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Preface to the Paperback Edition

In its formative years, from the 1970s through the 1990s, sabermetrics was
primarily an amateur undertaking. Publications were aimed at a relatively
small audience of baseball fans. To be sure, this ever-growing group of
aficionados brought a lot of sophistication to baseball analysis, and were
constantly looking for statistical insights beyond the listings of the top ten
batters found in popular newspapers and magazines. But their influence on
the baseball profession was very limited. A few consultants like Craig
Wright developed temporary relationships with various teams, but none
were able to stay long enough to create a permanent sabermetrician staff
position. (See Rob Neyer’s November 11, 2002, article on ESPN.com.') All
of this changed, however, in 2002 with the hiring of Bill James by the
Boston Red Sox. With that move, we have seen the admittance of the
foremost proponent of sabermetrics into the top echelon of professional
baseball management. The art and science of careful statistical analysis, it
now seems, had made it into the big leagues.

Since the publication of the first edition of Curve Ball in 2001, we have
been overwhelmed by the positive responses from readers and critics. We’re
pleased with the reception, of course, but we don’t want to rest on our
laurels. Like a pitcher refining his repertoire, we’ve revised, expanded, and
updated the book for its publication in this paperback edition. Several
readers and critics took us to task for the lack of an index and a
glossary.These have been added. And so has a chapter that analyzes the
conventional wisdom of three standard strategies— stealing bases, the
sacrifice bunt, and the intentional walk—in various game situations. An
appendix about tabletop baseball games (formerly available only online)
has also been added to clarify the material about board game models
discussed in Chapter 1. And a significant number of examples from the
original text have been updated with data through the 2002 season,
including its dramatic World Series, as well as the extraordinary
performance of Barry Bonds.

We would like to extend our warm thanks to all of the readers and
reviewers who have been so appreciative of Curve Ball, and especially
those who have taken the time to make valuable suggestions on the book’s
improvement.



Jim Albert
Jay Bennett

January 2003
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Introduction

The public seems to have an insatiable appetite for baseball statistics.
Evidence for this assertion can be found everywhere. Baseball statistics in
the form of box scores, lists of player batting averages, and compilations of
pitcher records are published (and revised daily) in newspapers and on
websites. Sportscasters on television and radio quote them constantly.
Callers to talk radio shows (many of whom probably grudgingly endured
math classes in school) cite them selectively to make a point. Baseball
encyclopedias, annuals, and yearbooks provide row after row of numbers
through which baseball fans can wade (much as Kevin Costner waded
through the corn in Field of Dreams), imbibing the game through statistics.
A true fan can disappear into these books for hours on end to emerge
freshened and enlightened. Even a film as emotional and nostalgic as Field
of Dreams featured Costner quoting the statistics of Shoeless Joe Jackson,
and had James Earl Jones presenting an oration on the meaning of baseball
while cradling a baseball encyclopedia in his arms.

The uses of statistics in baseball vary. Major League Baseball, of
course, is first and foremost a form of entertainment. Statistics on the
players and teams are used to supplement the fans’ enjoyment. Sportscasters
broadcasting a game cite the pitcher’s and batter’s statistics to heighten the
suspense of the confrontation between the two and the possible strategies
each might use to gain an edge. And so it is that almost any situation that
arises in the game presents an opportunity for the color analyst to cite a
related statistic:

1. With an excellent runner on first base, the fan is treated to statistics on
the runner’s percentage of success in stealing second base, the pitcher’s
ability to prevent the runner from attempting the steal, or the catcher’s
success in gunning down runners attempting to steal. Often the viewer or
listener will be treated to all three.

2. When a closing reliever enters the game in the late innings to preserve a
victory, it is de rigueur for the sportscaster to inform the listener or
viewer of the number of times the pitcher has succeeded and failed in
saving the game. Also often required: data on how good the team is at
holding on to the lead.



3. The appearance of a pinch hitter immediately elicits a brief history of the
new batter’s success against the pitcher, and against comparable
pitchers, and against pitchers in this kind of situation....

The leisurely pace of a baseball game not only makes such recitations
possible, it makes them desirable to many fans of the game, an aid to
increasing drama and sustaining interest.

And it’s not only fans who have an interest in statistics. Baseball is both
a vocation for professional athletes and a leisure activity for amateurs. But
in either case, it is a highly competitive and highly measurable activity, and
it is only human nature for those who are involved to want to know exactly
how well they are doing. Baseball statistics fulfill this “yardstick” role for
players, of course, but also for a team’s management (owners, managers,
and coaches, for example). They use statistics in making strategy decisions
on the field, in planning player development programs, and in putting
together teams. And on the business side of the professional game,
certainly, baseball statistics provide ammunition in salary negotiations.

Off the field, gamblers have long been interested in baseball, today
making bets to the tune of $30 million dollars annually (Total Baseball, p.
667). Analyzing the statistics of the game to gain an edge is a necessity in
wagering. While football overtook baseball in the gambling arena (with
three times the amount wagered on baseball in recent years), baseball has
provided a gaming venue that is totally dependent on statistics—no actual
play required! In the early 1980s, a small group of baseball enthusiasts
began to gather annually at a restaurant in Manhattan (La Rotisserie
Frangaise) to draft teams for every new baseball season. While the names
of the players and their statistics were all real, the teams and the league
itself were a complete illusion, the dream of fans who wanted to act out the
fantasy of being a major-league general manager. The basic game was (and
is) very simple. Each player drafts a team of baseball players, taking names
from the 30 major-league teams. Throughout the year, the actual statistics
for the players are counted for the fantasy teams that drafted them. At the
end of the season, using a variety of scoring algorithms, the team with the
best stats is declared champion. Rotisserie Baseball (or Fantasy League
Baseball) has so expanded in popularity that next to stock market analysis,
it may be the most widespread application of statistics in the United States.
The concept has expanded to Fantasy League Football, Fantasy League



Basketball, even Fantasy League NASCAR Racing (so we are told). To us,
at least, this is a unique idea: statistics spawning an entertainment industry!
Unlike other major sports, in which interest in statistics is confined

almost exclusively to the season in which the games are being played,
baseball discussions appear in the media throughout the year. In a sense, the
baseball off-season, with its own schedule of awards and winter meetings
leading up to spring training, has a life of its own. The merits of various
awards (Cy Young, MVP, and Rookie of the Year) and honors (election to
the Hall of Fame) are debated annually in statistical terms. (Bill James
wrote an entire book, The Politics of Glory, on the subject of Hall of Fame
election.) Off-season trades are evaluated with reference to player statistics.
Multiyear, multimilllion-dollar contracts are analyzed in terms of stats.
Clearly, it is statistics that provide the fuel for hot-stove leagues (which
have expanded from the neighborhood tavern to talk radio). In the dead of
winter, it might be said, statistics can keep the game alive.

Given our inundation in baseball statistics, given the year-round
attention thousands devote to the topic, one may wonder what in the world
we hope to add in this publication. To put it simply, we wish to contribute a
statistician’s perspective to this massive collection of data. This statement
may give you pause. You may ask who is collecting all this data except
statisticians, and once the data have been collected, sorted, and totaled—
clearly, something that’s already been accomplished—isn’t the statistician’s
job done? Actually, for a statistician, once the data have been compiled
(whether it’s baseball data, medical data, education data, whatever), the job
has only started. It is the statistician’s aim to understand the underlying
structure in a data set and to elicit the truths hidden within it. The
inspiration and imagination needed to accomplish this requires a kind of art
from the statistician, a reason why the pro forma production of pie charts,
bar charts, and t-tests is often ineffective in statistics, and indicative of poor
statistical analysis.

At this point, we have to make a difficult and maybe boastful-sounding
distinction in order to express what we mean when we talk about a
statistician’s perspective. It may seem paradoxical, but most sports
statisticians are not statisticians. We know that sounds like most chocolate
candy is not candy, but bear with us. We use the term “sports statisticians”
to refer to those people who work for sports teams, sports leagues, and
media covering sporting events and whose main job is to record data from



the sporting event, summarize the data in totals and averages, monitor
records, and identify interesting patterns in the data that might be used by
broadcasters or by teams in bargaining with players. Although somewhat
dated now, in 1978, Arthur Friedman, a sports statistician for many New
York teams including the Mets, Rangers, Knicks, and Jets, documented the
basics of the job in The World of Sports Statistics. We guarantee that you
won’t find any references to linear regression or standard deviation in
Friedman’s description of the world he inhabits. Yet these are among the
most basic tools and terms taught in statistics courses in high school and
college, and the on-the-job tools of the professional statistician.

Sports statisticians do an excellent job of addressing the information
needs of their audience: management, athletes, broadcasters, and fans.
However, this audience is unaware of or indifferent to the fact that
statistical analysis can be performed at a higher level—and one that can be
very rewarding because it can lead to new levels of understanding. We are
reminded of a story once told by Bud Goode, a successful consultant for the
NFL and a syndicated columnist on sports statistics. While he had great
success in selling his services to the NFL, Goode found great resistance in
persuading baseball management of the value of his work. Meeting with the
Los Angeles Dodgers, he told Walter Alston, their Hall of Fame manager,
that through his statistical analysis he could gain the Dodgers half a run per
game—a sizable increment. Alston described this wondrous promised result
to one of his coaches, Danny Ozark, who responded, “How do you score
half a run?” Now, Ozark was never known as a deep thinker about numbers.
“Half this game is 90 percent mental,” is only one of a full page of
Ozarkisms from Baseball’s Greatest Quotations. Still, it does give a picture
of the circumscribed horizon of many people toward more sophisticated
uses of statistical techniques. To paraphrase another Ozarkism, too often
this audience’s limits are limitless when it comes to statistics.

Because of the limited demands of fans, players, and management,
sports statisticians have not found it necessary to employ or even be trained
in standard statistical applications or theories. As Goode discovered, being
too sophisticated about the subject can actually be a deterrent. Nonetheless,
innovative statistical research has been and continues to be done with
baseball data. At first, professional statisticians, interested in sports
statistics but left unsatisfied by the analyses in the national media, began
exploring baseball data on their own. Then, in the 1950s, out of their love



for baseball and statistics and for the sheer fun of it, professionals began to
apply their skills to baseball data. Soon their results were published in
conference journals and in professional journals.

Only rarely have these works caught the attention of the media and
thereby the public. In the past, the majority of professional statistics
colleagues looked somewhat askance at these efforts, not unlike parents
who chastised their children for ignoring their studies to play baseball (in
past generations, of course, before ballplayers were multimillionaires).
Recently, however, this attitude has changed. Along with other scientific
pursuits, the statistics profession has found itself somewhat isolated from
the public, to whom its methods appear arcane and its goals at best a
mystery. What better way to reconnect to the public (and especially the
nation’s youth) than through the application of statistics to sports? In the
1990s, the American Statistical Association created a section on Statistics in
Sports, and the International Statistical Institute (ISI) created a Sports
Statistics Committee.

As described in Jay Bennett’s snapshot review of baseball statistical
research in Statistics in Sport, advanced use of statistics has not been
applied exclusively by professionals. Members of SABR, the Society of
American Baseball Research (the root of the term “sabermetrics™), also
recognized deficiencies in the presentation of baseball statistics. By means
of its Baseball Research Journal and By the Numbers newsletter, a
dedicated coterie of members have made intriguing analyses of baseball
data. Several of these sabermetricians (Bill James, Pete Palmer, and Craig
Wright, among others) have gone on to build careers out of the analysis of
baseball statistics. The rigor and understanding of statistical theory
displayed by sabermetricians (professional or non-professional) in their
publications can vary wildly, from the level of a talk-radio telephone caller
to that of a professional statistician. (Indeed, many professional
statisticians, ourselves included, are members of SABR.) But the impulse to
bring more sophistication to analysis of the data has certainly done a lot to
broaden the appeal of statistics.

What differentiates the work of professional statisticians (and many
sabermetricians) from that of sports statisticians? In short, sports
statisticians do not apply statistical models to data. Their analysis generally
consists of summing numbers, finding averages, making comparisons of
these computed numbers, and perhaps inventing a new formula based on



the raw data (Slugging Percentage being an early example). At the highest
level, the work of the sports statistician would be described by a
professional statistician as exploratory data analysis, looking for patterns in
baseball statistics. For professionals, statistical models are the key. They
provide the means of getting to the truth behind the data. By applying
statistical models, professional statisticians can perform confirmatory data
analysis, calculating the degree of confidence to which a pattern or
statement can be said to be true.

