit scale.

 To fit this model using JAGS, the following script, saved in modelString, is

written defining the model.



modelString = " 
model{ 
## sampling 
yF ~ dbin(pF, nF) 
yM ~ dbin(pM, nM) 
logit(pF) <- theta - lambda / 2 
logit(pM) <- theta + lambda / 2 
## priors 
theta ~ dnorm(mu0, phi0) 
lambda ~ dnorm(0, phi) 
} 
"

In the sampling part of the script, the two first lines define the binomial

sampling models, and the logits of the probabilities are defined in terms of the

log odds ratio lambda and the mean of the logits theta. In the priors part of the

script, note that theta is assigned a normal prior with mean mu0 and precision

phi0, and lambda is assigned a normal prior with mean 0 and precision phi.

When the sample survey is conducted, one observes that 75 of the 151 female

students say that they are frequent visitors of Facebook, and 39 of the 93 male

students are frequent visitors. This data and the values of the prior parameters

are entered into R by use of a list. Note that phi = 2 indicating some belief that

gender is independent of Facebook visits, and mu0 = 0 and phi0 = 0.001

reflecting little knowledge about the location of the logit proportions. Using the

run.jags() function, we take an adapt period of 1000, burn-in period of 5000

iterations and collect 5000 iterations, storing values of pF, pM and the log odds

ratio lambda.

the_data <- list("yF" = 75, "nF" = 151, 
 "yM" = 39, "nM" = 93, 
 "mu0" = 0, "phi0" = 0.001, "phi" = 2) 
 posterior <- run.jags(modelString, 
 data = the_data, 
 n.chains = 1, 
 monitor = c("pF", "pM", "lambda"), 
 adapt = 1000, 
 burnin = 5000, 
 sample = 5000)

Since the main goal is to learn about the association structure in the table,

Figure 9.18 displays a density estimate of the posterior draws of the log odds

ratio λ. A reference line at λ = 0 is drawn on the graph which corresponds to

the case where pM = pL. What is the probability that women are more likely



than men to make more visits to Facebook? This is directly answered by

computing the posterior probability Prob(λ < 0| data) that is computed to be

0.874. Based on this computation, one concludes that it is very probable that

women have a greater tendency than men to visit Facebook frequently.

post <- data.frame(posterior$mcmc[[1]]) 
post %>% 
 summarize(Prob = mean(lambda < 0)) 
 Prob 
1 0.874

FIGURE 9.18

Posterior density estimate of simulated draws of log odds ratio λ for visits to Facebook example. A vertical

line is drawn at the value λ = 0 corresponding to no association between gender and visits to Facebook.

In the end-of-chapter exercises, the reader will be asked to perform further

explorations with this two proportion model.

 

9.8  Exercises

1. Normal and Cauchy Priors



In the example in Section 9.1.2, it was assumed that the prior for the

average snowfall μ was normal with mean 10 inches and standard deviation

3 inches.

(a) Confirm that the 25th and 75th percentiles of this prior are equal to 8

and 12 inches, respectively.

(b) Show that under this normal prior, it is unlikely that the mean μ is at

least as large as 26.75 inches.

(c) Confirm that a Cauchy distribution with location 10 inches and scale

parameter 2 inches also has 25th and 75th percentiles equal to 8 and

12 inches, respectively.

2. A Random Walk

The following matrix represents the transition matrix for a random walk on

the integers {1, 2, 3, 4, 5}.

P =

(a) Suppose one starts walking at the state value 4. Find the probability

of landing at each location after a single step.

(b) Starting at value 4, find the probability of landing at each location

after three steps.

(c) Explain what is means for this Markov chain to be irreducible and

aperiodic.

3. A Random Walk (continued)

Consider the random walk Markov chain described in Exercise 2.

(a) Suppose one starts at the location 1. Using an R script with the

sample() function (see example script Section 9.2.3), simulate 1000

steps of the Markov chain using the probabilities given in the

transition matrix. Store the locations of the walk in a vector.

(b) Compute the relative frequencies of the walker in the five states from

the simulation output. From this computation, guess at the value of

the stationary distribution vector w.

(c) Confirm that your guess is indeed the stationary distribution by using

the matrix computation w %*% P.

4. Weird Weather

⎡⎢⎣.2 .8 0 0 0

.2 .2 .6 0 0

0 .2 .4 .2 0

0 0 .6 .2 .2

0 0 0 .8 .2

⎤⎥⎦



Suppose a city in Alaska has interesting weather. The four possible weather

states are “sunny” (SU), “rainy” (R), “cloudy” (C), and “snow” (SN). If it is

sunny one day, it is equally likely to be rainy, cloudy, and snow on the next

day. If is currently rainy, then the probabilities of sunny, rain, cloudy, and

snow on the next day are respectively 1/2, 1/6, 1/6, and 1/6. The following

matrix gives the transitions of weather from one day to the next day.

(a) If the weather is rainy today, find the probability that is rainy two

days later.

(b) Starting with a sunny day, write an R script to simulate 1000 days of

weather using this Markov chain.

(c) Find the relative frequencies of the four states. Are these values

approximately the stationary distribution of the Markov chain?

5. Ehrenfest Urn Model

Grinstead and Snell (2006) describe a model used to explain diffusion of

gases. One version of this model is described in the setting of two urns that

contain a total of four balls. A state is the number of balls in the first urn.

There are five possible states 0, 1, 2, 3, and 4. At each step, one ball is

chosen at random and moved from the urn it is located to the other urn.

The transition matrix for this Markov chain is shown below:

P =

(a) Starting at state 1, find the probabilities of each state after two steps.

(b) Starting at state 1, find the probabilities of each state after three

steps.

(c) Explain why this Markov chain is not aperiodic.

(d) Does a stationary distribution exist for this Markov chain? Why or

why not?

6. Metropolis Sampling in a Random Walk

⎡⎢⎣ 0 1 0 0 0

1/4 0 3/4 0 0

0 1/2 0 1/2 0

0 0 3/4 0 1/4

0 0 0 1 0

⎤⎥⎦



Suppose the variable X takes on values from 1 to 9 with respective

probabilities that are proportional to the values 9, 7, 5, 3, 1, 3, 5, 7, 9. This

probability distribution displayed in Figure 9.19 has a “bathtub” shape.

FIGURE 9.19

Bathtub shaped probability distribution.

(a) Write an R function that computes this probability distribution for

any value of X.

(b) Using the Metropolis algorithm described in Section 9.3.1 as

programmed in the function random_walk(), simulate 10,000 draws

from this probability distribution starting at the value X = 2.

(c) Collect the simulated draws and find the relative frequencies of the

values 1 through 9. Compare these approximate probabilities with the

exact probabilities.

7. Metropolis Sampling of a Binomial Distribution

(a) Using the Metropolis algorithm described in Section 9.3 as

programmed in the function random_walk(), simulate 1000 draws from

a binomial distribution with parameters n = 20 and p = 0.3.

(b) Collect the simulated draws and find the relative frequencies of the

values 0 through 20. Compare these approximate probabilities with the

exact probabilities.

(c) Using the simulated values, estimate the mean μ and standard

deviation σ of the distribution and compare these estimates with the

known values of μ and σ of a binomial distribution.

8. Metropolis Sampling - Poisson-Gamma Model

Suppose we observe y1,..., yn from a Poisson distribution with mean λ, and

the parameter λ has a Gamma(a, b) distribution. The posterior density is



proportional to

π(λ ∣ y1, ⋯ , yn) ∝ [
n

∏
i=1

exp(−λ)λyi][λa−1 exp(−bλ)].

(a) Write a function to compute the logarithm of the posterior density.

Assume that one observes the sample 2, 5, 10, 5, 6, and the prior

parameters are a = b = 1.

(b) Use the metropolis() function in Section 9.3.3 to collect 1000 draws

from the posterior distribution. Use a starting value of λ = 5 and a

neighborhood scale value of C = 2.

(c) Inspect MCMC diagnostic graphs to assess if the simulated sample

approximates the posterior density of λ.

9. Metropolis Sampling from a Bimodal Distribution

Suppose we observe a random sample y1,..., yn from a Cauchy distribution

with location θ and scale parameter 1 with density

f(yi ∣ θ) =
1

π[1 + (yi − θ)2]
. (9.38)

If a uniform prior is placed on θ, then the posterior density of θ is

proportional to

π(θ ∣ y1, ⋯ , yn) ∝
n

∏
i=1

1

π[1 + (yi − θ)2]
(9.39)

If we observe the values 3, 6, 7, 8, 15, 14, 16, 17, Figure 9.20 displays

the bimodal shape of the posterior density.



FIGURE 9.20

Posterior density of location parameter with Cauchy sampling.

(a) Write a function to compute the logarithm of the posterior density.

(b) Using the metropolis() function in Section 9.3.3, collect a simulated

sample of 1000 from the posterior distribution. Run the sampler twice,

once using a starting value of θ = 10 and a neighborhood scale value

of C = 3, and a second time with the same starting value and a scale

value of C = 0.2.

(c) By inspecting MCMC diagnostic graphs, which value of C appears to

result in a simulated sample that is a better approximation to the

posterior distribution? Explain.

10. Gibbs Sampling - Poisson-Gamma Model

Suppose a single observation Y conditional on λ is Poisson with mean λ,

and λ has a Gamma(a, b) prior with density equal to

π(λ) =
ba

Γ(a)
λa−1 exp(−bλ).

(a) Write down the joint density of Y and λ.

(b) Identify the conditional distribution Y conditional on λ, and the

conditional distribution of λ conditional on Y = y.

(c) Use the information from part (b) to construct a Gibbs sampling

algorithm to sample from the joint distribution of (Y, λ).

(d) Write an R function to implement one cycle of Gibbs sampling, and

run 1000 iterations of Gibbs sampling for the case where a = 3 and b

= 3.



(e) By integration, find the marginal density of Y. Compare the exact

values of the marginal density with the simulated draws of Y found

using Gibbs sampling.

11. Gibbs Sampling - Coin Flips

Suppose one observes the outcomes of four fair coin flips W1,..., W4 where

Wi = 1 if the outcome is heads and Wi = 0 otherwise. Let X = W1 + W2

+ W3 denote the number of heads in the first three flips and Y = W2 + W3

+ W4 is the number of heads in the last three flips. The joint probability of

X and Y is given in Table 9.3.

TABLE 9.3

The joint probability mass function f(x, y) of the number of heads in the first three flips X and the number of

heads in the last three flips Y in four tosses of a fair coin.

Y

0 1 2 3

0 1/16 1/16 0 0

X 1 1/16 3/16 2/16 0

2 0 2/16 3/16 1/16

3 0 0 1/16 1/16

(a) Find the conditional distribution f(x| Y = 1).

(b) Find the conditional distribution f(y| X = 2).

(c) Describe how Gibbs sampling can be used to simulate from the joint

distribution of X and Y.

(d) Using the gibbs_discrete function in Section 9.5.1, simulate 1000

iterations of Gibbs sampling using this probability distribution. By

tabulating the (X, Y) output and computing relative frequencies,

confirm that the relative frequencies are good approximations to the

actual probabilities.

12. Normal Sampling with Both Parameters Unknown

The heights in inches of 20 college women were collected, observing the

following measurements:

47 64 61 61 63 61 64 66 63 67

63.5 65 62 64 61 56 63 65 64 59

Suppose one assumes that the normal mean and precision parameters are

independent with μ distributed Normal(62, 1) and ϕ distributed gamma

with parameters a = 1 and b = 1.



(a) Using the gibbs_normal() function in Section 9.5.3, collect a sample of

5000 from the joint posterior distribution of (μ, ϕ).
(b) Find a 90% interval estimate for the standard deviation σ = 1/√ϕ.

(c) Suppose one is interested in estimating the 90th percentile of the

height distribution P90 = μ + 1.645σ. Collect simulated draws from the

posterior of P90 and construct a density estimate.

13. Normal Sampling with Both Parameters Unknown (continued)

In Exercise 12, one learned about the mean and precision of the heights by

use of a Gibbs sampling algorithm. Use JAGS and the runjags package to

collect MCMC draws from this model. Write a JAGS script for this normal

sampling problem and use the run.jags() function. Answer questions from

parts (c) and (d) from Exercise 12. (Note that the sample JAGS script in

Section 9.7.1 returns samples of μ and σ.)

14. Normal Sampling with Both Parameters Unknown (continued)

If we graph the height data from Exercise 12, we see one usually small

height value, 47. We want to determine if this minimum height is consistent

with the fitted model.

(a) Write a function to simulate a sample of size 20 from the posterior

predictive distribution. You can use either the gibbs_normal() function

in Section 9.5.3 or the JAGS sample script in Section 9.7.1 to generate

a sample from the posterior distribution of (μ, ϕ) or (μ, σ). For each

sample, compute the minimum value T (~y).
(b) Repeat the procedure 1000 times, collecting a sample of the predictive

distribution of the minimum observation.

(c) Graph the predictive distribution. From comparing the observed

minimum height with this distribution, what can you conclude about

the suitability of the model?

15. Comparing Proportions

In Section 9.7.4, the problem of comparing proportions of high numbers of

visits to Facebook from male and female students was considered.

(a) Using the same prior, use JAGS to take a simulated sample of size

5000 from the posterior of pF and pM. Construct a 90% probability

interval estimate for the difference in proportions δ = pW − pM.

(b) Use the same simulated sample to perform inferences about the ratio

of proportions R = pW/pM. Construct a density estimate of R and

construct a 90% probability interval estimate.

16. Comparing Poisson Rates



Suppose the number of customers yj arriving at a bank during a half-hour

period in the morning is Poisson with mean λM, and the number of

customers wj arriving in an afternoon half-hour period is Poisson with mean

λA. Suppose one observes the counts 3, 3, 6, 3, 2, 3, 7, 6 for the morning

periods, and the counts 11, 3, 9, 10, 10, 5, 8, 7 for the afternoon periods.

Assume that λM and λA have independent Gamma(1, 1) priors. Use JAGS

to obtain a simulated sample from the joint posterior of (λM, λA) and use

the output to obtain a 90% posterior interval estimate for the ratio of

means R = λA/λM.

17. Normal Sampling with a Cauchy Prior

In Section 9.4, we considered the problem of estimating the mean snowfall

amount in Buffalo with a Cauchy prior. The sample mean ȳ is normal with

mean μ and standard error se and μ is Cauchy with location 10 and scale 2.

In our problem, ȳ = 26.785 and se = 3.236. Write a JAGS script for this

Bayesian model. Use the run.jags() function to simulate 1000 draws of the

posterior distribution for μ. Compute the posterior mean and posterior

standard deviation for μ.

18. Normal Sampling with a Cauchy Prior (continued)

In Exercise 17, we used JAGS to simulate values from the posterior of μ

from a single MCMC chain. Instead use two chains with the different

starting values of μ = 0 and μ = 50. Run JAGS with two chains and

estimate the posterior mean and posterior standard deviation using output

from each of the two chains. Based on the output, comment on the

sensitivity of the MCMC run with the choice of the starting value.

19. Bivariate Normal

Section 6.7 introduced the bivariate normal distribution. Suppose we wish

to use Gibbs sampling to simulate from this distribution. In the following

assume (X, Y) is bivariate normal with parameters (μX, μY, σX, σY, ρ).

(a) Using results from Section 6.7, identify the two conditional

distributions f(x| y) and f(y| x) and write down a Gibbs sampling

algorithm for simulating from the joint distribution of (X, Y).

(b) Write an R function to simulate a sample from the distribution using

Gibbs sampling.

(c) Assume μX = 0, μY = 0, σX = 1, σY = 1, ρ = 0.5 and run the

simulation for 1000 iterations. Compare the means, standard

deviations, and correlation computed from the simulation with the

true values of the parameters.



(d) Repeat part (c) using the correlation value ρ = 0.95 and again

compare the simulation estimates with the true values. Explain why

Gibbs sampling does not appear to work as well in this situation.

20. A Normal Mixture Model

Consider a three-component mixture distribution, where the density for x

has the form

f(x) = 0.45 × ϕ(x, −3, 1/3) + 0.1 × ϕ(x, 0, 1/3) + 0.45 × ϕ(x, 3, 1/3), (9.40)

where ϕ(x, μ, σ) is the normal density with mean μ and standard deviation

σ. Consider the following two ways of simulating from this mixture density.

Approach 1: Monte Carlo: Introduce a “mixture component indicator”,

δ, an unobserved latent variable. The variable z is equal to 1, 2, and 3 with

respective probabilities 0.45, 0.1, and 0.45. The density for x conditional on

z is normal where [x| z = 1] ∼ Normal( − 3, 1/3), [x| z = 2] ∼ Normal(0,

1/3), and [x| z = 3] ∼ Normal(3, 1/3).

One simulates x by first simulating a value of z from its discrete

distribution and then simulating a value of x from the corresponding

conditional distribution. By repeating this method, one obtains a Monte

Carlo simulated sample from the exact mixture distribution.

Approach 2: Gibbs Sampling: An alternative way of simulating from

the mixture density is based on Gibbs sampling. Introduce the latent

variable z and consider the two conditional distributions [x| z] and [z| x].

The conditional distribution [x| z] will be a normal density where the

normal parameters depend on the value of the latent variable. The

conditional distribution [z| x] is discrete on the values 1, 2, 3 where the

probabilities are proportional to 0.45 × ϕ(x, − 3, 1/3), 0.1 × ϕ(x, 0, 1/3),

0.45 × ϕ(x, 3, 1/3) respectively.

Write R scripts to use both the Monte Carlo and Gibbs sampling methods

to simulate 1000 draws from this mixture density.

21. A Normal Mixture Model – MCMC Diagnostics

Figure 9.21 displays histograms of simulated draws from the mixture

distribution using the Monte Carlo and Gibbs sampling algorithms, and the

exact mixture density is overlaid on top. It is clear from the figure that the

Gibbs sampling does not appear to perform as well as the Monte Carlo

method in simulating from this distribution. Using MCMC diagnostic



graphs, explore the Gibbs sampling output. Are there particular features in

these diagnostic graphs that would indicate problems in the convergence of

the Gibbs sampling algorithm?

FIGURE 9.21

Histogram of 1000 samples of μ from the Monte Carlo and Gibbs sampling algorithms.

22. Change Point Analysis

The World Meteorological Association collects data on tropical storms, and

scientists want to find out whether the distribution of storms changed over

time, and if so, when. Data on the number of storms per year has been

collected for n years, and let yi be the number of storms in year i, where i

= 1, · · · , n. Let M be the year in which the distribution of Y changes,

where M ∈ {1, · · · , n − 1}.

A reasonable sampling model for Y is:

Suppose one gives a uniform prior for M over integers from 1 to n − 1 to

represent complete uncertainty about change point:

M ∣ λ1,λ2 ∼ Discrete(
1

n − 1
, ⋯ ,

1

n − 1
), M ∈ {1, ⋯ ,n − 1}.

Equivalently, you can think of the uniform prior as:

Prob(M = m) =
1

n − 1
, M ∈ {1, ⋯ ,n − 1}.

yi ∣ λ1,M ∼ Poisson(λ1), i = 1, ⋯ ,M;
yi ∣ λ2,M ∼ Poisson(λ2), i = M + 1, ⋯ ,n.



Recall that gamma distributions are conjugate prior distributions for

Poisson data model. Suppose one uses independent conjugate gamma priors

for λ1 and λ2:

(a) Write the joint posterior distribution, π(λ1, λ2, M| y1, · · · , yn), up to a

constant.

(b) Find the full conditional posterior distribution for λ1 and λ2. Write the

name of the distributions and expressions for their parameter values.

(c) Find the full conditional posterior distribution for M, which should be

a discrete distribution over m = 1, · · · , n − 1.

(d) Describe how you would design a Gibbs sampling to simulate posterior

draws of the set of parameters, (λ1, λ2, M).

λ1 ∣ a1, b1 ∼ Gamma(a1, b1),
λ2 ∣ a2, b2 ∼ Gamma(a2, b2).
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Bayesian Hierarchical Modeling
 

 

10.1  Introduction

10.1.1  Observations in groups

Chapters 7, 8, and 9 make an underlying assumption about the source of data: observations are assumed

to be identically and independently distributed (i.i.d.) following a single distribution with one or more

unknown parameters. In Chapter 7, the binomial data model is based on the assumptions that a

student’s chance of preferring dining out on Friday is the same for all students, and the dining

preferences of different students are independent. To refresh your memory, recall the four conditions of a

binomial experiment: a fixed number of trials, only two outcomes, a fixed success probability, and

independent trials. In Chapter 8, the normal sampling model is based on the assumptions that Roger

Federer’s time-to-serves are independent observations following a single normal distribution with an

unknown mean μ and known standard deviation σ. That is, Yi
i.i.d.
∼ Normal(μ,σ). Similarly in Chapter 9,

the underlying assumption is that the snowfall amounts in Buffalo for the month of January for the last

20 years follow the same Normal(μ, σ) distribution with both parameters unknown.

In many situations, treating observations as i.i.d. from the same distribution with the same

parameter(s) is not sensible. In our dining out example, dining preferences for students may be different

from dining preferences of senior citizens, so it would not make sense to use a single success probability

for a combined group of students and senior citizens. In a similar fashion, if one considered time-to-serve

data for a group of tennis players, then it would not be reasonable to use a single normal distribution

with a single mean to represent these data – the mean time-to-serve for a quick-serving player would

likely be smaller than the mean time-to-serve for a slower player. For many applications, some

observations share characteristics, such as age or player, that distinguish them from other observations,

therefore multiple distinct groups are observed.

10.1.2  Example: standardized test scores

As a new example, consider a study in which students’ scores of a standardized test such as the SAT are

collected from five different senior high schools in a given year. Suppose a researcher is interested in

learning about the mean SAT score. Since five different schools participated in this study and students’

scores might vary from school to school, it makes sense for the researcher to learn about the mean SAT

score for each school and compare students’ mean performance across schools.

To start modeling this education data, it is inappropriate to use Yi as the random variable for the

SAT score of student i (i = 1, … , n, where n is the total number of students from all five schools) since

this ignores the inherent grouping of the observations. Instead, the researcher adds a school label j to Yi

to reflect the grouping. Let Yij denote the SAT score of student i in school j, where j = 1, … , 5, and i =

1, … , nj, where nj is the number of students in school j, and n = ∑5
j=1 nj.

Since SAT scores are continuous, the normal sampling model is a reasonable choice for a data

distribution. Within school j, one assumes that SAT scores are i.i.d. from a normal data model with a



mean and standard deviation depending on the school. Specifically, one assumes a school-specific mean μj

and a school-specific standard deviation σj for the normal data model for school j. Combining the

information for the five schools, one has

Yij
i.i.d.
∼ Normal(μj,σj), (10.1)

where j = 1, … , 5 and j = 1, … , nj.

10.1.3  Separate estimates?

One approach for handling this group estimation problem is find separate estimates for each school. One

focuses on the observations in school j,{Y1j,Y2j, ⋯ ,Ynjj}, choose a prior distribution π(μj, σj) for the

mean and the standard deviation parameters, follow the Bayesian inference procedure in Chapter 9 and

obtain posterior inference on μj and σj. If one assumes that the prior distributions on the individual

parameters for the schools are independent, one is essentially fitting five separate Bayesian models and

one’s inferences about one particular school will be independent of the inferences on the remaining

schools.

This “separate estimates” approach may be reasonable, especially if the researcher thinks the means

and the standard deviations from the five normal models are completely unrelated to each other. That

is, one’s prior beliefs about the parameters of the SAT score distribution in one school are unrelated to

the prior beliefs about the distribution parameters in another school.

To see if this assumption is reasonable, let us consider a thought experiment for the school testing

example. Suppose you are interested in learning about the mean SAT score μN for school N. You may

not be familiar with the distribution of SAT scores and it would be difficult to construct an informative

prior for μN. But suppose that you are told that the students from another school, call it school M,

average 1,200 on their SAT scores. That information would likely influence your prior on μN, since now

you have some general idea about SAT scores. This means that your prior beliefs about the mean SAT

scores μN and μM are not independent – some information about one school’s mean SAT scores would

change your prior on the second school’s mean SAT score. So in many situations, this independence

assumption would be questionable.

10.1.4  Combined estimates?

Another way to handle this group estimation problem is to ignore the fact that there is a grouping

variable and estimate the parameters in the combined sample. In our school example, one ignores the

school variable and simply assumes that the SAT scores Yi′s are distributed from a single normal

population with mean μ and standard deviation σ. Here, i = 1, … , n where n is the total number of

students from all five schools.

If ones ignores the grouping variable, then the inference procedure described in Chapter 9 can be used.

One constructs a prior for the parameters μ and σ and use Gibbs sampling to obtain a simulated sample

from the posterior distribution of (μ, σ).

Using this approach, one is effectively ignoring any differences between the five schools. Although it is

reasonable to assume some similarity in the SAT scores across different schools, one probably does not

believe that the schools are indistinguishable. In fact, state officials assume the schools have distinct

features such as student bodies with different socioeconomic statuses so that SAT scores from different

schools can be substantially different. In some states in the United States, all schools are ranked on

different criteria which reflects the belief that schools are different with respect to student achievement.

10.1.5  A two-stage prior leading to compromise estimates



If one applies the “separate estimates” approach, one performs separate analyses on the different groups,

and one ignores any prior knowledge about the similarity between the groups. On the other extreme, the

“combined estimates” approach ignores the grouping variable and assumes that the groups are identical

with respect to the response variable SAT score. Is there an alternative approach that compromises

between the separate and combined estimate methods?

Let us return to the model Normal(μj, σj) where μj is the parameter representing the mean SAT score

of students in school j. For simplicity of discussion it is assumed the standard deviation σj of the j-th

school is known. Consider the collection of five mean parameters, {μ1, μ2, μ3, μ4, μ5} representing the

means of the five schools’ SAT scores. One believes that the μj’s are distinct, because each μj depends on

the characteristics of school j, such as size and socioeconomic status. But one also believes that the mean

parameters are similar in size. Imagine if you were given some information about the location of one

mean, say μj, then this information would influence your beliefs about the location of another mean μk.

One wishes to construct a prior distribution for the five mean parameters that reflects the belief that μ1,

μ2, μ3, μ4, and μ5 are related or similar in size. This type of “similarity” prior allows one to combine the

SAT scores of the five schools in the posterior distribution in such a way to obtain compromise estimates

of the separate mean parameters.

The prior belief in similarity of the means is constructed in two stages.

Stage 1 The prior distribution for the j-th mean, μj is normal, where the mean and standard

deviation parameters are shared among all μj’s:

μj ∣ μ, τ ∼ Normal(μ, τ), j = 1, . . . , 5. (10.2)

Stage 2 In the Stage 1 specification, the parameters μ and τ are unknown. So this stage assigns the

parameters a prior density π.

μ, τ ∼ π(μ, τ). (10.3)

Several comments can be made about this two-stage prior.

Specifying the same prior distribution for all μj’s at Stage 1 does not say that the μj’s are the same

value. Instead, Stage 1 indicates that the μj’s a priori are related and come from the same

distribution. If the prior distribution Normal(μ, τ) has a large standard deviation (that is, if τ is

large), the μj’s can be very different from each other a priori. On the other hand, if the standard

deviation τ is small, the μj’s will be very similar in size.

To follow up the previous comment, if one considers the limit of the Stage 1 prior as the standard

deviation τ approaches zero, the group means μj will be identical. Then one is in the “combined

groups” situation where one is pooling the SAT data to learn about a single population. At the

other extreme, if one allows the standard deviation τ of the Stage 1 prior to approach infinity, then

one is saying that the group means μ1,…, μ5 are unrelated and that leads to the separate estimates

situation.

In the school testing example, this prior Normal(μ, τ) distribution is a model about all μj’s in the

U.S., i.e. the population of SAT score means corresponding to all schools in the United States. The

five schools in the dataset represent a sample from all schools in the U.S.

Since μ and τ are parameters in the prior distribution, they are called hyperparameters. Learning

about μ and τ provides information about the population of μj’s. Naturally in Bayesian inference,



one learns about μ and τ by specifying a hyperprior distribution and performing inference based on

the posterior distribution. In this example, inferences about μ and τ tell us about the location and

spread of the population of mean SAT scores of schools in the U.S.

To recap, one models continuous outcomes in groups through the school-specific sampling density in

Equation (10.1) and the common normal prior distribution in Equation (10.2) for the mean parameters.

An important and appealing feature of this approach is learning simultaneously about each school

(group) and learning about the population of schools (groups). Specifically in the current setup, the

model simultaneously estimates the means for the schools (the μj’s) and the variation among the means

(μ and τ). It will be seen that the hierarchical model posterior estimates for one school borrows

information from other schools. This process is often called “partial pooling” information among groups.

From the structural point of view, due to the two stages of the model, this approach is called

hierarchical or multilevel modeling. In essence, hierarchical modeling takes into account information from

multiple levels, acknowledging differences and similarities among groups. In the posterior analysis, one

learns simultaneously about each group and learns about the population of groups by pooling

information across groups.

In this chapter, hierarchical modeling is described in two situations that extend the Bayesian models

for one proportion and one normal mean described in Chapters 7 and 8, respectively. Section 10.2

introduces hierarchical normal modeling using a sample of ratings of animation movies released in 2010;

and Section 10.3 describes hierarchical beta-binomial modeling with an example of deaths after heart

attack. In each section, we motivate the consideration of hierarchical models, outline the model

structure, and implement model inference through Markov chain Monte Carlo simulation.

 

10.2  Hierarchical Normal Modeling

10.2.1  Example: ratings of animation movies

MovieLens is a website which provides personalized movie recommendations from users who create

accounts and rate movies that they have seen. Based on such information, MovieLens works to build a

custom preference profile for each user and provide movie recommendations. MovieLens is run by

GroupLens Research, a research laboratory at the University of Minnesota that has made MovieLens

rating datasets available to the public. GroupLens Research regularly updates these datasets on its

website and the datasets are useful for new research, education and development initiatives.

In one study, a sample from the MovieLens database was collected on movie ratings for eight different

animation movies released in 2010. There are a total of 55 movie ratings, where a rating is is for a

particular animation movie completed by a MovieLens user. The ratings are likely affected by the quality

of the movie itself, as some movies are generally favored by the audience while others might be less

favored. Therefore there exists a natural grouping of the 55 ratings by the movie title.

Figure 10.1 displays a jittered dotplot of the ratings grouped by movie title and Table 10.1 lists the

sample mean, sample standard deviation, and the number of ratings for each title. Note the variability in

the sample sizes – Toy Story 3 received 16 ratings andLegend of the Guardians and Batman: Under the

Red Hood only received a single rating. For a movie with only one observed rating, such as Legend of the

Guardians and Batman: Under the Red Hood, it would be difficult to learn much about its mean rating.

Here it is desirable to improve the estimate of its mean rating by using rating information from similar

movies.



FIGURE 10.1 

Jittered dotplot of the ratings for the eight animation movies.

TABLE 10.1

The movie title, the mean rating, the standard deviation of the ratings, and the number of ratings.

Movie Title Mean SD N

Batman: Under the Red Hood 5.00 1

Despicable Me 3.72 0.62 9

How to Train Your Dragon 3.41 0.86 11

Legend of the Guardians 4.00 1

Megamind 3.38 1.31 4

Shrek Forever After 4.00 1.32 3

Tangled 4.20 0.89 10

Toy Story 3 3.81 0.96 16

10.2.2  A hierarchical Normal model with random σ
In this situation it is reasonable to develop a model for the movie ratings where the grouping variable is

the movie title. We index ratings by two subscripts, where Yij denotes the i-th rating for the j-th movie

title (j = 1, … , 8).

What sampling model should be used for the movie ratings? Since the ratings are continuous, it is

reasonable to use the normal data model described in Chapter 8. Recall that a normal model has two

parameters, the mean and the standard deviation. Based on previous reasoning, the mean parameter is

assumed to be movie-specific, so μj will represent the mean of the ratings for movie j. Thinking about

the standard deviation parameter, should the standard deviation also be movie-specific, where σj

represents the standard deviation of the ratings for movie j? Or can we assume a common value of the

standard deviation, say σ, across movies? For simplicity and ease of illustration, a common and shared

unknown standard deviation σ is assumed for all normal models. This is a simplified version of random

σj’s — the more flexible hierarchical model with random σj’s will be left as an end-of-chapter exercise.

One begins by writing down the sampling distributions for the ratings of the eight movies. Recall that

Yij denotes the i-th rating of movie j, where μj denote the mean of the normal model for movie j, and σ

denote the shared standard deviation of the normal models across different movies. In our notation, nj

represents the number of ratings for movie j.

Sampling, for j = 1, … , 8 and i = 1, … , nj:



Yij ∣ μj,σ
i.i.d.
∼ Normal(μj,σ). (10.4)Yij ∣ μj,σ
i.i.d.
∼ Normal(μj,σ). (10.4)

The next task is to set up a prior distribution for the eight mean parameters, {μ1, μ2, … , μ8} and the

shared standard deviation parameter σ. Focus first on the prior distribution for the mean parameters.

Since these movies are all animations, it is reasonable to believe that the mean ratings are similar across

movies. So one assigns each mean rating the same normal prior distribution at the first stage:

Prior for μj, j = 1, … , 8:

μj ∣ μ, τ ∼ Normal(μ, τ). (10.5)

As discussed in Section 10.1, this prior allows for a flexible method for pooling information across

movies. If the prior distribution has a large standard deviation (e.g. a large value of τ), the μj’s are very

different from each other a priori, and one would have modest pooling of the eight sets of ratings. If

instead this prior has a small standard deviation (e.g. a small value of τ), the μj’s are very similar a

priori and one would essentially be pooling the ratings to get an estimate at each of the μj. This shared

prior Normal(μ, τ) distribution among the μj’s simultaneously estimates both a mean for each movie (the

μj’s) and also lets us learn about variation among the movies by the parameter τ.

The hyperparameters μ and τ are treated as random since we are unsure about the degree of pooling

of the eight sets of ratings. In typical practice, one specifies weakly informative hyperprior distributions

for these “second-stage” parameters, indicating that one has little prior knowledge about the locations of

these parameters. After observing data, inference is performed about μ and τ based on their posterior

distributions. The posterior on the mean parameter μ is informative about an “average” mean rating and

the posterior on τ lets one know about the variation among the μj’s in the posterior.

Treating μ and τ as random, one arrives at the following hierarchical model.

Sampling: for j = 1, … , 8 and i = 1, … , nj:

Yij ∣ μj,σ
i.i.d.
∼ Normal(μj,σ). (10.6)

Prior for μj, Stage 1: μj, j = 1, … , 8:

μj ∣ μ, τ ∼ Normal(μ, τ). (10.7)

Prior for μj, Stage 2:

μ, τ ∼ π(μ, τ). (10.8)

In our model π(μ, τ) denotes an arbitrary joint hyperprior distribution for the Stage 2

hyperparameters μ and τ. When the MovieLens ratings dataset is analyzed, the specification of this

hyperprior distribution will be described.



To complete the model, one needs to specify a prior distribution for the standard deviation parameter,

σ. As discussed in Chapter 9, when making inference about the standard deviation in a normal model,

one uses a gamma prior on the precision (the inverse of the variance), for example,

Prior for σ:

(10.9)

One assigns a known gamma prior distribution for 1/σ
2
, with fixed hyperparameter values aσ and bσ.

In some situations, one may consider the situation where aσ and bσ are random and assign hyperprior

distributions for these unknown hyperparameters.