The primary goal of this book is to provide insights that can be gleaned
when statistical models are applied to Major League Baseball data. In our
own research and in the work of others, we have found that this type of
investigation sheds new light on the game, and increases our admiration for
those who participate in it, and especially those who excel. Our research has
also given us an increased appreciation for the power of advanced statistical
techniques, and thus the secondary objective of the book: to convey this
appreciation for statistics to the reader. The book does not just recite
numbers, provide lists of players, and recount a litany of astounding results;
it also describes the logic that leads us to conclusions that have a statistical
basis. In this way, we hope that the reader will gain a better understanding
of statistics in general.

Many of you are probably more familiar with statistical models than
you realize. One of the more common examples is a simulation model.
Tabletop baseball board games use simple statistical models as their
foundations. So, it is only fitting Chapter 1 is in large part a discussion of
these games, which have been familiar to many of us since childhood.
Chapter 2 moves on to a brief overview of some common baseball statistics,
but presented from a new perspective. The chapter will introduce a number
of data analysis concepts that will prove to be useful in the remainder of the
book.

In the next set of chapters, we make the crucial distinction between
ability and performance. Chapter 3 introduces the distinctions between
these concepts with respect to getting on base. These basic concepts are
then extended to examine two issues much discussed among baseball fans.
Chapter 4 looks at the significance of breakdown statistics for different
batting situations (e.g., facing a righty pitcher vs. a lefty, hitting at home vs.
away). These numerical darlings of broadcasters are the bread-and-butter
statistics of pre-game and post-game shows. However, the restricted nature



of the categories often leads to small sample sizes, leading us to ask
whether the observed differences are truly significant or just the product of
chance. Another favorite of broadcasters is the batting streak, which we
focus on in the next chapter. Statistics are used to identify who is hot and
who is not in a given game (or week or month or season), and some players
are identified as being generally streaky hitters. They do not hit equally well
over a season, instead tending toward hot spells and cold spells. Chapter 5
examines how we might determine whether a player is a streaky hitter, or
whether these streaks are random occurrences.

In the middle chapters, we shift gears a bit. The basic subject remains
batting, but where earlier chapters stuck to traditional measures of hitting
like Batting Average, we now examine some of the alternatives that have
been suggested by researchers in recent years. Chapter 6 presents a
thorough description of how we can compare these measures and provides a
test for the significance of their differences. Most of these alternatives were
developed from an intuitive understanding of run production, in which the
researcher starts with a “common sense” explanation for how teams get
runs. In Chapter 7, we look at some models that use the data from baseball
history to develop measures of batting performance. Chapter 8 starts with
yet another approach, presenting a model based not on intuition or data, but
on a logical construction of the probabilities of scoring runs. This
“simulation model” can be used to provide support for two simpler models,
which are then compared in their capacity to measure the batting
performance of individual players.

As we move into the late chapters, we start to consider those elements
of the game that contribute to victory. In Chapter 9, we investigate the
wisdom of some of the time-honored strategies—the steal, the sacrifice
bunt, and the intentional walk. In Chapter 10, we look at the concept of
clutch hitting—that is, getting a hit at a critical moment, when the stakes for
winning or losing a game are at their highest. While the existence of the
ability to hit in the clutch has been much debated, a fan knows a clutch hit
when he or she sees one. The question is, can the value of a clutch hit be
quantified not just with respect to run production, but also as to how it
actually contributes to winning the game?

Most of the chapters up to this point address different ways to evaluate
what players or teams have done in the past, and how this past performance
relates to ability. In Chapter 11, we examine how models can be used to



make predictions on the seasonal performances of players and teams, as
well the future career achievements of players. Chapter 12 makes a final
statement about the influence of chance on the ultimate goal of every team,
winning a World Championship. We always think of the World Series victor
as the best team in baseball, but you may have a new sense of the role of
chance by the end of this chapter.

It has been said that the primary difference between a successful minor-
league hitter and a successful major-league hitter is the ability to hit the
curve ball. All professional hitters (major or minor league) can hit a fastball
when they are prepared for it. But in order to advance to the top level, the
player must master the skill of hitting the curve. The same can be said of
baseball statistics. The average fan gets a great deal of information on
statistics from newspapers, magazines, television, radio, and web sites. But
to see the truth behind the numbers, the fan’s ability to analyze data must be
raised to a higher level. He or she must master not just the records and
averages printed on the sports page, but some of the models we describe in
Curve Ball, and above all else, as we reiterate in Chapter 13, the role of
chance in the game.
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Chapter 1
Simple Models from Tabletop Baseball
Games

Jim Albert and Jay Bennett

Two boys stared out the window at the rain-swept streets. It looked like a
long afternoon with nothing to do. If this were today, the boys would have
hurried to the nearest available TV or computer to play the latest electronic
game, but this was the 1950s, when Nintendo could only have been another
monster intent on devouring Tokyo. Baseball was still the dominant sport in
America, and if you couldn’t play baseball outdoors, the next best thing was
baseball indoors.

All-Star Baseball (ASB)

The closest equivalent to High Heat Baseball back then was the Cadaco
board game All-Star Baseball (ASB). The boys opened the box and started
dividing up the players into the American League and National League
teams. The instantly recognizable players were placed in the starting
lineups. Mickey Mantle, Willie Mays, Duke Snider, and Hank Aaron, all
current stars, were snapped up immediately. Then there were the great old-
time players their fathers had eulogized— legends like Babe Ruth and Lou
Gehrig. These guys had to be included as well.

The lineups shaped up beautifully at first, but then choices started to
become difficult. Other old-time players were not so well known. And
many of the current players were familiar from baseball cards, but they
were not titans, not obvious choices like Willie, Mickey, Hank, and the
Duke. The game did not come with ready-made lineups or even tables of
batting averages as current electronic games do. How were the boys to
choose the remaining players?



Although they weren’t conscious of it, what they did next was an
intuitive form of data analysis. At the heart of All-Star Baseball were the
disks representing the batting abilities of individual players. A rough replica
of an ASB disk, in this case for the incomparable Babe Ruth, is shown in
Figure 1-1. When the ASB version of the Babe came to bat, his disk was
placed under a spinner. With a flick of the finger, the mighty batter swung,
with the result determined by where the pointer came to rest (after reference
to a chart on the giant scoreboard dominating the field). Most results are
clearly understood from the legend in Figure 1-1; note, however, that GB
and FB are ground-ball and fly-ball outs, respectively.

BABE RUTH
T T
A 3 -'"ll k .,
yd N 5 b
Y !
. i 10 {_/‘\_
o : \ / AN
4 Yol f e K ;
PN P S T N 1 HER 8 FR
o e '\.\ -.d—"‘
[0 T~ \( e 2 GB % BB
/ = | 3 FB 10 K
| - { a
. : |
| 4 | e 4 FR 11 2R
| { |
\ \ iz 5 3B 12 GB
r ", A = f
) N 6 GR 13 IR
\ 7 ’,//\‘\% ;x\:\ “‘m ,-'"l "
d - ) "
\ S S \\\\ 12 Y 7 1B 14 FR
- r |
\{.-/ 6 _g'; II ./.-
AN /11 ] g \\”)/
™, I | r
v, 14 | >
e ' 7
~d |

Figure 1-1 Replica ASB disk for Babe Ruth.

The pie slices on the disk were in effect a visual representation of
Ruth’s ability. Because they were experienced ASB players, the boys could
quickly see why the Babe was everything their fathers had claimed. The
slice labeled 1 may not look large, but compared to any other player’s 1
slice, it was enormous. Are triples (slice 5) really that rare, or was Ruth just
slow? (Of course they are rare.) And look at those two expansive 9 slices
for walks. Pitchers were fearful of Ruth ... with good cause.



Ruth was a player apart from all the others, and a natural choice for the
starting lineup. Choosing other players was not so easy. What about a
starting first baseman for the National League? Two candidates, Gil Hodges
and Bill Terry, looked promising. Hodges was well known to the boys, an
All-Star for the powerful Brooklyn Dodgers. Terry was not familiar, having
retired at the conclusion of the 1936 season, after 14 years with the New
York Giants.To settle the question, the boys instinctively made a direct
visual comparison of pie slices. Of course the first comparison was for the
slice numbered 1, the one and only slice for home runs. Figure 1-2 presents
a doughnut plot of the Hodges and Terry disks aligned for this comparison.
(A doughnut plot places one pie chart inside another for ease of
comparison.) Hodges has the definite HR edge (slice 1), but a closer look
shows that, apart from power, Terry does have some real strengths. His
slices for singles, doubles, and triples clearly dominate those of Hodges.
Terry’s walk slices are not as large as those of Hodges, but his strikeout
areas are very small. (He averaged only about 30 strikeouts per season.)
More or less intuitively, the boys saw that their choice came down to
whether they needed a batter to get on base (Terry) or one to drive in runs
(Hodges).

inner GIL HODGES
outer BILL TERRY

1 HRE & FB
2 GB 9 BB
i KB 10 K

4 FB 11 2B
5 3B 12 GB
& GRB 13 in
7 IB 14 FB




Figure 1-2 Comparison of replica ASB disks for Gil Hodges and Bill Terry.
In this brief description of All-Star Baseball, we encountered two basic
statistical concepts:

e Visual presentation is a powerful tool for identifying patterns and
making hypotheses. To the boys, the ASB disks were extremely useful
visual presentations, ideal for quickly assessing players and making
lineup choices. In particular, ASB disks introduced the boys to pie
charts, a graphic representation commonly used in statistics.

e Data often must be converted into a more useful form before
meaningful conclusions can be derived from it. Apart from batting
averages, baseball cards of the 1950s presented only event totals (for
example, the number of home runs in a season or a career). Total
numbers of home runs are important, but how many opportunities
(plate appearances) were necessary to achieve those totals? For the
purposes of the game, this baseball card data had been converted into a
form more useful for modeling what actually happened on the field.
The use of ASB disks (in the form of pie charts) emphasized the
importance of examining player performance in terms of proportions

of opportunity rather than mere count totals. "

Perhaps the most powerful concept presented by All-Star Baseball was
its presentation of a relatively simple but effective statistical model of
outcomes. Again, many of the aspects of this model were picked up by the
boys intuitively. They understood that the spinner was a randomizing
device. The outcome of a plate appearance was a random event affected
only by the proportion of disk space occupied by each possible result. And
this was the rationale for their comparison of slices on the disks: the larger
the slice, the greater the chance of obtaining that result. (Of course, this did
not stop the boys from doing all they could to consciously influence the
outcome: incomplete spins and soft flicks from carefully chosen starting
places prompted numerous protests and calls for “official” rulings.)

The disks presented in Figure 1-2 were created from the career statistics
for Terry and Hodges as shown in Table 1-1. The first column for each
player indicates the number of at-bats (AB), hits (H), doubles (2B), triples
(3B), home runs (HR), walks (BB), and strikeouts (K) given for each player
in the book Total Baseball. The number of singles (1B) can be determined
by subtracting the numbers of doubles, triples, and home runs from the



number of hits. The sum of at-bats and walks is used as the number of plate
appearances (PA), ignoring relatively rare events such as sacrifice flies. The
second column for each player presents the percentage of plate appearances
in which the event occurs. The third column for each player translates each
percentage into degrees of arc. The entire disk has 360 degrees. Thus, the
arc spanned by each type of play is 360 times the appropriate percentage.
For example, a player who obtained 25 home runs in 500 plate appearances
was able to hit a home run in 25/500 or 5 percent of his plate appearances.
To represent this performance on an ASB disk, the HR slice (slice 1) would
span 5 percent of 360 degrees, or 18 degrees.

Table 1-1 Converting Baseball Data into All-Star Baseball Disks

BILL TERRY GIL HODGES

Piay Noumber Parcent Degrees Number Parcent Degreas
AB 6428 . . Q30 . .
H 2193 * . 1921 *

18 1554 22.3% aq 1208 15.2% 55
2B 373 5.4% 19 295 2. 7% 13
3B 112 1.6% & 42 0.6% 2
HR 154 2.2% 8 370 4,6% 17
BB 537 7.7% 28 943 11.8% 43
K 449 &.4% 23 1137 14 3% ol
FB 2272 3Z2.8% 117 2383 29.9% 108
GB 1514 21.7% 78 168G 19.9% 72
PA £955 100.0%: 360 7973 100,0%: 360

The only characteristic of the disks which is not determined is the split
of outs. Strikeouts are determined directly from the data as shown in Table
1-1, but there are no data on ground-ball and fly-ball outs. Past disks appear
to assume that 60 percent of outs from batted balls are fly-ball outs (FB)
while the remaining 40 percent are ground-ball outs (GB). This assumption
was used in the construction of the replica disks in Figure 1-2 and could be
used for any player from data in a standard baseball encyclopedia or on the
reverse of a baseball card.



To use a technical statistical term, All-Star Baseball models the result of
each plate appearance as an outcome from a multinomial distribution. A
multinomial distribution has a finite set of possible outcomes, each with a
fixed probability of occurrence. Each occurrence is a random result from
this set, dependent only on the probabilities. In ASB, the set of all possible
occurrences are enumerated on the playing field. Based on the individual
disks, each batter has his own multinomial distribution defined by his
unique set of probabilities. Table 1-2 presents the multinomial distribution
represented by Bill Terry’s disk. For each outcome, the table presents the
arc (in degrees) spanned by the outcome on the disk. Some occurrences
have more than one slice on the disk (undoubtedly to discourage creative
spinning), so the probability is the sum of the arcs for each slice. The arcs
are then converted to probabilities by dividing the arc degree values by 360
(the number of degrees in a full circle). The basis for this conversion is that
when the spinner is struck, every direction or point on the disk’s
circumference has an equal chance of being the result—the point at which
the spinner comes to rest. We can collapse the list of ASB results in Table 1-
2 into two important categories, each consisting of several play results:

Table 1-2 Conversion of Bill Terry’s Replica ASB Disk into Multinomial and Binomial
Probabilities



DISK MULTINOMIAL BINOMIAL

Result Nomber Degreas Individual Tatal Probalbility fesulf

1B 7 40.2 1116

1B 13 40.2 111& 223

2B 11 12.3 0536 054

3B 5] 5.8 0161 0la

HR 1 8.0 0221 022

BB 9 13.% 0385

BB 9 139 L0385 077 392 On-Base

K 10 11.6 n3zz

K 10 11.6 0322 a4

GB 2 26.1 0725

GB & Z6.1 0725

GB 12 26.1 0725 217

FB 3 29.4 D8LE

FB 4 29.4 D815

FB 8 29.4 LELE

FB 14 29.4 DELS 326 H0a Dut
360 PA

1. On-Base: the single, double, triple, home-run, and base-on-balls results.

2. Out: the fly-out, ground-out, and strikeout results.

If we just consider all of the results split between just these two categories,
we have reduced our multinomial distribution (a distribution over many
categories) into a binomial distribution (a distribution over exactly two
categories). The probability of occurrence for each of these two events is
just the sum of the probabilities for each of the results contained within the
individual event categories. For example, the probability of getting on base
in a plate appearance is simply the sum of the individual probabilities for
the single, double, triple, home-run, and base-on-balls results. Table 1-2
presents the final numerical results of this categorical distillation for Bill
Terry in ASB.



We can see this intuitively by examining a player disk. In ASB, the
batter gets on base whenever the spinner stops in a single, double, triple,
home-run, or baseon-balls slice. We could reposition all of these slices so
that they are next to each other.We would then have one segment of the disk
with On-Base results and one with Out results. The block of On-Base slices
contains an arc that is the sum of the arcs for each of the single, double,
triple, home-run, or base-on-balls slices. Thus, on any single spin, the
probability of obtaining an On-Base result is the sum of the probabilities of
the individual results which compose the block. Figure 1-3 demonstrates
how Bill Terry’s disk in Figure 1-2 can be re-arranged to create the On-Base
and Out mega-slices.

BILL TERRY

1 HR 8 FB
2 GB 9 BB
i FR 10 K

4 FB 11 2B
5 3B 12 GE
6 GB 13 1n
7 1B 14 FB

Figure 1-3 Realignment of Bill Terry replica ASB disk into On-Base (light) and Out (heavy) mega-
slices.

Model Assumptions of All-Star Baseball

ASB is a very simple model of baseball. It is accessible as a game for
children of elementary school age because it simulates only the hitting
ability of different players. Let us list some of the assumptions made by the
model:



* Defensive fielding ability has no effect on the outcome of a plate
appearance.

e A hitter’s ability never changes.

e The ball park has no effect on the game.

e Weather conditions have no effect on the game.

o All players have the same ability to steal and run the bases.

e All hitters have the same ability to bunt and execute the hit and run.

e The pitcher has no effect on the outcome of a plate appearance.

This last assumption had a very curious effect on managerial strategy in
the game. Versions of ASB in the 1950s included batting disks for pitchers.
Because the ability of the pitcher to get batters out was not modeled in the
game, managers chose pitchers purely on their ability to hit. (Don
Newcombe of the Brooklyn Dodgers, a lifetime .271 hitter, was a particular
favorite of ours. If Babe Ruth had been listed as a pitcher as well as an
outfielder, there would be no question who would pitch the entire game
without relief.) Of course, since the game came only with the best players
from the past and present (1950s present, that is), the manager could also
opt for the strategy of replacing the pitcher in every plate appearance. Why
let the pitcher bat when you had second-tier stars like Jackie Jensen or
Minnie Minoso just sitting on the bench? Actually, if one thought of the
board game as an actual All-Star Game, this last strategy was the ultimate in
realism.

The inclusion of pitchers in All-Star Baseball took a bizarre turn with
the coming of the designated hitter rule. Pitcher disks were still part of the
package, but were blank except for a photograph. As a critic of the DH rule
and its elimination of that wonderful rarity, a clutch hit by the pitcher, at
least one of us felt cheated by this turn of events in ASB. The pitcher’s spot
was always taken by a DH. Replacing information (the pitcher’s hitting
ability) with a colorful graphic photograph was an unfortunate sign of the
times, foreshadowing the arrival of computer sports games, which hide their
models behind eye-catching graphics.

All-Star Baseball was developed in 1941 by Ethan Allen, a former
player. It lasted for decades, but now is out of print, having finally
succumbed to the problem of not being realistic enough for adults and not
exciting enough for today’s generation of children.



The APBA Model: Introducing the Pitcher

The most obvious deficiency of All-Star Baseball as a model was the
absence of any effect from pitching on outcomes at the plate. Successors to
ASB provided a wide variety of innovations to baseball simulation, but
generally they can be distinguished by the various ways in which they
integrated pitching into their models. In looking at some of these other
games, we will focus on this aspect of their models.

APBA Baseball, released in 1951 and still going strong, was the first
tabletop game to take the effect of pitching into account. Each player
(including pitchers) has a card simulating his batting record. Results are
generated by tossing two six-sided dice. Each card has 36 equally probable
results as determined by the toss of the dice. Basically, the system is the
same as ASB, but with ASB disks replaced by cards and the spinner
replaced by two dice.?

However, APBA Baseball introduced a level of complexity not found in
ASB. Where ASB had a single table of reference to determine the play
outcome, APBA Baseball has eight charts, one for each of the eight possible
on-base situations:

e Nobody on.

e Man on first.

e Men on first and second.
e Men on first and third.

e Man on second.

e Men on second and third.
e Man on third.

* Bases loaded.

Within each chart, the outcome could be altered depending on the
defensive ability of the team in the field and the ability of the pitcher. The
abilities of pitchers are represented by different grades: A&B (best), A&C,
A, B, C, or D. (APBA later upgraded its system in a “Master Game”
version; it follows a similar scheme, but with expanded pitcher grades. The

analysis described here refers to the earlier version of the game.) Depending
on the base situation, the pitcher grade can change certain outcomes of a



single into an out. Additional ratings were given to pitchers for their
propensity to strike out or walk batters. The W (walk) rating could be
particularly devastating; with runners on first and second, it changed a
double play into a base-on-balls. We will focus only on the pitcher grades
here.

Table 1-3 provides examples of pitchers with their APBA grades and
key statistics for the season rated. At the top of the list is Joe Wood, who in
1912 had one of the greatest pitching seasons in baseball history. In
recognition of this, APBA awarded him A&B—its highest possible pitcher
rating. That year, Wood led his Boston Red Sox to a dramatic eight-game
World Series victory, with one game ending in a tie when it was called
because of darkness after 11 innings, and a Boston victory in the final game
in extra innings with Wood appearing in relief! (Wood deserves more
attention than he gets these days: after a brief but spectacular pitching
career, his smoking fastball deserted him, and in 1915 he converted to an
outfielder. He had always been a good-hitting pitcher; he had a .290 batting
average to supplement his pitching in the golden year of 1912. He was an
outfielder for the 1920 World Champion Cleveland Indians, and at the end
of his career, from 1932 to 1942, was a baseball coach at Yale University.)

Table 1-3 Examples of Pitcher Grades in APBA Baseball

Grade Fitcher Season ERA Wins Losses
AEB Joe Wood 1912 1.91 34 5
AEC Dizzy Dean 1934 2.65 30 !
A Jim Falmer 1973 2.40 22 5
B Robin Robarts 1980 3.02 20 11
H Allie Reynolds 1950 3.73 16 12
1] John Odom 1973 4.50 3] 12

Jay Hannah “Dizzy” Dean’s 1934 season was almost a match for
Wood’s amazing 1912, so APBA gave Dean its second highest grade. Like
Wood, he also led his team, the St. Louis Cardinals, to a world
championship, winning the final (seventh) game—an 11-0 shutout of the
Detroit Tigers. In a continuing parallel, Dean also had a career of comet-
like brilliance and brevity. Unfortunately, he did not have Wood’s hitting
ability as a fallback, but he did have a down-home folksy way of expressing



himself that led to a long career as a broadcaster. “I never keep a scorecard
or the batting averages. I hate statics. What I got to know I keep in my
haid.” (Voices of Baseball, p. 182).

Jim Palmer, like Dean, has continued his association with baseball
through broadcasting. His Cy Young season for the Baltimore Orioles, in
1973, brought him an A grade from APBA. The season was so outstanding
for Palmer that he also placed second (to Reggie Jackson) in the balloting
for Most Valuable Player in the American League.

We couldn’t write a book about baseball without including one of our
boyhood heroes, Robin Roberts. In 1950, Roberts had his first of six
consecutive 20-win seasons. He pitched (and won) a complete game in
extra innings against the Brooklyn Dodgers to capture the pennant for the
Phillies that year. He started only one game in the World Series, losing 2-1
in extra innings when he gave up a home run to Joe DiMaggio. Roberts’s
season was awarded a B grade by APBA.

The pitcher who bested Roberts in that 2-1 World Series game was Allie
Reynolds, who never had a losing record from 1947 through 1954 with the
New York Yankees. However, because he was closer to an average pitcher
in 1950 than in other years, APBA rated him a Grade C pitcher.

Finally, John “Blue Moon” Odom was the weakest starting pitcher on a
great pitching staff for the 1973 World Champion Oakland A’s. Odom had
several fine seasons, but 1973 signaled the end of his career. Odom was
given a D rating for his pitching performance that year.

Table 1-3 and these brief vignettes give some feel for the pitching
grades in APBA Baseball. A&B and A&C are the highest grades, reserved
only for the greatest seasonal pitching performances in baseball history.
Grade A pitchers are definite Cy Young Award candidates and often
winners. Grade B pitchers had very good seasons, perhaps the number-2
pitcher on a very good staff or the ace on a weaker staff. Grade C pitchers
are competent average starters. Grade D pitchers are the weakest
performers.

Table 1-4 summarizes the conversion of results from the pitcher grades.
The only numbers affected by the pitcher’s grade on play charts in APBA
Baseball are results #7, #8, #9, and #10. Each cell of Table 1-4 presents the
conversion of these four results in sequence (#7, #8, #9, #10) for each
pitcher grade in each base situation. S represents a single while O represents
an out. For example, for a Grade B pitcher with a runner on second base, #7



and #9 result in a single while #8 and #10 result in an out. This table is
somewhat of a simplification; the out results with runners on third base
often result in sacrifice flies, for example. The overall effect on batting is
not easy to estimate because it changes for different base situations.