Before continuing to the graphical representation and simulation by MCMC using JAGS, it is helpful

to contrast the two-stage prior distribution for {μj} and the one-stage prior distribution for σ. The

hierarchical model specifies a common prior for the means μj’s which induces sharing of information

across ratings from different movies. On the other hand, the model uses a shared σ for all movies which

also induces sharing of information, though different from the sharing induced by the two-stage prior

distribution for {μj}.

What is the difference between the two types of sharing? For the means {μj}, we have discussed that

specifying a common prior distribution for different μj’s pools information across the movies. One is

simultaneously estimating both a mean for each movie (the μj’s) and the variation among the movies (μ

and τ). For the standard deviation σ, the hierarchical model also pools information across movies.

However, all of the observations are combined in the estimation of σ. Since separate values of σj’s are not

assumed, one cannot learn about the differences and similarities among the σj’s. If one is interested in

pooling information across movies for the σj’s, one needs to allow random σj’s, and specify a two-stage

prior distribution for these parameters. Interested readers are encouraged to try out this approach as an

end-of-chapter exercise.

Graphical representation of the hierarchical model

An alternative way of expressing this hierarchical model uses the following graphical representation.

In the middle section of the graph, {Yij} represents the collection of random variables for all ratings of

movie j, and the label to the left indicates the assumed normal sampling distribution. The two

parameters in the normal sampling density, μj and σ, are connected from above and below, with arrows

pointing from the parameters to the random variables.

The upper section of the graph focuses on the μj’s. All means follow the same prior, a normal

distribution with mean μ and standard deviation τ. Therefore, arrows come from the common

hyperparameters μ and τ to each μj. Since μ and τ are random, these second-stage parameters are

associated with the prior label π(μ, τ).

1/σ2 ∣ aσ, bσ ∼ Gamma(aσ, bσ)



The lowest section of the graph is about σ, or to be precise, 1/σ
2
. If one wants to allow

hyperparameters aσ and bσ to be random as well, the lower part of the graph grows further, in a similar

manner as the upper section for μj.

Second-stage prior

The hierarchical normal model presented in Equations (10.6) through (10.9) has not specified the

hyperprior distribution π(μ, τ). How does one construct a prior on these second-stage hyperparameters?

Recall that μ and τ are parameters for the normal prior distribution for {μj} the collection of eight

different normal sampling means. The mean μ and standard deviation τ in this normal prior distribution

reflect respectively the mean and spread of the mean ratings across eight different movies.

Following the discussion in Section 9.5.3, a typical approach for normal models is to assign two

independent prior distributions — a normal distribution for the mean μ and a gamma distribution for

the precision 1/τ
2
. Such a specification facilitates the use of the Gibbs sampling due to the availability of

the conditional posterior distributions of both parameters (see the details of this work in Section 9.5.3).

Using this approach, the density π(μ, τ) is replaced by the two hyperprior distributions below.

The hyperprior for μ and τ:

(10.10)

(10.11)

The task of choosing a prior for (μ, τ) reduces to the problem of choosing values for the four

hyperparameters μ0, γ0, aτ, and bτ. If one believes that μ is located around the value of 3 and is not very

confident of this choice, the set of values μ0 = 3 and γ0 = 1 could be chosen. As for τ, one chooses a

weakly informative prior with aτ = bτ = 1, as Gamma(1, 1). Moreover, to choose a prior for σ, let aσ =

bσ = 1 to have the weakly informative Gamma(1, 1) prior.

10.2.3  Inference through MCMC

With the specification of the prior, the complete hierarchical model is described as follows:

Sampling: for j = 1, … , 8 and i = 1, … , nj:

Yij ∣ μj,σj
i.i.d.
∼ Normal(μj,σj) (10.12)

Prior for μj, Stage 1: for j = 1, … , 8:

μj ∣ μ, τ ∼ Normal(μ, τ) (10.13)

Prior for μj, Stage 2: the hyperpriors:

μ ∣ μ0, γ0 ∼ Normal(μ0, γ0)

1/τ 2 ∣ a, b ∼ Gamma(aτ , bτ)



(10.14)(10.14)

(10.15)

Prior for σ:

1/σ2 ∼ Gamma(1, 1) (10.16)

If one uses JAGS for simulation by MCMC, one writes out the model section by following the model

structure above closely. Review Section 9.7 for an introduction and a description of several examples of

JAGS.

Describe the model by a script

 The first step in using the JAGS software is to write the following script defining the hierarchical

model. The model is saved in the character string modelString.

modelString <-" 
 model { 
 ## sampling 
 for (i in 1:N){ 
 y[i] ~ dnorm(mu_j[MovieIndex[i]], invsigma2) 
 } 
 ## priors 
 for (j in 1:J){ 
 mu_j[j] ~ dnorm(mu, invtau2) 
 } 
 invsigma2 ~ dgamma(a_s, b_s) 
 sigma <- sqrt(pow(invsigma2, -1)) 
 ## hyperpriors 
 mu ~ dnorm(mu0, g0) 
 invtau2 ~ dgamma(a_t, b_t) 
 tau <- sqrt(pow(invtau2, -1)) 
 } 
 "

In the sampling part of the script, note that the loop goes from 1 to N, where N is the number of

observations with index i. However, because now N observations are grouped according to movies,

indicated by j, one needs to create one vector, mu_j of length eight, and use MovieIndex[i] to grab the

corresponding mu_j based on the movie index.

In the priors part of the script, the loop goes from 1 to J, and J = 8 in the current example. Inside the

loop, the first line corresponds to the prior distribution for mu_j. Due to a commonly shared sigma,

invsigma2 follows dgamma(a_g, b_g) outside of the loop. In addition, sigma <- sqrt(pow(invsigma2, -1))

is added to help track sigma directly.

Finally in the hyperpriors section of the script, one specifies the normal hyperprior for mu, a gamma

hyperprior for invtau2. Keep in mind that the arguments in the dnorm in JAGS are the mean and the

precision. If one is interested instead in the standard deviation parameter tau, one could return it in the

script by using tau <- sqrt(pow(invtau2, -1)), enabling the tracking of its MCMC chain in the

posterior inferences.

μ ∼ Normal(3, 1)μ ∼ Normal(3, 1)

1/τ 2 ∼ Gamma(1, 1)



Define the data and prior parameters

 After one has defined the model script, the next step is to provide the data and values for

parameters of the prior. In the R script below, a list the_data contains the vector of observations, the

vector of movie indices, the number of observations, and the number of movies. It also contains the

normal hyperparameters mu0 and g0, and two sets of gamma hyperparameters (a_t and b_t) for invtau2,

and (a_s and b_s) for invsigma2.

y <- MovieRatings$rating 
 MovieIndex <- MovieRatings$Group_Number 
 N <- length(y) 
 J <- length(unique(MovieIndex)) 
 the_data <- list("y" = y, "MovieIndex" = MovieIndex, 
 "N" = N, "J" = J, 
 "mu0" = 3, "g0" = 1, 
 "a_t" = 1, "b_t" = 1, 
 "a_s" = 1, "b_s" = 1)

Generate samples from the posterior distribution

 One uses the run.jags() function in the runjags R package to generate posterior samples by using

the MCMC algorithms in JAGS. The script below runs one MCMC chain with 1000 iterations in the

adapt period (preparing for MCMC), 5000 iterations of burn-in and an additional set of 5000 iterations

to be run and collected for inference. By using monitor = c("mu", "tau", "mu_j", "sigma"), one collects

the values of all parameters in the model. In the end, the output variable posterior contains a matrix of

simulated draws.

 
posterior <- run.jags(modelString, 
 n.chains = 1, 
 data = the_data, 
 monitor = c("mu", "tau", "mu_j", "sigma"), 
 adapt = 1000, 
 burnin = 5000, 
 sample = 5000)

MCMC diagnostics and summarization

 In any implementation of MCMC sampling, diagnostics are crucial to perform to ensure convergence.

To perform some MCMC diagnostics in our example, one uses the plot() function, specifying the

variable to be checked by the vars argument. For example, the script below returns four diagnostic plots

(trace plot, empirical PDF, histogram, and autocorrelation plot) in Figure 10.2 for the hyperparameter

τ. Note that the trace plot only includes 5000 iterations in sample, although its index starts from adapt

(1000 adapt + 5000 burn-in). The trace plot and autocorrelation plot suggest good mixing of the chain,

therefore indicating convergence of the MCMC chain for τ.



FIGURE 10.2 

Diagnostic plots of simulated draws of τ using the JAGS software with the runjags package.

plot(posterior, vars = "tau")

In practice MCMC diagnostics should be performed for all parameters to justify the overall MCMC

convergence. In our example, the above diagnostics should be implemented for each of the eleven

parameters in the model: μ, τ, μ1, μ2, … , μ8, and σ. Once diagnostics are done, one reports posterior

summaries of the parameters using print(). Note that these summaries are based on the 5000 iterations

from the sample period, excluding the adapt and burn-in iterations.

print(posterior, digits = 3) 
 Lower95 Median Upper95 Mean SD Mode MCerr 
 mu 3.19 3.78 4.34 3.77 0.286 -- 0.00542 
 tau 0.357 0.638 1.08 0.677 0.2 -- 0.00365 
 mu_j[1] 2.96 3.47 3.99 3.47 0.262 -- 0.00376 
 mu_j[2] 3.38 3.81 4.25 3.82 0.221 -- 0.00313 
 mu_j[3] 3.07 3.91 4.75 3.91 0.425 -- 0.00677 
 mu_j[4] 3.21 3.74 4.31 3.74 0.285 -- 0.00428 
 mu_j[5] 3.09 4.15 5.43 4.18 0.588 -- 0.0115 
 mu_j[6] 2.7 3.84 4.99 3.85 0.576 -- 0.00915 
 mu_j[7] 2.74 3.53 4.27 3.51 0.388 -- 0.00595 
 mu_j[8] 3.58 4.12 4.66 4.12 0.276 -- 0.00423 
 sigma 0.763 0.92 1.12 0.93 0.0923 -- 0.00142

One performs various inferential summaries and inferences based on the output. For example, the

movies How to Train Your Dragon (corresponding to μ1) and Megamind (corresponding to μ7) have the

lowest average ratings with short 90% credible intervals, (2.96, 3.99) and (2.74, 4.27) respectively,

whereas Legend of the Guardians: The Owls of Ga’Hoole (corresponding to μ6) also has a low average

rating but with a wider 90% credible interval (2.70, 4.99). The differences in the width of the credible

intervals stem from the sample sizes: there are eleven ratings for How to Train Your Dragon, four ratings

for Megamind, and only a single rating for Legend of the Guardians: The Owls of Ga’Hoole. The smaller

the sample size, the larger the variability in the inference, even if one pools information across groups.

Among the movies with high average ratings, Batman: Under the Red Hood (corresponding to μ5) is

worth noting. This movie’s average rating μ5 has the largest median value among all μj’s, at 4.15, and

also a wide 90% credible interval, (3.09, 5.43). Batman: Under the Red Hood also received one rating in

the sample resulting in a wide credible interval.

Shrinkage



Recall that the two-stage prior in Equations (10.7) to (10.8) specifies a shared prior Normal(μ, τ) for all

μj’s which facilitates simultaneous estimation of the movie mean ratings (the μj’s), and estimation of the

variation among the movie mean ratings through the parameters μ and τ. The posterior mean of the

rating for a particular movie μj shrinks the observed mean rating towards an average rating. Figure 10.3

displays a shrinkage plot which illustrates the movement of the observed sample mean ratings towards

an average rating.

FIGURE 10.3 

Shrinkage plot of sample means and posterior means of movie ratings for eight movies.

The left side of Figure 10.3 plots the sample movie rating means and lines connect the sample means

to the corresponding posterior means (i.e. means of the posterior draws of μj). The shrinkage effect is

obvious for the movie Batman: Under the Red Hood which corresponds to the dot at the value 5.0 on the

left. This movie only received one rating of 5.0 and its mean rating μ5 shrinks to the value 4.178 on the

right, which is still the highest posterior mean among the nine movie posterior means. A large shrinkage

is desirable for a movie with a small number of ratings such as Batman: Under the Red Hood. For a

movie with a small sample size, information about other ratings of similar movies helps to produce a

more reasonable estimate at the “true” average movie rating. The amount of shrinkage is more modest

for movies with larger sample sizes. Furthermore, by pooling ratings across movies, one is able to

estimate the standard deviation σ of the ratings. Without this pooling, one would be unable to estimate

the standard deviation for a movie with only one rating.

Sources of variability

As discussed in Section 10.1, the prior distribution Normal(μ, τ) is shared among the means μj’s of all

groups in a hierarchical normal model, and the hyperparameters μ and τ provide information about the

population of μj’s. Specifically, the standard deviation τ measures the variability among the μj’s. When

the hierarchical model is estimated through MCMC, summaries from the simulation draws from the

posterior of τ provide information about this source of variation after analyzing the data.

There are actually two sources for the variability among the observed Yij’s. At the sampling level of

the model, the standard deviation σ measures variability of the Yij within the groups. In contrast, the

parameter τ measures the variability in the measurements between the groups. When the hierarchical

model is fit through MCMC, summaries from the marginal posterior distributions of σ and τ provide

information about the two sources of variability.



(10.17)(10.17)

(10.18)

The Bayesian posterior inference in the hierarchical model is able to compare these two sources of

variability, taking into account the prior belief and the information from the data. One initially provides

prior beliefs about the values of the standard deviations σ and τ through gamma distributions. In the

MovieLens ratings application, weakly informative priors of Gamma(1, 1) are assigned to both σ and τ.

These prior distributions assume a priori the within-group variability, measured by σ, is believed to be

the same size as the between-group variability measured by τ.

What can be said about these two sources of variability after the estimation of the hierarchical model?

As seen in the output of print(posterior, digits = 3), the 90% credible interval for σ is (0.763, 1.12)

and the 90% credible interval for τ is (0.357, 1.08). After observing the data, the within-group variability

in the measurements is estimated to be larger than the between-group variability.

To compare these two sources of variation one computes the fraction R = τ 2

σ2+τ 2  from the posterior

samples of σ and τ. The interpretation of R is that it represents the fraction of the total variability in

the movie ratings due to the differences between groups. If the value of R is close to 1, most of the total

variability is attributed to the between-group variability. On the other side, if R is close to 0, most of the

variation is within groups and there is little significant difference between groups.

 Sample code shown below computes simulated values of R from the MCMC output. A density plot of

R is shown in Figure 10.4.

FIGURE 10.4 

Density plot of the ratio R = τ 2

σ2+τ 2  from the posterior samples of τ and σ.

tau_draws <- as.mcmc(posterior, vars = "tau") 
 sigma_draws <- as.mcmc(posterior, vars = "sigma") 
 R <- tau_draws ^ 2 / (tau_draws ^ 2 + sigma_draws ^ 2)

A 95% credible interval for R is (0.149, 0.630). Since much of the posterior probability of R is located

below the value 0.5, this confirms that the variation between the mean movie rating titles is smaller than

the variation of the ratings within the movie titles in this example.

 

Yij
i.i.d.
∼ Normal(μj,σ) [within-group variability]Yij
i.i.d.
∼ Normal(μj,σ) [within-group variability]

μj ∣ μ, τ ∼ Normal(μ, τ) [between-group variability]



10.3  Hierarchical Beta-Binomial Modeling

10.3.1  Example: Deaths after heart attacks

The New York State (NYS) Department of Health collects and releases data on mortality after acute

myocardial infarction (AMI), commonly known as a heart attack. Its 2015 report was the initial public

data release by the NYS Department of Health on risk-adjusted mortality outcomes for AMI patients at

hospitals across the state. We focus on 13 hospitals in Manhattan, New York City, with the goal of

learning about the percentages of deaths resulting from heart attacks in hospitals cited below. Table 10.2

records for each hospital the number of heart attack cases, the corresponding number of resulted deaths,

and their computed percentage of resulted deaths.

TABLE 10.2

The number of heart attack cases, the number of resulted deaths, and the percentage of resulted deaths of 13 hospitals in New York City - Manhattan in

2015. NYP stands for New York Presbyterian.

Hospital Cases Deaths Death %

Bellevue Hospital Center 129 4 3.101

Harlem Hospital Center 35 1 2.857

Lenox Hill Hospital 228 18 7.894

Metropolitan Hospital Center 84 7 8.333

Mount Sinai Beth Israel 291 24 8.247

Mount Sinai Hospital 270 16 5.926

Mount Sinai Roosevelt 46 6 13.043

Mount Sinai St. Luke’s 293 19 6.485

NYU Hospitals Center 241 15 6.224

NYP Allen Hospital 105 13 12.381

NYP Columbia Presbyterian Center 353 25 7.082

NYP New York Weill Cornell Center 250 11 4.400

NYP Lower Manhattan Hospital 41 4 9.756

10.3.2  A hierarchical beta-binomial model

Treating “cases” as trials and “deaths” as successes, the binomial sampling model is a natural choice for

this data, and the objective is to learn about the death probability p of the hospitals. If one looks at the

actual death percentages in Table 10.2, some hospitals have much higher death rates than other

hospitals. For example, the highest death rate belongs to Mount Sinai Roosevelt, at 13.043% which is

more than four times the rate of Harlem Hospital Center at 2.857%. If one assumes a common

probability p for all thirteen hospitals, this model does not allow for possible differences between the

death rates among these hospitals.

On the other hand, if one creates thirteen separate binomial sampling models, one for each hospital,

and conducts separate inferences, one loses the ability to use potential information about the death rate

from hospital j when making inference about that of a different hospital i. Since these are all hospitals in

Manhattan, New York City, they may share attributes in common related to death rates from heart

attack. The separate modeling approach does not allow for the sharing of information across hospitals.

A hierarchical model provides a compromise between the combined and separate modeling approaches.

In Section 10.2, a hierarchical normal density was used to model mean rating scores from different

movies. In this setting, one builds a hierarchical model by assuming the hospital death rate parameters a

priori come from a common distribution. Specifically, one builds a hierarchical model based on a

common beta distribution that generalizes the beta-binomial conjugate model described in Chapter 7.

This modeling setup provides posterior estimates that partially pool information among hospitals

Let Yi denote the number of resulted deaths from heart attack, ni the number of heart attack cases,

and pi the death rate for hospital i. The sampling density for Yi for hospital i is a binomial distribution



with ni and pi, as in Equation (10.19). Suppose that the proportions {pi} independently follow the same

conjugate beta prior distribution, as in Equation (10.20). So the sampling and first stage of the prior of

our model is written as follows:

Sampling, for i, … , 13:

Yi ∼ Binomial(ni, pi) (10.19)

Prior for pi, i = 1, … , 13:

pi ∼ Beta(a, b) (10.20)

Note that the hyperparameters a and b are shared among all hospitals. If a and b are known values, then

the posterior inference for pi of hospital i is simply another beta distribution by conjugacy (review

material in Chapter 7 if needed):

pi ∣ yi ∼ Beta(a + yi, b + ni − yi). (10.21)

In the general situation where the hyperparameters a and b are unknown, a second stage of the prior

π(a, b) needs to specified for these hyperparameters. With this specification, one arrives at the

hierarchical model below.

Sampling, for i, … , 13:

Yi ∼ Binomial(ni, pi) (10.22)

Prior for pi, Stage1: for i = 1, … , 13:

pi ∼ Beta(a, b) (10.23)

Prior for pi, Stage 2: the hyperprior:

(10.24)

We use π(a, b) to denote an arbitrary distribution for the joint hyperprior distribution for a and b.

When we start analyzing the New York State heart attack death rate dataset, the specification of this

hyperprior distribution π(a, b) will be described.

Graphical representations of the hierarchical model

Below is a sketch of a graphical representation of the hierarchical beta-binomial model.

a, b ∼ π(a, b)



Focusing on the graph on the right, one sees that the upper section of the graph represents the

sampling density, with the arrow directing from pi to Yi. Here the start of the arrow is the parameter

and the end of the arrow is the random variable. The lower section of the graph represents the prior,

with arrows directing from a and b to pi. In this case, the start of the arrow is the hyperparameter and

the end of the arrow is the parameter. On the left side of the display, the sampling density, prior and

hyperprior distributional expressions are written next to the graphical representation.

In the situation where the beta parameters a and b are known constants, the graphical representation

changes to the beta-binomial conjugate model displayed below.

To illustrate another graphical representation, we display below the one for the separate models

approach in the hospitals death rate application where a fully specified beta prior is specified for each

death rate. The separate models are represented by thirteen graphs, one for each hospital. This graphical

structure shows clearly the separation of the subsamples and the resulting separation of the

corresponding Bayesian posterior distributions.

In comparing graphical representations for hierarchical models, the interested reader might notice that

the structure for the hierarchical beta-binomial model looks different from the ones in Section 10.2 for

the hierarchical normal models. In this chapter, one is dealing with one-parameter models (recall that

beta-binomial is an example of one-parameter models; other examples include gamma-Poisson), whereas

the normal models in Section 10.2 involve two parameters. Typically, when working with one-parameter

models, one starts from the top with the sampling density, then next writes down the priors and

continues with the hyperpriors. When there are multiple parameters, one needs to be careful in

describing the graphical structure. In fact, for a large number of parameters, a good graphical

representation might not be feasible. In that case, one writes a representation that focuses on the key

parts of the model.

Also note that there is no unique way of sketching a graphical representation, as long as the

representation is clear and shows the relationship among the random variables, parameters and

hyperparameters with the arrows in the correct directions.

10.3.3  Inference through MCMC



In this section the application of JAGS script for simulation by MCMC is illustrated for the hierarchical

beta-binomial models for the New York State heart attach death rate dataset. Before this is done, we

discuss the specification of the hyperprior density π(a, b) for the hyperparameters a and b for the

common beta prior distribution for the proportions pi’s.

Second-stage prior

In Chapter 7, the task was to specify the values of a and b for a single beta curve Beta(a, b) and the

beta shape parameter values were selected by trial-and-error using the beta.select() function in the

ProbBayes package. In this hierarchical model setting, the shape parameters a and b are random and the

goal is learn about these parameters from its posterior distribution.

In this prior construction, it is helpful to review some facts on beta curves from Chapter 7. For a

Beta(a, b) prior distribution for a proportion p, one considers the parameter a as the prior count of

“successes”, the parameter b as the prior count of “failures”, and the sum a + b represents the prior

sample size. Also the expectation of Beta(a, b) is 
a

a+b
. From these facts, a more natural parameterization

of the hyperprior distribution π(a, b) is π(μ, η), where μ = a
a+b

 is the hyperprior mean and η = a + b is

the hyperprior sample size. One rewrites the hyperprior distribution in terms of the new parameters μ

and η as follows:

μ, η ∼ π(μ, η), (10.25)

where a = μη and b = (1 − μ)η. These expressions are useful in writing the JAGS script for the

hierarchical beta-binomial Bayesian model.

A hyperprior is constructed from the (μ, η) representation. Assume μ and η are independent which

means that one’s beliefs about the prior mean are independent of the beliefs about the prior sample size.

The hyperprior expectation μ is the mean measure for pi, the average death rate across 13 hospitals. If

one has little prior knowledge about the expectation μ, one assigns this parameter a uniform prior which

is equivalent to a Beta(1, 1) prior.

To motivate the prior choice for the hyperparameter sample size η, consider the case where the

hyperparameter values are known. If y∗
 and n∗

 are respectively the number of deaths and number of

cases for one hospital, then the posterior mean of death rate parameter p∗
 is given by

E(p∗ ∣ y∗) =
y∗ + μη

n∗ + η
. (10.26)

With a little algebra, the posterior mean is rewritten as

E(p∗ ∣ y∗) = (1 − λ)
y∗

n∗
+ λμ, (10.27)

where λ is the shrinkage fraction

λ =
η

n∗ + η
. (10.28)



The parameter λ falls in the interval (0, 1) and represents the degree of shrinkage of the posterior mean

away from the sample proportion y∗/n∗
 towards the prior mean μ.

Suppose one believes a priori that, for a representative sample size n∗
, the shrinkage λ is uniformly

distributed on (0, 1). By performing a transformation, this implies that the prior density for the prior

sample size η has the form

π(η) =
n∗

(n∗ + η)2
, η > 0. (10.29)

Equivalently, the logarithm of η, θ = log η, has a logistic distribution with location logn∗
 and scale 1.

We represent this distribution as Logistic(logn∗, 1), with pdf:

π(θ) =
e−(θ−logn∗)

(1 + e−(θ−logn∗))2
. (10.30)

With this specification of the hyperparameter distribution, one writes down the complete hierarchical

model as follows:

Sampling, for i, … , 13:

Yi ∼ Binomial(ni, pi) (10.31)

Prior for pi, Stage 1: for i = 1, … , 13:

pi ∼ Beta(a, b) (10.32)

Prior for pi, Stage 2:

(10.33)

(10.34)

where a = μη and b = (1 − μ)η.

Writing the JAGS script

 Following this model structure above, one writes out the model section of the JAGS script for the

hierarchical beta-binomial model. The model script is saved in modelString.

modelString <-" 
 model { 
 ## likelihood 
 for (i in 1:N){ 
 y[i] ~ dbin(p[i], n[i]) 

μ ∼ Beta(1, 1),

log η ∼ Logistic(logn∗, 1)



 } 
 ## priors 
 for (i in 1:N){ 
 p[i] ~ dbeta(a, b) 
 } 
 ## hyperpriors 
 a <- mu*eta 
 b <- (1-mu)*eta 
 mu ~ dbeta(mua, mub) 
 eta <- exp(logeta) 
 logeta ~ dlogis(logn, 1) 
 } 
 "

In the sampling part of the script, the loop goes from 1 to N, where N is the total number of

observations, with index i. Another loop going from 1 to N is needed for the priors as each p[i] follows

the same dbeta(a, b) distribution. The hyperpriors section uses the new parameterization of the Beta(a,

b) distribution in terms of mu and eta. Here one expresses the hyperparameters a and b in terms of the

new hyperparameters mu and eta, and then assigns to the parameters mu and logeta the independent

distributions dbeta(mua, mub) and dlogist(logn, 1), respectively. One also needs to transform logeta to

eta. The values of mua, mub, and logn are assigned together with the data in the setup of JAGS, following

Equation (10.33) and Equation (10.34).

Define the data and prior parameters

 Following the usual implementation of JAGS, the next step is to define the data and provide values

for the parameters of the prior. In the script below, a list the_data contains the vector of death counts in

y, the vector of hearth attack cases in n, the number of observations N, the values of mua, mub, and logn.

Note that we are setting logn∗ = log(100) which indicates that a priori we believe the shrinkage λ =

η/(η + 100) is uniformly distributed on (0, 1).

y <- deathdata$Deaths 
 n <- deathdata$Cases 
 N <- length(y) 
 the_data <- list("y" = y, "n" = n, "N" = N, 
 "mua" = 1, "mub" = 1, 
 "logn" = log(100))

Generate samples from the posterior distribution

 The run.jags() function is used to generate samples by MCMC in JAGS following the sample script

below. It runs one MCMC chain with 1000 iterations in the adapt period, 5000 iterations of burn-in and

an additional set of 5000 iterations to be run and collected for inference. One keeps tracks of all

parameters in the model by using the argument monitor = c("p", "mu", "logeta"). The output of the

MCMC runs is the variable posterior containing a matrix of simulated draws.

 
posterior <- run.jags(modelString, 
 n.chains = 1, 
 data = the_data, 
 monitor = c("p", "mu", "logeta"), 
 adapt = 1000, 
 burnin = 5000, 
 sample = 5000)

MCMC diagnostics and summarization



 As usual, it is important to perform MCMC diagnostics to ensure convergence of the simulated

sample. The plot() function returns diagnostics plots of a designated parameter. For brevity, the

diagnostics for a are performed and results shown in Figure 10.5. Readers should implement MCMC

diagnostics for all parameters in the model.

FIGURE 10.5 

Diagnostics plots of simulated draws of logη using the JAGS software with the run.jags package.

plot(posterior, vars = "logeta")

After the diagnostics are performed, one reports posterior summaries of the parameters using print().

Note that these summaries are based on the 5000 iterations from the sampling period (excluding the

adapt and burn-in periods).

print(posterior, digits = 3) 
 Lower95 Median Upper95 Mean SD Mode MCerr 
 p[1] 0.0314 0.0602 0.0847 0.0593 0.0138 -- 0.000619 
 p[2] 0.0312 0.066 0.095 0.0654 0.0156 -- 0.000496 
p[3] 0.0515 0.0731 0.1 0.0741 0.0122 -- 0.000398 
 p[4] 0.044 0.0726 0.105 0.074 0.0155 -- 0.000486 
 p[5] 0.0553 0.0756 0.1 0.0765 0.0116 -- 0.000348 
 p[6] 0.0435 0.0655 0.0871 0.0655 0.0111 -- 0.00042 
 p[7] 0.0466 0.0765 0.119 0.0797 0.0191 -- 0.000717 
 p[8] 0.0473 0.0683 0.0889 0.0683 0.0104 -- 0.000277 
 p[9] 0.0442 0.0669 0.0879 0.0671 0.0111 -- 0.000301 
 p[10] 0.0544 0.0811 0.122 0.0845 0.0178 -- 0.000732 
 p[11] 0.0521 0.0704 0.0934 0.0711 0.0103 -- 0.000279 
 p[12] 0.0369 0.06 0.0818 0.0596 0.0116 -- 0.000504 
 p[13] 0.0444 0.0729 0.113 0.0752 0.0176 -- 0.000593 
 mu 0.0576 0.0705 0.0881 0.0714 0.00788 -- 0.000375 
 logeta 3.63 5.84 8.38 6.01 1.26 -- 0.107

From the posterior output, one evaluates the effect of information pooling in the hierarchical model.

Figure 10.6 displays a shrinkage plot showing how the sample proportions are shrunk towards the overall

death rate. Two of the lines in the figure are labelled to indicate the the death rates for the hospitals

Mount Sinai Roosevelt and NYP Allen Hospital. Mount Sinai Roosevelt’s death rate of 6/46 = 0.13043

exceeds the rate of NYP Allen of 13/105 = 0.12381, but the figure shows the posterior death rate of

NYP Allen exceeds the posterior death rate of Mount Sinai Roosevelt. Due to the relatively small

sample size, one has less confidence in the 0.13043 death rate of Mount Sinai and this rate is shrunk

significantly towards the overall death rate in the hierarchical posterior analysis.



FIGURE 10.6 

Shrinkage plot of sample proportions and posterior means of proportions of resulted heart attack deaths of 13 hospitals. The death rates of two

particular hospitals are labeled. Due to the varying sample sizes, Mt Sinai Roosevelt has a higher observed death rate than NYP Allen, but NYP

Allen has a higher posterior proportion than Mt Sinai Roosevelt.

To compare the posterior densities of the different pi, one displays the density estimates in a single

graph as in Figure 10.7. Because of the relatively large number of parameters, such plots are difficult to

read. Combining the graph and the output above, one sees that p7 and and p10 have the largest median

values with large standard deviations. One makes inferential statements such as Mount Sinai Roosevelt’s

(corresponding to p7) death rate of heart attack cases has a posterior 90% credible interval of (0.0466,

0.119), the highest among the 13 hospitals in the dataset.



FIGURE 10.7 

Density plots of simulated draws of pi’s using the JAGS software with the run.jags package.

Comparison of hospitals

 One uses this MCMC output to compare the death rates of two hospitals directly, for example, NYP

Columbia Presbyterian Center and NYP New York Weill Cornell Center corresponding respectively to

p11 and p12. One collects the vector of simulated values of the difference of the death rates (δ = p11 −
p12) by subtracting the sets of simulated proportion draws. From the simulated values of the difference in

proportions diff, one estimates the probability that p11 > p12 is positive.

p11draws <- as.mcmc(posterior, vars = "p[11]") 
p12draws <- as.mcmc(posterior, vars = "p[12]") 
diff = p11draws - p12draws 
sum(diff > 0)/5000 
 [1] 0.7872

A 78.72% posterior probability of p11 > p12 indicates strong posterior evidence that the the death rate

of NYP Columbia Presbyterian Center is higher than that of NYP New York Weill Cornell Center.

Generally, when one presents a table such as Table 10.2, one is interested in ranking the 13 hospitals

from best (smallest death rate) to worst (largest death rate). A particular hospital, say Bellevue Hospital

Center, is interested in its rank among the 13 hospitals. The probability Bellevue has rank 1 is the

posterior probability

P(p1 < p2, . . . , p1 < p13 | y), (10.35)

and this probability is approximated by collecting the posterior draws where the simulated value of p1 is

the smallest among the 13 simulated proportions. Likewise, one computes from the MCMC output the

probability that Bellevue has rank 2 through 13. These rank probabilities are displayed in Figure 10.8

for two hospitals. The probability that Bellevue is the best hospital with respect to death rate is 0.25

and by summing several probabilities, the probability that Bellevue is ranked among the top three

hospitals is 0.54. In contrast, from Figure 10.8, the rank of Harlem Hospital is less certain since the

probability distribution is relatively flat across the 13 possible rank values. This is not surprising since

this particular hospital had only 35 cases, compared to 129 cases at Bellevue.



FIGURE 10.8 

Posterior probabilities of rank for two hospitals.

From a patient’s perspective, she would be interested in learning the identity of the hospital that is

ranked best among the 13. For each simulation draw of p1, … , p13, one identifies the hospital with the

smallest simulated value. By collecting this information over the 5000 draws, one computes the posterior

probability that each hospital is ranked first. These probabilities are displayed in Figure 10.9. The

identity of the best hospital is not certain, but the top three hospitals are Bellevue, NYP New York

Weill Cornell Center, and Harlem with respective probabilities 0.250, 0.220, and 0.137 of being the best.

FIGURE 10.9 

Posterior probabilities of the hospital that was ranked first.

 

10.4  Exercises

1. Time-to-Serve for Six Tennis Players

Table 10.3 displays the sample size nj and the mean time-to-serve ȳj (in seconds) for six professional

tennis players. Assume that the sample mean for the i-th player ȳi is normally distributed with

mean μi and standard deviation σ/√ni where we assume σ = 5.5 seconds.

TABLE 10.3

Number of serves and mean time-to-serve for six professional tennis players.

Player n ȳ

Murray 731 23.56

Simon 570 18.07

Federer 491 16.21

Ferrer 456 21.70

Isner 403 22.32

Kyrgios 274 14.11

(a) (Separate estimate) Suppose one is interested in estimating Murray’s mean time-to-serve μ1

using only Murray’s time-to-serve data. Assume that one’s prior beliefs about μ1 are

represented by a normal density with mean 20 and standard deviation 10 seconds. Use results



from Chapter 8 to find the posterior distribution of μ1 and construct a 90% interval estimate

for μ1.

(b) (Combined estimate) Suppose instead that one believes that there are no differences between

players and μ1 = … = μ6 = μ. The overall mean time-to-serve is ȳ = 19.9 seconds with a

combined sample size n = 2925. Assuming that μ has a Normal(20,10) prior, find the posterior

distribution of μ and construct a 90% interval estimate for μ.

(c) Which approach, part (a) or part (b), seems more reasonable in this situation? Explain.

2. Time-to-Serve for Six Tennis Players (continued)

Suppose one wishes to estimate the mean time-to-serve values for the six players by the following

hierarchical model. Remember that we are assuming σ = 5.5 seconds.

(a) Use JAGS to simulate a sample of size 1000 from the posterior distribution from this

hierarchical model, storing values of the means μ1,…, μ6.