Table 1-4 Effects of Pitcher Grade on Play Results in APBA Baseball

Piteher First & First & Second &

Grade Empty First Second Third Second Third Third Full
ALE 3005 0055 3000 000s 3000 0ooo 0ooo s005
ARG 3005 0005 3000 0505 3000 3000 0500 3005
A 5005 0055 S000 0505 S000 S000 0500 S005
B 50355 S055 5050 S055 5080 0555 30035 S0855

We expect that pitchers with better ratings would produce more outs
than those with lower ratings. Referring again to Table 1-4, a quick sum of
Os across the rows produces 23 for A&B, 21 for A&C, 20 for A, 11 for B, 9
for C, and 0 for D. This provides some support for the ordering of pitcher
abilities found in the table. Another test is for internal consistency within
each column. An examination of the columns of the table indicates that
generally they are consistent: given any cell, the number of out results is
equal to or greater than the number of out results in the cell below it. The
one exception is noted by the two cells in boldface. With a runner on first
base, an A&C pitcher is better than an A&B pitcher. Since we expect a
better pitcher to produce better results in every base situation, this is a
troubling inconsistency (corrected later in the “Master Game” version).

To get a better feel for the effects of pitcher grades, we have to consider
the frequency of results #7 through #10 on player cards. APBA Baseball
was introduced with cards replicating the 1950 season, the year of the first
Philadelphia Phillies pennant in 35 years. In honor of this affectionately
remembered team, we have chosen three of these Whiz Kids to examine the
pitcher effects. Table 1-5 shows the frequency of these results for Del Ennis
(a slugging left fielder not so different from Greg Luzinski), Andy Seminick
(a tough catcher, a 1950s version of Darren Daulton), and Willie Jones
(predecessor to Dick Allen, Mike Schmidt, Scott Rolen, and David Bell at



third base). We have included their nicknames from their APBA cards, a
charming feature not found in other games.

Table 1-5 Frequency of Play Results Affected by Pitcher Grade in APBA Baseball for Three
Members of the 1950 Phillies (the Whiz Kids)

Player #7 #5 #9 #I0
Del “Skinny™ Ennis 2 A 2

Willie “Puddin’ Head" Jones 2 2 2 1
Andy Seminick 2 3 2

For each player, we can calculate the effect of pitching grades within
each base situation. We will use pitching grade D as our standard and

calculate the amount subtracted from each player’s Pr(On Base).® Here are
two examples of this calculation for Del Ennis:

e Del Ennis is batting against an A&B pitcher with runners on first and
third bases. According to Table 1-4, results #7 through #10 all produce
outs. Of the 36 results on Ennis’s card, 8 produce results #7 through
#10 (see Table 1-5 above). So, Ennis has 8/36 = .222 less chance of
getting on base against an A&B pitcher than he does against a D
pitcher. That is,

Pr(On Base vs. A&B) = Pr(On Base vs. D) — .222

when runners are on first and third. Note that this is the maximum
possible effect, since the A&B pitcher has changed every single that
could possibly be affected into an out.

» Del Ennis is batting against a B pitcher with runners on second and
third bases. According to Table 1-4, results #8 and #9 produce outs. Of
the 36 results on Ennis’s card, 6 produce results #8 and #9 (see Table
1-5 above). So, Ennis has 6/36 = .167 less chance of getting on base
versus a B pitcher as compared to a D pitcher. That is,

Pr(On Base vs. B) = PriOn Base vs. D) — .167
when runners are on second and third.

Table 1-6 shows the effect of each pitcher grade on Skinny’s Pr(On
Base) in each base situation. Each cell shows the result of a calculation like
the ones just described. That is, the value in each cell is the difference in



Pr(On Base) between the relevant pitching grade and a Grade D pitcher. In
general, we see that a Grade C pitcher reduces Pr(On Base) about .06, a
Grade B pitcher reduces the probability about .11, and a Grade A pitcher
reduces it about .16. A Grade A&C pitcher shows very little improvement
over an A pitcher, but a Grade A&B pitcher demonstrates a great
improvement in most base situations with a runner on third base.

Table 1-6 Reduction in Del Ennis’s Pr(On Base) in Different Base Situations When Opposed by a
Pitcher with Grade D or Better

Pitcher First and First and  Second and

Grade Entily First Second Third Second Third Third Full
ALE a7 167 187 22 167 22 222 A&7
ALC A67 222 da7 11 A687 A67 111 167
A A6e7 a7 da7 111 167 A&7 111 67
B Jd11 111 111 111 111 056 167 111
C DRE 056 Dalsts 056 056 11 056 056

n (aTalal (ataln! (aTalal ‘ataly WY VO Taln aTatn’

numerical value for the inconsistency described earlier and highlighted in
the shaded cells in Table 1-4. However, the use of actual values for the
frequencies of the #7 through #10 results has unearthed several other
inconsistencies, also identified by boldface entries in Table 1-6. With
runners on first and third, Ennis has a better chance of getting on base
versus a Grade B pitcher than against a Grade C pitcher. However, if we
move that runner on first to second base, the ability of the Grade B pitcher
improves enormously, to such a degree that he is a greater adversary than a
Grade A pitcher or even a Grade A&C pitcher.

Unlike the “Runner on First” inconsistency, which holds for all batters
with a #9 result, the last two inconsistencies are dependent on the
distribution of frequencies of results #7 through #10. If 6we use the
distribution for Willie Jones, these last two inconsistencies disappear. And
then it reappears with Andy Seminick. However, for both of these players,
the maximum effect is reduced from .22 to .19 = 7/36.

In many ways, this model is very similar to ASB’s, in that it is only
hitting that is modeled in great detail. Pitching (and through a similar
mechanism, fielding) influences only selected results. The frequency of
extra-base hits was not affected by pitcher grades. Pitchers were given a



separate indicator if they gave up more walks than average; this rating
turned certain out results into walks.

It should be noted that while the implementation of a pitcher effect was
a major development in APBA Baseball, the use of two dice in place of a
spinner was not necessarily an improvement. Dice and a spinner are
equivalent randomizing devices from a theoretical viewpoint (that is, apart
from trying to influence the spin or using loaded dice). But they are very
different in at least one important respect. The spinner is an analog
randomizing device which can assume any value (direction) on a continuum
between 0 and 360 degrees. Dice restrict randomization to a finite set of
results with a minimum probability that can be represented. This presents
certain problems.

Consider a batter with 7 triples in 500 plate appearances. The proportion
of triples is 7/500 or .014. In ASB, we can easily replicate this performance
on the disk by assigning a pie slice with an arc of 5 degrees (1.4 percent of
360 degrees). In APBA Baseball, on the other hand, the minimum we could
assign to a triple would be one of the 36 paired results on a batting card, or
1/36 = .028. This is almost twice the probability we wish to be represented!
Since the minimum assignment we can make is 1 of the 36 results, we are
stuck with an imprecise simulation of the batter’s ability.

This shortcoming in the APBA model may not seem terribly important
until one realizes that the probability of any event in any situation is
restricted to multiples of this minimum amount, or quantum, of 0.28. That
is, in any situation for any batter an event’s probability can only be one of
the following values: .028 (1 out of 36 results), .056 (2 out of 36 results),
.084 (3 out of 36 results), and so forth. It is true that on many APBA cards
certain dice rolls produce a #0 result, which requires a second roll of the
dice with the results taken from a second column on the card. While we
don’t get into analyzing these cards in this book, we do admit that they
allow for a finer gradation of probabilities, especially for relatively rare
events. And we do acknowledge that APBA’s use of dice rather than a
spinner does avoid certain problems—Ilike spins that end up on the line
between slices. Nonetheless, the point here is that though they may have
certain advantages over a spinner, dice are inherently less precise in
representing performance.



Strat-O-Matic Baseball: The Independent Model

The development of Strat-O-Matic (SOM) Baseball in 1962 provided a new
variation on the pitcher’s effect. Like APBA Baseball, this game uses dice
as a randomizing device, and each everyday player has a separate card that
simulates his hitting ability. In an inversion of APBA Baseball, however,
each pitcher has a card which simulates pitching ability. (A separate
numerical rating is given for each pitcher’s hitting ability.) SOM Baseball
was the first game to give pitching this level of modeling detail.

The mechanism for the game is simple. To initiate a play, three six-sided
dice (one white and two red) are rolled. The white die is used to determine
the card column for the result. Batters’ cards have columns numbered 1, 2,
and 3, while pitchers’ cards have columns 4, 5, and 6. The two red dice are
summed, and the value is used to find the resulting play within the relevant
column. On occasion, an extra randomizing device, a so-called “split deck”
of cards numbered 1 through 20, is needed when multiple play results are
listed for a dice roll. This is similar to the extra column on APBA cards.
(Apparently it is used to increase the precision of the simulation.)

The important element on which to focus is the even split of results
between the batter and the pitcher. Upon closer inspection of pitcher cards,
one finds that the split is actually 50-50 between the batter and the defense
(pitching and fielding). On each pitcher’s card, 28 percent of the resulting
plays require an extra randomization (using the ever-present split deck),
which references the ability of a specified fielder to make a great play or
avoid making an error.

We can summarize the ability of a batter versus a pitcher on the
defensive team as follows:

50% Batter Ability + 50% Team Defensive Ability

In the SOM model, Team Defensive Ability is 28 percent fielding and 72
percent pitching. So the ability of a batter versus a pitcher on the defensive
team is actually:

50% Batter Ability + 50% x (72% Pitcher Ability + 28% Team Fielding Ability)

or



50% Batter Ability + 36% Pitcher Ability + 14% Team Fielding Ability.

An old saying goes that pitching is 75 percent of winning in Major League
Baseball, but it’s less than half that in Strat-O-Matic Baseball.

Let’s examine some of the players we investigated in APBA Baseball.
Checking out a Del Ennis card for the 1950 season we find that 41.7 percent
of the results put Del on base. Allie Reynolds, a Grade C pitcher in APBA
Baseball, faced Ennis in the 1950 World Series. In Strat-O-Matic Baseball,
Reynolds would put a batter on base in 40.1 percent of the results he
controls. Apart from the Fielding Ability of the 1950 Yankees, Ennis has
about as much chance of getting on base from his own batting ability as
from Reynolds’s pitching ability. On the other hand, Vic Raschi, a Grade B
pitcher in APBA Baseball, has only a 33.7 percent chance of putting the
batter on base in the results he controls. In this case, Ennis is much better
off if the white die places the result on his batting card. The difference in
pitching ability between Raschi and Reynolds can be summarized as
follows:

40.1% — 33.7% = 6.4%

That is, of the results controlled by pitchers, Raschi puts batters on base 6.4
percent less than Reynolds.

However, to get the true effect, we must also account for the frequency
that the Pitcher Ability is used (36 percent of the time). So, the overall
effect of using Raschi instead of Reynolds is 36 percent of 6.4 percent,
which equals 2.3 percent. In terms of probability, Raschi subtracts .023
from the probability of getting on base when compared to Reynolds. Note
that this is less than half the effect modeled between these two pitchers in
APBA Baseball when facing Del Ennis.

This discussion has focused only on pitching. However, for the sake of
completeness, we will make a brief foray into fielding, mainly because the
SOM model allows us to do this with little added complexity. Fielders are
given ratings not unlike pitching grades in APBA Baseball. The ratings
range from 1 (the best) to 4 (the worst). As noted earlier, 28 percent of the
results on the pitcher’s card require a new random result based on the rating
of a particular fielder. For example, one such result on a pitcher’s card
references the Fielding Ability of the left fielder. Another random number
(derived from the split deck) is looked up on a fielding chart under the
column for the Fielding Ability of the left fielder. A left fielder with a 1



rating cannot give a batter a hit while a left fielder with a 4 rating gives the
batter a hit 30 percent of the time.

To get a feel for the range of differences in fielding, we will look at a
team with the best possible rating (1) at each position versus the worst
possible fielding team, with a rating of 4 at each position. With a 1 rating at
each position, fielders would give up no extra hits to batters; in terms of the
batting formula above, Fielding Ability is .000. On the other hand (and it
makes us cringe to think about it), if the fielding team had a 4 rating at each
position, on average the Fielding Ability of the team would be .324. That is,
when the Fielding Ability of the worst fielding team is referenced, the batter
gets a hit about 32 percent of the time. Since fielding is referenced in 14
percent of the plate appearances, the maximum effect from fielding is 14
percent of .323, or .045.

The interesting feature of SOM Baseball’s hitting model is that it is
purely additive. To find the probability of a batter getting on base, we need
only add the abilities of the batter, pitcher, and fielders. Consider Del Ennis
in 1950. His Batter Ability is .417. Since this is used half the time, the batter
contribution to the probability of getting on base is .417/2 = .208. If he is
facing Allie Reynolds supported by the best possible fielding team, then his
probability of getting on base is just the sum of their contributions:

208 + .144 + 000 = .352
Replacing Reynolds with Raschi decreases the probability:

208 +.121 + .000 = .329

If we replace the best fielding team with the worst possible fielding team,
both probabilities increase. For Reynolds:

208 +.144 + .045 = .397

and for Raschi:

208 + 121 + .045 = .374

(Note that for simplicity we are ignoring that the fielding rating for the team
is influenced by the fielding ratings for Raschi and Reynolds themselves, a
minor effect.)

Figure 1-4 plots a batter’s probability of getting on base as his ability
increases. The dashed line presents this probability for All-Star Baseball;



this is a 45-degree diagonal, or a line with slope 1, since the x and y values
are always equal: the probability of the batter getting on base is identical to
the batter’s ability in getting on base as described on the ASB disk.
However, in Strat-O-Matic Baseball, the pitcher and fielders, as well as the
batter, influence this probability. For this plot, we have assumed the best
fielding team, which adds O to the probability. Two lines are shown, one for
Allie Reynolds and one for Vic Raschi, in SOM Baseball. We see that both
lines have identical slopes, .5, which is the result of the SOM batter
influence described earlier. The difference in their lines resides in their
intercepts, or starting point: the point at which the line crosses the y axis.
This difference is .023, as described earlier. In fact, if we plotted a line for
any pitcher in SOM Baseball, it would have the same slope (5) but a
different intercept. Thus, the relative skills of pitchers are represented by
shifting the line up or down.

0.5

------ All-Star Boseball
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Figure 1-4 Plots of pitcher effects in Strat-O-Matic Baseball and All-Star Baseball.

The SOM model, in terms of consistency, is an improvement over the
APBA model. The pitcher with better ability will tend to be better in all
situations. The additivity described above guarantees this feature. On the
other hand, something is lost as well: the interaction between pitcher and
batter is not taken into account. In APBA Baseball, the effect of the pitcher
depended on how his characteristics (defined by the pitching grade)
interacted with those of the batter (defined by his batting card). The two



features worked together to produce a result. In Strat-O-Matic Baseball,
these characteristics do not interact; they are completely independent. The
batter has his ability, and the pitcher has his; a certain percentage of the
time one is used and the other is ignored. The two are not fused to produce
a result.

At times this additivity can produce strange effects, particularly with
respect to the frequency of triples and home runs. In SOM Baseball, Robin
Roberts’s 1950 pitching ability is expected to add about 9 home runs and 4
triples for every 1,000 batters faced. This addition is the same whether
Roberts faces Joe DiMaggio, Stan Musial, Whitey Ford, Ozzie Smith, Mark
McGwire, or Randy Johnson. All batters have an equal chance at obtaining
these home runs and triples. However, more so than other events, home
runs are mostly dependent on the power of the batter, while triples are

mostly dependent on his base-running speed.* Other tabletop games have
taken the basic Strat-O-Matic model and added their own wrinkles to it.
Pursue the Pennant adopted the SOM model and added more detailed
results plus other effects. In Ball Park Baseball, the batter can have
exceptions that overrule the result on a pitcher’s card and vice versa.

Sports Illustrated Baseball: The Interactive Model

Sports Illustrated (SI) Baseball was developed in 1972 by David S. Neft,
coauthor6 of The Sports Encyclopedia: Baseball. This tabletop game used a
two-tier or hierarchical approach to produce an interactive model for hitting
in place of SOM’s independent model. In SI Baseball, the manager of the
team in the field rolls a set of three dice to obtain a result on the pitcher’s
chart. The result could be a strikeout, a walk, a single, or “Batter Swings.”
This last result, the most common occurrence, allows the player managing
the team at bat to roll the dice to obtain a play on the batter’s chart.

Each plate appearance is a two-step process. There is a hierarchy of
precedence in the structure of the plate appearance. The pitcher controls the
outcome of the plate appearance until his ability is used to finalize the result
or relinquish control to the batter. Basically, the batter must get past the
pitcher before he is able to use his batting capabilities. Given the nature of
baseball, in which the pitcher does control the game process, this model has

some intuitive appeal.5



Let’s see how this model looks from a probability perspective. The
probability of the batter getting on base in the first step under the pitcher’s
control is calculated as follow6s:

Pr(On Base in Step 1) = Pr(On Base on Pitcher Chart)

Similarly, we can calculate the probability of the batter getting on base in
the second step using his own batting capability:

Pr(On Base in Step 2) = Pr(On Base on Hitter Chart)

However, in order to obtain the overall probability of a batter getting on
base we must combine the probabilities from the two steps. The first step
(attempting to get on base via the pitcher’s chart) is always used, but the
second step (attempting to get on base via the hitter’s chart) is only used
when the “Batter Swings” result is obtained on the pitcher’s chart. Thus, the
probability of a batter getting on base is:

Pr(On Base on Pitcher Chart) +
Pr(Batter Swings on Pitcher Chart) x Pr(On Base on Hitter Chart)

The multiplication of probabilities from the Pitcher Chart and from the
Hitter Chart produce an interaction between batter and pitcher. This is
different from the Strat-O-Matic hitting model, which only adds the effects
from the pitcher and hitter.

Table 1-7 shows the pitcher effects for three pitchers from SI Baseball.
The first column presents the probability that the pitcher puts the batter on
base automatically, without any reference to the batter’s skills. The second
column presents the probability that the “Batter Swings,” requiring a
reference to the batter’s hitting skills. The third column presents (as a
formula) the way these two values are combined by the SI Baseball model
to calculate the probability of a batter getting on base given knowledge of
his hitting skills. Figure 1-5 presents a plot of this formula for each pitcher.
Note that the pitcher effects are all straight lines, but with different slopes
and starting points (intercepts).

Table 1-7 Examples of SI Baseball Pitcher Effects



Priln-Base on Pri{Batter Swings

Pitcher Fitcher Chart) on Pifcher Chart) Pr{iin-Baze)

Rohin Roberts 0.033 0.767 033 + 767 » Pridn-Base on Hitter Chart)

Bobby Shantz 0oLy 0,905 LD+ 900 = Priln-Base on Hitter Chart)

Vida Elue 0.071 0.638 071 + 638 = Pri0n-Base on Hittar Chart)
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Figure 1-5 Plot of pitcher effects in SI Baseball from Table 1-7.

One of the pitchers is our old friend Robin Roberts. The effect shown
here is taken from his career record as it was captured in SI Baseball’s set of
All-Time All-Star Teams for the sixteen original franchises. Roberts made
the squad for the Philadelphia Phillies. As the teams were selected in 1972,
the Phillies are missing many of the franchise’s finest players from the
team’s golden era in the late 70’s and early 80’s. (There’s no Mike Schmidt
or Steve Carlton.) However, it’s safe to say that Roberts, a Hall of Famer,
would still make the squad if it were picked today. Roberts was well-known
for his control. This aspect of his pitching skill is reflected in the low value
for automatic walks and the low intercept of his line.

Bobby Shantz is not well known today, but in 1952, he and Roberts may
have produced the greatest starting pitcher tandem from the same city.
Roberts went 28—7 for the Phillies while Shantz went 24-7 for the



Philadelphia Athletics. Both would undoubtedly have won the Cy Young
Award, but the award’s creation was still four years in the future (and
wasn’t given in both leagues separately for another 11 years). While
Roberts finished second to Hank Sauer, a Cubs slugger, in the National
League MVP balloting, Shantz did win the American League award,
beating out another old friend, Allie Reynolds. While Shantz never had
another year like 1952, he remained in baseball for 12 more years, primarily
as a relief pitcher. He was also noted as a fielder, winning eight consecutive
Gold Gloves. (He probably would have won more, but the award was not
created until 1957, his ninth year in the major leagues.) Overall, Shantz’s
record was good enough to place him on the list of SI Baseball’s All-Time
All-Star Athletics in 1972. Like Roberts, the effect shown here represents
his career record.

Shantz and Roberts provide an interesting comparison. Unlike Roberts,
for Shantz the overall probability of the batter getting on base is greater
than the probability of his getting on base from the hitter’s chart in almost
all reasonable cases. In Figure 1-5, we see that Roberts’s performance
completely dominates Shantz’s performance; every batter has less chance of
getting on base opposing Roberts than opposing Shantz. Indeed, the better
the hitter, the bigger the difference between the effects of Roberts and
Shantz. We can see this by the ever-widening gap between their lines in
Figure 1-5, as hitter skill (represented by the probability of getting on base
from the hitter chart) increases. One can interpret this as saying that good
pitching becomes more important as the skill of the batter faced increases.
Or, good hitters feed off of poorer pitching. This is what we mean when we
say that the pitcher and batter interact.

The third pitcher, Vida Blue, shares some similarities with Shantz. Both
had their best years with the Athletics. Blue had a more significant career,
with more wins and major contributions to several World Championship
teams, but like Shantz he is best remembered for that one great season. In
1971, Blue went 24—-8. He became the first Athletic to win the Cy Young
Award and the first Athletic (since Shantz) to win the MVP Award. The
pitcher effect in the figure represents his performance in 1971. From the
plot we see that Blue had the least control of the three. Against weaker
hitters (e.g. pitchers) with probabilities of getting on base between .1 and .2,
he is better than Shantz but worse than Roberts. However, against better
hitters with on-base probabilities greater than .3, his ability to get batters



out exceeds his control problem and makes him a more difficult adversary
than Roberts.

Table 1-7 and Figure 1-5 were created without consideration of the
fielding team’s abilities. SI Baseball integrates fielding into the pitcher’s
chart. Basically, teams with better fielders decrease the Pr(Batter Swings on
Pitch Chart). This decrease ranges from .010 to .088. Even with the best
fielding team behind him and the worst behind Roberts, Roberts still
dominates Shantz’s performance. We can see this simply by subtracting
.088 from Shantz’s Pr(Batter Swings on Pitcher Chart) = .905 — .088 = .817,
which is still greater than .767, Roberts’s basic value for this probability.
The issue is not so clear between Roberts and Blue. Figure 1-6 shows the
range of fielding effects on Pr(On Base) for Roberts and Blue. The solid
lines identify the pitcher effects for the worst fielding team (high line) and
the best fielding team (low line) for Roberts. The dashed lines perform the
same function for Blue. We see that, for better hitters, the fielding team
behind these pitchers can make a difference as to which is better overall.
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Figure 1-6 The effects of fielding in SI Baseball.

Which Model Is Best?

It is difficult to say which system is best. We both have owned, played, and
still enjoy all of these tabletop games. Much of the model design depended



on their being played for entertainment, and not exclusively, as here, on
how they stand up to analysis. Additional complexity may add to the
realism of the model but detract from its playability. In some ways, this is in
the true spirit of the construction of statistical models, where added
complexity is not included unless it produces a significant improvement in
its picture of reality. Unlike their computer counterparts, the models used in
tabletop games are exposed to the player. Instead of locking the model
inside compiled code, with no one able to review how results are generated,
the developers and publishers of these games have left themselves bravely
open to criticism.

We have reviewed these systems at the most basic level, the probability
of getting on base. Each game also goes into varying detail on the types of
events affected by the pitcher. Strat-O-Matic Baseball pitcher cards vary the
distribution of types of hits depending on the pitcher’s record; thus, pitchers
who give up a lot of home runs (like Robin Roberts) are represented by
cards with a greater probability of home runs. SI Baseball does not do this.
For the most part, pitchers with the same “Batter Swings” probability have
the same effect on all hitters, proportionately decreasing the probability of
each type of hit.

Many of these games have evolved over the years. They have integrated
new effects such as righty/lefty batting effects, ballpark effects, and
performance in critical situations (clutch effects). Strat-O-Matic Baseball
has moved from a basic version to an advanced version to a super advanced
version. APBA Baseball has created a “Master Game.” For simplicity of
exposition, all analysis here has used the most basic version of each game.

This is not a real impediment to our discussion, however, because the
central point has not been the details, but the general nature of the models,
the distinction between models with no pitcher effect (All-Star Baseball),
models with additive pitcher effects (Strat-O-Matic Baseball), and models
with interactive pitcher effects (APBA Baseball and SI Baseball). None of
these systems is perfect, but then what model is? Models attempt to capture
reality to an extent limited by the needs of their users and the data available
to support their validity.