(b) Construct a 90% interval estimate for each of the means.

(c) Compare the 90% estimate for Murray with the separate and combined interval estimates from

Exercise sec(1).

3. Random σj’s for Movie Ratings

In Section 10.2.2, consider the situation where the standard deviations of the ratings differ across

movies, so σj represents the standard deviation of the ratings for movie j.

(a) Write out the likelihood, the prior distributions, and hyperprior distributions for this varying

means and varying standard deviations model.

(b) Discuss the implications of specifying varying σj’s by comparing this hierarchical model to the

developed model in Section 10.2.2.

(c) What prior distributions do you choose for σj’s? Why?

(d) Carry out the simulation by MCMC using JAGS. Report and discuss the findings.

4. Smoothing Counts

A general issue in statistical inference is how to handle situations where there are zero observed

counts in a sample. This exercise illustrates several Bayesian modeling approaches to this problem.

(a) Suppose one is learning about the probability p a particular player successively makes a three-

point shot in basketball. One assigns a uniform prior for p. This player attempts 10 shots and

one observes y = 0 successes. Derive the posterior density of p and compute the posterior

mean.

(b) Suppose that you are learning about the probabilities p1, p2, p3, p4, p5 of five players making

three-throw shots. You assign the following hierarchical prior on the probabilities. You assume

p1,…., p5 are independently identically distributed beta with shape parameters α and α, and at

the second stage, you assign α a uniform prior on (0, 1). Write down a graphical representation

of this hierarchical model.

(c) In part (b), suppose that each player attempts 10 shots and you observe 0, 2, 3, 1, 3 successes

for the five players. Use JAGS to obtain posterior samples from the parameters α, p1, p2, p3, p4,

p5. Compute the posterior means of α and p1 and compare your probability estimates with the

estimate of p using the single-stage prior in part (a).

5. Schedules and Producers in Korean Drama Ratings

The Korean entertainment industry has been continuously booming. The global audience for K-

drama is exploding across Asia and even spreading to other parts of the world, notably the U.S. and

Europe. This surge of Korean cultural popularity is called “Hallyu”, literally meaning the “Korean

ȳi ∼ Normal(μj,σ/√ni), i = 1, . . . , 6.

μi ∼ Normal(μ, τ), i = 1, . . . , 6.
μ ∼ Normal(20, 1/0.001),

1/τ 2 ∼ Gamma(0.1, 0.1).



wave”. K-dramas are popular on multiple streaming websites in the U.S., such as Hulu, DramaFever,

and even Netflix.

How are K-dramas being rated in Korea? How are the producing company and broadcasting

schedule affecting the drama ratings? In one study, data were collected on 101 K-dramas from 2014

to 2016. Each drama was produced by one of the three main producers, and was broadcasted in one

of four different times of the week. The ratings of dramas were collected from the AGB Nielsen

Media Research Group
1
 . In particular, the national AGB TV ratings of each drama were recorded.

The data is stored in KDramaData.csv. Table 10.4 provides information about the variables in the

complete dataset.

TABLE 10.4

Table of the variables in K-dramas application.

Name Variable Information

Drama Name Name of drama

Schedule 1 = Mon. and Tue., 2 = Wed. and Thu., 3 = Fri.,

4 = Sat. and Sun.

Producer 1 = Seoul Broadcasting System, 2 = Korean

Broadcasting System, 3 = Munhwa Broadcasting

Corporation

Viewership AGB national TV ratings, in percentage

Date Month, day, year

(a) Explore the ratings graphically by schedule and by producer.

(b) Explain how the ratings differ by schedule and by producer. Are there particular days when the

ratings are high or low? Does one producer tend to have larger ratings than the other

producer?

(c) Choose a subset of the KDramaData.csv dataset for a particular producer. Develop a hierarchical

model to make inference about the mean ratings of dramas across different schedules. Discuss

your conclusions and the advantage of using hierarchical modeling in this situation.

6. Homework Hours for Five Schools

To compare weekly hours spent on homework by students, data is collected from a sample of five

different schools. The data is stored in HWhours5schools.csv.

(a) Explore the weekly hours spent on homework by students from the five schools. Do the school-

specific means seem significantly different from each other? What about their variances?

(b) Set up a hierarchical model with common and unknown σ in the likelihood, as in Section

10.2.2. Write out the likelihood, the prior distributions and the hyperprior distributions.

(c) Use JAGS to obtain posterior samples of the parameters in the hierarchical model. Perform

appropriate MCMC diagnostics.

(d) Compute posterior means and 95% credible intervals for every school mean. Compute the

posterior probability that the mean hour in school 1 is higher than that of school 2. Discuss

your findings.

(e) Compute and summarize the posterior distribution of the ratio R = τ 2

τ 2+σ2 . Comment on the

evidence of between-school variability for this data.

7. Heart Attack Deaths - New York City

In Section 10.3, the heart attack deaths dataset of thirteen hospitals in Manhattan, New York City

were analyzed using a hierarchical beta-binomial model. A complete dataset of heart attack death

information of 45 hospitals in all 5 boroughs of New York City (Manhattan, the Bronx, Brooklyn,

Queens, and Staten Island) is stored in DeathHeartAttackDataNYCfull.csv. Table 10.5 lists the

variables and their description.

TABLE 10.5

The list of variables in the New York City heart attack deaths dataset and their description.



Variable Description

Hospital Name of hospital

Borough Borough location of hospital

Type N = Non-PCI hospital; P = PCI hospital

Cases Number of heart attack cases

Deaths Number of deaths among heart attack cases

Note: PCI = Percutaneous coronary intervention, also known as coronary angioplasty, is a

nonsurgical procedure that improves blood flow to your heart.

(a) Write out the complete hierarchical beta-binomial model for the subset of thirteen hospitals in

Brooklyn. Sketch a graphical representation and discuss how to choose priors and hyperpriors.

(b) Use JAGS to obtain posterior samples of the parameters in the hierarchical model. Perform

appropriate MCMC diagnostics.

(c) Compute the posterior probability that the death rate of Kings County Hospital Center is

higher than that of the Kingsbrook Jewish Medical Center. Report and discuss your findings.

8. Heart Attack Deaths - New York City (continued)

Develop a hierarchical beta-binomial model for the subset of sixteen hospitals in the Bronx and

Queens. Instead of allowing a pi for each hospital i in the subset, allow a pB to be shared among

hospitals in the Bronx, and a pQ to be shared among hospitals in Queens.

(a) How does the hierarchical beta-binomial model change from the specification in Exercise (7)?

Write out the complete hierarchical beta-binomial model, sketch a graphical representation.

Discuss how to choose priors and hyperpriors.

(b) Use JAGS to obtain posterior samples of the parameters in the hierarchical model. Perform

appropriate MCMC diagnostics.

(c) Compute the posterior probability that the death rate of all hospitals in the Bronx is higher

than that of all hospitals in Queens. Report and discuss your findings.

9. Heart Attack Deaths - New York City (continued)

Develop a hierarchical beta-binomial model for the complete dataset of 45 hospitals in New York

City. Instead of allowing a pi for each hospital i in the subset, allow a pP to be shared among

hospitals of Type P, and a pN to be shared among hospitals of Type N.

(a) Write out the complete hierarchical beta-binomial model, sketch a graphical representation.

Discuss how to choose priors and hyperpriors.

(b) Use JAGS to obtain posterior samples of the parameters in the hierarchical model. Perform

appropriate MCMC diagnostics.

(c) Compute the posterior probability that the death rates of all hospitals of Type P are higher

than those of all hospitals of Type N. Report and discuss your findings.

(d) Can you develop a hierarchical beta-binomial model for all 45 hospitals in New York City that

takes into account Borough and Type? Describe how you would design the hierarchical model,

write JAGS script to obtain posterior samples of the parameters and discuss any findings from

your work.

10. Hierarchical Gamma-Poisson Modeling - Marriage Rates in Italy

Annual marriage counts per 1000 of the population in Italy from 1936 to 1951 were collected and

recorded in Table 10.6. Can we learn something about Italians’ marriage rates during this 16-year

period? The dataset is stored in marriage_counts.csv.

TABLE 10.6

The year and the marriage counts per 1000 of the population in Italy from 1936 to 1951.

Year Count Year Count

1936 7 1944 5

1937 9 1945 7



Year Count Year Count

1938 8 1946 9

1939 7 1947 10

1940 7 1948 8

1941 6 1949 8

1942 6 1950 8

1943 5 1951 7

(a) Recall that with count data, a common conjugate model is the gamma-Poisson model,

introduced in Section 8.8. Write out the likelihood, the prior distribution, and its posterior

distribution under the gamma-Poisson model.

(b) Observations are considered i.i.d. in the model in part (a). Figure 10.10 plots the marriage

rates in Italy across years. Discuss whether the i.i.d. assumption is reasonable.

FIGURE 10.10 

Dotplot of marriage rates in Italy from 1936 to 1951.

(c) Suppose one believes that the mean marriage rate differs across the three time periods shown in

Figure 10.10. Using this belief, model the Italian marriage rates in a hierarchical approach.

Write out the likelihood, the prior distributions, and any hyperprior distributions under a

hierarchical gamma-Poisson model.

(d) Sketch a graphical representation of the hierarchical gamma-Poisson model.

(e) Simulate posterior draws by MCMC using JAGS. Perform MCMC diagnostics and make sure

your MCMC has converged.

(f) Do you see clear differences between the three rate parameters in the posterior? Report and

discuss your findings.

11. Hierarchical Gamma-Poisson Modeling - Fire Calls in Pennsylvania

Table 10.7 displays the number of fire calls and the number of building fires for ten zip codes in

Montgomery County, Pennsylvania from 2015 through 2019. This data is currently described as

“Emergency - 911 Calls” from kaggle.com. Suppose that the number of building fires for the j-th zip

code is Poisson with mean njλj, where nj and λj are respectively the number of fire calls and rate of

building fires for the j-th zip code.

TABLE 10.7

The number of fire calls and building fires for ten zip codes in Montgomery County, Pennsylvania.

Zip Code Fire Calls Building Fires

18054 266 12

18103 1 0

19010 1470 59

19025 246 11



Zip Code Fire Calls Building Fires

19040 1093 47

19066 435 26

19116 2 0

19406 2092 113

19428 2025 73

19474 4 1

(a) Suppose that the building fire rates λ1,…, λ10 follow a common Gamma(α, β) distribution where

the hyperparameters α and β follow weakly informative distributions. Use JAGS to simulate a

sample of size 5000 from the joint posterior distribution of all parameters of the model.

(b) The individual estimates of the building rates for zip codes 18054 and 19010 are 12/266 and

59/1470, respectively. Contrast these estimates with the posterior means of the rates λ1 and λ3.

(c) The parameter μ = α/β represents the mean building fire rates across zip codes. Construct a

density estimate of the posterior distribution of μ.

(d) Suppose that the county has 50 fire calls to the zip code 19066. Use the simulated predictive

distribution to construct a 90% predictive interval for the number of building fires.

12. Hierarchical Gamma-Exponential Modeling - Times Between Traffic Accidents

Exercise 20 in Chapter 8 describes the exponential distribution, which is often used as a model for

time between events, such as traffic accidents. The exercise also describes the gamma distribution as

a conjugate prior choice for the exponential data model. 10 times between traffic accidents are

collected: 1.5, 15, 60.3, 30.5, 2.8, 56.4, 27, 6.4, 110.7, 25.4 (in minutes).

(a) Suppose the 10 collected times are observed at 4 different locations, shown in Table 10.8. Using

this information, model the times between traffic accidents in a hierarchical approach. Write

out the likelihood, the prior distributions, and any hyperprior distributions under a hierarchical

gamma-exponential model.

TABLE 10.8

The time between traffic accidents and recorded location.

Time Location Time Location

1.5 1 15 1

60.3 2 30.5 2

2.8 3 56.4 3

27 4 6.4 4

110.7 5 25.4 5

(b) Sketch a graphical representation of the hierarchical gamma-exponential model.

(c) Simulate posterior draws by MCMC using JAGS. Perform MCMC diagnostics and make sure

your MCMC has converged.

(d) Do you see clear differences between the rate of traffic accidents at the 5 locations? Report and

discuss your findings.

13. Bird Survey Trend Estimates

The North American Breeding Bird Survey (BBS) is a yearly survey to monitor the bird population.

Regression models were used to estimate the change in population size for many species of birds

between 1966 to 1999. For each of 28 particular grassland species of birds, Table 10.9 displays the

trend estimate β̂i and the corresponding standard error σi. This data is stored in the data file

BBS_survey.csv. Assume that the trend estimates are independent with β̂i ∼ Normal(βi,σi) where

we assume that the standard errors {σi} are known.

TABLE 10.9

Trend estimate β̂i and associated standard error σi for 28 grassland species birds.



Species Name Trend SESpecies Name Trend SE

Upland Sandpiper 0.76 0.39

Long-billed Curlew -0.77 1.01

Mountain Plover -1.05 2.24

Greater Prairie-Chicken -2.54 2.33

Sharp-tailed Grouse -0.92 1.43

Ring-necked Pheasant -1.06 0.32

Northern Harrier -0.80 4.00

Ferruginous Hawk 3.52 1.31

Common Barn Owl -2.00 2.14

Short-eared Owl -6.23 4.55

Burrowing Owl 1.00 2.74

Horned Lark -1.89 0.22

Bobolink -1.25 0.31

Eastern Meadlowlark -2.69 0.17

Western Meadowlark -0.75 0.17

Chestnut-col Longspur -1.36 0.68

McCown’s Longspur -9.29 8.27

Vesper Sparrow -0.61 0.24

Savannah Sparrow -0.34 0.29

Baird’s Sparrow -2.04 1.48

Grasshopper Sparrow -3.73 0.47

Henslow’s Sparrow -4.82 2.50

LeConte’s Sparrow 0.91 0.95

Cassin’s Sparrow -2.10 0.51

Dickcissel -1.46 0.28

Lark Bunting -3.74 2.30

Sprague’s Pipit -5.62 1.34

Sedge Wren 3.18 0.73

(a) Suppose one assumes that the population trend estimates are equal, that is, β1 =. . . β28 = β.

Using JAGS to simulate from the posterior distribution of β assuming a weakly informative

prior on β. Find the posterior mean and posterior standard deviation of β and compare your

answers to the trend estimates and standard errors in Table 10.9.

(b) Next assume that the population trend estimates β1 =. . . β28 are a random sample from a

normal distribution with mean μ and standard deviation τ. Assuming weakly informative priors

on μ and τ, use JAGS to simulate from the posterior distribution of all parameters. Find the

posterior means of the {βj} and compare your estimates with the trend estimates in Table 10.9.

14. Predicting Baseball Batting Averages

The data file batting_2018.csv contains batting data for every player in the 2018 Major League

Baseball season. The variables AB.x and H.x in the dataset contain the number of at-bats

(opportunities) and number of hits of each player in the first month of the baseball season. One

assumes that yi, the number of hits of the i-th player is Binomial(ni, pi) where ni is the number of

at-bats and pi is the probability of a hit.

(a) Select a random sample of 20 players from the dataset.

(b) Assume that the hitting probabilities {pi} have a common Beta(a, b) prior where a = ημ and b

= η(1 − μ). Assume that the hyper parameters η and μ are independent where μ is Uniform(0,

1) and log (η) has a logistic distribution with mean log (50) and scale 1.



(c) Use a JAGS script similar to what is presented in Section 10.3.3, draw a sample of 5000 from

the posterior distribution, monitoring values of the {pi}, μ, and log (η).

(d) Compare unpooled, pooled, and hierarchical estimates of the {pi} in predicting the batting

averages in the remainder of the season.

15. Estimating Kidney Cancer Death Rates

This exercise is a variation of an activity described in Gelman and Nolan (2017). Suppose one is

interested in estimating the kidney cancer death rates for the ten Ohio counties displayed in Table

10.10. Suppose the true death rates θ1,…, θ10 are a sample from a Gamma(α, β) distribution. The

observed number of deaths yj in the jth county is assumed to be Poisson(njθj) where nj is the

population size.

TABLE 10.10

Populations of ten Ohio counties from recent census estimates.

County Population County Population

Cuyahoga 1,243,857 Jackson 32,384

Gallia 29,979 Knox 61,893

Hamilton 816,684 Noble 14,354

Henry 27,086 Seneca 55,207

Holmes 43,892 Van Wert 28,281

(a) Assuming α = 27, β = 58,000, simulate ten true cancer rates θ1, … , θ10 from a Gamma(α, β)

distribution. For each county, simulate the number of deaths in all counties. (Use the following

R code.)

true_rates <- rgamma(10, shape = 27, rate = 58000) 
pop_size <- c(1243857, 29979, 816684, 27086, 43892, 
32384, 61893, 14354, 55207, 28281) 
deaths <- rpois(10, lambda = pop_size * true_rates)

(b) Compute the observed death rates {yj/nj}. Identify the counties with the lowest and highest

death rates.

(c) Using JAGS, fit a hierarchical model to the data assuming weakly informative gamma priors on

the parameters α and β. Simulate a sample of 10,000 draws from the posterior distribution and

compute the posterior means of the {θj}.

(d) Identify the counties with the lowest and highest posterior means of the true rates. Compare

these “best” and “worst” counties with the best and worst counties identified in part (b).

Exercises (16) to (20) concern additional Bayesian hierarchical models with more

complicated structures. These exercises are here to help the reader gain familiarity

of working with joint posterior distribution and deriving full conditional posterior

distributions. These skills are essential to creating one’s own Metropolis and Gibbs

sampling algorithms instead of using JAGS.

16. Inference for the Binomial N parameter

Suppose that we want inference about an unknown number of animals N in a fixed-size population.

On five separate days, we take photographs of some areas where they reside, and count the number

of animals in the photos (y1, … , y5). Suppose further that each animal has a constant probability θ

of appearing in a photograph and that appearances are independent across animals and days. A

reasonable model for such data is a binomial distribution, yi| N, θ ∼ Binomial(N, θ). In our setting,

neither the number of trials N nor the probability θ are known.

To get a posterior distribution for N and θ, we propose the following system of models (Raftery

1988):

∣ ( )



where λ > 0 is a continuous random variable introduced to help with computations.

(a) Write down the joint posterior distribution, π(N , θ,λ ∣ y1, … , y5), up to a multiplicative

constant.

(b) Find an expression for the conditional distribution, π(λ ∣ y1, … , y5,N , θ). Write the name of

the distribution and expressions for its parameter values.

(c) Find the posterior distribution π(N , θ ∣ y1, … , y5) by integrating π(N , θ,λ ∣ y1, … , y5) with

respect to λ. You don’t need to name the distribution; just write its mathematical form.

(d) Find the conditional distribution, π(θ ∣ y1, … , y5,N). Write the name of the distribution and

expressions for its parameter values.

17. Successes and Failures in Tests

A standard model for success or failure in testing situations is the item response model, also called

the Rasch model. Suppose that J persons are given a test with K items. For j = 1, … ,J and 

k = 1, … ,K, let yjk = 1 if person j gets item k correct, and let yjk = 0 otherwise. The Rasch model

is

(10.36)

(10.37)

Here, αj represents the ability of person j, and βk represents the difficulty of item k. For a Bayesian

version of the Rasch model, we use the hierarchical model distributions,

where τ and σ are precisions. For prior distributions, we use

for known positive constants (a, b, c, d, e). We intend to run an MCMC to estimate the posterior

distributions of all parameters. This problem asks you to outline some of the MCMC steps.

(a) Write the joint posterior distribution of π(α1, … ,αJ ,β1, … ,βK, τ,ϕ,μ ∣ {yjk}), up to a

constant.

(b) Write the steps you’d take to sample μ given (α1, … ,αJ ,β1, … ,βK, τ,ϕ, {yjk}). If you can use

a Gibbs step, write the name of the full conditional posterior distribution for μ and its

parameter values. If you use a Metropolis step, write an expression for the acceptance

probability and suggest a family of proposal distributions.

(c) Write the steps you’d take to sample ϕ given (α1, … ,αJ ,β1, … ,βK, τ,μ, {yjk}). If you can use

a Gibbs step, write the name of the full conditional posterior distribution for ϕ and its

parameter values. If you use a Metropolis step, write an expression for the acceptance

probability and suggest a family of proposal distributions.

yi ∣ N , θ ∼ Binomial(N , θ)
N ∣ θ,λ ∼ Poisson(λ/θ)
π(λ, θ) ∝ 1/λ,

p(Yjk = 1 ∣ πjk) = Bernoulli(πjk)

log( πjk
1−πjk

) = αj − βk.

αj ∼ Normal(0,√1/τ), for j = 1, … ,J

βk ∼ Normal(μ,√1/ϕ), for k = 1, … ,K

τ ∼ Gamma(a, b),
ϕ ∼ Gamma(c, d),
μ ∼ Normal(0, e),



(d) Write the steps you’d take to sample τ given (α1, … ,αJ ,β1, … ,βK,ϕ,μ, {yjk}). If you use a

Gibbs step, write the name of the full conditional distribution for τ. If you use a Metropolis

step, write an expression for the acceptance probability and suggest a family of proposal

distributions.

18. Success and Failures in Tests (continued)

Continuing from Exercise 17.

(a) Write the steps you’d take to sample βk given 

(α1, … ,αJ ,β1, …βk−1,βk+1, … ,βK, τ,ϕ,μ, {yjk}). If you can use a Gibbs step, write the name

of the full conditional posterior distribution for βk and its parameter values. f you use a

Metropolis step, write an expression for the acceptance probability and suggest a family of

proposal distributions.

(b) Write the steps you’d take to sample αj given 

(α1, … ,αj−1,αj+1, … ,αJ ,β1, … ,βK, τ,ϕ,μ, {yjk}). If you use a Gibbs step, write the name of

the full conditional distribution for αj. If you use a Metropolis step, write an expression for the

acceptance probability and suggest a family of proposal distributions.

19. Success and Failures in Tests (continued)

Suppose that you have 1000 approximately uncorrelated draws of the parameters from the joint

posterior distribution of the Rasch model in Exercise (17). Describe how you would do the following

tasks.

(a) Find the posterior probability that the variability in peoples’ abilities exceeds the variability in

item difficulty.

(b) Find the item in the test that appears to be the most difficult, and attach a posterior

probability that it in fact is the most difficult among all K items.

(c) Perform a posterior predictive check of the model.

20. AR(1) Models in Finance and Macroeconomics

A common model in finance and macroeconomics is the AR(1) model. Suppose that we have n

measurements ordered in time. For j = 1, … ,n, let yj be the measurement at time j. Suppose we

consider the measurement at time 1 as known (not a random variable). Then, for j = 2, … ,n, a

typical AR(1) model is yj = βyj−1 + εj where εj ∼ Normal(0, σ). Equivalently, we have

(10.38)

Note that what happens at time j only depends on what happened at time j − 1. For prior

distributions, we will use

for known positive constants (a, b, c, d). We intend to run an MCMC sampler to estimate the

posterior distribution of (β, σ
2
). Whenever possible, we will sample directly from full conditionals.

This problem asks you to outline some of the MCMC steps, and to make a prediction for a future

observation.

(a) Write the kernel of the joint distribution of π(β,σ2 ∣ y1, … , yn). [Hint: write 

p(y2, … , yn ∣ y1,β,σ2) = p(yn ∣ yn−1, … , y2, y1,β,σ2)p(yn−1 ∣ yn−2, … , y2, y1,β,σ2) ⋯ p(y2 ∣ y1,β
.]

(b) Write the steps you’d take to sample σ
2
 given (β, y1, … , yn). If you use a Gibbs step, write the

name of the full conditional distribution for σ and its parameter values. If you use a Metropolis

step, write an expression for the acceptance probability and suggest a family of proposal

distributions.

p(yj ∣ yj−1, … , y1,β,σ2) = Normal(βyj−1,σ) for j = 2, … ,n.

1/σ2 ∼ Gamma(a, b),
β ∼ Normal(c, d),



(c) Write the steps you’d take to sample β given (σ, y1, … , yn). If you use a Gibbs step, write the

name of the full conditional distribution for β and its parameter values. If you use a Metropolis

step, write an expression for the acceptance probability and suggest a family of proposal

distributions.

(d) Describe how you would make a 95% posterior interval for the future value of Yn+2.

1
AGB Nielsen Media Research Group is one of the biggest companies that measures audiences’

television ratings. At the time the data were collected, AGB Nielsen analyzed viewing of 2020 households

from five major and five medium-sized cities in South Korea to determine TV ratings.



11
 

Simple Linear Regression
 

 

11.1  Introduction

For continuous response variables such as Roger Federer’s time-to-serve data in

Chapter 8 and snowfall amounts in Buffalo, New York in Chapter 9, normal

sampling models have been applied. The basic underlying assumption in a

normal sampling model is that observations are identically and independently

distributed (i.i.d.) according to a normal density, as in Yi
i.i.d.
∼ Normal(μ,σ).

Adding a predictor variable

When continuous responses are observed, it is common that other variables are

recorded that may be associated with the primary response measure. In the

Buffalo snowfall example, one may also observe the average temperature in

winter season and one believes that the average season temperature is

associated with the corresponding amount of snowfall. For the tennis example,

one may believe that the time-to-serve measurement is related to the rally

length of the previous point. Specifically, a long rally in the previous point may

be associated with a long time-to-serve in the current point.

In Chapter 9, a normal curve was used to model the snowfalls Y1, … , Yn for

n winters,

Yi ∣ μ,σ
i.i.d.
∼ Normal(μ,σ), i = 1, ⋯ ,n. (11.1)

The model in Equation (11.1) assumes that each winter snowfall follows the

same normal density with mean μ and σ. From a Bayesian viewpoint, one



assigns prior distributions for μ and σ and bases inferences about these

parameters from the posterior distribution.

However when the average temperature in winter i, xi, is also available, one

might wonder if the snowfall amount Yi can be explained by the average

temperature xi in the same winter. One typically calls xi a predictor variable as

one is interested in predicting the snowfall amount Yi from the value of xi.

How does one extend the basic normal sampling model in Equation (11.1) to

study the possible relationship between the average temperature and the

snowfall amount?

An observation-specific mean

The model in Equation (11.1) assumes a common mean μ for each Yi. Since

one wishes to introduce a new variable xi specific to winter i, the model in

Equation (11.1) is adjusted to Equation (11.2) where the common mean μ is

replaced by a winter specific mean μi .

Yi ∣ μi,σ
ind
∼ Normal(μi,σ), i = 1, ⋯ ,n. (11.2)

Note that the observations Y1, …, Yn are no longer identically distributed

since they have different means, but the observations are still independent

which is indicated by ind written over the distributed ∼ symbol in the

formula.

Linear relationship between the mean and the predictor

One basic approach for relating a predictor xi and the response Yi is to assume

that the mean of Yi, μi, is a linear function of xi. This linear relationship is

written as

μi = β0 + β1xi, (11.3)

for i = 1, … ,n. In Equation (11.3), each xi is a known constant (that is why a

small letter is used for x) and β0 and β1 are unknown parameters. As one might

guess, these intercept and slope parameters are random. One assigns a prior



distribution to (β0, β1) and performs inference by summarizing the posterior

distribution of these parameters.

In this model, the linear function β0 + β1 xi is interpreted as the expected

snowfall amount when the average temperature is equal to xi. The intercept β0

represents the expected snowfall when the winter temperature is xi = 0. The

slope parameter β1 gives the increase in the expected snowfall when the

temperature xi increases by one degree. It is important to note that the linear

relationship in Equation (11.3) with parameters β0 and β1 describes the

association between the mean μi and the predictor xi. This linear relationship

is a statement about the expected or average snowfall amount μi, not the

actual snowfall amount Yi.

Linear regression model

Substituting Equation (11.3) into the model in Equation (11.2), one obtains

the linear regression model.

Yi ∣ β0,β1,σ
ind
∼ Normal(β0 + β1xi,σ), i = 1, ⋯ ,n. (11.4)

This is a special case of a normal sampling model, where the Yi independently

follow a normal density with observation specific mean β0 + β1 xi and common

standard deviation σ. Since there is only a single predictor xi, this model is

commonly called the simple linear regression model.

One restates this regression model as

Yi = μi + ϵi, i = 1, ⋯ ,n, (11.5)

where the mean response μi = β0 + β1 xi and the residuals ε1, …, εn are i.i.d.

from a normal distribution with mean 0 and standard deviation σ. In the

context of our example, this model says that the snowfall for a particular

season Yi is a linear function of the average season temperature xi plus a

random error εi that is normal with mean 0 and standard deviation σ.

The simple linear regression model is displayed in Figure 11.1. The line in

the graph represents the equation β0 + β1 x for the mean response μ = E(Y).



The actual response Y is equal to β0 + β1 x + ε where the random variable ε is

distributed normal with mean 0 and standard deviation σ. The normal curves

(drawn sideways) represent the locations of the response Y for three distinct

values of the predictor x. The parameter σ represents the deviation of the

response Y about the mean value β0 + β1 x. One is interested in learning about

the parameters β0 and β1 that describe the line and the standard deviation σ

which describes the deviations of the random response about the line.

FIGURE 11.1

Display of linear regression model. The line represents the unknown regression line β0 + β1 x and the

normal curves (drawn sideways) represent the distribution of the response Y about the line.

In the linear regression model, the observation Yi is random, the predictor xi

is a fixed constant and the unknown parameters are β0, β1, and σ. Using the

Bayesian paradigm, a joint prior distribution is assigned to (β0, β1, σ). After

the response values Yi = yi, i = 1, …, n are observed, one learns about the

parameters through the posterior distribution. An MCMC algorithm will be

used to simulate a posterior sample, and using the simulation sample, one

makes inferences about the expected response β0 + β1 x for a specific value of

the predictor x. Also, one will be able to assess the sizes of the errors by

summarizing the posterior density of the standard deviation σ.

In our snowfall example, one is interested in learning about the relationship

between the average temperature and the mean snowfall that is described by

the linear model μ = β0 + β1 x. If the posterior probability that β1 < 0 is large,



that indicates that lower average temperatures will likely result in larger mean

snowfall. Also one is interested in using this model for prediction. If given the

average winter temperature in the following season, can one predict the Buffalo

snowfall? This question is addressed by use of the posterior predictive

distribution of a future snowfall 
~
Y . Using the usual computing strategy, one

simulates a large sample of values from the posterior predictive distribution

and finds an interval that contains 
~
Y  with a prescribed probability.

In this chapter, regression is introduced in Section 11.2 by a dataset

containing several characteristics of 24 house sales in an area in Ohio. In this

example, one is interested in predicting the price of a house given the house

size and Section 11.3 presents a simple linear regression model to explain this

relationship. The practice of standardizing variables will be introduced which

is helpful in the process of assigning an informative prior on the regression

parameters. Inference through MCMC is presented in Section 11.6 and

methods for performing Bayesian inferences with simple linear regression are

illustrated in Section 11.7.

 

11.2  Example: Prices and Areas of House Sales

Zillow is an online real estate database company that collects information on

110 million homes across the United States. Data is collected from a random

sample of 24 houses for sale in the Findlay, Ohio area during October 2018.

For each house, the dataset contains the selling price (in $1000) and size (in

1000 square feet). Table 11.1 displays the first five observations of the dataset.

TABLE 11.1

he house index, price (in $1000), and size (in 1000 sq feet) of 5 house sales in Findlay, Ohio area during October

2018. The random sample contains 24 house sales.

Index Price ($1000) Size (1000 sq feet)

1 167 1.625

2 236 1.980

3 355 2.758

4 148 1.341

5 93 1.465

Suppose one is interested in predicting a house’s selling price from its size.

In this example, one is treating price as the response variable and size as the



single predictor. Figure 11.2 constructs a scatterplot of price (y-axis) against

the size (x-axis) for the houses in the sample. This figure shows a positive

relationship between the size and the price of a house sale, suggesting that the

house sale price increases as the house size increases. Can one quantify this

relationship through a Bayesian linear regression model? In particular, is there

sufficient evidence that there is a positive association among the population of

all homes? Can one predict the sale price of a home given its size?

FIGURE 11.2

Scatterplot of price against size of house sales.

 

11.3  A Simple Linear Regression Model

The house sale example can be fit into the linear regression model framework.

It is assumed the response variable, the price of a house sale, is a continuous

variable is distributed as a normal random variable. Specifically, the price Yi

for house i, is normally distributed with mean μi and standard deviation σ.

Yi ∣ μi,σ
ind
∼ Normal(μi,σ), (11.6)



where i = 1, · · · , n, where n = 24 is the number of homes in the dataset. The

ind over ∼ in Equation (11.6) indicates that each response Yi independently

follows its own normal density. Moreover, unlike the house-specific mean μi, a

common standard deviation σ is shared among all responses Yi’s.

Since one believes the size of the house is helpful in understanding a house’s

price, one represents the mean price μi as a linear function of the house size xi

depending on two parameters β0 and β1.

μi = β0 + β1xi (11.7)

How does one interpret the intercept and slope parameters? The intercept β0

gives the expected price μi for a house i that has zero square feet (xi = 0). This

is not a meaningful parameter since no house (not even a tiny house) has zero

square feet. The slope parameter β1 gives the change in the expected price μi,

when the size xi of house i increases by 1 unit, i.e., increases by 1000 square

feet.

 

11.4  A Weakly Informative Prior

In some situations, the user has limited prior information about the location of

the regression parameters or the standard deviation. To implement the

Bayesian approach, one has to assign a prior distribution, but it is desirable in

this situation to assign a prior that has little impact on the posterior

distribution.

Suppose that one’s beliefs about the regression coefficients (β0, β1) are

independent from one’s opinion about the standard deviation σ. Then the joint

prior density for the parameters (β0, β1, σ) is written as

π(β0,β1,σ) = π(β0,β1)π(σ).

The choice of weakly informative priors on (β0, β1) and σ are described in

separate sections.

Prior on the intercept β0 and slope β1



If one assumes independence of one’s opinion about the intercept and the

slope, one represents the joint prior π(β0, β1) as the product of priors

π(β0)π(β1), and it is convenient to use normal priors. So it is assumed β0 ∼

Normal(μ0, s0) and β1 ∼ Normal(μ1, s1).

The choice of the standard deviation sj in the normal prior reflects how

confident the person believes in a prior guess of βj. If one has little information

about the location of a regression parameter, then the choice of the prior guess

μj is not that important and one chooses a large value for the prior standard

deviation sj. So the regression intercept and slope are each assigned a normal

prior with a mean of 0 and standard deviation equal to the large value of 100.

Prior on sampling standard deviation σ
In the current regression model, one assumes that Yi ∼ Normal(β0 + β1 xi, σ)

and σ represents the variability of the house price about the regression line. It

is typically hard to specify informative beliefs about a standard deviation than

a mean parameter such as β0 + β1 x. So following the suggestions from Chapter

9 and Chapter 10, one assigns a weakly informative prior for the standard

deviation σ. A gamma prior for the precision parameter ϕ = 1/σ
2
 with small

values of the shape and rate parameters, say a = 1 and b = 1, was seen in

those chapters to represent weak prior information, and a similar prior is

assigned in this regression setting.

ϕ = 1/σ2 ∼ Gamma(1, 1).

 

11.5  Posterior Analysis

In the sampling model one has that Y1, …, Yn are independent with Yi ∼

Normal(β0 + β1 xi, σ). Suppose the pairs (x1, y1), …, (xn, yn) are observed. The

likelihood is the joint density of these observations viewed as a function of (β0,

β1, σ). For convenience, the standard deviation σ is reexpressed as the precision

ϕ = 1/σ
2
.



(11.8)

By multiplying the likelihood by the prior for (β0, β1, ϕ), one obtains an

expression for the posterior density.

(11.9)

Since this is not a familiar probability distribution, one needs to use an

MCMC algorithm to obtain simulated draws from the posterior.

 

11.6  Inference through MCMC

 It is convenient to draw an MCMC sample from a regression model using

the JAGS software. One attractive feature of JAGS is that it is straightforward

to transpose the statement of the Bayesian model (sampling density and prior)

directly to the JAGS model script.

Describe the model by a script

The first step in using JAGS is writing the following script defining the linear

regression model, saving the script in the character string modelString.

 
 modelString <-" 
 model { 

L(β0,β1,ϕ)=
n

∏
i=1

[
√ϕ

√2π
exp{−

ϕ

2
(yi − β0 − β1xi)

2}]

∝ ϕ
n
2 exp{−

ϕ

2

n

∑
i=1

(yi − β0 − β1xi)
2}

π(β0,β1,ϕ ∣ y1, ⋯ , yn)∝ ϕ
n
2 exp{−

ϕ

2

n

∑
i=1

(yi − β0 − β1xi)
2}

× exp{−
1

2s2
0

(β0 − μ0)2} exp{−
1

2s2
1

(β1 − μ1)2}

×ϕa−1 exp(−bϕ)



 ## sampling 
 for (i in 1:N){ 
 y[i] ~ dnorm(beta0 + beta1*x[i], invsigma2) 
 } 
 ## priors 
 beta0 ~ dnorm(mu0, g0) 
 beta1 ~ dnorm(mu1, g1) 
 invsigma2 ~ dgamma(a, b) 
 sigma <- sqrt(pow(invsigma2, -1)) 
 } 
 " 

In the sampling section of the script, the loop goes from 1 to N, where N is

the number of observations with index i. Recall that the normal distribution

dnorm in JAGS is stated in terms of the mean and precision, and so the

variable invsigma2 corresponds to the normal sampling precision. The variable

sigma is defined in the prior section of the script so one can track the

simulated values of the standard deviation σ. Also the variables g0 and g1

correspond to the precisions of the normal prior densities for beta0 and beta1.

Define the data and prior parameters

The next step is to provide the observed data and the values for the prior

parameters. In the R script below, a list the_data contains the vector of sale

prices, the vector of house sizes, and the number of observations. This list also

contains the means and precisions of the normal priors for beta0 and beta1,

and the values of the two parameters a and b of the gamma prior for

invsigma2. The prior standard deviations of the normal priors on beta0 and

beta1 are both 100, and so the corresponding precision values of g0 and g1 are

both 1/100
2
 = 0.0001.

 
 y <- PriceAreaData$price 
 x <- PriceAreaData$newsize 
 N <- length(y) 
 the_data <- list("y" = y, "x" = x, "N" = N, 
 "mu0" = 0, "g0" = 0.0001, 
 "mu1" = 0, "g1" = 0.0001, 
 "a" = 1, "b" = 1) 

Generate samples from the posterior distribution



The run.jags() function in the runjags package generates posterior samples

by the MCMC algorithm using the JAGS software. The script below runs one

MCMC chain with an adaption period of 1000 iterations, a burn-in period of

5000 iterations, and an additional set of 5000 iterations to be run and collected

for inference. By using the argument monitor = c("beta0", "beta1",

"sigma"), one keeps tracks of all three model parameters. The output variable

posterior contains a matrix of simulated draws.

 
 posterior <- run.jags(modelString, 
 n.chains = 1, 
 data = the_data, 
 monitor = c("beta0", "beta1", "sigma"), 
 adapt = 1000, 
 burnin = 5000, 
 sample = 5000) 

MCMC diagnostics and summarization

Using JAGS one obtains 5000 posterior samples for the vector of parameters.

Below the first 10 posterior samples are displayed for the triplet (β0, β1, σ).

Note that the index starts from 6001 since 6000 samples were already

generated in the adaption and burn-in periods.

 
 beta0 beta1 sigma 
 6001 -17.62 103.3 40.68 
 6002 -21.35 107.3 44.92 
 6003 -34.34 114.0 37.11 
 6004 -42.06 110.5 51.84 
 6005 -47.71 111.4 62.63 
 6006 -47.49 113.9 53.80 
 6007 -18.85 106.0 50.92 
 6008 -28.50 114.8 42.71 
 6009 -32.10 105.1 47.41 
 6010 -37.41 119.3 45.88 

To obtain valid inferences from the posterior draws from the MCMC

simulation, convergence of the MCMC chain is necessary. The plot() function

with the argument input vars returns four diagnostic plots (trace plot,

empirical CDF, histogram and autocorrelation plot) for the specified

parameter. For example, Figure 11.3 shows the diagnostic plots for the

intercept parameter β0 by the following command.



 
 plot(posterior, vars = "beta0") 

FIGURE 11.3

MCMC diagnostics plots for the regression intercept parameter β0.

The upper left trace plot shows good MCMC mixing for the 5000 simulated

draws of β0. The lower right autocorrelation plot indicates close to zero

correlation between adjacent posterior draws of β0. Overall these indicate

convergence of the MCMC chain for β0. In usual practice, one should perform

these diagnostics for all three parameters in the model.

Figure 11.4 displays a scatterplot of the simulated draws of the regression

parameters β0 and β1. It is interesting to note the strong negative correlation in

these parameters. If one assigned informative independent priors on β0 and β1,

these prior beliefs would be counter to the correlation between the two

parameters observed in the data.



FIGURE 11.4

Scatterplot of posterior draws of the intercept and slope parameters β0 and β1.

Posterior summaries of the parameters are obtained by use of the

print(posterior, digits = 3) command. Note that these summaries are

based on the 5000 iterations from the sampling period excluding the samples

from the adaption and burn-in periods.

 
 print(posterior, digits = 3) 
 Lower95 Median Upper95 Mean SD Mode MCerr 
 beta0 -122 -46.2 31.4 -45.7 37.6  -- 2.98 
 beta1 78.7 117  159   117    20   -- 1.65 
 sigma 33.2 45 59.3   45.7  6.93   -- 0.157 

Then intercept parameter β0 does not have a useful interpretation, so values

of these particular posterior summaries will not be interpreted. The summaries

of the slope β1 indicate a positive slope with a posterior median of 117 and a

90% credible interval (78.7, 159). That is, with every 1000 square feet increase

of the house size, the house price increases by $117,000. In addition, this

increase in the house price falls in the interval ($78,700, $159,000) with 90%

posterior probability. The posterior median of the standard deviation σ is the

large value 45 or $45,000 which indicates that there are likely additional

variables than house size that determine the price.



 

11.7  Bayesian Inferences with Simple Linear Regression

11.7.1  Simulate fits from the regression model

The intercept β0 and slope β1 determine the linear relationship between the

mean of the response Y and the predictor x.

E(Y ) = β0 + β1x. (11.10)

Each pair of values (β0, β1) corresponds to a line β0 + β1 x in the space of

values of x and y. If one finds the posterior mean of these coefficients, say 
~
β0

and 
~
β1, then the line

y =
~
β0 +

~
β1x

corresponds to a “best” line of fit through the data.

This best line represents a most likely value of the line β0 + β1 x from the

posterior distribution. One learns about the uncertainty of this line estimate

by drawing a sample of J rows from the matrix of posterior draws of (β0, β1)

and collecting the line estimates

~
β0

(j)
+

~
β1

(j)
x, j = 1, . . . ,J.

 Using the R script below, one produces a graph showing the best line of fit

(solid line) and ten simulated fits from the posterior as in Figure 11.5.



FIGURE 11.5

Scatterplot of the (size, price) data with the best line of fit (solid line) and ten simulated fits β0 + β1 x from

the posterior distribution.

 
 post <- as.mcmc(posterior) 
 post_means <- apply(post, 2, mean) 
 post <- as.data.frame(post) 
 ggplot(PriceAreaData, aes(newsize, price)) + 
 geom_point(size=3) + 
 geom_abline(data=post[1:10, ], 
 aes(intercept=beta0, slope=beta1), 
 alpha = 0.5) + 
 geom_abline(intercept = post_means[1], 
 slope = post_means[2], 
 size = 2) + 
 ylab("Price") + xlab("Size") + 
 theme_grey(base_size = 18, base_family = "") 

From Figure 11.5, since there is inferential uncertainty about the intercept β0

and slope β1, one sees variation among the ten fits from the posterior of the

linear regression line β0 + β1 x. This variation about the best-fitting line is

understandable since the size of our sample of data is the relatively small value

of 24. A larger sample size would help to reduce the posterior variation for the

intercept and slope parameters and result in posterior samples of fits that are

more tightly clustered about the best fitting line in Figure 11.5.

11.7.2  Learning about the expected response



In regression modeling, one may be interested in learning about the expected

response E(Y) for a specific value of the predictor x. In the house sale example,

one may wish to learn about the expected house price for a specific value of

the house size. Since the expected response E(Y) = β0 + β1 x is a linear

function of the intercept and slope parameters, one obtains a simulated sample

from the posterior of β0 + β1 x by computing this function on each of the

simulated pairs from the posterior of (β0, β1).

 For example, suppose one is interested in the expected price E(Y) for a

house with a size of 1, i.e. x = 1 (1000 sq feet). In the R script below, one

simulates 5000 draws from the posterior of the expected house prices, E[Y]

from the 5000 posterior samples of the pair (β0, β1).

 
 size <- 1 
 mean_response <- post[, "beta0"] + size * post[, "beta1"] 

This process is repeated for the four sizes x = 1.2, 1.6, 2.0, 2.4 (1200 sq feet,

1600 sq feet, 2000 sq feet, and 2400 sq feet). Let E(Y| x) denote the expected

price for a house with size x. Figure 11.6 displays density plots of the

simulated posterior samples for the expected prices E(Y| 1.2), E(Y| 1.6), E(Y|

2.0), E(Y| 2.4) for these four house sizes.



FIGURE 11.6

Density plots of the simulated draws of the posterior expected house price for four different values of the

house size.

The R output below provides summaries of the posterior of the expected

price for each of the four values of the house size. From this output, one sees

that, for a house of size of 1.2 (1200 sq feet), the posterior median of the

expected price is $94,500, and the probability that the expected price falls

between $69,800 and $121,000 is 90%.

 
 Value P05 P50 P95 
 <chr> <dbl> <dbl> <dbl> 
 1 Size = 1.2 69.8 94.5 121 
 2 Size = 1.6 125 142 159 
 3 Size = 2 172 189 205 
 4 Size = 2.4 211 236 260 

11.7.3  Prediction of future response

Learning about the regression model and values of the expected response

values focuses on the deterministic linear relationship between x and E[Y]

through the intercept β0 and the slope β1, as shown in Equation (11.10). The

variability among the fitted lines in Figure 11.5 and the variability among the

simulated house price for fixed size in Figure 11.6 reflect the variability in the

posterior draws of β0 and β1.

However, if one wants to predict future values for a house sale price Y given

its size x, one needs to go one step further to incorporate the sampling model

in the simulation process.

Yi ∣ β0,β1,σ
ind
∼ Normal(β0 + β1xi,σ) (11.11)

As shown in Equation (11.11), the sampling model of Y is a normal with a

mean expressed as a linear combination of β0 and β1 and a standard deviation

σ. To obtain a predicted value of Y given x = xi, one first simulates the

expected response from β0 + β1 xi, and then simulates the predicted value of Yi

from the sampling model: Yi ∼ Normal(E[Yi], σ). Below is a diagram for the

prediction process for an observation where its house size is given as x, and



predicted value denoted as ~y(s)
 for iteration s. Here the simulation size S is

5000 as there are 5000 posterior samples of each of the three parameters.

 The R function one_predicted() obtains a simulated sample of the

predictive distribution of the house price given a value of the house size. First

one uses the posterior sample of (β0, β1) to obtain a posterior sample of the

“linear response” β0 + β1 x. Then one simulates draws of the future observation

by simulating from a normal distribution with mean β0 + β1 x and standard

deviation σ, where draws of σ are taken from its posterior distribution.

 
 one_predicted <- function(x){ 
 lp <- post[ , "beta0"] + x * post[ , "beta1"] 
 y <- rnorm(5000, lp, post[, "sigma"]) 
 data.frame(Value = paste("Price =", x), 
 Predicted_Price = y) 
 } 

This process is repeated for each of the house sizes x = 1.2, 1.6, 2.0, 2.4

(1200 sq feet, 1600 sq feet, 2000 sq feet, and 2400 sq feet). Figure 11.7 displays

density estimates of these simulated samples from the predictive distributions

of the house price. Comparing Figure 11.7 with Figure 11.6, note that the

predictive distributions are much wider than the posterior distributions on the

expected response. This is what one would anticipate, since the predictive

distribution incorporates two types of uncertainty – the inferential uncertainty

in the values of the regression line β0 + β1 x and the predictive uncertainty

expressed in the sampling density of the response y with standard deviation σ.

simulate E[y](1) = β
(1)
0 + β

(1)
1 x→ sample ~y(1) ∼ {Normal}(E[y](1),σ(1))

simulate E[y](2) = β
(2)
0 + β

(2)
1 x→ sample ~y(2) ∼ {Normal}(E[y](2),σ(2))

⋮

simulate E[y](S) = β
(S)
0 + β

(S)
1 x→ sample ~y(S) ∼ {Normal}(E[y](S),σ(S))



FIGURE 11.7

Density plots of the simulated draws of the predicted house price for four different values of the house size.

To reinforce this last point, the R output below displays the 5th, 50th, and

95th percentiles of the predictive distribution of the house price for each of the

four values of the house size. One saw earlier that a 90% interval estimate for

the expected price for a house with x = 1.2 was given by (69.8, 121). Below

one sees that a 90% prediction interval for the price of the same house size is

(15.5, 175). The prediction interval is substantially wider than the posterior

interval estimate. This is true since the predictive distribution incorporates the

sizable uncertainty in the house price given the house size represented by the

sampling standard deviation σ.

 
 Value P05 P50 P95 
 <chr> <dbl> <dbl> <dbl> 
 1 Size = 1.2 15.5 94.4 175 
 2 Size = 1.6 64.5 142 219 
 3 Size = 2 110 189 266 
 4 Size = 2.4 157 234 315 

11.7.4  Posterior predictive model checking

Simulating replicated datasets



The posterior predictive distribution is used to predict the value of a house’s

price for a particular house size. It is also helpful in judging the suitability of

the linear regression model. The basic idea is that the observed response values

should be consistent with predicted responses generated from the fitted model.

In our example, one observed the house size x and the house price y for a

sample of 24 houses. Suppose one simulates a sample of prices for a sample of

24 houses with the same sizes from the posterior predictive distribution. This

is implemented in two steps.

1. Values of the parameters (β0, β1, σ) are simulated from the posterior

distribution – call these simulated values (β∗
0,β∗

1,σ∗).
2. A sample {yR1 , . . . , yRn } is simulated where the sample size is n = 24 and 

yRi  is Normal(μ∗
i ,σ

∗), where μ∗
i = β∗

0 + β∗
1xi.

This is called a replicated sample from the posterior predictive distribution

since one is using the same sample size and covariate values as the original

dataset.

For our example, this simulation process was repeated eight times, where

each iteration produces a sample (xi, yRi ), i = 1, . . . , 24. Scatterplots of these

eight replicated samples are displayed in Figure 11.8. The observed sample is

also displayed in this figure.



FIGURE 11.8

Scatterplots of observed and eight replicated datasets from the posterior predictive distribution.

The question one wants to ask is: Do the scatterplots of the simulated

replicated samples resemble the scatterplot of the observed data? Since the x

values are the same for the observed and replicated datasets, one focuses on

possible differences in the observed and replicated response values. Possibly,

the sample prices display more variation than the replicated prices, or perhaps

the sample prices have a particular outlier or other feature that is not present

in the replicated prices.

In the examination of these scatterplots, the distribution of the observed

responses does not seem markably different from the distribution of the

response in the simulated replicated datasets. Therefore in this brief

examination, one does not see any indication of model misfit – the observed (x,

y) data seems consistent with replicated data generated from the posterior

predictive distribution.



Predictive residuals

In linear regression, one typically explores the residuals that are the deviations

of the observations {yi} from the fitted regression model. The posterior

prediction distribution is used to define a suitable Bayesian residual.

Consider the observed point (xi, yi). One asks the question – is the observed

response value yi consistent with predictions ~yi of this observation from the

fitted model? One simulates predictions ~yi from the posterior predictive

distribution in two steps:

1. One simulates (β0, β1, σ) from the posterior distribution.

2. One simulates ~yi from a normal distribution with mean β0 + β1 xi and

standard deviation σ.

By repeating this process many times, one has a sample of values {~yi} from

the posterior predictive distribution.

To see how close the observed response yi is to the predictions {~yi}, one

computes the predictive residual

ri = yi − ~yi. (11.12)

If this predictive residual is away from zero, that indicates that the observation

is not consistent with the linear regression model. Remember that ~yi, and

therefore the predictive residual ri is random. So one constructs a 90% interval

estimate for the predictive residual ri and says that the observation is unusual

if the predictive residual interval estimate does not include zero.

Figure 11.9 displays a graph of the 90% interval estimates for the predictive

residuals {ri} plotted against the size variable. A horizontal line at the value 0

is displayed and we look for intervals that are located on one side of zero. One

notices that a few of the intervals barely overlap zero – this indicates that the

corresponding points (xi, yi) are somewhat inconsistent with the fitted

regression model.



FIGURE 11.9

Display of predictive residuals. Each line covers 90% of the probability of the predictive residual yi − ~yi.

 

11.8  Informative Prior

One challenge in a Bayesian analysis is the construction of a prior that reflects

beliefs about the parameters. In the usual linear function representation in

Equation (11.7), thinking about prior beliefs can be difficult since the intercept

β0 does not have a meaningful interpretation. To make the regression

parameters β0 and β1 easier to interpret, one considers standardizing the

response and predictor variables. With this standardization, the task of

constructing informative priors will be facilitated.

11.8.1  Standardization

Standardization is the process of putting different variables on similar scales.

As we can see in Figure 11.2, the house size variable ranges from 1.0 to over

2.5 (in 1000 sq feet), while the price variable ranges from below 50 to over 350

(in $1000). The standardization process works as follows: for each variable,

calculate the sample mean and the sample standard deviation, and then for

each observed value of the variable, subtract the sample mean and divide by

the sample standard deviation.



For example, let yi be the observed sale price and xi be the size of a house.

Let ȳ and x̄ denote the sample means and sy and sx denote the sample

standard deviations for the yi’s and xi’s, respectively. Then the standardized

variables y∗
i  and x∗

i  are defined by the following formula.

y∗
i =

yi − ȳ

sy
, x∗

i =
xi − x̄

sx
. (11.13)

In R, the function scale() performs standardization.

 
 PriceAreaData$price_standardized <- scale(PriceAreaData$price) 
 PriceAreaData$size_standardized <- scale(PriceAreaData$newsize) 

A standardized value represents the number of standard deviations that the

value falls above or below the mean. For example, if x∗
i = −2, then this house

size is two standard deviations below the mean of all house sizes, and a value

yi = 1 indicates a sale price that is one standard deviation larger than the

mean. Figure 11.10 constructs a scatterplot of the original (x, y) data (top)

and the standardized (x∗, y∗) data (bottom). Note that the ranges of the

standardized scores for the x∗
 and y∗

 are similar – both sets of standardized

scores fall between −2 and 2. Also note that the association patterns of the two

graphs agree which indicates that the standardization procedure has no impact

on the relationship of house size with the sale price.



FIGURE 11.10

Two scatterplots of price against size of house sales: both variables unstandardized (top) and both variables

standardized (bottom).

One advantage of standardization of the variables is that it provides more

meaningful interpretations of the regression parameters β0 and β1. The linear

regression model with the standardized variables is written as follows:

(11.14)

(11.15)

The intercept parameter β0 now is the expected standardized sale price for a

house where x∗
i = 0 corresponding to a house of average size. The slope β1

gives the change in the expected standardized sale price μ∗
i  when the

standardized size x∗
i  increases by 1 unit, or when the size variable increases by

one standard deviation. In addition, when the variables are standardized, the

Y ∗
i ∣ μ∗

i ,σ
ind
∼ Normal(μ∗

i ,σ),

μ∗
i = β0 + β1x

∗
i .



slope β1 can be shown equal to the correlation between xi and yi. So this slope

provides a meaningful measure of the the linear relationship between the

standardized predictor x∗
i  and the expected standardized response μ∗

i . A

positive value β1 indicates a positive linear relationship between the two

variables, and the absolute value of β1 indicates the strength of the

relationship.

11.8.2  Prior distributions

As in the weakly informative prior case, assume that the three parameters β0,

β1 and σ are independent so the joint prior is factored into the marginal

components.

π(β0,β1,σ) = π(β0)π(β1)π(σ).

Then the task of assigning a joint prior simplifies to the task of assigning

priors separately to each of the three parameters. The process of assigning an

informative prior is described for each parameter.

Prior on the intercept β0

After the data is standardized, recall that the intercept β0 represents the

expected standardized sale price given a house of average size (i.e. x∗
i = 0). If

one believes a house of average size will also have an average price, then a

reasonable guess of β0 is zero. One can give a normal prior for β0 with mean μ0

= 0 and standard deviation s0:

β0 ∼ Normal(0, s0).

The standard deviation s0 in the normal prior reflects how confident one

believes in the guess of β0 = 0. For example, if one specifies β0 ∼ Normal(0, 1),

this indicates that a price of a house of average size could range from one

standard deviation below to one standard deviation above the average price.

Since this is a wide range, one is stating that he or she is unsure that a house

of average size will have an average price. If one instead is very sure of the

guess that β0 = 0, one could choose a smaller value of s0.

Prior on the slope β1



For standardized data, the slope β1 represents the correlation between the

house size and the sale price. One represents one’s belief about the location of

β1 by means of a normal prior.

β1 ∼ Normal(μ1, s1),

For this prior, μ1 represents one’s best guess of the correlation and s1

represents the sureness of this guess. For example, if one lets β1 be Normal(0.7,

0.15), this means that one’s best guess of the correlation is 0.7 and one is

pretty certain that the correlation falls between 0.7 − 0.15 and 0.7 + 0.15. If

one is not very sure of the guess of 0.7, one could choose a larger value of s1.

Prior on σ

It is typically harder to specify informative beliefs about a standard deviation

than a mean parameter such as β0 + β1 x. So it seems reasonable to assign a

weakly informative prior for the sampling error standard deviation σ. A

gamma prior for the precision parameter ϕ = 1/σ
2
 with small values of the

shape and rate parameters, say a = 1 and b = 1, can represent weak prior

information in this regression setting.

1/σ2 ∼ Gamma(1, 1).

To summarize, the informative prior distribution for (β0, β1, σ) is defined as

follows.

(11.16)

(11.17)

(11.18)

(11.19)

π(β0,β1,σ) = π(β0)π(β1)π(σ),

β0 ∼ Normal(0, 1),

β1 ∼ Normal(0.7, 0.15),

1/σ2 ∼ Gamma(1, 1).



11.8.3  Posterior Analysis

 One again uses the JAGS software to simulate from the posterior

distribution of the parameters. The modelString is written in the same way as

in Section 11.6.

Since the data have been standardized, one needs to do some initial

preliminary work before the MCMC implementation. First, in R, one defines

new variables price_standardized and size_standardized that are

standardized versions of the original price and newsize variables.

 
 PriceAreaData$price_standardized <- scale(PriceAreaData$price) 
 PriceAreaData$size_standardized <- scale(PriceAreaData$newsize) 

Then the variables y and x in modelString now correspond to the

standardized data. Also in the definition of the the_data list, we enter the

mean and precision values of the informative priors placed on the regression

intercept and slope. Remember that one needs to convert the prior standard

deviations s0 and s1 to the corresponding precision values.

 
 y <- as.vector(PriceAreaData$price_standardized) 
 x <- as.vector(PriceAreaData$size_standardized) 
 N <- length(y) 
 the_data <- list("y" = y, "x" = x, "N" = N, 
 "mu0" = 0, "g0" = 1, 
 "mu1" = 0.7, "g1" = 44.4, 
 "a" = 1, "b" = 1) 

With the redefinition of the standardized variables y and x, the same JAGS

script modelString is used to define the posterior distribution. As before, the

run.jags() function is run, collecting a sample of 5000 draws from (β0, β1, σ).

 
 posterior2 <- run.jags(modelString, 
 n.chains = 1, 
 data = the_data, 
 monitor = c("beta0", "beta1", "sigma"), 
 adapt = 1000, 
 burnin = 5000, 
 sample = 5000) 



Comparing posteriors for two priors

 To understand the influence of the informative prior, one can contrast this

posterior distribution with a posterior using a weakly informative prior.

Suppose one assumes that β0, β1, and σ are independent with β0 ∼ Normal(0,

100), β1 ∼ Normal(0.7, 100) and ϕ = 1/σ
2
 ∼ Gamma(1, 1). This prior differs

from the informative prior in that large values are assigned to the standard

deviations, reflecting weak information about the location of the regression

intercept and slope.

 
 the_data <- list("y" = y, "x" = x, "N" = N, 
 "mu0" = 0, "g0" = 0.0001, 
 "mu1" = 0.7, "g1" = 0.0001, 
 "a" = 1, "b" = 1) 

 
 posterior3 <- run.jags(modelString, 
 n.chains = 1, 
 data = the_data, 
 monitor = c("beta0", "beta1", "sigma"), 
 adapt = 1000, 
 burnin = 5000, 
 sample = 5000) 

Figure 11.11 displays density estimates of the simulated posterior draws of

the slope parameter β1 under the informative and weakly informative prior

distributions. Note that the informative prior posterior has less spread than

the weakly informative prior posterior. This is to be expected since the

informative prior adds more information about the location of the slope

parameter. In addition, the informative prior posterior shifts the weakly

informative prior posterior towards the prior belief that the slope is close to

the value 0.7.



FIGURE 11.11

Density plots of posterior distributions of regression slope parameter β1 using informative and weakly

informative prior distributions.

After viewing Figure 11.11, one would expect the posterior interval estimate

for the slope β1 to be shorter with the informative prior. We had earlier found

that the 90% interval estimate for β1 to be (0.551, 0.959) with the informative

prior. The 90% interval for the slope with the weakly informative prior is

(0.501, 1.08) which is about 40% longer than the interval using the informative

prior.

 
 print(posterior2, digits = 3) 
 Lower95 Median Upper95 Mean SD Mode MCerr 
 beta0 -0.267 0.000358 0.276 0.000372 0.138 -- 0.00195 
 beta1 0.551 0.751 0.959 0.749 0.104 -- 0.00147 
 sigma 0.498 0.67 0.878 0.682 0.102 -- 0.00154 

 
 print(posterior3, digits = 3) 
 Lower95 Median Upper95 Mean SD Mode MCerr 
 beta0 -0.273 0.000362 0.281 0.000421 0.141 -- 0.00199 
 beta1 0.501 0.794 1.08 0.792 0.146 -- 0.00207 
 sigma 0.502 0.677 0.894 0.688 0.105 -- 0.00163 

 



11.9  A Conditional Means Prior

In this chapter, we have illustrated two methods for constructing a prior on

the parameters of a regression model. The first method reflects weakly

informative prior beliefs about the parameters, and the second method assesses

an informative prior on the regression parameters on a model on standardized

data. In this section, a third method is described for representing prior beliefs

on a regression model on the original data. This approach assesses a prior on

(β0, β1, σ) indirectly by stating prior beliefs about the expected response value

conditional on specific values of the predictor variable.

Learning about a gas bill from the outside temperature

A homeowner will typically have monthly payments on basic utilities such as

water, natural gas, and electricity. One particular homeowner observes that her

monthly natural gas bill seems to vary across the year. The bill is larger for

colder months and smaller for warmer months. That raises the question: can

one accurately predict one’s monthly natural gas bill from the outside

temperature?

To address this question, the homeowner collects the mostly gas bills in

dollars and the average mostly outside temperatures for all twelve months in a

particular year. Figure 11.12 displays a scatterplot of the temperatures and bill

amounts. Note that the month bill appears to decrease as a function of the

temperature. This motivates consideration of the linear regression model

Yi ∣ β0,β1,σ ∼ Normal(β0 + β1xi,σ), (11.20)

where xi and yi are respectively the average temperature (degrees in

Fahrenheit) and the bill amount (in dollars) in month i, and (β0, β1, σ) are the

unknown regression parameters.



FIGURE 11.12

Scatterplot of average temperatures and gas bills for twelve payments.

A conditional means prior

To construct a prior, first assume that one’s beliefs about the regression

parameters (β0, β1) are independent of the beliefs on the standard deviation σ

and so the joint prior can be factored into the marginal densities:

π(β0,β1,σ) = π(β0,β1)π(σ).

With the unstandardized data, it is difficult to think directly about plausible

values of the intercept β0 and slope β1 and also how these regression

parameters are related. But it may be easier to formulate prior opinion about

the mean values

μ∗
i = β0 + β1x

∗
i , (11.21)

for two specified values of the predictor x∗
1 and x∗

2. The conditional means

approach proceeds in two steps.

1. For the first predictor value x∗
1 construct a normal prior for the mean

value μ∗
1. Let the mean and standard deviation values of this prior be



denoted by m1 and s1, respectively.

2. Similarly, for the second predictor value x∗
2 construct a normal prior for

the mean value μ∗
2 with respective mean and standard deviation m2 and

s2.

If one assumes that one’s beliefs about the conditional means are

independent, then the joint prior for the vector (μ∗
1,μ∗

2) has the form

π(μ∗
1,μ∗

2) = π(μ∗
1)π(μ∗

2).

This prior on the two conditional means implies a bivariate normal prior on

the regression parameters. The two conditional means μ∗
1 and μ∗

2 were written

above as a function of the regression parameters β0 and β1. By solving these

two equations for the regression parameters, one expresses each parameter as a

function of the conditional means:

β1 =
μ∗

2 − μ∗
1

x2 − x1
, (11.22)

β0 = μ
∗
1 − x1(

μ∗
2 − μ∗

1

x2 − x1
). (11.23)

Note that both the slope β0 and β1 are linear functions of the two conditional

means μ∗
1 and μ∗

2 and this implies that β0, β1 will have a bivariate normal

distribution.

Regression analysis of the gas bill example

The process of constructing a conditional means prior is illustrated for our gas

bill example. Consider two different temperature values, say 40 degrees and 60

degrees, and, for each temperature, construct a normal prior for the expected

monthly bill. After some thought, the following priors are assigned.

If x = 40, the mean bill μ∗
1 = β0 + β1(40) is normal with mean $100 and

standard deviation $20. This statement indicates that one believes the



average gas bill will be relatively high during a cold month averaging 40

degrees.

If x = 60, the mean bill μ∗
2 = β0 + β1(100) is normal with mean $50 and

standard deviation $15. Here the month’s average temperature is warmer

and one believes the gas cost will average $50 lower than in the first

scenario.

By assuming independence of our prior beliefs about the two means, we have

π(μ∗
1,μ∗

2) = ϕ(μ∗
1, 100, 20)ϕ(μ∗

2, 50, 15), (11.24)

where ϕ(y, μ, σ) denotes the normal density with mean μ and standard

deviation σ.

The prior on the two means is an indirect way of assessing a prior on the

regression parameters β0 and β1. One simulates pairs (β0, β1) from the prior

distribution by simulating values of the means μ∗
1 and μ∗

2 from independent

normal distributions and applying Equation (11.22) and Equation (11.23).

 Simulated draws from the prior are conveniently produced using the JAGS

software. The prior is specified for the conditional means by two applications

of the dnorm() function and the regression parameters are defined as functions

of the conditional means.

 
 modelString = " 
 model{ 
 beta1 <- (mu2 - mu1) / (x2 - x1) 
 beta0 <- mu1 - x1 * (mu2 - mu1) / (x2 - x1) 
 mu1 ~ dnorm(m1, s1) 
 mu2 ~ dnorm(m2, s2) 
 }" 

Figure 11.13 displays 1000 simulated draws of (β0, β1) from the the

conditional means prior. It is interesting to note that although the conditional

means μ∗
1 and μ∗

2 are independent, the implied prior on the regression

coefficients indicates that β0 and β1 are strongly negatively correlated.



FIGURE 11.13

Scatterplot of simulated draws of the regression parameters (β0, β1) from the conditional means prior.

The conditional means approach is used to indirectly specify a prior on the

regression vector β = (β0, β1). To complete the prior, one assigns the precision

parameter ϕ = 1/σ
2
 a gamma prior with parameters a and b. Then the prior

density on all parameters has the form

π(β0,β1,σ) = πCM(β0,β1)π(σ),

where πCM is the conditional means prior.

Using this conditional means prior and the gas bill data, one also uses JAGS

to simulate from the posterior distribution of (β0, β1, σ). In the exercises, the

reader will have the opportunity to perform inference about the regression line.

In addition, there will be an opportunity to compare inferences using

conditional means and weakly informative priors.

 

11.10  Exercises

1. Linear Regression Model

Suppose one is interested in predicting a person’s height yi in cm from his

or her arm span xi in cm. Let μi denote the mean μi = E(Yi| xi). Are the

following linear models? If not, explain why.



(a) μi = β0 + xi/β1

(b) μi = β1 xi

(c) μi = β0 + β1 xi

(d) μi = exp (β0 + β1 xi)

2. Linear Regression Model

Suppose a researcher collects some daily weather data for Denver,

Colorado for several winter months. She considers the regression model Yi|

μi, σ ∼ Normal(μi, σ) where

μi = β0 + β1xi,

and xi and yi are respectively the observed temperature (in degrees

Fahrenheit) and snowfall (in inches) on data collected on the i-th day.

(a) Interpret the intercept parameter β0.

(b) Interpret the slope parameter β1.

(c) Suppose β0 = 5, β1 = −0.2, and σ = 0.2. If the temperature is 10

degrees, use this model to predict the amount of snowfall.

(d) With the same assumptions in part (c), find a 90% interval estimate

for the amount of snowfall.

3. Pythagorean Result in Baseball

Table 11.2 displays the average runs scored R, the average runs allowed

RA, the number of wins W, the number of losses L for 15 National League

teams in the 2018 baseball season. This data is contained in the datafile

pythag2018.csv. By the Pythagorean formula, if y = log (W/L) and x =

log (R/RA), then approximately y = βx for some slope parameter β.

Consider the model Yi ∼ Normal(βxi, σ) where xi and yi are the values of

log (R/RA) and log (W/L) for the i-th team.

(a) Suppose one assumes β and σ are independent where β ∼ Normal(0,

10) and the precision ϕ = 1/σ
2
 is gamma with parameters 0.001 and

0.001. Write down the expression for the joint posterior density of (β,

σ).

(b) Using JAGS, write a script defining the Bayesian model and use

MCMC to simulate a sample of 1000 draws from the posterior

distribution.

(c) From the simulated output, construct 90% interval estimates for the

slope β and for the standard deviation σ.

TABLE 11.2

Average runs scored (R), average runs scored against (RA), wins (W) and losses (L) for 15 National League



teams (Tm).