Each model has its strengths and weaknesses. All-Star Baseball has the
least sophisticated model, but its simplicity allows it to be played quickly
and to introduce younger children to baseball rules, history, and even some
important statistical concepts (fractions and pie charts). At the other end of



the scale, Strat-O-Matic Baseball puts the greatest effort into capturing the
details of the distribution of plays for batters and pitchers. However, doing
this with a game system which attempts to derive results from one roll of
three dice produces a model which at times can overestimate the probability
of rare events (home runs and triples by weaker batters). APBA Baseball
and SI Baseball occupy the middle ground. They sacrifice much of the
detail in pitcher effects included in SOM Baseball, but have a more
interesting interactive model between the pitcher and batter. SI Baseball
provides more detail than APBA but at a cost in terms of playability; it
almost always requires two dice rolls and chart references to obtain a play
result.

We will complete the chapter on a note of harmony. Instead of focusing
on differences, let’s examine similarities. All of these games model baseball
as series of events randomly generated from player characteristics. The
games do not model any sort of momentum effect. A pitcher that gets
rocked for a home run has the same chance of getting the next batter out;
his ability is unaffected by the previous unsettling event. Player abilities are
fixed; they have good days and bad days only as a result of the random
variability in the twirl of the spinner or the roll of the dice.

Another common feature of these games is the absolutely precise
information that tabletop game managers have about each player. As we
have shown, proper analysis of player cards and disks allows each tabletop
manager to know exactly each player’s ability to perform. In fact, this may
be the least realistic aspect of these games as models, because real
managers are limited to observations and measurements of player
performance that are the product of ability and chance. In subsequent
chapters, we will discuss some of the implications of chance and random
variability and how we can explore measurements of baseball performance
through the fog of chance and identify true ability and significant effects in
the play of the game.

1 ASB disks were also more complete in their information. Walks were often not presented at all in
baseball cards in the 1950s, while ASB disks provided a graphical representation of the ability to
obtain walks (and thereby a more complete picture of the ability to get on base).

2 More information on APBA Baseball, and on the other tabletop baseball games discussed in this
chapter, can be found in the Appendix to this book.

3 This notation will be used throughout the book. Pr(Event) is the probability that Event takes place.
For example, here it refers to the probability of getting on base.



4 Advanced versions of Strat-O-Matic Baseball make gross adjustments for the HR problem by
designating some hitters as capable of obtaining HRs on the pitcher’s card while others do not.
Essentially, this introduces an interaction effect into the basic SOM model.

5 Interestingly, Kevin Hastings independently developed a modification of the Strat-O-Matic model
with interactive effects. A close examination of the model presented in his Winter 1999 Chance
paper shows it to be basically equivalent to the one used in Sports Illustrated Baseball.
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Chapter 2
Exploring Baseball Data

Jim Albert and Jay Bennett

Baseball data consist of a large number of counts and averages that are
supposedly helpful in evaluating players and describing the game. The
baseball fan is bombarded, inundated, overwhelmed with statistics. It may
be that it is difficult for the fan to understand the relevance of a particular
baseball statistic for the simple reason that there are so many of them
competing for his or her attention. Is it slugging percentage that’s really
important, or on-base percentage?

One job of the professional statistician is to organize and summarize
data effectively. But what does “effectively” mean? First, we want to
present the data with graphs or charts that make it easy to see general
patterns in the numbers. Once we understand the basic patterns in data, we
look for unusual data values (say a Mark McGwire slugging percentage or a
Greg Maddux earned-run average) that appear to deviate from the general
patterns. Taken together, all these methods of organizing and summarizing
data are called data analysis.

Exploring Hitting Data

In this chapter, we introduce some basic tools of data analysis by exploring
some hitting data, starting at the very beginning. A team wins a baseball
game by scoring more runs than its opponent. How does a team score runs?
Essentially it is a two-step process. First, batters get on base by getting hits
or walks, by benefiting from opponents’ errors, or by being hit by a pitched
ball. Second, these runners are advanced to home by subsequent hits, walks,
errors, and hit batters. The best way of advancing runners is by means of a
particular type of hit—a home run—which scores all of the players on base
and the batter. Since it is important both to get on base and to advance



runners, a typical team’s lineup will consist of several types of hitters. The
first and second hitter in a team’s lineup are supposedly good at getting on
base, and the batters in the middle of the lineup are typically powerful
hitters who are good at advancing runners.

A Batch of On-Base Percentages

The standard measure for judging how good a batter is in getting on base is
the On-Base Percentage, abbreviated OBP. Basically the OBP is the fraction
of plate appearances where the batter gets on base. The Major League
Baseball web site tells one how to compute OBP: divide the total number of
Hits (H) plus B97ases on Balls (BB) plus Hit by Pitch (HP) by the total
number of At-Bats (AB) plus Bases on Balls (BB) plus Hit by Pitch (HP)
plus Sacrifice Flies (SF). Using mathematical notation and the above
abbreviations, the formula for OBP is:

H+ BB + HP
AB + BB + HP + SF
Let’s illustrate computing OBP for the 1999 Roberto Alomar. Table 2-1
displays Alomar’s season statistics. We compute his on-base percentage in

the following equation, which tells us that Alomar gets on base roughly 42
percent of the time:

OBP =

Table 2-1 1999 Season Batting Statistics for Roberto Alomar

Af H i) 5H 5F HF
Roberto Alomar 563 182 ag 12 13 7
182 + 99 + 7
OBP = =.422

563 + 99 + T + 13

Now, is .422 a high OBP value? Is it one of the best values among
American League players? How does it compare to “typical” hitters in the
American League? We suspect that Alomar’s value is high, since by
reputation he is known as one of the best hitters in baseball. Common sense
tells us he probably is very effective in getting on base. The question is,
how can we use data to confirm (or not confirm) what common sense tells
us?



The Major League Baseball website lists the OBP values for all 395
American League players who hit during the 1999 season. Looking over the
list, we see many players who had small numbers of at-bats during the
season. We don’t want to compare Alomar with everyone—it would be
inappropriate, for example, to compare him with a part-time player (say, a
fielding specialist) who had only a few at-bats. It does seem reasonable,
though, to compare his OBP value with those of AL players who played
regularly during the 1999 season. We arbitrarily decide that a player is a
“regular” if he had at least 400 plate appearances during the season. (Here
the number of plate appearances is AB plus BB plus HP plus SF.) Using this
definition of “regular,” Table 2-2 shows the OBPs for the 108 regular
American League players in 1999. This table of OBPs is hard to decipher.
To better view these values, we will introduce a few simple graphical
methods that statisticians find useful.

Table 2-2 1999 On-Base Percentages for Regular American League Players

0.330 0.353 0.379 0.427 0.267 0.352 0.358 0.356 0.325
0422 0.335 0.360 0.310 0.351 0.353 0.343 0.372 0414
0.336 0.369 0.304 0.339 0.307 0.312 0.353 0.329 0.426
0.404 0.280 0.366 0.418 0.309 0.311 0.391 0.355 0.315
0.365 0.333 0.377 0.422 0.280 0.405 0.349 0.305 0.33
0.387 0.361 0.328 0.331 0.338 0.341 0.420 0.328 0.358
0.330 0.346 0.373 0.378 0.414 0.361 0.339 0.366 0.39
0.331 0.335 0.354 0.324 0.438 0.447 0.362 0,393 0.397
0.400 0.307 0.346 0.384 0.340 0.405 0.341 0.344 0.343
0.337 0.366 0.287 0.405 0.413 0.363 0.442 0.371 0.435
0.334 0.302 0.308 0.358 0.315 0.327 0.363 0.347 0.315
0.307 0.358 0.336 0.384 0.393 0.357 0.357 0.387 0.354
Simple Graphs

One basic method for organizing and displaying a small amount of data is a
stemplot. This graph might appear odd at first glance, but it is a quick and
effective way of organizing data.

Consider Alomar’s OBP value, .422. Ignore the decimal point and break
the value into two parts, which we call a stem and a leaf—in Alomar’s case,



the stem is 42 and the leaf is 2. (See Figure 2-1.) To draw a stemplot we
first list all of the possible stems as a column and a vertical line to the right
of the column, as shown in Figure 2-2. Then we record the OBP values by
writing down only the leaf value on the right of the vertical line. For
example, suppose we want to record the OBP values given in Table 2-3,
where the stem and leaf for each are shown.

Table 2-3 Some OBP Values with Corresponding Stem and Leaf Values

OBP STEM LEAF
0.330 33 0
0.353 35 3
0.379 37 9
STEM LEAF
42| 2

Figure 2-1 Breaking an OBP into a stem and a leaf.
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Figure 2-2 List of all possible stem values from the data in Table 2-2.



We record .330 (or 33 | 0) by writing a 0 on the 33 stem line, .353 (or 35
| 3) is recorded by writing a 3 next to the 35 stem line, and .379 (37 | 9) is
recorded by writing 9 on the 37 stem line. Remember that each single digit
on the right corresponds to one OBP value. So this stemplot:

28 | 007

corresponds to three players with the following OBP values: .280, 280,
.287.

The stemplot in Figure 2-3 shows us the OBP values for all 108
American League regular players. It may be easier to see the pattern of
OBPs by rotating the stemplot display 90 degrees so that the small OBPs
are on the left. (See Figure 2-4.) This display tells us a lot about the pattern
of OBPs for all American League regulars.
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Figure 2-3 Stemplot of OBPs for 1999 American League regular players.
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Figure 2-4 A stemplot that has been rotated 90 degrees.

The first thing we notice in Figure 2-4 is the general shape of the group
of OBPs. Most of the OBP values are in the .300—.390 range, and a
relatively small number of hitters had OBP values smaller than .300 or
higher than .400. So it is pretty common to have an OBP is the middle
.300 s and we should be somewhat impressed to see an OBP larger than
400 (like Alomar’s) or depressed to see an OBP in the .200 s.

In Figure 2-5, we draw a smooth curve over the OBP values. This
smooth mound-shaped curve is called a normal curve—it’s a popular curve
in statistics for representing a group of measurements. When they are
recorded for large numbers of players, many baseball statistics—such as
batting average, slugging percentage, or earned-run average—will result in
a normal curve.
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Figure 2-5 Stemplot of OBP values with a smooth curve drawn on top.

A related useful display of data is a histogram. To construct this picture
of data, we group the OBPs into intervals of equal width, count the number
of OBPs in each interval, and then make a bar graph where the height of the
bar corresponds to the count in that interval. Suppose in this case that we



decide to group the OBPs in the intervals .260-.269, .270-.279, .280-.289,
and so on. Then we get a picture of the OBPs shown in Figure 2-6.
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Figure 2-6 Histogram of OBPs for 1999 American League regular players.

Note that this histogram gives us the same picture of the OBP data as
we saw from the stemplot, since we are grouping the data in the same way.
The histogram is perhaps a “prettier” display than the stemplot in Figure 2-
3, but actually the stemplot is more informative, since we see the actual
OBP values.

Typical Values—the Mean and the Median

After we graph a group of baseball statistics as we’ve done above, we look
for a central or typical value among all of the data. There are two popular
ways of computing a typical value using averages: one average is called the
mean, the other is the median.

The mean (or arithmetic average) is what you get when you add up all
of the OBPs and divide by the number of data values. In the case of the data
from Table 2-2, the computation of the mean would look like this:

B00 + 3563 +... + .354
Mean OBP = =.356
108
The median is the middle value when all of the OBPs are arranged from
smallest to largest—this number divides the data into a lower half and an
upper half. The median of the data listed in Table 2-2 is .354.
Thus, the mean and median are both about .350, which tells us that a

typical AL regular player will get on base about 35 percent of the time.




Since the median is .354, we can say that half of the OBPs are smaller than
.354, and half are larger.

Measures of Spread—~Quartiles and the Standard

Deviation

After we find a typical (mean and median) OBP for the data in Table 2-2,
we want to say something about the spread of the OBPs. One simple way of
describing the spread of a set of measurements uses the lower and upper
quartiles. The quartiles divide the data into two extreme quarters—one-
quarter of the data is smaller than the lower quartile, and another quarter of
the data is greater than the upper quartile. Here the lower quartile of OBPs
is .331, the upper quartile of OBPs is .382

So one-quarter of all the AL regulars have OBP values smaller than
.331, and one-quarter have OBPs greater than .382. This means that half of
all the American League OBPs are between .331 and .382. In Figure 2-7,
we’ve redrawn our stemplot, showing the approximate location of the
quartiles, and illustrating how the lower and upper quartiles divide the
group of OBPs.
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Figure 2-7 Quartiles divide the OBPs into a lower quarter, a middle half, and an upper quarter.