Tm R RA W L Tm R RA W L

MIL 4.6 4 96 67 ARI 4.3 4 82 80

CHC 4.7 4 95 68 PHI 4.2 4.50 80 82

LAD 4.9 3.70 92 71 NYM 4.2 4.40 77 85

COL 4.8 4.60 91 72 SFG 3.7 4.30 73 89

ATL 4.7 4.10 90 72 CIN 4.3 5.10 67 95

STL 4.7 4.30 88 74 SDP 3.8 4.70 66 96

PIT 4.3 4.30 82 79 MIA 3.7 5 63 98

WSN 4.8 4.20 82 80

4. Pythagorean Result in Baseball (continued)

(a) Suppose a team scores on average 4.5 runs and allows, on average, 4.0

runs, so x = log (R/RA) = log (4.5/4) = 0.118. Simulate 1000 draws

from the posterior distribution of μ = βx.

(b) If x = 0.118, use the work from part (a) to simulate repeated draws

of the posterior predictive distribution of y = log (W/L) and use the

output to construct a 90% prediction interval for y.

(c) From the interval found in part (a), find a 90% prediction interval for

the number of wins in a 162 game season.

5. Pythagorean Result in Baseball (continued)

A traditional least-squares of the model y = βx can be found by use of the

lm() function for the 2018 team data as follows.

 
 fit <- lm(I(log(W / L)) ~ 0 + I(log(R / RA)), 
 data = pythag2018) 
 summary(fit)

The “Estimate” value is the least-squares estimate of the slope β and the

“Std. Error” provides an estimate at the sampling error of this estimate.

Compare these estimates with the Bayesian posterior mean and standard

deviation of β using a weakly informative prior.

6. Height and Arm Span

A person’s arm span is strongly related to his or her height. To investigate

this relationship, arm spans and heights were measured (in cm) for a

sample of 20 students and stored in the file arm_height.csv. (This data

was simulated using statistics from Mohanty, Babu, and Nair (2001).)

Consider the regression model Yi ∼ Normal(μi, σ) where μi = β0 + β1 xi,



and yi and xi are respectively the height and arm span for the i-th

student.

(a) Suppose that one assigns a weakly informative prior to the vector (β0,

β1, σ) where β0 and β1 are independent normal with mean 0 and

standard deviation 10, and the precision ϕ = 1/σ
2
 is gamma with

parameters 0.1 and 0.1. Use JAGS to obtain a simulated sample from

the posterior distribution. Find the posterior means of the regression

intercept and slope and interpret these posterior means in the context

of the problem.

(b) Rescale the heights and arm spans and consider the alternative

regression model Y ∗
i ∼ Normal(μi,σ) where μi = β0 + β1x

∗
i  and x∗

i

and y∗
i  are the rescaled measurements found by subtracting the

respective means and dividing by the respectively standard

deviations, i.e. standardized. By using similar weakly informative

priors as in part (a), use JAGS to simulate from the joint posterior

distribution. Find the posterior means of the regression parameters

for this rescaled problem and interpret the means.

7. Height and Arm Span (continued)

Consider the problem of learning about a student height using his or her

arm span where the measurements are both standardized and one assigns

weakly informative priors on the parameters.

(a) Consider a student whose arm span is one standard deviation above

the mean so x∗
i = 1. Using the simulated sample from the posterior

distribution, find the posterior mean and 90% interval estimate for

the expected rescaled height.

(b) For the same value x∗
i = 1, simulate a sample from the posterior

predictive distribution of a future standardized height y∗
i . Estimate

the mean and construct a 90% prediction interval for y∗
i .

(c) Compare the intervals computed in parts (a) and (b) and explain how

they are different.

8. Serving Size and Calories of Sandwiches

McDonald restaurant publishes nutritional information on the sandwiches

served. Table 11.3 displays the serving size (in grams) and the calories for

some sandwiches. (This data is available from the file mcdonalds.csv.).

One is interested in the model Yi ∼ Normal(μi, σ), where μi = β0 + β1 xi

and yi and xi are respectively the calories and serving size for the i-th

sandwich.



(a) Using a suitable weakly informative prior for the regression

parameters and the standard deviation, use JAGS to obtain a

simulated sample from the joint posterior distribution.

(b) Construct a graph and 95% interval estimate for the regression slope

β1. Is there sufficient evidence to say that sandwiches with larger

serving sizes have more calories?

(b) For a sandwich with serving size 200 grams, simulate a sample from

the predictive distribution of the number of calories. Construct a 95%

prediction interval for the number of calories.

TABLE 11.3

Serving size (grams) and calories for some McDonalds sandwiches.

Sandwich Size Calories

Hamburger 105 260

Cheeseburger 119 310

Double Cheeseburger 173 460

Quarter Pounder with Cheese 199 510

Double Quarter Pounder with Cheese 280 730

Big Mac 219 560

Big N’ Tasty 232 470

Filet-O-Fish 141 400

McChicken 147 370

Premium Grilled Chicken Classic Sandwich 229 420

Premium Crispy Chicken Classic Sandwich 232 500

9. Serving Size and Calories of Sandwiches (continued)

In Exercise 8, one obtained a simulated sample from the posterior

distribution of (β0, β1, σ) using a weakly informative prior.

(a) Suppose one is interested in learning about the expected calories μ for

a sandwich where the serving size is 300 grams. From the simulated

sample from the posterior, construct a sample from the posterior of μ

and construct a 90% interval estimate.

(b) Suppose one is interested in learning about the value of the serving

size x∗
 such that the mean calorie value β0 + β1x

∗
 is equal to 500.

First write the serving size x∗
 as a function of β0 and β1. Then use

this representation to find a 90% interval estimate for the serving size

x∗
.

10. Movie Sales



Table 11.4 displays the weekend and gross sales, in millions of dollars, for

ten popular movies released in 2017. This data is contained in the file

movies2017.csv. Suppose one is interested in studying the relationship

between the two variables by fitting the model

Yi ∣ β0,β1,σ ∼ Normal(β0 + βixi,σ),

where yi and xi are respectively the gross sales and weekend sales for the i-

th movie.

(a) Assuming weekly informative priors on the regression parameters and

the standard deviation, use JAGS to simulate from the joint posterior

distribution of (β0, β1, σ).

(b) Construct a scatterplot of the simulated draws of β0 and β1.

(c) From your output, is there significant evidence that weekend sales is a

useful predictor of gross sales? Explain.

(d) From the simulated draws, construct a 80% interval estimate for the

average gross sales for all movies that has $100 million weekend sales.

Suppose you are interested in predicting the gross sales for a single movie

that has $100 million weekend sales. Construct a 80% prediction interval

for the gross sales.

TABLE 11.4

Weekend and gross sales (in millions of dollars) for ten popular movies released in 2017.

Movie Weekend Gross

Beauty and the Beast 174 504

The Fate of the Furious 99 226

Despicable Me 3 72 264

Spider-Man: Homecoming 117 334

Guardians of the Galaxy, Vol 2. 147 389

Thor: Ragnarok 122 315

Wonder Woman 103 413

Pirates of the Caribbean 63 173

It 123 327

Justice League 94 229

11. Fog Index and Complex Words of Books

The amazon.com website used to provide “text statistics” for many of the

books it sold. For a particular book, the website displayed the “fog index”,

the number of years of formal education required to read and understand

http://www.amazon.com/


a passage of text, and the “complex words”, the percentage of words in the

book with three or more syllables. Table 11.5 displays the complex words

and fog index for a selection of 21 popular books. (This data is contained

in the file book_stats.csv.) Suppose one is interested in predicting the fog

index of a book given its complex words measurement. Using suitable

weakly informative priors on the parameters, fit a simple regression model

by simulating 5000 draws from the joint posterior distribution. Use this

output to construct a 90% prediction interval for a book whose complex

word measurement is 10.

TABLE 11.5

Measures of complex words and fog indexes for a selection of 20 books.

Book Complex Words Fog Index

A Million Little Pieces 4.00 5.70

The Five People You Meet in Heaven 6.00 6.60

The Glass Castle 6.00 8.40

The Mermaid Chair 7.00 8.20

The Kite Runner 7.00 7.10

Marley & Me 8.00 9.20

Memoirs of a Geisha 8.00 10.10

In Cold Blood 10.00 9.80

Moneyball 10.00 10.30

Jim Cramer’s Real Money 10.00 11.70

The Da Vinci Code 12.00 9.10

Power of Thinking Without Thinking 12.00 11.60

A Mathematician at the Ballpark 12.00 10.20

Misquoting Jesus 13.00 16.10

The Tipping Point 13.00 12.60

Freakonomics 14.00 11.10

Curve Ball 14.00 10.10

The World is Flat 15.00 15.00

Confessions of an Economics Hit Man 15.00 12.80

Collapse 17.00 18.00

Ordinal Data Modeling 24.00 14.60

12. Distances of Batted Balls

Figure 11.14 displays a scatterplot of the launch speed (mph) and distance

traveled (feet) for batted balls hit by the baseball player Mike Trout



during the 2018 season. This data is contained in the file trout20.csv.

FIGURE 11.14

Scatterplot of launch speed and distance traveled for batted balls of Mike Trout during the 2018

season.

(a) In R, rescale both the explanatory and response variables so each has

mean 0 and standard deviation 1.

(b) Consider the regression model on the rescaled data: 

Y ∗
i ∼ Normal(μ∗

i ,σ) where

μ∗
i = β0 + β1x

∗
i ,

where y∗
i  and x∗

i  are respectively the rescaled distance traveled and

rescaled launch speed of the i-th batted ball. Suppose one has little prior

knowledge about the values of the parameters β0, β1 and σ. One assumes

that the parameter are independent where β0 and β1 are assigned normal

priors with mean 0 and standard deviation 10, and the precision ϕ = 1/σ
2

is gamma with parameters 0.1 and 0.1. Use JAGS to obtain a simulated

sample of 5000 draws from the posterior distribution of (β0, β1, σ).

(c) From the simulated output, construct a density estimate and 90%

interval estimate for the slope parameter β1.

(d) Using the output, obtain simulated draws of the expected

standardized distances when the standardized speed is equal to one.

Construct a 90% interval estimate for the expected distance.

(e) Obtain a simulated sample from the predicted standardized distance

when the standardized speed is equal to one. Construct a 90%



prediction interval and compare this interval with the interval

constructed in part (c).

13. Distance of Batted Balls (continued)

Consider the use of the regression model on the standardized data 

Y ∗
i ∼ Normal(μ∗

i ,σ) where

μ∗
i = β0 + β1x

∗
i ,

where y∗
i  and x∗

i  are respectively the rescaled distance traveled and

rescaled launch speed of the i-th batted ball.

(a) Suppose one believes that if Trout hits a ball with average speed, his

expected distance is normal with mean 350 feet and standard

deviation 10 feet. In addition, one believe the correlation between

launch speed and distance is normal with mean 0.9 and a standard

deviation of 0.02. Construct a prior distribution on the vector of

parameters (β0, β1) that reflects this information.

(b) Use JAGS with this informative prior to obtain a simulated sample

from the posterior distribution of all parameters.

(c) Construct a 90% interval estimate for the slope parameter β1 and

compare your answer with the interval estimate constructed in part

(c) of Exercise (12).

14. Gas Bill

The dataset gas2017.csv contains the average temperatures and gas bills

in dollars for twelve months for a particular homeowner. This chapter

described the use of a conditional means prior to construct a prior

distribution on the regression vector (β0, β1) in Section 11.9.

(a) Using this conditional means prior and a weakly informative

Gamma(1, 1) prior on ϕ = 1/σ
2
, use JAGS to simulate 5000 draws

from the posterior distribution of (β0, β1, σ). Construct a 90% interval

estimate for the regression slope β1.

(b) Rerun this analysis using a suitable weakly informative prior on all

the parameters. Simulate 5000 draws and construct a 90% interval

estimate for the slope β1.

(c) Compare your interval estimates for parts (a) and (b).

15. Gas Bill (continued)

A traditional maximum likelihood fit of the model Yi|β0, β1, σ ∼

Normal(β0 + β1 x, σ) can be found by use of the lm() function.



 
 fit <- lm(Bill ~ Temp, data = gas2017) 
 summary(fit)

The output provides estimates of the regression coefficients β0 and β1 and

the Residual standard error provides an estimate at the standard

deviation σ. Compare these estimates with the posterior means of β0, β1, σ

found in Exercise (14).

16. Conditional Means Prior

Suppose you are interested in predicting the cost of purchasing groceries

based on the number of items purchased. You consider the regression

model Yi|β0, β1, σ ∼ Normal(β0 + β1 xi, σ), where xi and yi are respectively

the number of grocery items and the total cost (in dollars) of the i-th

purchase. Use a conditional mean prior using the following information.

Let μ∗
1 = β0 + β1(10) and μ∗

2 = β0 + β1(30) denote the expected cost of

purchasing 10 and 30 grocery items, respectively. You assume that your

beliefs about μ∗
1 and μ∗

2 are independent where μ∗
1 ∼ Normal(20, 5) and 

μ∗
2 ∼ Normal(70, 5).
(a) Use JAGS to simulate 1000 draws from the prior distribution of (β0,

β1).

(b) Construct a scatterplot of the values of β0 and β1 and describe the

relationship that you see in the scatterplot.

(c) Suppose you believe that your prior beliefs about the regression

parameters are too strong. Choose a new conditional means prior

that reflects this belief.

17. Olympic Swimming Times

The dataset olympic_butterfly.csv contains the winning time in seconds

for the men’s and women’s 100 m butterfly race for the Olympics from

1964 through 2016. Suppose we focus on the women’s times. If yi and xi

denote respectively the winning time for the women’s 100 m butterfly and

year for the i-th Olympics, consider the use of the regression model

Yi ∣ β0,β1,σ ∼ Normal(β0 + β1(xi − 1964),σ).

(a) Give interpretations for the regression parameters β0 and β1.

(b) Assuming weakly informative priors for all parameters, use JAGS to

simulate 5000 values from the joint posterior distribution.



(c) Suppose one is interested in predicting the winning time for the

women’s 100 m butterfly the 2020 Olympics. Simulate 5000 draws

from the posterior predictive distribution and construct a 90%

prediction interval for this winning time.

18. Olympic Swimming Times (continued)

One way to judge the suitability of the linear model μi = β0 + β1 (xi −
1964) for the Olympics race data is to look for a pattern in the predictive

residuals ri = yi − ŷi.

(a) Using the draws from the posterior distribution of (β0, β1, σ), simulate

a sample from the posterior predictive distribution of the future

observation ~yi for all i using the algorithm described in Section

11.7.4.

(b) Compute the sample of predictive residuals ri and find 90% interval

estimates for each i.

(c) Construct a graph of the 90% intervals for ri against xi.

(d) Comment on any lack of fit of the linear model from looking at the

residual graph.

19. Priors for Two-Group Model

Returning to a tennis example described in Section 8.3, suppose one is

interested in comparing the time-to-serve for two tennis servers Roger

Federer and Rafael Nadal. One collects the time to serve yi for both

players for many serves. One assumes that Yi is distributed Normal(μi, σ)

where

μi = β0 + β1xi,

where xi is an indicator of the server where xi = 0 if Federer is serving and

xi = 1 if Nadal is serving. In this setting, β0 is the mean time to serve for

Federer and β1 is the increase in mean serving time for Nadal.

(a) Construct a reasonable prior for the intercept parameter β0.

(b) If you believe that Nadal is significantly slower than Federer in his

time-to-serve, construct a prior for β1 that reflects this belief.

(c) Suppose that the range of serving times is about 3 seconds. Construct

a prior for σ that reflects this knowledge.

(d) Construct a joint prior for (β0, β1, σ) using the priors constructed in

parts (a), (b), and (c).

20. Two-Group Model (continued)



In Exercise (19), you constructed an informative prior for (β0, β1, σ) for

the regression model for the time-to-serve measurements for two tennis

servers. The data file two_players_time_to_serve.csv contain

measurements for 100 serves for the players Roger Federer and Rafael

Nadal. Use JAGS to obtain a simulated sample of the posterior

distribution using your prior and this data. Construct a 90% interval

estimate for the regression slope β1 that measures the differences in the

mean time to serve for the two players.



12
 

Bayesian Multiple Regression and Logistic
Models
 

 

12.1  Introduction

In Chapter 11, we introduced simple linear regression where the mean of a continuous

response variable was represented as a linear function of a single predictor variable. In

this chapter, this regression scenario is generalized in several ways. In Section 12.2, the

multiple regression setting is considered where the mean of a continuous response is

written as a function of several predictor variables. Methodology for comparing

different regression models is described in Section 12.3. The second generalization

considers the case where the response variable is binary with two possible responses in

Section 12.4. Here one is interested in modeling the probability of a particular response

as a function of an predictor variable. Although these situations are more

sophisticated, the Bayesian methodology for inference and prediction follows the

general approach described in the previous chapters.

 

12.2  Bayesian Multiple Linear Regression

12.2.1  Example: expenditures of U.S. households

The U.S. Bureau of Labor Statistics (BLS) conducts the Consumer Expenditure

Surveys (CE) through which the BLS collects data on expenditures, income, and tax

statistics about households across the United States. Specifically, this survey provides

information on the buying habits of U.S. consumers. The summary, domain-level

statistics published by the CE are used for both policy-making and research, including

the most widely used measure of inflation, the Consumer Price Index (CPI). In

addition, the CE has measurements of poverty that determine thresholds for the U.S.

Government’s Supplemental Poverty Measure.



The CE consists of two surveys. The Quarterly Interview Survey, taken each quarter,

aims to capture large purchases (such as rent, utilities, and vehicles), containing

approximately 7000 interviews. The Diary Survey, administrated on an annual basis,

focuses on capturing small purchases (such as food, beverages, tobacco), containing

approximately 14,000 interviews of households.

The CE publishes public-use microdata (PUMD), and a sample of the Quarterly

Interview Survey in 2017 1st quarter is collected from the PUMD. This sample

contains 1000 consumer units (CU), and provides information of the CU’s total

expenditures in last quarter, the amount of CU income before taxes in past 12 months,

and the CU’s urban or rural status. Table 12.1 provides the description of each variable

in the CE sample.

TABLE 12.1

Variable description for CE sample.

Variable Description

Expenditure Continuous; CU’s total expenditures in last quarter

Income Continuous; the amount of CU income before taxes in past 12 months

UrbanRural Binary; the urban or rural status of CU: 1 = Urban, 2 = Rural

Suppose someone is interested in predicting a CU expenditure based on his or her

urban or rural status and its income before taxes. In this example, one is treating

expenditure as the response variable and the other two variables as predictors. To

proceed, one needs to develop a model to express the relationship between expenditure

and the other two predictors jointly. This requires extending the simple linear

regression model introduced in Chapter 11 to the case with multiple predictors. This

extension is known as multiple linear regression – the word “multiple” indicates two or

more predictors are present in the regression model. This section describes how to set

up a multiple linear regression model, how to specify prior distributions for regression

coefficients of multiple predictors, and how to make Bayesian inferences and predictions

in this setting.

Recall in Chapter 11, the mean response μi was expressed as a linear function of the

single continuous predictor xi depending on an intercept parameter β0 and a slope

parameter β1:

μi = β0 + β1xi.

In particular, the slope parameter β1 is interpreted as the change in the expected

response μi, when the predictor xi of record i increases by a single unit. In the

household expenditures example, not only there are multiple predictors, but the

predictors are of different types including one continuous predictor (income), and one

binary categorical (rural or urban status) predictor. As Chapter 11 focused on

continuous-valued predictors, the interpretation of a regression coefficient for a binary

categorical predictor is an important topic for discussion in this section.



12.2.2  A multiple linear regression model

Similar to a simple linear regression model, a multiple linear regression model assumes

an observation-specific mean μi for the i-th response variable Yi.

Yi ∣ μi,σ
ind
∼ Normal(μi,σ), i = 1, ⋯ ,n. (12.1)

In addition, it assumes that the mean of Yi, μi, is a linear function of all predictors. In

general, one writes

μi = β0 + β1xi,1 + β2xi,2 + ⋯ + βrxi,r, (12.2)

where xi = (xi,1, xi,2, · · · , xi,r) is a vector of r known predictors for observation i, and β

= (β0, β1, · · · , βr) is a vector of unknown regression parameters (coefficients), shared

among all observations.

For studies where all r predictors are continuous, one interprets the intercept

parameter β0 as the expected response μi for observation i, where all of its predictors

take values of 0 (i.e. xi,1 = xi,2 = · · · = xi,r = 0). One can also interpret the slope

parameter βi (j = 1, 2, · · · , r) as the change in the expected response μi, when the j-th

predictor, xi,j, of observation i increases by a single unit while all remaining (r − 1)

predictors stay constant.

However in the household expenditures example from the CE data sample, not all

predictors are continuous. The urban or rural status variable is a binary categorical

variable, taking a value of 1 if the CU is in an urban area, and taking value of 2 if the

CU is in a rural area. It is possible to consider the variable as continuous and interpret

the associated regression coefficient as the change in the expected response μi when the

CU’s urban or rural status changes by one unit from urban to rural (corresponding to

change from one to two). But it is much more common to consider this variable as a

binary categorical variable that classifies the observations into two distinct groups: the

urban group and the rural group. It will be seen that this classification puts an

emphasis on the difference of the expected responses between the two distinct groups.

Consequently, consider the construction of a new indicator variable in place of the

binary variable. This new indicator variable takes a value of 0 if the CU is in an urban

area, and a value of 1 if the CU is in a rural area. To understand the implication of

this indicator variable, it is helpful to consider a simplified regression model with a

single predictor, the binary indicator for rural area xi. This simple linear regression

model expresses the linear relationship as



μi = β0 + β1xi = { (12.3)μi = β0 + β1xi = { (12.3)

The expected response μi for CUs in the urban group is given by β0, and the

expected response μi for CUs in the rural group is β0 + β1. In this case β1 represents the

change in the expected response μi from the urban group to the rural group. That is, β1

represents the effect of being a member of the rural group.

Before continuing, there is a need for some data transformation. Both the

expenditure and income variables are highly skewed, and both variables have more

even distributions if we apply logarithm transformations. So the response variable will

be the logarithm of the CU’s total expenditure and the continuous predictor will be the

logarithm of the CU 12-month income. Figure 12.1 displays scatterplots of log income

and log expenditure where the two panels correspond to urban and rural residents.

Note that in each panel there appears to be a positive association between log income

and log expenditure.

FIGURE 12.1

Scatterplot of log total income and log total expenditure for the urban and rural groups.

Now the the data transformations are completed, one is ready to set up a multiple

linear regression model for the log expenditure response including one continuous

predictor and one binary categorical predictor. The expected response μi is expressed as

a linear combination of the log income variable and the rural indicator variable.

β0, the urban group;
β0 + β1, the rural group.

β0, the urban group;
β0 + β1, the rural group.



μi = β0 + β1xi,income + β2xi,rural. (12.4)μi = β0 + β1xi,income + β2xi,rural. (12.4)

The multiple linear regression model is written as

Yi ∣ β0,β1,β2,σ
ind
∼ Normal(β0 + β1xi,income + β2xi,rural,σ), (12.5)

where xi = (xi,income, xi,rural) is a vector of predictors and σ is the standard deviation in

the normal model shared among all responses Yi’s.

The regression parameters have clear interpretations. The intercept parameter β0 is

the expected log expenditure when both the remaining variables are 0’s: xi,income =

xi,rural = 0. This intercept represents the mean log expenditure for an urban CU with a

log income of 0.

The regression slope coefficient β1 is associated with the continuous predictor

variable, log income. This slope β1 can be interpreted as the change in the expected log

expenditure when the predictor log income of record i increases by one unit, while all

other predictors stay unchanged.

The remaining regression coefficient β2 represents the change in the expected log

expenditure compared relative to the expected log expenditure of the associated

reference category, while all other predictors stay unchanged. In other words, β2 is the

change in the expected log expenditure of a rural CU comparing to an urban CU, when

the two CUs have the same log income.

With an understanding of the meaning of the regression coefficients, one can now

proceed to a description of a prior and MCMC algorithm of this multiple linear

regression model. Note that one needs to construct a prior distribution for the set of

parameters (β0, β1, β2, σ). We begin by describing the weakly informative prior

approach and the subsequent MCMC inference.

12.2.3  Weakly informative priors and inference through MCMC

In situations where the data analyst has limited prior information about the regression

parameters or the standard deviation, it is desirable to assign a prior that has little

impact on the posterior. Similar to the weakly informative prior for simple linear

regression described in Chapter 11, one assigns a weakly informative prior for a

multiple linear regression model using standard functional forms. Assuming

independence, the prior density for the set of parameters (β0, β1, β2, σ) is written as a

product of the component densities:

π(β0,β1,β2,σ) = π(β0)π(β1)π(β2)π(σ),



where β0 is Normal(m0, s0), β1 is Normal(m1, s1), β2 is Normal(m2, s2), and the

precision parameter ϕ = 1/σ
2
, the inverse of the variance σ

2
, is Gamma(a, b).

If one has little information about the location of the regression parameters β0, β1,

and β2, one assigns the respective prior means to be 0 and the prior standard

deviations to be large values, say 20. In similar fashion, if little knowledge exists about

the location of the sampling standard deviation σ, one assigns small values for the

hyperparameters, a and b, say a = b = 0.001, for the Gamma prior placed on the

precision ϕ = 1/σ
2
.

One uses the JAGS software to draw MCMC samples from this multiple linear

regression model. The process of using JAGS mimics the general approach used in

earlier chapters.

Describe the model by a script

 The first step in using JAGS writes the following script defining the multiple linear

regression model, saving the script in the character string modelString.

 
modelString <-" 
model { 
## sampling 
for (i in 1:N){ 
 y[i] ~ dnorm(beta0 + beta1*x_income[i] + 
 beta2*x_rural[i], invsigma2) 
} 
## priors 
beta0 ~ dnorm(mu0, g0) 
beta1 ~ dnorm(mu1, g1) 
beta2 ~ dnorm(mu2, g2) 
invsigma2 ~ dgamma(a, b) 
sigma <- sqrt(pow(invsigma2, -1)) 
} 
" 

In the sampling section of the script, the iterative loop goes from 1 to N, where N is

the number of observations with index i. Recall that the normal distribution dnorm in

JAGS is stated in terms of the mean and the precision and the variable invsigma2

corresponds to the normal sampling precision. The variable sigma is defined in the

prior section of the script so one can track the simulated values of the standard

deviation σ. Also the variables m0, m1, m2 correspond to the means, and g0, g1, g2

correspond to the precisions of the normal prior densities for the three regression

parameters.

Define the data and prior parameters

The next step is to provide the observed data and the values for the prior parameters.

In the R script below, a list the_data contains the vector of log expenditures, the



vector of log incomes, the indicator variables for the categories of the binary categorical

variable, and the number of observations. This list also contains the means and

precisions of the normal priors for beta0 through beta2 and the values of the two

parameters a and b of the gamma prior for invsigma2. The prior mean of the normal

priors on the individual regression coefficients is 0, for mu0 through mu2. The prior

standard deviations of the normal priors on the individual regression coefficients are 20,

and so the corresponding precision values are 1/20
2
 = 0.0025 for g0 through g2.

 
y <- as.vector(CEsample$log_TotalExp) 
x_income <- as.vector(CEsample$log_TotalIncome) 
x_rural <- as.vector(CEsample$Rural) 
N <- length(y) 
the_data <- list("y" = y, "x_income" = x_income, 
 "x_rural" = x_rural, "N" = N, 
 "mu0" = 0, "g0" = 0.0025, 
 "mu1" = 0, "g1" = 0.0025, 
 "mu2" = 0, "g2" = 0.0025, 
 "a" = 0.001, "b" = 0.001) 

Generate samples from the posterior distribution

The run.jags() function in the runjags package generates posterior samples by the

MCMC algorithm using the JAGS software. The script below runs one MCMC chain

with an adaption period of 1000 iterations, a burn-in period of 5000 iterations, and an

additional set of 20,000 iterations to be run and collected for inference. By using the

argument monitor = c("beta0", "beta1", "beta2", "sigma"), one keeps tracks of all

four model parameters. The output variable posterior contains a matrix of simulated

draws.

 
posterior <- run.jags(modelString, 
 n.chains = 1, 
 data = the_data, 
 monitor = c("beta0", "beta1", 
 "beta2", "sigma"), 
 adapt = 1000, 
 burnin = 5000, 
 sample = 20000) 

MCMC diagnostics

To obtain valid inferences from the posterior draws from the MCMC simulation, one

should assess convergence of the MCMC chain. The plot() function with the argument

input vars returns four diagnostic plots (trace plot, empirical CDF, histogram and

autocorrelation plot) for the specified parameter. For example, Figure 12.2 shows the



diagnostic plots for the slope parameter β1 for the log income predictor using the

following code.

 
plot(posterior, vars = "beta1") 

FIGURE 12.2

MCMC diagnostics plots for the regression slope parameter β1 for the log income predictor.

The upper left trace plot shows MCMC mixing for the 20,000 simulated draws of β1.

In this example, the lower right autocorrelation plot indicates relatively large

correlation values between adjacent posterior draws of β1. In this particular example,

since the mixing was not great, it was decided to take a larger sample of 20,000 draws

to get good estimates of the posterior distribution. In usual practice, one should

perform these diagnostics for all parameters in the model.

Summarization of the posterior

Posterior summaries of the parameters are obtained by use of the print(posterior,

digits = 3) command. Note that these summaries are based on the 20,000 iterations

from the sampling period excluding the samples from the adaption and burn-in

periods.

 
print(posterior, digits = 3) 
 Lower95 Median Upper95 Mean SD Mode MCerr 
beta0 4.59  4.95  5.36  4.95  0.201         -- 0.0166 
beta1 0.328 0.365 0.4  0.365  0.0188       -- 0.00155 
beta2 -0.482 -0.267 -0.0476 -0.269 0.112 -- 0.00112 
sigma 0.735 0.769 0.802 0.769 0.0172     -- 0.000172 



One way to determine if the two variables are useful predictors is to inspect the

location of the 90% probability intervals. The interval estimate for β1 (corresponding to

log income) is (0.328, 0.400) and the corresponding estimate for β2 (corresponding to

the rural variable) is (−0.482, − 0.048). Neither interval covers zero, thus indicating

that both log income and the rural variables are helpful in predicting log expenditure.

Several types of summaries of the posterior distribution are illustrated. Suppose one

is interested in learning about the expected log expenditure. From the regression

model, the mean log expenditure is equal to

β0 + β1xincome (12.6)

for urban CUs, and equal to

β0 + β1xincome + β2 (12.7)

for rural CUs. Figure 12.3 displays simulated draws from the posterior of the expected

log expenditure superposed over the scatterplots of log income and log expenditure for

the urban and rural cases. Note that there is more variation in the posterior draws for

the rural units – this is reasonable since only a small portion of the data came from

rural units.

FIGURE 12.3

Scatterplot of log income and log expenditure for the urban and rural groups. The superposed lines represent draws from

the posterior distribution of the expected response.



Figure 12.4 displays the posterior density of the mean log expenditure for the

predictor pairs (log Income = 9, Rural = 1), (log Income = 9, Rural = 0), (log Income

= 12, Rural = 1), and (log Income = 12, Rural = 0). It is pretty clear from this graph

that log income is the more important predictor. For both urban and rural CUs, the

log total expenditure is much larger for log income = 12 than for log income = 9.

Given a particular value of log expenditure, the log expenditure is slightly higher for

urban (Rural = 0) compared to rural units.

FIGURE 12.4

Posterior distributions of the expected log expenditure for units with different income and rural variables.

12.2.4  Prediction

A related problem is to predict a CU’s log expenditure for a particular set of predictor

values. Let 
~
Y  denote the future response value for the expenditure for given values of

income x∗
income and rural value x∗

rural. One represents the posterior predictive density of

~
Y  as

f(
~
Y = ~y ∣ y) = ∫ f(~y ∣ y,β,σ)π(β,σ ∣ y)dβ, (12.8)

where π(β, σ| y) is the posterior density and f(
~
Y = ~y ∣ y,β,σ) is the normal sampling

density which depends on the predictor values.

 Since we have already produced simulated draws from the posterior distribution, it

is straightforward to simulate from the posterior predictive distribution. One simulates

a single draw from f(
~
Y = ~y ∣ y) by first simulating a value of (β, σ) from the posterior



– call this draw (β
(s)

, σ
(s)

). Then one simulates a draw of 
~
Y  from a normal density with

mean β
(s)
0 + β

(s)
1 x∗

income + β
(s)
2 x∗

rural and standard deviation σ
(s)

. By repeating this

process for a large number of iterations, the function one_predicted() simulates a

sample from the posterior prediction distribution for particular predictor values x∗
income

and x∗
rural.

 
one_predicted <- function(x1, x2){ 
 lp <- post[ , "beta0"] + x1 * post[ , "beta1"] + 
 x2 * post[, "beta2"] 
 y <- rnorm(5000, lp, post[, "sigma"]) 
 data.frame(Value = paste("Log Income =", x1, 
 "Rural =", x2), 
 Predicted_log_TotalExp = y) 
} 
df <- map2_df(c(12, 12), 
 c(0, 1), one_predicted) 

This procedure is implemented for the two sets of predictor values (log income,

rural) = (12, 1) and (log income, rural) = (12, 0). Figure 12.5 displays density

estimates of the posterior predictive distributions for the two cases. Comparing Figures

12.4 and 12.5, note the increased width of the prediction densities relative to the

expected response densities. One confirms this by computing interval estimates. For

example, for the values (log income, rural) = (12, 1), a 90% interval for the expected

log expenditure is (8.88, 9.25) and the 90% interval for the predicted log expenditure

for the same predictor values is (7.81, 10.34).

FIGURE 12.5

Predictive distributions of the log expenditure for units with different income and rural variables.



 

12.3  Comparing Regression Models

When one fits a multiple regression model, there is a list of inputs, i.e. potential

predictor variables, and there are many possible regression models to fit depending on

what inputs are included in the model. In the household expenditures example, there

are two possible inputs, the log total income and the rural/urban status and there are

2 × 2 = 4 possible models depending on the inclusion or exclusion of each input. When

there are many inputs, the number of possible regression models can be quite large and

so there needs to be some method for choosing the best regression model. A simple

example will be used to describe what is meant by a best model and then a general

method is outlined for selecting between models.

Learning about a career trajectory

To discuss model selection in a simple context, consider a baseball modeling problem

that will be more thoroughly discussed in Chapter 13. One is interested in seeing how a

professional athlete ages during his or her career. In many sports, an athletic enters his

or her professional career at a modest level of performance, gets better until a

particular age when peak performance is achieved, and then decreases in the level of

performance until retirement. One can use a regression model to explore the pattern of

performance over age – this pattern is typically called the athletic’s career trajectory.

We focus on a particular great historical baseball player Mike Schmidt who played in

Major League Baseball from 1972 through 1989. Figure 12.6 first displays a scatterplot

of the rate that Schmidt hit home runs as a function of his age. If yi denotes Schmidt’s

home run rate during the i-th season when his age was xi, Figure 12.6 further overlays

fits from the following three career trajectory models:



FIGURE 12.6

Scatterplot of age and home run rate for Mike Schmidt. Fits from linear, quadratic, and cubic models are overlaid.

Model 1 - Linear:

Yi ∣ β0,β1,xi,σ ∼ Normal(β0 + β1(xi − 30),σ).

Model 2 - Quadratic:

Yi ∣ β0,β1,β2,xi,σ ∼ Normal(β0 + β1(xi − 30) + β2(xi − 30)2,σ).

Model 3 - Cubic:

Yi ∣ β0,β1,β2,β3xi,σ ∼ Normal(β0 + β1(xi − 30) + β2(xi − 30)2 + β3(xi − 30)3,σ).

Model 1 says that Schmidt’s true home run performance is a linear function of his

age, Model 2 says that his home run performance follows a parabolic shape, and Model

3 indicates that his performance follows a cubic curve. Based on the earlier comments

about the knowledge of shapes of career trajectories, the linear function of age given in

Model 1 does not appear suitable in reflecting the “down, up, down” trend that we see

in the scatterplot. The fits of Models 2 and 3 appear to be similar in appearance, but

there are differences in the interpretation of the fits. The quadratic fit (Model 2)

indicates that Schmidt’s peak performance occurs about the age of 30 while the cubic

fit (Model 3) indicates that his peak performance occurs around the age of 33. How can

we choose between the two models?

Underfitting and overfitting

In model building, there are two ways of misspecifying a model that we call

“underfitting” and “overfitting” that are described in the context of this career

trajectory example. First, it is important to include all useful inputs in the model to

explain the variation in the response variable. Failure to include relevant inputs in the

model will result in underfitting. In our example, age is the predictor variable and the

possible inputs are age, age
2
, and age

3
. If we use Model 1 which includes only the input

age, this particular model appears to underfit the data since this model does not reflect

the increasing and decreasing pattern in the home run rates that we see in Figure 12.6.

At the other extreme, one should be careful not to include too many inputs in the

model. When one includes more inputs in our regression model than needed, one has

overfitting. Model 3 possibly overfits the data, since it may not be necessary to

represent a player’s trajectory by a cubic curve – perhaps a quadratic curve is

sufficient. In an extreme situation, by increasing the degree of the polynomial function

of age, one can find a fitted curve that goes through most of the points in the

scatterplot. This would be a severe case of overfitting since it is unlikely that a player’s

true career trajectory is represented by a polynomial of a high degree.



Cross-validation

How does one choose a suitable regression model that avoids the underfitting and

overfitting problems described above? A general method of comparing models is called

cross-validation. In this method, one partitions the dataset into two parts – the

training and testing components. One initially fits each regression model to the

training dataset. Then one uses each fitted model to predict the response variable in

the testing dataset. The model that is better in predicting observations in the future

testing dataset is the preferred model.

Let’s describe how one implements cross-validation for our career trajectory example.

In the example, Mike Schmidt had a total of 8170 at-bats for 13 seasons. One

randomly divides these 8170 at-bats into two datasets – 4085 of the at-bats (and the

associated home run and age variables) are placed in a training dataset and the

remaining at-bats become the testing dataset. Let {(x
(1)
i , y

(1)
i )} denote the age and

home run rate variables from the training dataset and {(x
(2)
i , y

(2)
i )} denote the

corresponding variables from the testing dataset.

Suppose one considers the use of Model 1 where the home run rate 

Y
(1)
i ∼ Normal(μi,σ) where the mean rate is μi = β0 + (β1 − 30)x

(1)
i . One places a

weakly informative prior on the vector of parameters (β0, β1, σ) and define the

likelihood using the training data. One uses JAGS to simulate from the posterior

distribution and obtain the fitted regression

μ =
~
β0 + (

~
β1 − 30)x,

where 
~
β0 and 

~
β1 are the posterior means of the regression intercept and slope

respectively.

One now uses this fitted regression to predict values of the home run rate from the

testing dataset. One could simulate predictions from the posterior predictive

distribution, but for simplicity, suppose one is interested in making a single prediction.

For the i-th value of age x
(2)
i  in the testing dataset, our best prediction of the i-th

home run rate from Model 1 would be ~y
(2)
i  where

~y
(2)
i =

~
β0 + (

~
β1 − 30)x

(2)
i .

If one performs this computation for all ages, one obtains a set of predictions {~y
(2)
i }

that one would like to be close to the actual home run rates {y
(2)
i } in the training

dataset. It is unlikely that the prediction will be on target so one considers the

prediction error that is the difference between the prediction and the response 

|~y
(2)
i − y

(2)
i |. One measures the closeness of the predictions by computing the sum of

squared prediction errors (SSPE):



SSPE = ∑(~y
(2)
i − y

(2)
i )2. (12.9)SSPE = ∑(~y

(2)
i − y

(2)
i )2. (12.9)

The measure SSPE describes how well the fitted model predicts home run rates from

the training dataset. One uses this measure to compare predictions from alternative

regression models. Specifically, suppose each of the regression models (Model 1, Model

2, and Model 3) is fit to the training dataset and each of the fitted models is used to

predict the home run rates of the testing dataset. Suppose the sum of squared

prediction errors for the three fitted models are SSPE1, SSPE2 and SSPE3. The best

model is the model corresponding to the smallest value of SSPE. If this model turns

out to be Model 2, then we say that Model 2 is best in that it is best in predicting

home run rates in a future or out-of-sample dataset.

Approximating cross-validation by DIC

The cross validation method of assessing model performance can be generally applied

in many situations. However, there are complications in implementing cross validation

in practice. One issue is how the data should be divided into the training and testing

components. In our example, the data was divided into two datasets of equal size, but

it is unclear if this division scheme is best in practice. Another issue is that the two

datasets were divided using a random mechanism. The problem is that the predictions

and the sum of squared prediction errors can depend on the random assignment of the

two groups. That raises the question – is it necessary to perform cross validation to

compare the predictive performance of two models?

A best regression model is the one that provides the best predictions of the response

variable in an out-of-sample or future dataset. Fortunately, it is not necessary in

practice to go through the cross-validation process. It is possible to compute a

measure, called the Deviance Information Criterion or DIC, from the simulated draws

from the posterior distribution that approximates a model’s out-of-sample predictive

performance. The description and derivation of the DIC measure is outside of the scope

of this text – a brief description of this method is contained in the appendices. But we

illustrate the use of DIC measure for the career trajectory example. It can be applied

generally and is helpful for comparing the predictive performance of several Bayesian

models.

Example of model comparison

To illustrate the application of DIC, let’s return to the career trajectory example. As

usual practice, JAGS will be used to fit a specific Bayesian model. To fit the quadratic

model M2, one writes the following JAGS model description.

At the sampling stage, the home run rates y[i] are assumed to be a quadratic

function of the ages x[i], and at the prior stage, the regression coefficients beta0,



beta1, beta2, and the precision phi are assigned weakly informative priors. The

variable the_data is a list containing the observed home run rates, ages, and sample

size.

 
modelString = " 
model { 
for (i in 1:N){ 
 y[i] ~ dnorm(mu[i], phi) 
 mu[i] <- beta0 + beta1 * (x[i] - 30) + 
 beta2 * pow(x[i] - 30, 2) 
} 
beta0 ~ dnorm(0, 0.001) 
beta1 ~ dnorm(0, 0.001) 
beta2 ~ dnorm(0, 0.001) 
phi ~ dgamma(0.001, 0.001) 
} 
" 
d <- filter(sluggerdata, 
 Player == "Schmidt", AB >= 200) 
the_data <- list(y = d$HR / d$AB, 
 x = d$Age, 
 N = 16) 

The model is fit by the run.jags() function. To compute DIC, it is necessary to run

multiple chains, which is indicated by the argument n.chains = 2 that two chains will

be used.

 
post2 <- run.jags(modelString, 
 n.chains = 2, 
 data = the_data, 
 monitor = c("beta0", "beta1", 
 "beta2", "phi")) 

To compute DIC, the extract.runjags() function is applied on the runjags object

post2. In Penalized deviation, output is the value of DIC computed on the simulated

MCMC output.

 
extract.runjags(post2, "dic") 
Mean deviance: -88.98 
penalty 4.817 
Penalized deviance: -84.17 

The value of DIC = −84.17 for this single quadratic regression model is not

meaningful, but one compares values of DIC for competing models. Suppose one wishes

to compare models M1, M2, M3 and a quartic regression where one represents the home

run rate as a polynomial of fourth degree of the age. For each model, a JAGS script is



written where the regression coefficients and the precision parameter are assigned

weakly informative priors. The run.jags() function is applied to produce a posterior

sample and the extract.runjags() with the "dic" argument to extract the value of

DIC. Table 12.2 displays the values of DIC for the four regression models. The best

model is the model with the smallest value of DIC. Looking at the values in Table

12.2, one sees that the quadratic model has the smallest value of −84.2. The

interpretation is that the quartic model is best in the sense that it will provide the best

out-of-sample predictions.

TABLE 12.2

DIC values for four regression models fit to Mike Schmidt’s home run rates.

Model DIC

Linear −80.4

Quadratic −84.2

Cubic −82.1

Quartic −79.0

 

12.4  Bayesian Logistic Regression

12.4.1  Example: U.S. women labor participation

The University of Michigan Panel Study of Income Dynamics (PSID) is the longest

running longitudinal household survey in the world. The study began in 1968 with a

nationally representative sample of over 18,000 individuals living in 5000 families in the

United States. Information on these individuals and their descendants has been

collected continuously, including data covering employment, income, wealth,

expenditures, health, marriage, childbearing, child development, philanthropy,

education, and numerous other topics.

The PSID 1976 survey has attracted particular attention since it interviewed wives

in the households directly in the previous year. The survey provides helpful self-

reporting data sources for studies of married women’s labor supply. A sample includes

information on family income exclusive of wife’s income (in $1000) and the wife’s labor

participation (yes or no). This PSID sample contains 753 observations and two

variables. Table 12.3 provides the description of each variable in the PSID sample.

TABLE 12.3

The variable descriptions for the PSID sample.

Variable Description

LaborParticipation Binary; labor participation of gift: 1 = year, 0 = no

FamilyIncome Continuous; family income exclusive of wife’s income, in $1000, 1975 U.S. dollars



Suppose one is interested in predicting a wife’s labor participation status from the

family income exclusive of her income. In this example, one is treating labor

participation as the response variable and the income variable as a predictor.

Furthermore, the response variable is not continuous, but binary – either the wife is

working or she is not. To analyze a binary response such as labor participation, one is

interested in estimating the probability of a labor participation (yes) as a function of

the predictor variable, family income exclusive of her income. This requires a new

model that can express the probability of a yes as a function of the predictor variable.

Figure 12.7 displays a scatterplot of the family income against the labor

participation status. Since the labor participation variable is binary, the points are

jittered in the vertical direction. From this graph, we see that roughly half of the wives

are working and it is difficult to see if the family income is predictive of the

participation status.

FIGURE 12.7

Scatterplot of the family income against the wife’s labor participation. Since the participation value is binary, the points

have been jittered in the vertical direction.

Recall in Chapter 11, when one had a continuous-valued response variable and a

single continuous predictor, the mean response μi was expressed as a linear function of

the predictor through an intercept parameter β0 and a slope parameter β1:

μi = β0 + β1xi. (12.10)

Moreover it is reasonable to use a normal regression model where the response Yi is

Normally distributed where the mean μi with a linear function as in Equation (12.10).



Yi ∣ μi,σ
ind
∼ Normal(μi,σ), i = 1, ⋯ ,n.

However, such a normal density setup is not sensible for this labor participation

example. For a binary response Yi, the mean is a probability μi that falls in the interval

from 0 to 1. Thus the model μi = β0 + β1 xi is not sensible since the linear component

β0 + β1 xi is on the real line, not in the interval [0, 1].

In the upcoming subsections, it is described how to construct a regression model for

binary responses using a linear function. In addition, this section describes how to

interpret regression coefficients, how to specify prior distributions for these coefficients,

and simulate posterior samples for these models.

12.4.2  A logistic regression model

Recall in Chapter 1 and Chapter 7, the definition of odds was introduced – an odds is

the ratio of the probability of some event will take place over the probability that the

event will not take place. The notion of odds will be used in how one represents the

probability of the response in the regression model.

In the PSID example, let pi be the probability of labor participation of married

woman i, and the corresponding odds of participation is 
pi

1−pi
. The probability pi falls

in the interval [0, 1] and the odds is a positive real number. If one applies the

logarithm transformation on the odds, one obtains a quantity, called a log odds or

logit, that can take both negative and positive values on the real line. One obtains a

linear regression model for a binary response by writing the logit in terms of the linear

predictor.

The binary response Yi is assumed to have a Bernoulli distribution with probability

of success pi.

Yi ∣ pi
ind
∼ Bernoulli(pi), i = 1, ⋯ ,n. (12.11)

The logistic regression model writes that the logit of the probability pi is a linear

function of the predictor variable xi:

logit(pi) = log(
pi

1 − pi
) = β0 + β1xi. (12.12)

It is more challenging to interpret the regression coefficients in a logistic model. In

simple linear regression with one predictor, the interpretation of the intercept and the

slope is relatively straightforward, as the linear function is directly assigned to the



mean μi. With the logit function as in Equation (12.12), one sees the the regression

coefficients β0 and β1 are directly related to the log odds log( pi
1−pi

) instead of pi.

For example, the intercept β0 is the log odds log( pi
1−pi

) for observation i when the

predictor takes a value of 0. In the PSID example, it refers to the log odds of labor

participation of a married woman, whose family has 0 family income exclusive of her

income.

The slope β1 refers to the change in the expected log odds of labor participation of a

married woman who has an additional $1000 family income exclusive of her own

income.

By rearranging the logistic regression Equation (12.12), one expresses the regression

as a nonlinear equation for the probability of success pi:

(12.13)

Equation (12.13) shows that the logit function guarantees that the probability pi lies in

the interval [0, 1].

With these building blocks, one proceeds to prior specification and MCMC posterior

inference of this logistic regression model. Note that a prior distribution is needed for

the set of regression coefficient parameters: (β0, β1). In the next subsections, a

conditional means prior approach is explored in this prior construction and the

subsequent MCMC inference.

12.4.3  Conditional means priors and inference through MCMC

A conditional means prior can be constructed in a straightforward manner for logistic

regression with a single predictor. This type of prior was previously constructed in

Chapter 11 for a normal regression problem in the gas bill example. A weakly

informative prior can always be used when little prior information is available. In

contrast, the conditional means prior allows the data analyst to incorporate useful

prior information about the probabilities at particular observation values.

The task is to construct a prior on the vector of regression coefficients β = (β0, β1).

Since the linear component β0 + β1 x is indirectly related to the probability p, it is

generally difficult to think directly about plausible values of the intercept β0 and slope

β1 and think about the relationship between these regression parameters. Instead of

constructing a prior on β directly, a conditional means prior indirectly specifies a prior

by constructing priors on the probability values p1 and p2 corresponding to two

log( pi
1−pi

) = β0 + β1xi
pi

1−pi
= exp(β0 + β1xi)

pi = exp(β0+β1xi)
1+exp(β0+β1xi)

.



predictor values x∗
1 and x∗

2. By assuming independence of one’s beliefs about p∗
1 and p∗

2,

this implies a prior on the probability vector (p∗
1, p∗

2). Since the regression coefficients β0

and β1 are functions of the probability values, this process essentially specifies a prior

on the vector β.

A conditional means prior

To construct a conditional means prior, one considers two values of the predictor x∗
1

and x∗
2 and constructs independent beta priors for the corresponding probabilities of

success.

1. For the first predictor value x∗
1, construct a beta prior for the probability p∗

1 with

shape parameters a1 and b1.

2. Similarly, for the second predictor value x∗
2, construct a beta prior for the

probability p∗
2 with shape parameters a2 and b2.

If one’s beliefs about the probabilities p∗
1 and p∗

2 are independent, the joint prior for the

vector (p∗
1, p∗

2) has the form

π(p∗
1, p∗

2) = π(p∗
1)π(p∗

2).

The prior on (p∗
1, p∗

2) implies a prior on the regression coefficient vector (β0, β1). First

write the two conditional probabilities p∗
1 and p∗

2 as function of the regression

coefficient parameters β0 and β1, as in Equation (12.13). By solving these two equations

for the regression coefficient parameters, one expresses each regression parameter as a

function of the conditional probabilities.

(12.14)

(12.15)

Let’s illustrate constructing a conditional means prior for our example. Consider two

different family incomes (exclusive of the wife’s income), say $20,000 and $80,000

(predictor is in $1000 units). For each family income, a beta prior is constructed for the

probability of the wife’s labor participation. As in Chapter 7, a beta prior is assessed

by specifying two quantiles of the prior distribution and finding the values of the shape

parameters that match those specific quantile values.

β1 =
logit(p∗

1)−logit(p∗
2)

x∗
1−x∗

2
,

β0 = log( p∗
1

1−p∗
1
)− β1x

∗
1.



Consider the labor participation probability p∗
1 for the value x = 20, corresponding

to a $20,000 family income. Suppose one believes the median of this probability is

0.10 and the 90th percentile is equal to 0.2. Using the R function beta_select()

this belief is matched to a beta prior with shape parameters 2.52 and 20.08.

Next, consider the participation probability p∗
2 for the value x = 80, corresponding

to a $80,000 family income. The median and 90th percentile of this probability are

thought to be 0.7 and 0.8, respectively, and this information is matched to a beta

prior with shape parameters 20.59 and 9.01.

Figure 12.8 illustrates the conditional means prior for this example. Each bar displays

the 90% interval estimate for the participation probability for a particular value of the

family income.

FIGURE 12.8

Illustration of the conditional means prior. Each line represents the limits of a 90% interval for the prior for the

probability of participation for a specific family income value.

Assuming independence of the prior beliefs about the two probabilities, one represents

the joint prior density function for (p∗
1, p∗

2) as the product of densities

π(p∗
1, p∗

2) = πB(p∗
1, 2.52, 20.08)πB(p∗

2, 20.59, 9.01), (12.16)

where πB(y, a, b) denotes the beta density with shape parameters a and b.

As said earlier, this prior distribution on the two probabilities implies a prior

distribution on the regression coefficients. To simulate pairs (β0, β1) from the prior

distribution, one simulates values of the means p∗
1 and p∗

2 from independent beta

distributions in Equation (12.16), and applies the expressions in Equation (12.14) and

Equation (12.15). One then obtains prior draws of the regression coefficient pair (β0,



β1). Figure 12.9 displays a scatterplot of the simulated pairs (β0, β1) from the prior.

Note that, although the two probabilities p∗
1 and p∗

2 have independent priors, the

implied prior on the regression coefficient vector β indicates strong negative dependence

between the intercept β0 and the slope β1.

FIGURE 12.9

Scatterplot of simulated draws of the regression parameters for the conditional means prior for the logistic model.

Inference using MCMC

Once the prior on the regression coefficients is defined, it is straightforward to simulate

from the Bayesian logistic model by MCMC and the JAGS software.

The JAGS script

 As usual, the first step in using JAGS is writing a script defining the logistic

regression model, and saving the script in the character string modelString.

 
modelString <-" 
model { 
## sampling 
for (i in 1:N){ 
 y[i] ~ dbern(p[i]) 
 logit(p[i]) <- beta0 + beta1*x[i] 
} 
## priors 
beta1 <- (logit(p1) - logit(p2)) / (x1 - x2) 
beta0 <- logit(p1) - beta1 * x1 
p1 ~ dbeta(a1, b1) 
p2 ~ dbeta(a2, b2) 
} 
" 



In the sampling section of the script, the loop goes from 1 to N, where N is the

number of observations with index i. Since Yi ∣ pi
ind
∼ Bernoulli(pi), one uses dbern()

for y[i]. In addition, since logit(pi) = β0 + β1 xi, logit() is written for establishing this

linear relationship.

In the prior section of the script, one expresses beta0 and beta1 according to the

expressions in Equation (12.14) and Equation (12.15), in terms of p1, p2, x1, and x2.

One also assign beta priors to p1 and p2, according to the conditional means prior

discussed previously. Recall that the beta distribution is represented by dbeta() in the

JAGS code where the arguments are the associated shape parameters.

Define the data and prior parameters

The next step is to provide the observed data and the values for the prior parameters.

In the R script below, a list the_data contains the vector of binary labor participation

status values, the vector of family incomes (in $1000), and the number of observations.

It also contains the shape parameters for the beta priors on p∗
1 and p∗

2 and the values of

the two incomes, x∗
1 and x∗

2.

 
y <- as.vector(LaborParticipation$Participation) 
x <- as.vector(LaborParticipation$FamilyIncome) 
N <- length(y) 
the_data <- list("y" = y, "x" = x, "N" = N, 
 "a1" = 2.52, "b1" = 20.08, 
 "a2" = 20.59, "b2" = 9.01, 
 "x1" = 20, "x2" = 80) 

Generate samples from the posterior distribution

The run.jags() function in the runjags package generates posterior samples by the

MCMC algorithm using the JAGS software. The script below runs one MCMC chain

with an adaption period of 1000 iterations, a burn-in period of 5000 iterations, and an

additional set of 5000 iterations to be simulated. By using the argument monitor =

c("beta0", "beta1"), one keeps tracks of the two regression coefficient parameters. The

output variable posterior contains a matrix of simulated draws.

 
posterior <- run.jags(modelString, 
 n.chains = 1, 
 data = the_data, 
 monitor = c("beta0", "beta1"), 
 adapt = 1000, 
 burnin = 5000, 
 sample = 5000) 



MCMC diagnostics and summarization

Once the simulated values are found, one applies several diagnostic procedures to check

if the simulations appear to converge to the posterior distribution. Figures 12.10 and

12.11 display MCMC diagnostic plots for the regression parameters β0 and β1. From

viewing these graphs, it appears that there is a small amount of autocorrelation in the

simulated draws and the draws appear to have converged to the posterior distributions.

FIGURE 12.10

MCMC diagnostics plots for the logistic regression intercept parameter β0.

FIGURE 12.11

MCMC diagnostics plots for the logistic regression intercept parameter β1.



By use of the print() function, posterior summaries are displayed for the regression

parameters. One primary question is whether the family income is predictive of the

labor participation status and so the key parameter of interest is the regression slope

β1. From the output, one sees that the posterior median for β1 is −0.0052 and a 90%

interval estimate is ( − 0.0143, 0.0029). This tells us several things. First, since the

regression slope is negative, there is a negative relationship between family income and

labor participation – wives from families with larger income (exclusive of the wife’s

income) tend not to work. Second, this relationship does not appear to be strong since

the value 0 is included in the 90% interval estimate.

 
print(posterior, digits = 3) 
 Lower95 Median Upper95 Mean SD Mode MCerr 
 beta0 0.101 0.358 0.59 0.36 0.125 -- 0.00214 
 beta1 -0.0143 -0.00524 0.00285 -0.00532 0.00438 -- 7.69e-05 

One difficulty in interpreting a logistic regression model is that the linear component

β0 + β1 x is on the logit scale. It is easier to understand the fitted model when one

expresses the model in terms of the probability of participation pi:

pi =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
. (12.17)

For a specific value of the predictor xi, it is straightforward to simulate the posterior

distribution of the probability pi. If (β
(s)
0 ,β

(s)
1 ) represents a simulated draw from the

posterior of β, and one computes p
(s)
i  using Equation (12.13) from the simulated draw,

then p
(s)
i  is a simulated draw from the posterior of pi.

This process was used to obtain simulated samples from the posterior distribution of

the probability pi for the income variable values 10, 20, ..., 70. In Figure 12.12 the

posterior medians of the probabilities pi are displayed as a line graph and 90%

posterior interval estimates are shown as vertical bars. The takeaway message from this

figure is that the probability of labor participation is close to one-half and this

probability slightly decreases as the family income increases. Also note that the length

of the posterior interval estimate increases for larger family incomes – this is expected

since much of the data is for small income values.



FIGURE 12.12

Posterior interval estimates for the probability of labor participation for seven values of the income variable.

12.4.4  Prediction

We have considered learning about the probability pi of labor participation for a

specific income value x∗
i . A related problem is to predict the fraction of labor

participation for a sample of n women with a specific family income. If ~yi represents

the number of women who work among a sample of n with family income xi, then one

would be interested in the posterior predictive distribution of the fraction ~yi/n.

One represents this predictive density of ~yi as

f(
~
Y i = ~yi ∣ y) = ∫ π(β ∣ y)f(~yi,β)dβ, (12.18)

where π(β| y) is the posterior density of β = (β0, β1) and f(~yi,β) is the binomial

sampling density of ~yi conditional on the regression vector β.

A strategy for simulating the predictive density is implemented similar to what was

done in the linear regression setting. Suppose that one focuses on the predictor value 

x∗
i  and one wishes to consider a future sample of n = 50 of women with that income

level. The simulated draws from the posterior distribution of β are stored in a matrix

post. For each of the simulated parameter draws, one computes the probability of labor

participation p
(s)

 for that income level – these values represent posterior draws of the

probability {p
(s)

}. Given those probability values, one simulates binomial samples of

size n = 50 where the probabilities of success are given by the simulated {p
(s)

} – the

variable ~y represents the simulated binomial variable. By dividing ~y by n, one obtains

simulated proportions of labor participation for that income level. Each group of



simulated draws from the predictive distribution of the labor proportion is summarized

by the median, 5th, and 95th percentiles.

In the following R script, the function prediction_interval() obtains the quantiles

of the prediction distribution of ~y/n for a fixed income level, and the sapply() function

computes these predictive quantities for a range of income levels. Figure 12.13 graphs

the predictive median and interval bounds against the income variable. By comparing

Figure 12.12 and Figure 12.13, note that one is much more certain about the

probability of labor participation than the fraction of labor participation in a future

sample of 50.

 
prediction_interval <- function(x, post, n = 20){ 
 lp <- post[, 1] + x * post[, 2] 
 p <- exp(lp) / (1 + exp(lp)) 
 y <- rbinom(length(p), size = n, prob = p) 
 quantile(y / n, 
 c(.05, .50, .95)) 
 } 
out <- sapply(seq(10, 70, by = 10), 
 prediction_interval, post, n = 50) 

FIGURE 12.13

Prediction intervals for the fraction of labor participation of a sample of size n = 50 for seven values of the income

variable.

 

12.5  Exercises

1. Olympic Swimming Times

The dataset olympic_butterfly.csv contains the winning time in seconds for the

men’s and women’s 100 m butterfly race for the Olympics from 1964 through



2016. Let yi and xi denote the winning time and year for the i-th Olympics. In

addition, let wi denote an indicator variable that is 1 for the women’s race and 0

for the men’s race. Consider the regression model Yi ∼ Normal(μi, σ), where the

mean is given by

μi = β0 + β1(xi − 1964) + β2wi.

(a) Interpret the parameter β0 in terms of the winning time in the race.

(b) Interpret the parameter β0 + β2.

(c) Interpret the parameter β0 + 8 β1.

(d) Interpret the parameter β0 + 8 β1 + β2.

2. Olympic Swimming Times (continued)

Consider the regression model for the 100 m butterfly race times described in

Exercise 1. Suppose the regression parameters β0, β1, β2 and the precision

parameter ϕ = 1/σ
2
 are assigned weakly informative priors.

(a) Using JAGS, sample 5000 draws from the joint posterior distribution of all

parameters.

(b) Construct 90% interval estimates for each of the regression coefficients.

(c) Based on your work, describe how the mean winning time in the butterfly

race has changed over time. In addition, describe how the men times differ

from the women times.

(d) Construct 90% interval estimates for the predictive residuals ri = yi − ~yi
where ~yi is simulated from the posterior predictive distribution. Plot these

interval estimates and comment on any interval that does not include zero.

3. Olympic Swimming Times (continued)

For the 100 m butterfly race times described in Exercise 1 consider the regression

model where the mean race time has the form

μi = β0 + β1(xi − 1964) + β2wi + β3(xi − 1964)wi,

where xi denotes the year for the i-th Olympics and wi denote an indicator variable

that is 1 for the women’s race and 0 for the men’s race.

(a) Write the expression for the mean time for the men’s race, and for the mean

time for the women’s race. Using this expressions, interpret the parameters β2

and β3.

(b) Using weakly informative priors for all parameters, use JAGS to draw a

sample of 5000 draws from the joint posterior distribution.

(c) Based on your work, is there evidence that the regression model between year

and mean race time differs between men and women?

4. Prices of Personal Computers

What factors determine the price of a personal computer in the early days? A

sample of 500 personal computer sales was collected from 1993 to 1995 in the



United States. In addition to the sale price (price in U.S. dollars of 486 PCs),

information on clock speed in MHz, size of hard drive in MB, size of RAM in MB,

and name of the manufacturer (e.g. IBM, COMPAQ) was collected. The dataset is

in ComputerPriceSample.csv. Suppose one considers the regression model Yi ∼

Normal(μi, σ) where

μi = β0 + β1xi1 + β2xi2,

yi is the sale price, xi1 is the clock speed, and x2i is the logarithm of the hard drive

size.

(a) Using a weakly informative prior on β = (β0, β1, β2) and σ, use JAGS to

produce a simulated sample of size 5000 from the posterior distribution on (β,

σ).

(b) Obtain 95% interval estimates for β1 and β2.

(c) On the basis of your work, are both clock speed and hard drive size useful

predictors of the sale price?

5. Prices of Personal Computers (continued)

(a) Suppose a consumer is interested in a computer with a clock speed of 33 MHz

and a 540 MB hard drive (so log 450 = 6.1). Simulate 5000 draws from the

expected selling price β0 + β1 x1 + β2 for computer with this clock speed and

hard drive size. Construct a 90% interval estimate for the expected sale price.

(b) Instead suppose the consumer wishes to predict the selling price of a

computer with this clock speed and hard drive size. Simulate 5000 draws from

the posterior predictive distribution and use these simulated draws to find a

90% prediction interval.

6. Salaries for Professors

A sample contains the 2008-09 nine-month academic salary for Assistant

Professors, Associate Professors and Professors in a college in the U.S. The data

were collected as part of the on-going effort of the college’s administration to

monitor salary differences between male and female faculty members. In addition

to the nine-month salary (in U.S. dollars), information on gender, rank (Assistant

Professor, Associate Professor, Professor), discipline (A is “theoretical” and B is

“applied”), years since PhD, and years of service were collected. The dataset is in

ProfessorSalary.csv. Suppose that the salary of the i-th professor, yi, is

distributed normal with mean μi and standard deviation σ, where the mean is

given by

μi = β0 + β1xi1 + β2xi2,

where xi1 is the years of service and xi2 is the gender (where 1 corresponds to male

and 0 to female).

(a) Assuming a weakly informative prior on β and σ, use JAGS to simulate a

sample of 5000 draws from the posterior distribution on (β, σ).



(b) Simulate 1000 draws from the posterior of β0 + 10β1, the mean salary among

all female professors with 10 years of service.

(c) Simulate 1000 draws from the posterior of the mean salary of male professors

with 10 years of service β0 + 10β1 + β2.

(d) By comparing the intervals computed in parts (b) and (c), is there a

substantial difference in the mean salaries of male and female professors with

10 years of service?

7. Salaries for Professors (continued)

(a) Suppose the college is interested in predicting the salary of a female professor

with 10 years of service. By simulating 5000 draws from the posterior

predictive distribution, construct a 90% prediction interval for this salary.

(b) Use a similar method to obtain a 90% prediction interval for the salary of a

male professor with 10 years of service.

8. Graduate School Admission

What factors determine admission to graduate school? In a study, data on 400

graduate school admission cases was collected. Admission is a binary response,

with 0 indicating not admitted, and 1 indicating admitted. Moreover, the

applicant’s GRE score, and undergraduate grade point average (GPA) are

available. The dataset is in GradSchoolAdmission.csv (GRE score is out of 800).

Let pi denote the probability that the i-th student is admitted. Consider the

logistic model

log(
pi

1 − pi
) = β0 + β1xi1 + β2xi2,

where x1i and x2i are respectively the GRE score and the GPA for the i-th student.

(a) Assuming weakly informative priors on β0, β1, and β2, write a JAGS script

defining the Bayesian model.

(b) Take a sample of 5000 draws from the posterior distribution of β = (β0, β1,

β2).

(c) Consider a student with a 550 GRE score and a GPA of 3.50. Construct a

90% interval estimate for the probability that this student is admitted to

graduate school.

(d) Construct a 90% interval estimate for the probability a student with a 500

GRE score and a 3.2 GPA is admitted to graduate school.

9. Graduate School Admission (continued)

Consider the logistic model described in Exercise 8 where the logit probability of

being admitted to graduate school is a linear function of GRE score and GPA. It

is assumed that JAGS is used to obtain a simulated sample from the posterior

distribution of the regression vector.

(a) Consider a student with a 580 GRE score. Construct 90% posterior interval

estimates for the probability that this student achieves admission for GPA



values equally spaced from 3.0 to 3.8. Graph these posterior interval estimates

as a function of the GPA.

(b) Consider a student with a 3.4 GPA. Find 90% interval estimates for the

probability this student is admitted for GRE score values equally spaced from

520 to 700. Graph these interval estimates as a function of the GRE score.

10. Personality Determinants of Volunteering

In a study of the personality determinants of volunteering for psychological

research, a subject’s neuroticism (scale from Eysenck personality inventory),

extraversion (scale from Eysenck personality inventory), gender, and volunteering

status were collected. One intends to find out what personality determinants affect

a person’s volunteering choice. The dataset is in Cowles.csv. Let pi denote the

probability that the i-th subject elects to volunteer. Consider the logistic model

log(
pi

1 − pi
) = β0 + β1xi1 + β2xi2,

where x1i and x2i are respectively the neuroticism and extraversion measures for

the i-th subject.

(a) Assuming weakly informative priors on β0, β1, and β2, write a JAGS script

defining the model and draw a sample of 5000 draws from the posterior

distribution of β = (β0, β1, β2).

(b) By inspecting the locations of the posterior distributions of β1 and β2, which

personality characteristic is most important in determining a person’s

volunteering choice?

(c) Let O = p/(1 − p) denote the odds of volunteering. Construct a 90% interval

estimate for the odds a student with a neuroticism score of 12 and an

extraversion score of 13 will elect to volunteer.

11. The Divide by Four Rule

Suppose one considers the logistic model log( p

1−p
) = β0 + β1x. This model is

rewritten as

p =
exp(β0 + β1x)

1 + exp(β0 + β1x)
.

(a) Show that the derivative of p with respect to x is written as

dp

dx
= p(1 − p)β1.

(b) Suppose the probability is close to the value 0.5. Using part (a), what is the

approximate derivative of p with respect to x in this region?

(c) Fill in the blank in the following sentence. In this logistic model, the quantity

β1/4 can be interpreted as the change in the           when x increases by one



unit.

(d) Suppose one is interested in fitting the logistic model log p
1−p

= β0 + β1x

where x is the number of study hours and p is the probability of passing an

exam. One obtains the fitted model

log
p̂

1 − p̂
= −1 + 0.2x.

Using your work in parts (b) and (c), what is the (approximate) change in the

fitted pass probability if a student studies an additional hour for the exam?

12. Football Field Goal Kicking

The data file football_field_goal.csv contains data on field goal attempts for

professional football kickers. Focus on the kickers who played during the 2015

season. Let yi denote the response (success or failure) of a field goal attempt from

xi yards. One is interested in fitting the logistic model

log
pi

1 − pi
= β0 + β1xi,

where pi is the probability of a successful attempt.

(a) Using weakly informative priors on β0 and β1, use JAGS to take a simulated

sample from the posterior distribution of (β0, β1).

(b) Suppose a kicker is attempting a field goal from 40 yards. Construct a 90%

interval estimate for the probability of a success.

(c) Suppose instead that one is interested in estimating the yardage x∗
 where the

probability of a success is equal to 0.8. First express the yardage x∗
 as a

function of β0 and β1, and then find a 90% interval estimate for x∗
.