Another measure of spread of a group of measurements is the standard
deviation. This number gives the typical difference between an OBP value



and its mean.! For our set of OBP numbers, the standard deviation is .039.
The standard deviation is useful for describing a set of measurements
when the data has a normal or mound shape. When the data looks like this:

Pk

we expect about 68 percent of the data to fall within a distance of one
standard deviation from the mean, and we expect about 95 percent of the
data to fall within two standard deviations of the mean.

To illustrate this rule, recall that the OBP numbers for the AL regulars
had an approximate normal shape. Also we computed the mean to be .356
and the standard deviation is .039. So we expect about

68% of the OBP numbers to fall between (.356 — .039) and (.356 + .039)

and

95% of the OBP numbers to fall between [.356 — 2(.039)] and [.356 + 2(.039)]

We compute these two intervals to be (.317, .395) and (.278, .434).
Checking the data, we see that 71 out of 108 (66 percent) of the OBPs fall
between .317 and .395, and 103 out of 108 (95 percent) of the OBPs fall
between .278 and .434.

Interesting Values

We observe the general shape of the OBPs, looking for a typical OBP and
considering the spread of the values, and then look for interesting OBP
values that stand apart from the large cluster of OBPs in the middle.
Obviously, we’re interested in the largest OBPs—in 1999, Edgar Martinez
had a .447 on-base percentage, followed closely by Manny Ramirez at .442.
But we’re also interested in unusually small values. In the redrawn stemplot
of Figure 2-8, we see four small OBPs are separated from the remainder of
the data. We might wonder why Guzman is an AL regular when he is only
getting on base about 26 percent of the time. Perhaps these players with low
OBPs are regulars on the basis of their defensive ability rather than their
hitting ability.
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Figure 2-8 Stemplot of OBPs with some interesting values identified.

Comparing Groups
Suppose we are interested in comparing two batches of OBPs. To do this,
we first describe a way of summarizing a single batch of data using a few

key numbers, and then describe a graph of these summary numbers, called a
boxplot, which is useful in comparing groups of data.

A Five-Number Summary

To summarize the batch of OBPs, we can use five numbers—the median,
the lower and upper quartiles, and the low and high numbers. For obvious
reasons, we call these values a five-number summary.

Low = .267, Lower Quartile = .330, Median = .354,
Upper Quartile = .383, High = .447

A Boxplot

A boxplot is a graph of a five-number summary. To construct a boxplot, we
draw a box, where the locations of the sides of the box correspond to the
quartiles, and put a line in the middle corresponding to the median. We then
draw lines out from the box to the low and high values. The boxplot of the
OBPs in Figure 2-9 shows that a majority of the values fall in the mid 300s,
with a range of about .250 to about .450.



LOWER LIPFER
QUARTILE  QUARTILE

1 1

I I I

LOW MEDIAN HIGH

0.25 0.30 .35 0.40 .45 0.50

OM-BASE PERCEMTAGE

Figure 2-9 Boxplot of OBPs for 1999 American League regular players.

Boxplots to Compare Groups

Boxplots are typically used to compare different groups of data. To
illustrate, suppose we’re interested in comparing the OBPs for the American
League regular players against the OBPs for the National League regulars.
There were 105 National League players who had at least 400 plate
appearances (NL pitchers do bat, but are naturally excluded from this list
because they don’t play in enough games).Table 2-4 gives the five-number
summary of the 105 regular NL players’ OBPs.

Table 2-4 Five-Number Summary of the OBPs of the NL. Regulars

Lower Upper
Low Quartile Madian Quartife High
0.292 0.336 0.382 0.382 0458

In Figure 2-10, boxplots of the American League and National League
OBPs are drawn on the same scale. The distributions of OBPs for the two
leagues look remarkably similar—the AL and NL boxes have
approximately the same center and spread. Looking carefully at the two
boxplots, we see that the NL OBPs are a little higher, on average, than the



AL OBPs. Looking at the medians, we see that the NL. median OBP was
.362, compared to a median OBP of .354 for the AL. So it appears that the
NL players were generally a little more successful than the AL players in
getting on base in 1999.
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Figure 2-10 Parallel boxplots of OBPs for 1999 regular players from the American and National
Leagues.

OBPs of Offensive and Defensive Players

Remember our earlier comment about the few low American League OBP
values in our dataset? We speculated that these players were in the regular
lineup due to their fielding rather than hitting ability.

Let’s check this out with our AL data. Of the 108 regular players, 60
played in the less-important fielding positions (1B, 3B, LF, RF), and 48
played in the more important fielding positions (C, 2B, SS, CF). (Below we
will call these the “offensive” and “defensive” positions, respectively.)
Table 2-5 gives the five-number summary for the OBPs for each of the two
groups of players, and Figure 2-11 shows parallel boxplots of the OBPs for
the two groups.

Table 2-5 Five-Number Summaries of the OBPs for the 1999 AL players in Offensive and
Defensive Fielding Positions



Lower Upper

Low Quartile Median Juartife High
Offensive positions 0.280 0.340 0.358 0.386 0.447
Defensive positions 0,267 0,328 0,340 0,365 0,438
D.Jeter
I I - 4 Defensive Posifions
B Williams

Offensive Posifions
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Figure 2-11 Parallel boxplots of the OBPs of the 1999 AL players in offensive and defensive
fielding positions.

Several interesting observations can be made from Table 2-5 and Figure
2-11. First, the offensive-position players tended to have OBPs 10 to 20
points higher than the defensive-position players. Specifically, the median
of the offensive position players’ OBP (.358) was 18 points higher than the
median of the defensive position players’ (.340). This substantiates the
belief that many players are in the lineup for their fielding ability, not their
hitting. There are, however, exceptions to this pattern. Note that there are
two bullets (*) to the right of the boxplot for defensive players. Using a
standard rule for determining remarkable values,’ these OBPs were
determined to be unusually high. Most fans would consider Jeter and
Williams extraordinary—both play at defensive positions and are very
effective hitters.

Relationships Between Batting Measures



We have spent a lot of time talking about a single measure of hitting
performance —that is, a player’s ability to get on base. But there is a second
dimension to hitting, namely a batter’s ability to advance runners already on
base. The classical measure of a hitter’s advancement ability is the slugging
percentage, which is computed by dividing the total number of bases of all
base hits by the number of at-bats. If 1B, 2B, 3B, and HR stand respectively
for the number of singles, doubles, triples, and home runs of a hitter, then
the slugging percentage, abbreviated SLG, is computed as follows:

(1 xIB)+ (2 x2B)+ (3 x 3B)+ (4 x HR)
AB

SLG =

Relating OBP and SLG

How is a player’s on-base percentage related to his slugging percentage? A
basic graph to explore the association between two variables is a
scatterplot. For each player, we have two measures—his OBP and his SLG.
For example, in 1999 Roberto Alomar had an OBP of .422 and an SLG of
.530.

In Figure 2-12, we plot the ordered pair (.422, .533), which is
represented by a solid square. If we plot the ordered pair (OBP, SLG) for
the 107 other regular AL players, we get the remaining points in the graph.
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Figure 2-12 Scatterplot of OBP and SLG for 1999 American League regulars.

Looking at Figure 2-12, we see a general increasing pattern—the points
drift up as one moves from the left-hand side of the graph to the right-hand
side. The general conclusion from looking at this graph is that players who
have high on-base percentages tend to have high slugging percentages, and
players who don’t get on base frequently also have low slugging
percentages. This conclusion makes sense, since base hits have a positive
effect on both a batter’s OBP and his SLG.

Relating OBP and Isolated Power

Since a batter’s OBP and SLG seem pretty highly correlated, it would seem
desirable to develop an alternative measure of a hitter’s ability to advance
runners that is not confounded or confused with his ability to get on base.
There is a measure, called isolated power (IP), that is designed to do
exactly that. One computes IP by subtracting a batter’s batting average
(AVG) from his slugging percentage (SLG).



2B+ (2 x3B)+ (3 xHR)
AB

Figure 2-13 shows a scatterplot of the isolated power values against the on-
base percentages for the American League regulars. Note that we see the
same type of pattern in this graph as we saw in our first scatterplot,
indicating that players who have high OBP values tend also to have high IP
values (and players who have low OBP values also have low IP values). But
the relationship between OBP and IP appears weaker than the relationship
between OBP and SLG, indicating that we have partially succeeded in
developing two hitting statistics that aren’t strongly linked. In other words,
[P appears to measure a player’s ability to get extra bases and advance
runners that is distinct from his ability to get on base.
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Figure 2-13 Scatterplot of OBP and IP for 1999 American League regulars.

This scatterplot of OBP and IP is useful in describing different types of
baseball hitters. The players in the lower right part of the graph, such as
Kenny Lofton, Tony Fernandez, and Omar Vizquel, are hitters who are
successful in getting on base, but have relatively little power to get extra



base hits. In contrast, the hitters in the upper left section of the plot, such as
Richie Sexson and Juan Encarnacion, have good power (indicated by high
IP values), but relatively poor ability to get on base. Obviously the most
valuable hitters are the ones who have high values of both OBP and IP.
Manny Ramirez, the most extreme point in the upper-right section of the
plot, had great values of both OBP and IP in 1999, and finished tied for
third in the AL MVP voting.

What about Pitching Data?

We’ve learned some basic techniques for graphing and summarizing hitting
data. The same techniques can be used to analyze any batch of baseball
data, including the statistics used to evaluate pitchers. The Major League
Baseball website provides a number of statistics for pitchers; Table 2-6
describes these pitching statistics.

Table 2-6 1999 Statistics for Major League Pitchers

Statistic Description Hatistic Deseription
P pitching arm HR home runs allowed
GP gamas pitched TE total bases allowed
G3 games started ER garned runs
w wins ERA earned run average
L loszas IP innings pitched
sV saves 50 strikeouts
CG complete games BB basa an balls
s shutouts BK balks
R runs HF batters hit by pitch
H hits

We learn quite a bit about a pitcher by exploring these statistics. The
games pitched (GP), games started (GS), and innings pitched (IP) tell us
how active the pitcher was during the season. The wins (W), losses (L), and
saves (SV), are direct measures of the success and failure of a pitcher, since
the objective of a team is to win games. Indirect measures of success are
statistics such as runs (R), hits (H), and home runs allowed (HR), since the



hits, runs, and home runs allowed by a pitcher are positively correlated with
an opponent’s success. Pitchers are usually compared using their win/loss
records and their earned run averages (ERAs). An ERA is the average
number of runs allowed by a pitcher (not counting runs due to miscues by
his teammates) for a nine-inning game. An interesting question is whether
an ERA is the best way to evaluate pitching performance. (A general
discussion on rating players is covered in Chapter 6.)

Strikeouts and Walks

Here we’ll explore two basic pitching statistics, the number of strikeouts
and the number of walks (bases-on-balls) for the 1999 National League
pitchers. Strikeouts and walks are interesting events in baseball. When a
pitcher gets a strikeout, one gets the impression he is dominant, dictating
from the mound. However, a strikeout produces only a single out, and it is
not clear that a pitcher who throws a lot of strikeouts will be effective in not
allowing runs and ultimately winning games. When asked to name the
ultimate strikeout pitcher, a lot of people would think of Nolan Ryan, but
his lifetime record of wins was only about 53 percent. (Of course, one could
argue that that this was due at least in part to the poor teams on which he
played.) Similarly, when a pitcher walks a batter, one thinks that he has lost
his control and given up an easy on-base. So it doesn’t seem desirable to
walk many batters, but it is not entirely clear what impact a walk has on the
opposing team scoring runs. In the remainder of this chapter, we’ll explore
strikeout and walk statistics to address the following:

e What is a typical strikeout rate (or walk rate) among pitchers? That is,
how many strikeouts (or walks) does a pitcher typically get for nine
innings?

e Are there unusually good or unusually poor pitchers relative to striking
out hitters? Likewise, are there pitchers with unusually good control
who don’t walk many batters?

» Do starting pitchers strike out more hitters than relief pitchers? How
do starting and relief pitchers differ with respect to walking hitters?

Looking at Strikeout Totals



The MLB website gives 1999 pitching statistics for 300 NL pitchers. Figure
2-14 displays a histogram of the season strikeout totals for these 300
pitchers. This histogram has a distinctive shape:

20

&80 1]

COUNT

ol | ‘—l_lﬁ ,

a 100 200 300 400

NUMBER OF STRIKEQUTS

Figure 2-14 Histogram of number of strikeouts of 1999 National League pitchers.
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which we call right-skewed. Most of the strikeout totals fall close to zero,
and there are relatively few large strikeout totals. This histogram shape is
very common when our statistic is a count of something. If we graph the
counts of hitters’ home runs, the counts of walks given up by pitchers, the
counts of errors made by third basemen, or the counts of games won by
pitchers, we will find that the shape of the data will be right-skewed. Most
of the data will be clustered at small values, and there will be a few large
numbers.