(d) Suppose 50 field goals are attempted at a distance of 40 yards. Simulate from

the posterior predictive distribution to construct a 90% interval estimate for

the number of successful attempts.

13. Predicting Baseball Batting Averages

The data file batting_2018.csv contains batting data for every player in the 2018

Major League Baseball season. The variables AB.x and H.x in the dataset contain

the number of at-bats (opportunities) and number of hits of each player in the first

month of the baseball season. The variables AB.y and H.y in the dataset contain

the at-bats and hits of each player for the remainder of the season.

Take a random sample of size 50 from batting_2018.csv. Suppose one is interested

in predicting the players’ batting averages H.y/AB.y for the remainder of the

season. Consider the following three estimates:

Individual Estimate: Use the player’s first month batting average H.x/AB.x.

Pooled Estimate: Use the pooled estimate ∑H.x/∑AB.x.

Compromise Estimate: Use the shrinkage estimate



AB.x

AB.x + 135

H.x

AB.x
+

135

AB.x + 135

∑H.x

∑AB.x
.

For your sample, compute values of the individual, pooled, and compromise

estimates. For each set of estimates, compute the sum of squared prediction errors,

where the prediction error is defined to be the difference between the estimate and

the batting average in the remainder of the season. Which estimate do you prefer?

Why?

14. Predicting Baseball Batting Averages (continued)

In Exercise 13, for the i-th player in the sample of 50 one observes the number of

hits yi (variable H.x) distributed binomial with sample size ni (variable AB.x) and

probability of success pi. Consider the logistic model

log(
pi

1 − pi
) = γi.

Use JAGS to simulate from the following three models:

(a) Individual Model: Assume the γi values are distinct and assign each

parameter a weakly informative normal distribution.

(b) Pooled Model: Assume that γ1 = ... = γ50 = γ and assign the single γ

parameter a weakly informative normal distribution.

(c) Partially Pooled Hierarchical Model: Assume that γi ∼ Normal(μ, τ) where μ

and the precision P = 1/τ
2
 are assigned weakly informative distributions.

(d) Focus on a particular player corresponding to the index k. Contrast 90%

interval for estimates for pk using the individual, pooled, and partially pooled

hierarchical models fit in parts (a), (b), and (c).

15. Comparing Career Trajectory Models

In Section 12.3, the Deviance Information Criterion (DIC) was used to compare

four regression models for Mike Schmidt’s career trajectory of home run rates. By

fitting the model using JAGS and using the extract.runjags() function, find the

DIC values for fitting the linear, cubic, and quartic models and compare your

answers with the values in Table 12.2. For each model, assume that the regression

parameters and the precision parameter have weakly informative priors.

16. Comparing Models for the CE Sample Example

For the Consumer Expenditure Survey (CE) example, the objective was to learn

about a CU’s expenditure based on the person’s income and his or her urban or

rural status. There are four possible regression models depending on the inclusion

or exclusion of each predictor. Use JAGS to fit each of the possible models and

compute the value of DIC. For each model, assume that the regression parameters

and the precision parameter have weakly informative priors. By comparing the

DIC values, decide on the most appropriate model and compare your results with

the discussion in Section 12.2.



17. Grades in a Calculus Class

Suppose one is interested in how the grade in a calculus class depends on the

grade in the prerequisite math course. One is interested in fitting the logistic

model

log(
pi

1 − pi
) = β0 + β1xi,

where pi is the probability of an A of the ith student and xi represents the grade of

the ith student in the previous math class (1 if an A was received, and 0

otherwise).

(a) Suppose one believes a Beta(12, 8) prior reflects the belief about the

probability of an A for a student who has received an A in the previous math,

and a Beta(5, 15) prior reflects the belief about the probability of an A for a

student who has not received an A in the previous course. Use JAGS to

simulate 1000 draws from the prior of (β0, β1).

(b) Data for 100 students is contained in the data file calculus.grades.csv. Use

JAGS to simulate 5000 draws from the posterior of (β0, β1).

(c) Construct a 90% interval estimate for β1. Is there evidence that the grade in

the prerequisite math course is helpful in explaining the grade in the calculus

class?

18. Grades in a Calculus Class (continued)

The traditional way of fitting the logistic model in Exercise 17 is by maximum

likelihood. The variables grade and prev.grade contain the relevant variables in

the data frame calculus.grades. The maximum likelihood is achieved by the

function glm with the family = binomial option.

 
fit <- glm(grade ~ prev.grade, data = calculus.grades, 
 family = binomial) 
summary(fit) 

Look at the estimates and associated standard errors of the regression coefficients

and contrast these values with the posterior means and standard deviations from

the informative prior Bayesian analysis in Exercise 17.

19. Logistic Model to Compare Proportions

In Exercise 19 of Chapter 7, one was comparing proportions of science majors for

two years at some liberal arts colleges. One can formulate this problem in terms of

logistic regression. Let yi denote the number of science majors out of a sample of

ni for the ith year. One assumes that yi is distributed Binomial(ni, pi) where pi

satisfies the logistic model

( )



log(
pi

1 − pi
) = β0 + β1xi,

where xi = 0 for year 2005 and x = 1 for year 2015.

(a) Assuming that β0 and β1 are independent with weakly informative priors, use

JAGS to simulate a sample of 5000 from the posterior distribution. (In the

JAGS script, the dbin(p, n) denotes the Binomial distribution with

probability p and sample size n.)

(b) Find a 90% interval estimate for β1.

(c) Use the result in (b) to describe how the proportion of science majors has

changed (on the logit scale) from 2005 to 2015,

20. Separation in Logistic Regression

Consider data in Table 12.4 that gives the number of class absences and the grade

(1 for passing and 0 for failure) for ten students. If pi denotes the probability the

ith student passes the class, then consider the logistic model

log(
pi

1 − pi
) = β0 + β1xi,

where xi is the number of absences.

TABLE 12.4

Number of absences and grades for ten students.

Student Absences Grade Student Absences Grade

1 0 1 6 2 1

2 0 1 7 2 1

3 0 1 8 5 0

4 1 1 9 8 0

5 1 1 10 10 0

(a) Using the glm() function as shown in Exercise 18, find maximum likelihood

estimates of β0 and β1.

(b) Comment on the output of implementing the glm() function. (The strange

behavior is related to the problem of separation in logistic research.) Do some

research on this topic and describe why one is observing this unusual

behavior.

(c) By use of a weakly informative prior, use JAGS to simulate a sample of 5000

from the posterior distribution.

(d) Compute posterior means and standard deviations of β0 and β1 and compare

your results with the traditional fit in part (a).
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Case Studies
 

 

13.1  Introduction

This chapter provides several illustrations of Bayesian modeling that

extend some of the models described in earlier chapters. Mosteller and

Wallace (1963), in one of the early significant Bayesian applications,

explore the frequencies of word use in the well-known Federalist Papers

to determine the authorship between Alexander Hamilton and James

Madison. Section 13.2 revisits this word use application. This study

raises several interesting explorations such as determining a suitable

sampling distribution and finding suitable ways of comparing the word

use of several authors.

In sports, teams are very interested in learning about the pattern of

increase and decrease in the performance of a player, commonly called a

career trajectory. A baseball player is believed to reach a level of peak

performance at age of 30, although this “peak age” may vary between

players. Section 13.3 illustrates the use of a hierarchical model to

simultaneously estimate the career trajectories for a group of baseball

players using on-base percentage as the measure of performance.

Suppose a class is taking a multiple choice exam where there are two

groups of students. Some students are well-prepared and are familiar

with the exam content and other students have not studied and will

essentially guess at the answers to the exam questions. Section 13.4

introduces a latent class model that assumes that the class consists of



two groups of students with different success rates and the group

identifications of the students are unknown. In the posterior analysis,

one learns about the location of the two success rates and the group

classifications of the students. Using this latent class framework, the

Federalist Papers example is revisited and the frequencies of particular

filler words is used to learn about the true author identity of some

disputed authorship Federalist Papers.

 

13.2  Federalist Papers Study

13.2.1  Introduction

The Federalist Papers were a collection of articles written in the late

18th century by Alexander Hamilton, James Madison and John Jay to

promote the ratification of the United States Constitution. Some of

these papers are known to be written by Hamilton, other papers were

clearly written by Madison, and the true authorship of some of the

remaining papers has been in doubt.

In one of the early significant applied Bayesian papers, Mosteller and

Wallace (1963) illustrate the use of Bayesian reasoning in solving the

authorship problem. They focused on the frequencies of word counts.

Since the topic of the article may influence the frequencies of words

used, Mosteller and Wallace were careful to focus on counts of so-called

filler words such as “an”, “of”, and “upon” that are not influenced by the

topics of the articles.

In this case study, the use of different sampling distributions is

described to model word counts in a group of Federalist Papers. The

Poisson distribution is perhaps a natural choice for modeling a group of

word counts, but it will be seen that the Poisson can not accommodate

the spread of the distribution of word counts. This motivates the use of

a negative binomial sampling distribution and this model will be used to

compare rates of use of some filler words by Hamilton and Madison.

13.2.2  Data on word use



To begin our study, let’s look at the occurrences of the word “can” in all

of the Federalist Papers authored by Alexander Hamilton or James

Madison. Table 13.1 shows the format of the data. For each paper, the

total number of words, the number of occurrences of the word “can” and

the rate of use of this word per 1000 words are recorded.

TABLE 13.1

Portion of the data table counting the number of words and occurrences of the word “can” in 74 Federalist

Papers.

Name Total Count Rate Authorship

1 Federalist No. 1 1622 3 1.85 Hamilton

2 Federalist No. 10 3008 4 1.33 Madison

3 Federalist No. 11 2511 5 1.99 Hamilton

4 Federalist No. 12 2171 2 0.92 Hamilton

5 Federalist No. 13 970 4 4.12 Hamilton

6 Federalist No. 14 2159 9 4.17 Madison

Figure 13.1 displays parallel jittered dotplots of the rates (per 1000

words) of “can” for the Madison and Hamilton papers. Note the

substantial variability in the rates across papers. But it appears that

this is a slight tendency for Hamilton to use this particular word more

frequently than Madison. Later in this section we will formally perform

inference about the ratio of the true rates of use of “can” for the two

authors.



FIGURE 13.1

Observed rates of use of the word “can” in Federalist Papers authored by Hamilton and Madison.

13.2.3  Poisson density sampling

Consider first the word use of all of the Federalist Papers written by

Hamilton. The initial task is to find a suitable sampling distribution for

the counts of a particular function word such as “can”. Since Poisson is a

popular sampling distribution for counts, it is initially assumed that for

the i-th paper the count yi of the word “can” has a Poisson density with

mean niλ/1000 where ni is the total number of words and λ is the true

rate of the word among 1000 words. There are N papers in total. Using

the Poisson density expression, one writes

f(Yi = yi ∣ λ) =
(niλ/1000)yi exp(−niλ/1000)

yi!
. (13.1)

Assuming independence of word use between papers, the likelihood function is
the product of Poisson densities



L(λ) =
N

∏
i=1

f(yi ∣ λ), (13.2)L(λ) =
N

∏
i=1

f(yi ∣ λ), (13.2)

and the posterior density of λ is given by

π(λ ∣ y1, ⋯ , yN ) ∝ L(λ)π(λ), (13.3)

where π() is the prior density.

 Suppose one knows little about the true rate of “can”s and to reflect

this lack of information, one assigns λ a gamma density with parameters

α = 0.001 and β = 0.001. Recall in Section 8.8 in Chapter 8, a gamma

prior is conjugate to a Poisson sampling model. A JAGS script is

written to specify this Bayesian model and by use of the run.jags()

function, one obtains a simulated sample of 5000 draws from the

posterior distribution.

modelString = " 
model{ 
## sampling 
for (i in 1:N) { 
 y[i] ~ dpois(n[i] * lambda / 1000) 
} 
## prior 
lambda ~ dgamma(0.001, 0.001) 
} 
"

When one observes count data such as these, one general concern is

overdispersion. Do the observed counts display more variability than one

would anticipate with the use of this Poisson sampling model? One can

check for overdispersion by use of a posterior predictive check. First one

simulates one replicated dataset from the posterior predictive

distribution. This is done in two steps: 1) one simulates a value of λ



from the posterior distribution; 2) given the simulated value λ = λ∗
, one

simulates counts yR
1 , . . . , yR

N  from independent Poisson distribution with

means n1λ∗/1000, . . . , nN λ∗/1000. Given a replicated dataset of counts

{yR
i }, one computes the standard deviation. In this setting a standard

deviation is a reasonable choice of a testing function since one is

concerned about the variation or spread in the data.

 
one_rep <- function(i){ 
 lambda <- post[i] 
 sd(rpois(length(y), n * lambda / 1000)) 
} 
sapply(1:5000, one_rep) -> SD

One repeats this process 5000 times, obtaining 5000 replicated

datasets from the posterior predictive distribution and 5000 values of

the standard deviation. Figure 13.2 displays a histogram of the standard

deviations from the predictive distribution and the standard deviation of

the observed counts {yi} is displayed as a vertical line. Note that the

observed standard deviation is very large relative to the standard

deviations of the counts from the predictive distribution. The takeaway

is that there is more variability in the observed counts of “can”s than

one would predict from the Poisson sampling model.



FIGURE 13.2

Histogram of standard deviations from 5000 replicates from the posterior predictive distribution

from the Poisson sampling model. The observed standard deviation is displayed as a vertical line.

13.2.4  Negative binomial sampling

In the previous section, we presented evidence that the observed counts

of “can” from a group of Federalist Papers of Alexander Hamilton were

overdispersed in that there was more variability in the counts than

predicted by the Poisson sampling model. One way of handling this

overdispersion issue to find an alternative sampling density for the

counts that is able to accommodate this additional variation.

One popular alternative density is the negative binomial density.

Recall that yi represents the number of “can”s in the i-th Federalist

Papers. Conditional on parameters α and β, one assigns yi the negative

binomial density defined as

f(Yi = yi ∣ α, β) =
Γ(yi + α)

Γ(α)
pα

i (1 − pi)
yi , (13.4)



where

pi =
β

β + ni/1000
. (13.5)

One can show that this density is a natural generalization of the Poisson
density. The mean count is given by E(yi) = μi where

μi =
ni

1000

α

β
. (13.6)

Recall that the mean count for yi the Poisson model was niλ/1000, so

the ratio α/β is playing the same role as λ – one can regard α/β as the

true rate of the particular word per 1000 words.

One can show that the variance of the count yj is given by

V ar(yi) = μi(1 +
ni

1000β
). (13.7)

The variance for the Poisson model is equal to μi, so the negative

binomial model has the extra multiplicative term (1 + ni

1000β
). So the

negative binomial family is able to accommodate the additional

variability in the counts {yi}.

The posterior analysis using a negative binomial density is

straightforward. The counts y1,..., yN are independent negative binomial

with parameters α and β and the likelihood function is equal to



L(α, β) =
N

∏
i=1

f(yi ∣ α, β). (13.8)L(α, β) =
N

∏
i=1

f(yi ∣ α, β). (13.8)

If little is known a priori about the locations of the positive parameter

values α and β, then it reasonable to assume the two parameters are

independent and assign to each α and β a gamma density with

parameters 0.001 and 0.001. Then the posterior density is given by

π(α, β ∣ y1, ⋯ , yN ) ∝ L(α, β)π(α, β) (13.9)

where π(α, β) is the product of gamma densities.

 One simulates the posterior with negative binomial sampling

using JAGS. The negative binomial density is represented by the JAGS

function dnegbin() with parameters p[i] and alpha. In the JAGS script

below, note that one first defines p[i] in terms of the parameter beta

and the sample size n[i], and then expresses the negative binomial

density in terms of p[i] and alpha.

 
modelString = " 
model{ 
## sampling 
for(i in 1:N){ 
 p[i] <- beta / (beta + n[i] / 1000) 
 y[i] ~ dnegbin(p[i], alpha) 
} 
## priors 
mu <- alpha / beta 
alpha ~ dgamma(.001, .001) 
beta ~ dgamma(.001, .001) 
} 
"

We earlier made a statement that the Negative Binomial density can

accommodate the extra variability in the word counts. One can check



this statement by a posterior predictive check. One replication of the

posterior predictive checking method is implemented in the R function

one_rep(). We start with a simulated value (α∗, β∗) from the posterior

distribution. Then we simulated a replicated dataset yR
1 , . . . , yR

N  where 

yR
i  has a negative binomial distribution with parameters α∗

 and 

β∗/(β∗ + ni/1000). Then we compute the standard deviation of the {yR
i

}.

 
one_rep <- function(i){ 
 p <- post$beta[i] / (post$beta[i] + n / 1000) 
 sd(rnbinom(length(y), size = post$alpha[i], prob = p)) 
}

By repeating this algorithm for 5000 iterations, one has 5000 draws of

the standard deviation of samples from the predictive distribution

stored in the R vector SD.

sapply(1:5000, one_rep) -> SD

Figure 13.3 displays a histogram of the standard deviations of samples

from the predictive distribution and the observed standard deviation of

the counts is shown as a vertical line. In this case the observed standard

deviation value is in the middle of the predictive distribution. The

interpretation is that predictions with a negative binomial sampling

model are consistent with the spread in the observed word counts.



FIGURE 13.3

Histogram of standard deviations from 5000 replicates from the posterior predictive distribution in

the negative binomial sampling model. The observed standard deviation is displayed as a vertical

line.

Now that the negative binomial model seems reasonable, one performs

inferences about the mean use of the word “can” in Hamilton essays.

The parameter μ = α/β represents the true rate of use of this word per

1000 words. Figure 13.4 displays MCMC diagnostic plots for the

parameter μ. The trace plot and autocorrelation plot indicate good

mixing and so one believes the histogram in the lower-left section

represents the marginal posterior density for μ. A 90% posterior interval

estimate for the rate of “can” is (2.20, 3.29).



FIGURE 13.4

MCMC diagnostic plots for the rate μ = α/β of use of the word “can” in Hamilton essays.

13.2.5  Comparison of rates for two authors

Recall that the original problem was to compare the word use of

Alexander Hamilton with that of James Madison. Suppose we collect

the counts {y1i} of the word “can” in the Federalist Papers authored by

Hamilton and the counts {y2i} of “can” in the Federalist Papers authored

by Madison. The general problem is to compare the true rates per 1000

words of the two authors.

Since a negative binomial sampling model appears to be suitable in

the one-sample situation, we extend this in a straightforward away to

the two-sample case. The Hamilton counts y11, . . . , y1N1
, conditional on

parameters α1 and β1 are assumed to be independent negative binomial,

where y1i is negative binomial(p1i, α1) with

p1i =
β1

β1 + n1i/1000
, (13.10)



and {n1i} are the word counts for the Hamilton essays. Similarly, the

Madison counts y21, . . . , y2N2 , conditional on parameters α2 and β2 are

assumed to be

independent negative binomial, where y2i is Negative Binomial(p2i, α2)

with

p2i =
β2

β2 + n2i/1000
, (13.11)

and {n2i} are the word counts for the Madison essays. The focus will be

to learn about μM/μH, the ratio of the rates (per 1000 words) of use of

the word “can” of the two authors, where μM = α2/β2 and μH = α1/β1.

Assume that the observed counts of word “can” of the two authors are

independent. Moreover, assume that the prior distributions of the

parameters (α1, β1) and (α2, β2) are independent. Then the posterior

distribution is given, up to an unknown proportionality constant, by

π(α1, β1, α2, β2 ∣ {y1i}, {y12}) ∝
2

∏
k=1

(
nki

∏
i=1

f(yki ∣ αk, βk)π(αk, βk)). (13.12)

We assume that the user has little prior information about the location

of the negative binomial parameters and we assume they are

independent with each parameter assigned a gamma prior with

parameters 0.001 and 0.001.

 The posterior sampling is implemented using the JAGS software.

The model description script is an extension of the previous script for a

single negative binomial sample. Note that the ratio parameter is

defined to be the ratio of the word rates for the two samples.

 
modelString = " 



model{ 
## sampling 
for(i in 1:N1){ 
 p1[i] <- beta1 / (beta1 + n1[i] / 1000) 
 y1[i] ~ dnegbin(p1[i], alpha1) 
} 
for(i in 1:N2){ 
 p2[i] <- beta2 / (beta2 + n2[i] / 1000) 
 y2[i] ~ dnegbin(p2[i], alpha2) 
} 
## priors 
alpha1 ~ dgamma(.001, .001) 
beta1 ~ dgamma(.001, .001) 
alpha2 ~ dgamma(.001, .001) 
beta2 ~ dgamma(.001, .001) 
ratio <- (alpha2 / beta2) / (alpha1 / beta1) 
} 
"

Since the focus is to compare the word use of the two authors, Figure

13.5 displays MCMC diagnostics for the ratio of “can” rates R = μM/μH.

Note that most of the posterior probability of R is found in an interval

about the value one. From the simulated draws, one finds the posterior

median is 0.92 and a 95% probability interval for R is found to be (0.71,

1.19). Since this interval contains the value one, there is no significant

evidence to conclude that Hamilton and Madison have different rates of

use of the word “can”.



FIGURE 13.5

MCMC diagnostic plots for the ratio of rates μM/μH of use of the word “can” Federalist Papers

essays written by Hamilton and Madison.

13.2.6  Which words distinguish the two authors?

In the previous section, it was found that the word “can” was not a

helpful discriminator between the essays written by Hamilton and the

essays written by Madison. However, other words may be useful in this

discrimination task. Following suggestions in Mosteller and Wallace

(1963), the previous two-sample analysis was repeated for each of the

following words: also, an, any, by, can, from, his, may, of, on, there, this,

to, and upon. For a given word, the counts of occurrence of that word

were collected for each of the essays authored by Hamilton and

Madison. For each word, we focus on inferences about the parameter R,

the ratio of mean rates of the particular word by Madison and

Hamilton. A ratio value of R > 1 indicates that Madison was a more

frequent user of the word, and a ratio value R < 1 indicates that

Hamilton used it more frequently. Fourteen separate two-sample

analyses were conducted and the posterior distributions of R were

summarized by posterior medians and 95% probability intervals.

Figure 13.6 displays the locations of the posterior medians and

interval estimates for all of the 14 analyses. Intervals that are

completely on one side of the value R = 1 indicate that one author was



more likely to use that particular word. Looking at the figure, one sees

that the words “upon”, “to”, “this”, “there”, “any”, and “an” were more

likely be used by Hamilton, and the words “on”, “by”, and “also” were

more likely be used by Madison. The posterior intervals for the

remaining words (“may”, “his”, “from”, “can”, and “also”) cover the value

one, and so one cannot say from these data that one author was more

likely to use those particular words.

FIGURE 13.6

Display of posterior median and 95% interval estimates for the ratio of rates μH/μM for 14

different words in Federalist Papers essays written by Hamilton and Madison.

 

13.3  Career Trajectories

13.3.1  Introduction

For an athlete in a professional sport, his or her performance typically

begins at a small level, increases to a level in the middle of his or her

career where the player has peak performance, and then decreases until



the player’s retirement. This pattern of performance over a player’s

career is called the career trajectory. A general problem in sports is to

predict future performance of a player and one relevant variable in this

prediction is the player’s age. Due to the ready availability of baseball

data, it is convenient to study career trajectories for baseball players,

although the methodology will apply to athletes in other sports.

13.3.2  Measuring hitting performance in baseball

Baseball is a bat and ball game first played professionally in the United

States in the mid 19th century. Players are measured by their ability to

hit, pitch, and field, and a wide variety of statistical measures have been

developed. One of the more popular measures of batting performance is

the on-base percentage or OBP. A player comes to bat during a plate

appearance and it is desirable for the batter to get on base. The OBP is

defined to be the fraction of plate appearances where the batter reaches

a base. As an example, during the 2003 season, Chase Utley had 49 on-

base events in 152 plate appearances and his OBP was 49/152 = 0.322.

13.3.3  A hitter’s career trajectory

A baseball player typically plays between 5 to 20 years in Major League

Baseball (MLB), the top-tier professional baseball league in the United

States. In this case study, we explore career trajectories of the OBP

measure of baseball players as a function of their ages. To illustrate a

career trajectory, consider Chase Utley who played in the Major

Leagues from 2003 through 2018. Figure 13.7 displays Utley’s OBP as a

function of his age for all of the seasons of his career. A quadratic

smoothing curve is added to the scatterplot. One sees that Utley’s OBP

measure increases until about age 30 and then steadily decreases

towards the end of his career.



FIGURE 13.7

Career trajectory of Chase Utley’s on-base percentages. A quadratic smoothing curve is added to

the plot.

Figure 13.8 displays the career trajectory of OBP for another player

Josh Phelps who had a relatively short baseball career. In contrast,

Phelps does not have a clearly defined career trajectory. In fact, Phelps’

OBP values appear to be relatively constant from ages 24 to 30 and the

quadratic smoothing curve indicates that Phelps had a minimum OBP

at age 26. The purpose of this case study is to see if one can improve

the career trajectory smooth of this player by a hierarchical Bayesian

model that combines data from a number of baseball players. Recall in

Chapter 10, we have seen how hierarchical Bayesian models have the

pooling effect that could borrow information from other groups to

improve the estimation of one group, especially for groups with small

sample size.



FIGURE 13.8

Career trajectory of Josh Phelps’ on-base percentages. A quadratic smoothing curve is added to the

plot.

13.3.4  Estimating a single trajectory

First we consider learning about a single hitter’s OBP career trajectory.

Let yj denote the number of on-base events in nj plate appearances

during a hitter’s j-th season. It is reasonable to assume that yj has a

Binomial distribution with parameters nj and probability of success pj.

One represents the logit of the success probability as a quadratic

function of the player’s age:

log(
pj

1 − pj

) = β0 + β1(xj − 30) + β2(xj − 30)2, (13.13)

where xj represents the age of the player in the j-th season.

Note that the age value is centered by 30 in the logistic model – this

is done for ease of interpretation. The intercept β0 is an estimate of the

player’s OBP performance at age 30. Specific functions of the regression

vector β = (β0, β1, β2) are of specific interest in this application.



The quadratic function reaches its largest value at

h1(β) = 30 −
β1

2β2
.

This is the age where the player is estimated to have his peak on-

base performance during his career.

The maximum value of the curve, on the logistic scale, is

h2(β) = β0 −
β2

1

4β2
.

The maximum value of the curve on the probability scale is

pmax = exp(h2(β))/(1 + exp(h2(β))). (13.14)

The parameter pmax is the estimated largest OBP of the player over

his career.

The coefficient β2, typically a negative value, tells us about the

degree of curvature in the quadratic function. If a player has a large

value of β2, this indicates that he more rapidly reaches his peak

level and more rapidly decreases in ability until retirement. One

simple interpretation is that β2 represents the change in OBP from

his peak age to one year later.

It is straightforward to fit this Bayesian logistic model using the

JAGS software. Suppose one has little prior information about the

location of the regression vector β. Then one assumes the regression

coefficients are independent with each coefficient assigned a normal prior

with mean 0 and precision 0.0001. The posterior density of β is given, up

to an unknown proportionality constant, by



π(β ∣ {yj}) ∝ ∏
j

(p
yj

j (1 − pj)
nj−yj)π(β), (13.15)π(β ∣ {yj}) ∝ ∏

j

(p
yj

j (1 − pj)
nj−yj)π(β), (13.15)

where pj is defined by the logistic model and π(β) is the prior density.

 The JAGS model script is shown below. The dbin() function is used

to define the binomial distribution and the logit() function describes

the log odds reexpression.

 
modelString = " 
model { 
## sampling 
for (j in 1:N){ 
 y[j] ~ dbin(p[j], n[j]) 
 logit(p[j]) <- beta0 + beta1 * (x[j] - 30) + 
 beta2 * (x[j] - 30) * (x[j] - 30) 
} 
## priors 
beta0 ~ dnorm(0, 0.0001) 
beta1 ~ dnorm(0, 0.0001) 
beta2 ~ dnorm(0, 0.0001) 
} 
"

The JAGS software is used to simulate a sample from the posterior

distribution of the regression vector β. From this sample, it is

straightforward to learn about any function of the regression vector of

interest. To illustrate, one performs inference about the peak age

function h1(β) by computing this function on the simulated β draws –

the output is a posterior sample from the peak age function. In a similar

fashion, one obtains a sample from the posterior of the maximum value

function pmax by computing this function on the simulated β values.

Figure 13.9 displays density estimates of the simulated values of h1(β)

and pmax. From this graph, one sees that Utley’s peak performance was

most likely achieved at age 29, although there is uncertainty about this



most likely peak age. Also the posterior of the peak value pmax indicates

that Utley’s peak on-base probability ranged from 0.38 and 0.40.

FIGURE 13.9

Density estimates of the peak age and peak for logistic model on Chase Utley’s trajectory.

13.3.5  Estimating many trajectories by a hierarchical
model

We have focused on estimating the career trajectory of a single baseball

player such as Chase Utley. But there are many baseball players and it

is reasonable to want to simultaneously estimate the career trajectories

for a group of players. As an example, suppose one focuses on the Major

League players who were born in the year 1978 and had at least 1000

career at-bats. Figure 13.10 displays scatterplots of age and OBP with

quadratic smoothing curves for the 36 players in this group. Looking at

these curves, one notices that many of the curves follow a familiar

concave down shape with the player achieving peak performance near an

age of 30. But for some players, especially for those players who played

a small number of seasons, note that the trajectories have different



shapes. Some trajectories are relatively constant over the age variable

and other trajectories have an unusual concave up appearance.

FIGURE 13.10

Career trajectories and individual quadratic fits for all players born in the year 1978 and having at

least 1000 career at-bats.

In this situation, it may be desirable to partially pool the data from

the 36 players using a hierarchical model to obtain improved trajectory

estimates for all players. For the i-th player, one observes the on-base

events {yij} where yij is binomial with sample size nij and probability of

on-base success pij. The logit of the on-base probability for the i-th

player during the j-th season is given by



log(
pij

1 − pij

) = βi0 + βi1(xij − 30) + βi2(xij − 30)2, (13.16)log(
pij

1 − pij

) = βi0 + βi1(xij − 30) + βi2(xij − 30)2, (13.16)

where xij is the age of the i-th player during the j-th season. If βi = (βi0,

βi1, βi2) represents the vector regression coefficients for the i-th player,

then one is interested in estimating the regression vectors (β1,..., βN) for

the N players in the study.

One constructs a two-stage prior on these regression vectors. In

Chapter 10, one assumed that the normal means were distributed

according to a common normal distribution. In this setting, since each

regression vector has three components, at the first stage of the prior,

one assumes that β1,..., βN are independently distributed from a common

multivariate normal distribution with mean vector μβ and precision

matrix τβ. Then, at the second stage, vague prior distributions are

assigned to the unknown values of μβ and τβ.

 In our application, there are N = 36 players, so one is estimating 36

× 3 = 108 regression parameters together with unknown parameters in

the prior distributions of μβ and τβ at the second stage. Fortunately the

JAGS script defining this model is a straightforward extension of the

JAGS script for a logistic regression model for a single career trajectory.

The variable player indicates the player number, and the variables

beta0[i], beta1[i], and beta2[i] represent the logistic regression

parameters for the i-th player. The vector B[j, 1:3] represents a vector

of parameters for one player and mu.beta and Tau.B represent

respectively the second-stage prior mean vector and precision matrix

values. The variables mean, prec, Omega are specified parameters that

indicate weak information about the parameters at the second stage.

 
modelString = " 
model { 
## sampling 
for (i in 1:N){ 
 y[i] ~ dbin(p[i], n[i]) 



 logit(p[i]) <- beta0[player[i]] + 
 beta1[player[i]] * (x[i] - 30) + 
 beta2[player[i]] * (x[i] - 30) * (x[i] - 30) 
} 
## priors 
for (j in 1:J){ 
 beta0[j] <- B[j,1] 
 beta1[j] <- B[j,2] 
 beta2[j] <- B[j,3] 
 B[j,1:3] ~ dmnorm (mu.beta[], Tau.B[,]) 
} 
mu.beta[1:3] ~ dmnorm(mean[1:3],prec[1:3 ,1:3 ]) 
Tau.B[1:3 , 1:3] ~ dwish(Omega[1:3 ,1:3 ], 3) 
} 
"

After JAGS is used to simulate from the posterior distribution of this

hierarchical model, a variety of inferences are possible. The player

trajectories β1,..., β36 are a sample from a normal distribution with mean

μβ. Figure 13.11 displays draws of the posterior of μβ expressed (using

equation (13.16)) as probabilities over a grid of age values from 23 to

37. The takeaway if that the career trajectories appear to be centered

about 29.5 – a typical MLB player in this group peaks in on-base

performance about age 29.5.



FIGURE 13.11

Samples from the posterior distribution of the mean trajectory μβ.

By combining data across players, the Bayesian hierarchical model is

helpful in borrowing information for estimating the career trajectories of

players with limited career data. This is illustrated in Figure 13.12 that

shows individual and hierarchical posterior mean fits of the career

trajectories for two players. For Chase Utley, the two fits are very

similar since Utley’s career trajectory was well-estimated just using his

data. In contrast, we saw that Phelps had an unrealistic concave up

individual estimated trajectory. In the hierarchical model, this career

trajectory is corrected to be more similar to the concave down

trajectory for most players.



FIGURE 13.12

Individual (solid line) and hierarchical (dashed line) fits of the career trajectories for Josh Phelps

and Chase Utley.

 

13.4  Latent Class Modeling

13.4.1  Two classes of test takers

Suppose thirty people are given a 20-question true or false exam and the

number of correct responses for all people are graphed in Figure 13.13.

From this figure note that test takers 1 through 10 appear to have a low

level of knowledge about the subject matter as their scores are centered

around 10. The remaining test takers 11 through 30 seem to have a

higher level of knowledge as their scores range from 15 to 20.



FIGURE 13.13

Scatterplot of test scores of 20 test takers. The number next to each point is the person index.

Are there really two groups of test takers, a random-guessing group

and a knowledgeable group? If so, how can one separate the people in

the two ability groups, and how can one make inferences about the

correct rate for each group? Furthermore, can one be sure that two

ability groups exist? Is it possible to have more than two groups of

people by ability level?

The above questions relate to the classification of observations and

the number of classes. In the introduction of hierarchical models in

Chapter 10, there was a natural grouping of the observations. For

example, in the animation movie ratings example in Chapter 10, each

rating was made on one animation movie, so grouping based on movie is

natural, and the group assignment of the observations was known. It

was then reasonable to specify a two-stage prior where the rating means

shared the same prior distribution at the first stage.

In contrast, in the true or false exam example, since the group

assignment is not known, it not possible to proceed with a hierarchical



model with a common prior at the first stage. In this testing example

one believes the people fall in two ability groups, however one does not

observe the actual classification of the people into groups. So it is

assumed that there exists latent or unobserved classification of

observations. The class assignments of the individuals are unknown and

can be treated as random parameters in our Bayesian approach.

If two classes exist, the class assignment parameter for the i-th

observation zi is unknown and assumed to follow a Bernoulli

distribution with probability π belonging to the first class, i.e. zi = 1.

With probability 1 − π the i-th observation belongs to the second class,

i.e. zi = 0.

zi ∣ π ∼ Bernoulli(π). (13.17)

If one believes there are more than two classes, the class assignment

parameter follows a multinomial distribution. For ease of description of

the model, we focus on the two classes situation.

Once the class assignment zi is known for observation i, the response

variable Yi follows a data model with a group-specific parameter. In the

case of a true/false exam where the outcome variable Yi is the number

of correct answers, the binomial model is a good choice for a sampling

model. The response variable Yi conditional on the class assignment

variable zi is assigned a binomial distribution with probability of success

pzi
.

Yi = yi ∣ zi, pzi
∼ Binomial(20, pzi

). (13.18)

One writes the success probability pzi
 with subscript zi since this

probability is class-specific. For the guessing group, the number of

correct answers is Binomial with parameter p1, and for the



knowledgeable group the number of correct answers is Binomial with

parameter p0.

This model for responses to a true/false with unknown ability levels

illustrates latent class modeling. The fundamental assumption is that

two latent classes exist, and each latent class has its own sampling

model with class-specific parameters. All n observations belong to one of

the two latent classes and each observation is assigned to the latent

classes one and two with respective probabilities π and (1 − π). From

Equation (13.17), once the latent class assignment is determined, the

outcome variable yi follows a class-specific data model as in Equation

(13.18).

The tree diagram below illustrates the latent class model.



To better understand this latent class model, consider a thought

experiment where one simulates outcomes y1, · · · , yn from this model.

– Step 1: First simulate the latent class assignments of the n test

takers. One samples n values, z1, · · · , zn, from a Bernoulli

distribution with probability π. Once the latent class assignments

are simulated, one has partitioned the test takers into the

random-guessing group where zi = 1 and the knowledgeable

group where zi = 0.

– Step 2: Now that the test takers’ classifications are known, the

outcomes are simulated by the use of binomial distributions. If a

test taker’s classification is zi = 1, she guesses at each question

with success probability p1 and one observes the test score which

is the Binomial outcome Yi ∼ Binomial(20, p1). Otherwise if the

classification is zi = 0, she answers a question correctly with

probability p0 and one observes the test score Yi ∼ Binomial(20,

p0).

Latent class models provide the flexibility of allowing unknown class

assignments of observations and the ability to cluster observations with

similar characteristics. In the true/false exam example, the fitted latent

class model will pool one class of observations with a lower success rate

and pool the other class with a higher success rate. This fitted model

also estimates model parameters for each class, providing insight of

features of each latent class.

13.4.2  A latent class model with two classes

This section builds on the previous section to describe the details of the

model specification of a latent class model with two classes for the

true/false exam example. The JAGS software is used for MCMC

simulation and several inferences are described such as identifying the

class for each test taker and learning about the success rate for each

class.



Suppose the true/false exam has m questions and yi denotes the score

of observation i, i = 1, · · · , n. Assume there are two latent classes and

each observation belongs to one of the two latent classes. Let zi be the

class assignment for observation i and π be the probability of being

assigned to class 1. Given the latent class assignment zi for observation

i, the score Yi follows a Binomial distribution with m trials and a class-

specific success probability. Since there are only two possible class

assignments, all observations assigned to class 1 share the same correct

success parameter p1 and all observations assigned to class 0 share the

same success rate parameter p0. The specification of the data model is

expressed as follows:

(13.19)

(13.20)

In this latent class model there are many unknown parameters. One

does not know the class assignment probability π, the class assignments

z1,..., zn, and the probabilities p1 and p0 for the two binomial

distributions. Some possible choices for prior distributions are discussed

in this section.

(a) The parameters π and (1 − π) are the latent class assignment

probabilities for the two classes. If additional information is

available which indicates, for example, that 1/3 of the observations

belong to class 1, then π is considered as fixed and set to the value

of 1/3. If no such information is available, one can consider π as

unknown and assign this parameter a prior distribution. A natural

choice for prior on a success probability is a Beta prior distribution

with shape parameters a and b.

(b) The parameters p1 and p0 are the success rates in the Binomial

model in the two classes. If one believes that the test takers in class

Yi = yi ∣ zi, pzi
∼ Binomial(m, pzi

),

zi ∣ π ∼ Bernoulli(π).



1 are simply random guessers, then one fixes p1 to the value of 0.5.

Similarly, if one believes that test takers in class 0 have a higher

success rate of 0.9, then one sets p0 to the value 0.9. However, if

one is uncertain about the values of p1 and p0, one lets either or

both success rates be random and assigned prior distributions.

Scenario 1: known parameter values

We begin with a simplified version of this latent class model. Consider

the use of the fixed values π = 1/3 and p1 = 0.5, and a random p0 from

a uniform distribution between 0.5 and 1. This setup indicates that one

believes strongly that one third of the test takers belong to the random-

guessing class, while the remaining two thirds of the test takers belong

to the knowledgeable class. One is certain about the success rate of the

guessing class, but the location of the correct rate of the knowledgeable

class is unknown in the interval (0.5, 1).

 The JAGS model script is shown below. One introduces a new

variable theta[i] that indicates the correct rate value for observation i.

In the sampling section of the JAGS script, the first block is a loop over

all observations, where one first determines the rate theta[i] based on

the classification value z[i]. The equals command evaluates equality,

for example, equals(z[i], 0) returns 1 if z[i] equals to 0, and returns

0 otherwise. This indicates that the rate theta[i] will either be equal to

p1 or p0 depending on the value z[i].

One should note in JAGS, the classification variable z[i] takes values

of 0 and 1, corresponding to the knowledgeable and guessing classes,

respectively. As π is considered fixed and set to 1/3, the variable z[i] is

assigned a Bernoulli distribution with probability 1/3. To conclude the

script, in the prior section the guessing rate parameter p1 is assigned the

value 0.5 and the rate parameter p0 is assigned a Beta(1, 1) distribution

truncated to the interval (0.5, 1) using T(0.5, 1).

 
modelString<-" 
model { 



## sampling 
for (i in 1:N){ 
 theta[i] <- equals(z[i], 1) * p1 + equals(z[i], 0) * p0 
y[i] ~ dbin(theta[i], m) 
} 
for (i in 1:N){ 
 z[i] ~ dbern(1/3) 
} 
## priors 
p1 <- 0.5 
p0 ~ dbeta(1,1) T(0.5, 1) 
} 
"

One performs inference for theta and p0 in JAGS by looking at their

posterior summaries. Note that there are n = 30 test takers, each with

an associated theta indicating the correct success rate of test taker i.

The variable p0 is the estimate of the correct rate of the knowledgeable

class.

How are the correct rates estimated for different test takers by the

latent class model? Before looking at the results, let’s revisit the dataset

as shown in Figure 13.13. Among the test takers with lower scores, it is

obvious that test taker #6 with a score of 6 is likely to be assigned to

the random-guessing class, whereas test takers #4 and #5 with a score

of 13 are probably assigned to the knowledgeable class. Among test

takers with higher scores, test takers #15 and #17 with respective

scores of 20 and 19 are most likely to be assigned to the knowledgeable

class, and test taker #24 with a score of 14 is also likely assigned to the

knowledgeable class.

The latent class model assigns observations to one of the two latent

classes at each MCMC iteration, and the posterior summaries of theta

provide estimates of the correct rate of each test taker. Table 13.2

provides posterior summaries for six specific test takers. The posterior

summaries of the correct rate of test taker # 6 indicate that the model

assigns this test taker to the random-guessing group and the posterior

mean and median of the correct rate is at 0.5. Test takers #4 and #5

have similar posterior summaries and are classified as random-guessing

most of the time with posterior mean of correct rate around 0.55. Test



taker #24 has a higher posterior mean than the test takers #4 and #5.

But with a posterior mean 0.69, the posterior probability for the true

rate for #24 is somewhat split between random guessing and

knowledgeable states. Test takers #15 and #17 are always classified as

knowledgeable with posterior mean and median of correct rate around

0.88.

TABLE 13.2

Posterior summaries of the correct rate θi of six selected test takers.

Test Taker Score Mean Median 90% Credible Interval

#4 13 0.553 0.500 (0.500, 0.876)

#5 13 0.555 0.500 (0.500, 0.875)

#6 6 0.500 0.500 (0.500, 0.500)

#15 20 0.879 0.879 (0.841, 0.917)

#17 19 0.878 0.879 (0.841, 0.917)

#24 14 0.690 0.831 (0.500, 0.897)

One also summarizes the posterior draws of p0 corresponding to the

success rate for the knowledgeable students. Figure 13.14 provides

MCMC diagnostics of p0. Its posterior mean, median, and 90% credible

interval are 0.879, 0.879, and (0.841, 0.917). These estimates are very

close to the correct rate of test takers #15 and #17. These test takers

are always classified in the knowledgeable class and their correct rate

estimates are the same as p0.



FIGURE 13.14

MCMC diagnostic plots for correct rate of the knowledgeable class, p0.

Scenario 2: all parameters unknown

It is straightforward to generalize this latent class model relaxing some

of the fixed parameter assumptions in Scenario 1. It was originally

assumed that the class assignment parameter π = 1/3. It is more

realistic to assume that the probability of assigning an individual into

the first class π is unknown and assign this parameter a beta

distribution with specific shape parameters. Here one assumes little is

known about this classification parameter and so π is assigned a Beta(1,

1), i.e. a uniform distribution on (0, 1). In addition, previously it was

assumed that it was known that the success rate for the “guessing”

group p1 was equal to 1/2. Here this assumption is relaxed by assigning

the success rate p1 a uniform prior on the interval (0.4, 0.6). If one

knows only that that the success rate for the “knowing” group is p0 is

larger than p1, then one assumes p0 is uniform on the interval (p1, 1).

 The JAGS script for this more general model follows. We introduce

the parameter q as π, that is the class assignment parameter and assign



it a beta distribution with parameters 1 and 1. The prior distributions

for p1 and p0 are modified to reflect the new assumptions.

 
modelString<-" 
model { 
## sampling 
for (i in 1:N){ 
 theta[i] <- equals(z[i], 1) * p1 + equals(z[i], 0) * p0 
 y[i] ~ dbin(theta[i], m) 
} 
for (i in 1:N){ 
 z[i] ~ dbern(q) 
} 
## priors 
p1 ~ dbeta(1, 1) T(0.4, 0.6) 
p0 ~ dbeta(1,1) T(p1, 1) 
q ~ dbeta(1, 1) 
} 
"

In Scenario 1, the posterior distributions of the correct rates theta[i]

were summarized for all individuals. Here we instead focus on the

classification parameters z[i] where z[i] = 1 indicates a person

classified into the random-guessing group. Figure 13.15 displays the

posterior means of the zi for all individuals. As expected, individuals #1

through #10 are classified as guessers and most individuals with labels

12 and higher are classified as knowledgeable. Individuals #11 and #24

have posterior classification means between 0.25 and 0.75 indicating

some uncertainty about the correct classification for these people.



FIGURE 13.15

Posterior means of classification parameters {Prob(zi = 1|{yi})} for all test takers.

Figure 13.16 displays density estimates of the simulated draws from

the posterior distributions of the class assignment parameter π and the

rate parameters p1 and p0. As one might expect, the posterior

distributions of p1 and p0 are centered about values of 0.54 and 0.89.

There is some uncertainty about the class assignment parameter as

reflected in a wide density estimate for π (q in the figure).



FIGURE 13.16

Posterior density plots of parameters π, p1 and p0.

13.4.3  Disputed authorship of the Federalist Papers

Returning to the Federalist Papers example of Section 13.2, the

discussion focused on learning about the true rates of filler words for

papers written by Alexander Hamilton and James Madison. But

actually the true authorship of some of the papers was in doubt, and

the primary task in Mosteller and Wallace (1963) was to learn about the

true authorship of these disputed authorship papers from the data. This

problem of disputed authorship can be considered a special case of

latent data modeling where the latent variable is the authorship of a

disputed paper. We describe how the Bayesian model of Section 13.2

can be generalized to learn about both the rates of a particular filler

word and the identities of the authors of the papers of disputed

authorship.

In our sample there are a total of 74 Federalist Papers. We assume

that 49 of these papers are known to be written by Hamilton, 15 of the

papers are known to be written by Madison, and the authorship of the

remaining 10 papers is disputed between the two authors. We focus on



the use of the filler word “can” in these papers. Let {(y1i, n1i)} denote

the frequencies of “can” and total words in the Hamilton papers, {(y2i,

n2i)} denote the frequencies and total words in the Madison papers, and

{(yi, ni)} denote the corresponding quantities in the disputed papers. As

in Section 13.2, we assume {y1i} are Negative Binomial(p1i, α1) where p1i

= β1/(β1 + n1i/1000), and {y2i} are Negative Binomial(p2i, α2) where p2i

= β2/(β2 + n2i/1000).

The distribution of the frequencies {yi} is unknown (out of the total

number of words {ni}) since these correspond to the papers of disputed

authorship. Let zi denote the unknown authorship of paper i among the

disputed papers – if zi = 0, the paper was written by Hamilton and if zi

= 1, the paper was written by Madison. If one knows the value of zi, the

distribution of the frequency yi is known. If zi = 0, then yi is Negative

Binomial(pi, α1) where pi = β1/(β1 + ni/1000), and zi = 1, then yi is

Negative Binomial(pi, α2) where pi = β2/(β2 + ni/1000). To complete the

model, one needs to assign a prior distribution to the latent authorship

indicators {zi}. It is assumed zi ∼ Bernoulli(0.5) which means that zi

from the prior is equally likely to be 0 or 1.

The JAGS script for the disputed authorship problem is shown below.

The data is structured so that N1 papers are known to be written by

Hamilton, N2 papers are known to be written by Madison, and the

authorship of the remaining N3 papers are in doubt. The data includes

the number of occurrences of the word “can” and the total number or

words in each group of papers. Note that, as in Section 13.2, weakly

informative priors are placed on the gamma priors for α1, β1, α2 and β2.

 
modelString = " 
model{ 
for(i in 1:N1){ 
 p1[i] <- beta1 / (beta1 + n1[i] / 1000) 
 y1[i] ~ dnegbin(p1[i], alpha1) 
} 
for(i in 1:N2){ 
 p2[i] <- beta2 / (beta2 + n2[i] / 1000) 
 y2[i] ~ dnegbin(p2[i], alpha2) 



} 
for(i in 1:N3){ 
 theta[i] <- equals(z[i], 0) * alpha1 + 
 equals(z[i], 1) * alpha2 
 gamma[i] <- equals(z[i], 0) * beta1 + 
 equals(z[i], 1) * beta2 
 p[i] <- gamma[i] / (gamma[i] + n[i] / 1000) 
 y[i] ~ dnegbin(p[i], theta[i]) 
 z[i] ~ dbern(0.5) 
} 
alpha1 ~ dgamma(.001, .001) 
beta1 ~ dgamma(.001, .001) 
alpha2 ~ dgamma(.001, .001) 
beta2 ~ dgamma(.001, .001) 
} 
"

Using this script, a sample of 5000 draws were taken from the

posterior distribution and Figure 13.17 displays posterior means of the

classification parameters z1,..., z10 for the ten disputed authorship

parameters. Since zi = 1 if the author is Madison, this graph is showing

the posterior probability the author is James Madison for each paper.

Note that most of these posterior means are located near 0.5, with the

one exception of Paper 4 where the posterior probability of Madison

authorship is 0.174. So really one has not learned much about the

identity of the true author from this data.



FIGURE 13.17

Posterior means of classification parameters for authorship problem using rates of the filler word

“can”.

But we have only looked at the frequencies of one particular filler

word in our analysis. In a typical study such as the one done by

Mosteller and Wallace (1963), a number of filler words are used. One

can extend the analysis to include a number of filler words; the

approach is outlined below and the implementation details are left to

the end-of-chapter exercises.

Suppose yw
1i denotes the number of occurrences of the word w in the i-

th paper written by Hamilton. Similarly, yw
2i denotes the word count of

w in the i-th paper written by Madison and yw
i  denotes the word count

of w in the i-th paper of disputed authorship. It is assumed that each

word count follows a Negative Binomial distribution where the

parameters of the distribution depend on the author and the word. So,

for example, for a Hamilton paper, yw
1i is distributed Negative Binomial(

pw
1 , αw

1 ) where pw
1 = βw

1 /(βw
1 + n1i/1000). For a Madison paper, yw

2i is

distributed Negative Binomial(pw
2 , αw

2 ) where pw
2 = βw

2 /(βw
2 + n2i/1000).

For a paper of disputed authorship, the count yw
i  will either be

distributed according to one of the Negative Binomial distributions

where the distribution depends on the value of the classification variable

zi.

A JAGS script can be written to fit this model with multiple filler

words. In the script, one defines the matrix variable y1 where y1[i, j]

is defined to be the number of words of type j in the i-th paper of

Hamilton. In a similar fashion one defines the matrices y2 and y where

y2[i, j] and y[i, j] denote respectively the counts of the j-th word of

the i-th Madison and i-th disputed authorship paper. One will be

learning about vectors α1, β1, α2, β2 where each vector has W values

where W is the number of words in the study. As before z[i] denotes

the classification variable where z[i] = 1 denotes authorship of the i-th

disputed paper by Madison. In an end-of-chapter exercise, the reader

will be asked to implement the model fitting using a selection of filler

words. One would anticipate that one would be able to discriminate

between the two authors on the basis of a large group of filler words.



 

13.5  Exercises

1. Federalist Papers Word Study

The frequencies of word use of Madison and Hamilton are stored in

the data file fed_word_data.csv. Consider the counts of the word

“there” in the 50 Federalist Papers authored by Hamilton. Suppose

the count yi in the i-th paper is distributed Poisson with mean

niλ/1000 where ni is the number of words in the paper and λ is the

rate of the word “there” per 1000 words.

(a) Assuming a weakly informative prior for λ, use JAGS to fit this

Poisson sampling model.

(b) Compute a 90% probability interval for the rate λ.

(c) Consider a new essay with 1000 words. By simulating 1000

draws from the posterior predictive distribution, construct a

90% prediction interval for the number of occurrences of the

word “there” in this essay.

2. Federalist Papers Word Study (continued)

Instead of Poisson sampling, suppose the count of the word yi

“there” in the i-th Federalist paper is distributed negative binomial

with parameters pi and α, where pi = β/(β + ni/1000) where ni is

the number of words in the paper and α/β is the rate of the word

“there” per 1000 words.

(a) Using a suitable weakly informative prior for α and β, use

JAGS to simulate 1000 draws from the posterior distribution.

(b) Construct a 90% interval estimate for the rate parameter α/β.

(c) By simulating from the posterior predictive distribution,

construct a 90% prediction interval for the number of uses of

”there” in a new essay of 1000 words.

(d) Compare your answers with the answers in Exercise 1

assuming Poisson sampling.

3. Comparing Word Use

Using negative binomial sampling models, compare the average

word use of Hamilton and Madison for the words “this”, “on”, “his”,



and “by”. Suppose the mean rate per 1000 words is measured by α1/

β1 and α2/β2 for Hamilton and Madison, respectively. For each

word, construct a 90% interval estimate for the difference in use

rates D = α1/β1 − α2/β2. By looking at the locations of these

interval estimates, which words were more often used by Hamilton

and which ones were more likely to be used by Madison? The data

file is fed_word_data.csv.

4. Comparing Word Use (continued)

As in Exercise 3, using negative binomial sampling models, compare

the average word use of Hamilton and Madison for the words “this”,

“on”, “his”, and “by”. If the mean rate per 1000 words is measured

by α1/β1 and α2/β2 for Hamilton and Madison, respectively, suppose

one is interested in comparing the rates using the ratio

R =
α1/β1

α2/β2
.

Construct and graph 90% interval estimates for R for each word in

the study.

5. Basketball Shooting Data

Table 13.3 displays the number of free throw attempts FTA and the

number of successful free throws FT for all the seasons of Isiah

Thomas, a great basketball point guard who played in the National

Basketball Association from 1982 to 1994. This data is contained in

the file nba_guards.csv where the Player variable is equal to

“THOMAS.” Let pj denote the probability of a successful free throw

for the j-th season. Consider the quadratic logistic model

log(
pj

1 − pj

) = β0 + β1(xj − 30) + β2(xj − 30)2,

TABLE 13.3

Free throw shooting data for the basketball player Isiah Thomas.

Age FTA FT Age FTA FT

20 429 302 27 351 287



Age FTA FT Age FTA FT

21 518 368 28 377 292

22 529 388 29 229 179

23 493 399 30 378 292

24 462 365 31 377 278

25 521 400 32 258 181

26 394 305

where xj is Thomas’ age during the j-th season.

(a) By using JAGS with a reasonable choice of weakly informative

prior on the regression parameters, collect 5000 draws from the

posterior distribution on β = (β0, β1, β2).

(b) Construct a density estimate and a 90% interval estimate for

the age h1(β) where Thomas attained peak performance.

(c) Construct a density estimate and a 90% interval estimate for

the probability p that Thomas makes a free throw at age 28.

6. Basketball Shooting Data (continued)

The dataset nba_guards.csv contains the number of free throw

attempts FTA and the number of successful free throws FT for all

of the seasons played by fifteen great point guards in the National

Basketball Association. Let pij denote the probability of a successful

free throw of the i-th player during the j-th season. Suppose the

probabilities {pij} for the i-th player satisfy the quadratic model

log(
pij

1 − pij

) = βi0 + βi1(xij − 30) + βi2(xij − 30)2,

where xij is the age of the i-th player during the j-th season and βi

= (βi0, βi1, βi2) denotes the vector of regression coefficients for the i-

th player.

(a) Construct a hierarchical prior for the regression vectors β1,...,

β15 analogous to the one used for baseball hitters in the

chapter.



(b) Use JAGS to simulate a sample of 5000 draws from the

posterior distribution of the βj and also of the second stage

prior μβ.

(c) For one player, consider the age h1(β) where he attained peak

performance in free-throw shooting. Compare the posterior

distributions of h1(β) using an individual logistic model and

using the hierarchical model.

7. Football Field Goal Kicking

The data file football_field_goal.csv contains data on field goal

attempts for professional football kickers. Let yj denote the response

(success or failure) of a field goal attempt from xj yards. One is

interested in fitting the logistic model

log(
pj

1 − pj

) = β0 + β1xj,

where pj is the probability of a successful attempt. Figure 13.18

displays individual logistic fits for ten kickers in the 2005 season.

These fits were found using weakly informative priors on the

regression parameters β0 and β1 on individual fits for each player.



FIGURE 13.18

Individual logistic model fits for ten professional football kickers in the 2005 season.

(a) Looking at Figure 13.18, do you believe these individual fits of

success probability against distance are suitable for all players?

Explain.

(b) For the player Brown, assuming this logistic model and a

weakly informative prior on the regression coefficients, use

JAGS to simulate from the posterior distribution. From the

output to construct a 90 percent interval estimate for the

probability of success at 30 yards.

(c) Pool the data for all 10 players, and use JAGS to fit from the

logistic model where the probability of success is a function of

the distance. Use JAGS to simulate from the posterior and

from the output construct a 90 percent interval estimate for

the probability of success at 30 yards.

(d) Compare your answers to parts (b) and (c).

8. Football Field Goal Kicking (continued)

In the logistic model predicting success on a field goal attempt

based on the distance in feet, suppose βi = (βi0, βi1) denotes the

regression vector for the logistic model on the i-th player.

(a) Write down a hierarchical prior for the ten regression vectors

β1,..., β10 similar to what was used for the baseball hitters in

the chapter.

(b) Using JAGS, simulate a sample of 5000 from the posterior

distribution of β1,..., β10.

(c) Display the posterior means of the probabilities of success for

all kickers as a function of distance similar to Figure 13.18.

(d) For the player Brown, construct a 90 percent interval estimate

for the probability of success at 30 yards. Compare your

answer to the individual fit (part (b) of Exercise (7)) and the

pooled data fit (part (c) of Exercise (7)).

9. Checking for Overdispersion

In the hitter’s career trajectory example in Section 13.3.4, it was

assumed that the number of on-base events in season yj was

distributed binomial with a specific probability of success pj where



the {pj} satisfy a logistic quadratic model. If one views a scatterplot

of the observed rates OB/PA against age for Chase Utley (Figure

13.7), one notices some variation about the fitted curve. It is

natural to ask if the variability about this line is greater than one

would predict from the binomial model.

(a) Following the example in Section 13.3.4, obtain a posterior

sample from the posterior distribution of β using Utley’s data

and a weakly informative choice of prior distribution.

(b) Compute the posterior mean of β and obtain an estimate for

the on-base probability for all of Utley’s ages.

(c) Write a function to simulate one replicated sample of yR
j  from

the posterior predictive distribution. Compute the sum of

squares of the rates yR
j

/nj about the fitted on-base

probabilities.

(d) Using the function written in part (c), repeat this simulation

1000 times, obtaining 1000 sum of squares values from the

posterior predictive distribution.

(e) By comparing the posterior predictive sample in part (d) with

the observed sum of squares about the fitted curve, comment

about the suitability of the binomial sampling model.

10. Moby Dick Word Study

Project Gutenberg offers a large number of free electronic books

and the gutenbergr R package facilitates reading in these books

into R for textual analysis. Use this package to download the

famous novel Moby Dick by Herman Melville and collect all of the

distinct words in this novel in a data frame.

(a) Divide the words of the novel into 1000-word groups and count

the number of occurrences of a particular filler word in each

group.

(b) Use a negative binomial distribution to model the counts of

the filler word across groups.

(c) Consider the use of a different filler word, and use a Negative

Binomial distribution to model the counts of this new word

across 1000-word groups.



(d) By use of a suitable model, compare the rates (per 1000

words) of the two types of filler words. Construct a 90%

interval estimate for the ratio of rates of use of the two words.

11. An Outlier Model

Suppose one observes a sample measurement data where there is a

small possibility of an outlier. One observes yi which is either

Normal(μ, σ) with probability p or Normal(μ, 3σ) with probability 1

− p. Assume a weakly informative prior on μ and p is Beta(2, 20).

Introduce latent class assignments where zi = 0 or zi = 1 depending

if the observation is Normal(μ, σ) or Normal(μ, 3σ). Use JAGS with

a script similar to used to Section 13.4 to fit this model. The

dataset darwin.csv in the ProbBayes R package contains

measurements on the differences of the heights of cross and self

fertilized plants quoted by Fisher (1960). Compute the posterior

probability that each observation is an outlier. Plot the

measurements against these posterior outlier probabilities and

comment on the pattern in the scatterplot.

12. Another Latent Data Model

Suppose n students are taking a multiple-choice exam of m

questions. As in Section 13.4, suppose there are two types of

students, the “guessing” students and the “knowledgeable” students

who answer each question correctly with respective probabilities of

p0 and p1. The following R code will simulate some data in this

scenario where n = 50, m = 20, p0 = 0.4, p1 = 0.7 and the

probability that a student is a guesser is π = 0.2 (p in the JAGS

script).

Shaded 12

 
set.seed(123) 
p0 <- 0.40; p1 <- 0.70 
m <- 20; n <- 50; p <- 0.2 
z <- sample(0:1, size = m, prob = c(p, 1-p), 
 replace = TRUE) 
prob <- (z == 0) * p0 + (z == 1) * p1 
y <- rbinom(m, size = n, prob)



By use of a latent class model similar to what was used in Section

13.4, simulate from the joint posterior distribution of all

parameters. Estimate values of p0, p1, and π from the posterior and

compare these estimates with the “true” values of the parameters

used in the simulation.

13. Determining Authorship From a Single Word

In the dataset federalist_word_study.csv, the variable Authorship

indicates the authorship of the Federalist Papers and the variable

Disputed indicates the papers where the authorship is disputed.

Following the work in Section 13.4.3 and the JAGS script, fit a

latent variable model using the filler word “from”. Using this

particular word, examine the posterior probabilities of authorship

for the ten papers of disputed authorship. Is this single word helpful

for determining authorship for any of the papers? Repeat this

analysis using the filler word “this”.

14. Determining Authorship From Multiple Words

Suppose one wishes to use all of the filler words “by”, “from”, “to”,

“an”, “any”, “may”, “his”, “upon”, “also”, “can”, “of”, “on”, “there”,

and“this” to determine authorship of the ten disputed papers. Using

the approach described at the end of Section 13.4.3, write a JAGS

script to fit the latent variable model. Collect a posterior sample

from the posterior distribution of the classification variables. Use

the posterior means of the classification variables to determine

authorship for each of the ten variables.
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Appendices
 

 

14.1  Appendix A: The posterior predictive
distribution

In the dining survey example of Chapter 7, it was claimed that the

posterior π(p| Y = 12) ∼ Beta(15.06, 10.56) by recognizing that the

product of the prior and likelihood was proportional to p
15.06−1

(1 −
p)

10.56−1
. Here it is shown that the normalizing constant of the

density is 
1

B(15.06,10.56)
. That is, it is shown that

(14.1)

The more general derivation of the normalizing constant is

presented assuming the prior is p ∼ Beta(a, b) and the sampling

density is Y ∼ Binomial(n, p). Using Bayes’ rule,

π(p ∣ Y = 12) = 1
B(15.06,10.56)

p15.06−1(1 − p)10.56−1.



(14.2)

The key to the derivation is to recognize that

(14.3)

because of the fact that the beta distribution is proper, therefore it

integrates to 1. That is,

(14.4)

 

14.2  Appendix B: The posterior predictive
distribution

π(p ∣ Y = y) =
π(p)f(y∣p)

f(y)
=

π(p)f(y∣p)

∫
p
π(p)f(y∣p)dp

=
Γ(a+b)

Γ(a)Γ(b) p
a−1(1−p)b−1(n

y
)py(1−p)n−y

∫
p

Γ(a+b)

Γ(a)Γ(b)
pa−1(1−p)b−1(n

y
)py(1−p)n−ydp

=
Γ(a+b)

Γ(a)Γ(b) (
n

y
)p(a+y)−1(1−p)(n+b−y)−1

Γ(a+b)

Γ(a)Γ(b)
(n

y
) ∫

p
p(a+y)−1(1−p)(n+b−y)−1dp

=
p(a+y)−1(1−p)(a+b−y)−1

Γ(a+y)Γ(n+b−y)

Γ(n+a+b)

=
Γ(n+a+b)

Γ(a+y)Γ(n+b−y)
p(a+y)−1(1 − p)(n+b−y)−1

⇒ p ∣ Y = y ∼ Beta(a + y,n + b − y)

∫
p
p(a+y)−1(1 − p)(n+b−y)−1dp =

Γ(a+y)Γ(n+b−y)

Γ(n+a+b)
,

∫
p

Γ(n+a+b)

Γ(a+y)Γ(n+b−y)
p(a+y)−1(1 − p)(n+b−y)−1dp = 1.



In Chapter 7, we considered the situation where Y ∼ Binomial(n, p)

and the proportion p ∼ Beta(a, b). One observes Y = y and one is

interested in the posterior predictive distribution of the number of

successes 
~
Y  in a future sample of size m. We provide a detailed

derivation below, showing that this predictive mass function 

f(
~
Y ∣ Y = y) is a special case of the beta-binomial distribution.

(14.5)

 

14.3  Appendix C: Comparing Bayesian models using
a mixture of priors

using a mixture of priors

Chapter 7 considers the situation where the observation Y ∼

Binomial(n, p) and a mixture of beta priors of the form

f
~
Y ∣ Y = y) = ∫ f(

~
Y , p ∣ Y = y)dp

= ∫ f(
~
Y ∣ p,Y = y)π(p ∣ Y = y)dp

= ∫ 1
0 (

m
~y )p

~y(1 − p)m−~y Γ(a+b+n)

Γ(a+y)Γ(b+n−y)

pa+y−1(1 − p)b+n−y−1dp

[constants out = (m
~y )

Γ(a+b+n)

Γ(a+y)Γ(b+n−y)

integral sign] ∫ 1
0 p(~y+a+y−1(1 − p)m−~y+b+n−y−1dp

[Beta integral = (m
~y )

Γ(a+b+n)

Γ(a+y)Γ(b+n−y)

integrates to 1] Γ(~y+a+y)Γ(m−~y+b+n−y)

Γ(a+m+b+n)

[Use Γ(x + 1) for = Γ(m+1)

Γ(~y+1)Γ(m−~y+1)

Γ(a+b+n)

Γ(a+y)Γ(b+n−y)

x! when x is integer] Γ(~y+a+y)Γ(m−~y+b+n−y)

Γ(a+m+b+n)



π(p) = qπ1(p) + (1 − q)π2(p),

where π1 is Beta(a1, b1), π2 is Beta(a2, b2), and q is a constant

between 0 and 1. After observing Y = y, we show that the posterior

density can also be represented as a mixture of two beta

distributions.

One can write the posterior density as

where f(Y = y) is the marginal density of Y evaluated at Y = y.

One finds the marginal density of Y by integrating out p from the

joint density of (Y, p). By performing several calculations similar to

the derivation in Appendix A, one obtains

where B(a, b) is the beta function

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
.

If one substitutes the expression for f(x) in the posterior density,

one obtains

(14.6)

π(p ∣ Y = y) =
π(p)f(Y=y∣p)

f(Y=y)

=
{qπ1(p)+(1−q)π2(p)}(n

y
)py(1−p)n−y

f(Y=y)
,

f(y) = ∫ 1
0 {qπ1(p) + (1 − q)π2(p)}(n

y
)py(1 − p)n−ydp

= (n
y
)[qB(a1 + y, b1 + n − y) + (1 − q)B(a2 + y, b2 + n − y)],

π(p ∣ Y = y) =
{qπ1(p)+(1−q)π2(p)}py(1−p)n−y

qB(a1+y,b1+n−y)+(1−q)B(a2+y,b2+n−y)

= qB(a1+y,b1+n−y)π1(p∣y)+(1−q)B(a2+y,b2+n−y)π2(p∣y)
qB(a1+y,b1+n−y)+(1−q)B(a2+y,b2+n−y)

= q(y)π1(p ∣ y) + (1 − q(y))π2(p ∣ y),



where π1 is a beta density with shape parameters a1 + y and b1 + n

− y, π2 is a beta density with shape parameters a2 + y and b2 + n −
y, and q(y) is the constant

q(y) =
qB(a1 + y, b1 + n − y)

qB(a1 + y, b1 + n − y) + (1 − q)B(a2 + y, b2 + n − y)
.

This shows that a mixture of beta densities is a conjugate density in

that both the prior and posterior densities have the same mixture of

beta functional forms.

Using the Deviance Information Criteria (DIC)

Chapter 12 describes the problem of choosing between a number of

regression models. The deviance information criteria or DIC is a

popular method for model selection. In a general Bayesian model, let

π(θ) denote the prior density, L(θ| y) denote the likelihood, and π(θ|

y) denote the posterior density. Define the deviation to be minus two

times the log likelihood function

D(θ) = −2 logL(θ ∣ y). (14.7)

After one observes the data y, one can summarize the model fit by

computing the posterior expectation of the deviance

D̄ = ∫ D(θ)π(θ)θ. (14.8)

Generally as one chooses a model with more parameters, the value

of D̄ will decrease and so the value of D̄ by itself is not useful in

comparing models with different number of parameters. One has to

balance the value of D̄ with an additional term that measures the



complexity of the model. One can measure model complexity by the

effective number of parameters defined by the expected deviance

minus the deviance evaluated at the posterior expectation:

pD = D̄ − D(θ̄), (14.9)

where θ̄  is the posterior mean.

One defines the DIC as the sum of D̄ and the effective number of

parameters.

DIC = D̄ + pD. (14.10)

When one has a number of plausible models, one computes the value

of DIC from the simulated posterior sample for each model, and

chooses the model with the smallest value of DIC.
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