Why does the histogram in Figure 2-14 have this right-skewed shape?
Of the 300 pitchers in this list, many have pitched few innings and have
recorded only a small number of strikeouts. Figure 2-15 shows a histogram
of the total innings pitched. We see three humps in the histogram—there are
many pitchers in this group who pitched from 0-20 innings, there is another
large clump of pitchers (primarily relievers) who pitched from 50-70



innings, and a clump of pitchers (starters) who pitch around 200 innings. So
there are many part-time pitchers with few innings pitched, and the
statistics for these part-timers are clouding the picture of the strikeout data.
It seems better to look only at pitchers who have appeared in a minimum
number of innings—and we’ll arbitrarily set this minimum at 50.
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Figure 2-15 Histogram of number of innings pitched by 1999 National League pitchers.

If we remove the pitchers with fewer than 50 innings pitched, we’re left
with 180 pitchers. A histogram of the season strikeout totals for these NL
pitchers is shown in Figure 2-16. We see a better picture of the strikeout
totals—the shape of the data is still right-skewed, with a large number of
pitchers having from 40-100 strikeouts, and a few pitchers with a large
number of strikeouts. But the data from pitchers who appeared in only a
very few innings—perhaps because they were injured, or sent back down to
the minors—no longer has a significant effect on the graph.
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Figure 2-16 Histogram of number of strikeouts of 1999 National League pitchers with at least 50
innings pitched (180 pitchers).

Defining a Strikeout Rate

The strikeout king in baseball is traditionally viewed as the pitcher with the
greatest number of strikeouts. That this is so should come as no surprise,
but it should also be pretty obvious that having the greatest number of
strikeouts in a season is not the best measure of a pitcher’s ability to strike
out hitters. All you have to do is think of those who pitch in relief, for
example. In the group of pitchers who have pitched at least 50 innings, a
pitcher who has taken the mound in more innings is more likely to strike
out more hitters. It seems better, then, to take the average number of
strikeouts per inning, which is the basis for a statistic called the strikeout-
rate (SOR):

number of strikeouts SO

SOR = =
innings pitched P

Figure 2-17 shows a histogram of the SOR values for our 180 NL pitchers.
The shape of this histogram, which is normal, or bell-shaped, is typical for a
derived baseball statistic—this is, a statistic that is derived as a ratio of
basic counts. We saw this same data shape in our exploration of OBPs. We
would expect to see a similar normal shape for other derived statistics—



such as ERA, BVG, or SLG—computed for players who have appeared in a
reasonable number of innings.
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Figure 2-17 Histogram of strikeout rates (strikeouts per inning pitched, or SOR) of 1999 National
League pitchers with at least 50 innings pitched (180 pitchers).

Here we see that a typical strikeout rate for a 1999 NL pitcher is about
.7 per inning, or about 9 x .7 = 6.3 strikeouts for every 9 innings pitched.
We next look for unusual strikeout rates, statistics that seem markedly
different from the average. In Figure 2-17, we notice 15 pitchers with
strikeout rates exceeding 1, and three pitchers exceeding a rate of 1.5. This
is interesting, and deserves a closer look. In Figure 2-18, we show these
strikeout rates as a stemplot, identifying the pitchers with the highest
values.
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Figure 2-18 Stemplot of strikeout ratios of 1999 NL pitchers, including names of pitchers with
unusually large values.

Comparing Strikeout Rates of Starters and Relievers

Of the seven pitchers with the highest strikeout rates, we note that only one
(Randy Johnson) is a starter. That raises the question—do relievers typically
strike out more batters than starters? To answer this question, we divide the
180 NL pitchers into two groups, defining a “starter” as a pitcher who has
started at least ten games in the 1999 season.

A useful graph for comparing the strikeout rates of starters and relievers
is the back-to-back stemplot, shown in Figure 2-19. We put the stems in the
middle; the leaves for the starters go to the left, the leaves for the relievers
to the right. As before, we identify only those pitchers with high strikeout
rates.
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Figure 2-19 Back-to-back stemplots of strikeout rates of 1999 NL starters and relievers.
Another way to compare these two groups of strikeout rates is by use of
box-plots (see Figure 2-20).
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Parallel boxplots of strikeout rates of 1999 NL starters and relievers.



We see some interesting things from the displays of stemplots and
boxplots.

1. Generally, the NL relievers seem to strike out more batters per inning
than the NL starters. The median strikeout rate of the starters was .68,
compared to a rate of .85 for the relievers. In nine innings, a typical
reliever will strike out 1 more batter (7.3) than a typical starter (6.1).

2. The spread in strikeout rates among the relievers is greater than the
spread in rates for the starters. The lower and upper quartiles for the
relievers is .70 and .96, compared to quartiles of .59 and .79 for the
starters.

3. The boxplot display identifies several pitchers with unusually low or
high strikeout rates. By breaking the pitchers into the two groups, only
one pitcher seems to have a strikeout rate that clearly stands out from the
rest. With apologies to Curt Schilling, there was no starting pitcher in the
NL in 1999 who had a strikeout rate even close to Randy Johnson’s.

Association Between Strikeouts and Walks?

As we move our discussion from strikeouts to walks, it is reasonable to ask
if there is any relationship between the two statistics. Nolan Ryan is widely
(and correctly) known as a pitcher who struck out many batters but also
gave up a lot of walks. (Looking at his career statistics, we notice that Ryan
had 5714 strikeouts and 2795 walks in 5386 innings; his strikeout rate was
1.07 and his walk rate was .52, both of which appear to be large.) Are these
large strikeout and walk rates typical of a fastball pitcher? If so, one might
expect a positive association between walks and strikeouts. To check this
out, we first compute the walk rate for each AL pitcher, as shown in the
following equation, and then construct a scatterplot of SR against WR, as
shown in Figure 2-21.
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Figure 2-21 Scatterplot of strikeout and walk rates of 1999 NL pitchers.
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There does not seem to be much of a pattern in the graph. There is a slight
drift of the point cloud from lower left to upper right, but at best, there is a
weak positive association between strikeout and walk rates.

Exploring Walk Rates

How often do pitchers walk batters? Figure 2-22 shows a stemplot of the
walk rates for the NL pitchers with at least 50 innings pitched. (We’ve
ignored the decimal point in presenting this stemplot.)
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Figure 2-22 Stemplot of walk rates of 1999 NL pitchers.

We see basically the same data shape as we saw earlier for strikeouts.
The shape of the walk rates is slightly right-skewed—the median value is
.42, with lower and upper quartiles of .35 and .51. So half of all the pitchers
walk between .35 and .51 batters per inning, which translates to between 3
and 4.5 walks per game. There is a sizeable range in the data from .16
(Shane Reynolds) to .81 (Steve Avery).

Comparing Walk Rates of Starters and Relievers

We conclude this chapter by addressing the question: Do starting pitchers
and relievers have different tendencies to walk batters? As before, we divide
the pitchers into starters (at least 10 starts in 1999) and relievers. Back-to-
back stemplots are shown in Figure 2-23.



STARTERS RELIEVERS

& Wondard, J. Lima, (7. Maddux, 8. Reynolds 9766 1 78
443211 | 2 | 222
9998876655 | 2 | T
4444433322221111 | 3 | 011222

SEEE 77 /oeebibhabs

L

FA7 79999
43333333322211100000 | 4 | OLLl1122233344
grjech | 4 heeo /T JEEEG990
1111 5 O011111222222234
J177Teehh | | 677789

- : e
a0 =] (HFaR K]

BB & 6677
7 12
J. Sanchez, J Bere 85| 7 | & W Gomes
SoAvery 11 8

Figure 2-23 Back-to-back stemplots of walk rates of 1999 NL starters and relievers.

Several interesting features are noticeable. Relievers appear to walk
more hitters than starters. The median number of walks per inning for
relievers is .48, compared to a median of .38 for starters. (Over nine
innings, the relievers generally walk about an additional batter per inning.)
Although starters generally exhibit more control, there are three notable
exceptions—J. Sanchez, J. Bere, and S. Avery—who appear to have
unusually little control. Being Phillies fans, we’re a bit distressed that
Wayne Gomes, their closer in 1999, had the worst walk rate among all the
NL relievers, but we don’t altogether lose hope: Mitch Williams (even
though he gave up the Joe Carter home run in the 1993 World Series) had a
good relief pitching year for the 1993 Phillies despite walking a lot of
batters.

ITo compute the standard deviation, we first find the difference of each data value from the mean,
and then square each difference. Then the standard deviation is calculated by computing the sum
of squared differences, dividing the sum by {the number of observations minus 1}, and then taking
the square root of the result.

2 To determine these unusual values, one first computes a STEP which is equal to 1.5 times the
distance between the upper and lower quartiles. Then one computes a LOWER FENCE which is
equal to the lower quartile minus a STEP, and a UPPER FENCE which is equal to the upper
quartile plus a STEP. Any data items that are smaller than the LOWER FENCE or are greater than
the UPPER FENCE are called outliers which may deserve special attention.
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Chapter 3
Introducing Probability

Jim Albert and Jay Bennett

In Chapters 1 and 2, we discussed some methods for exploring baseball
statistics. In Chapter 1, we focused on the relatively simple statistical
models used in some popular tabletop games. In Chapter 2, we looked at
graphical and descriptive methods that, while simple, are the fundamental
tools and models used by all statisticians. In particular, Chapter 2 used the
example of on-base percentage (OBP) data to describe and analyze the
performance of AL hitters. With this basic knowledge, we know what’s
being said, statistically speaking, when someone declares, “Roberto Alomar
had a .422 on-base percentage in 1999.” We know that the value .422 is
large relative to the entire distribution of OBPs. (See the stemplot of 1999
AL OBPs in Figure 2-3 of Chapter 2.)

Now that we have explored the OBP data and made a few graphs and
charts, are we done? Are professional statisticians primarily interested in
numbers and patterns of data as they are revealed in summaries and graphs?
Aren’t statisticians, after all, just glorified number-crunchers or graph
makers? Obviously, we don’t think so. What the serious statistician is really
interested in are the conclusions or inferences that one can draw from the
data.

Beyond Data Analysis

Let’s contrast the intent of this baseball book with practically any other
baseball statistics book that is published each spring. Essentially baseball
statistics books fall in two categories. One type, which we will call the
“numbers book,” just presents tables and tables of baseball data. This book
is designed for the fan who wants to know all of the statistics from his or
her favorite player. The goal of this type of book is just to tabulate numbers



—to put numbers in tables—in a form that’s convenient for the fan to
retrieve and review.

A second type of baseball statistics book—we’ll call it the “analysis
book”— tries to go one step further. It will ask an interesting baseball
question, then present relevant data to answer it: “Who was the better lead-
off hitter in 1999: Chuck Knoblauch or Kenny Lofton?”

Since a lead-off hitter is supposed to get on base, the analysis book
would focus on OBPs, obviously the relevant data set. Knoblauch’s and
Lofton’s numbers are highlighted in Table 3-1, which shows a small
segment of a straightforward alphabetical list of regular AL players with
their 1999 OBP results.

Table 3-1 1999 OBPs for a Selection of AL Players

Player 1999

OBP
D. Jeter 0.438
C. Johnson 0.340
D. Justice 0.413
C. Knoblauch 0.393
M. Lawton 0.353
D. Lewis 0.311
K. Lofton 0.405
T. Martinez 0.341
D. Martinez 0.461
E. Martinez 0.447
F. McGriff 0.405

The book notes that Lofton was more successful in getting on base than
Knoblauch, as his OBP value was 12 points higher. Since the book doesn’t
say anything else, the reader is left to draw the conclusion that Lofton is
better than Knoblauch at getting on base. But does Lofton really have more
ability to get on base than Knoblauch?

This question is different from the one posed by the analysis book,
which focused on performance, or results, for 1999. We know that Lofton
had a better year—we are not disputing the calculation of his 1999 OBP
value. But did Lofton really have a greater ability to get on base than
Knoblauch in 1999? When we say ability, we are referring to the
characteristics of a hitter, such as his batting stroke, his eye for watching



pitches carefully, and his patience, all of which would contribute to his
ability to reach base.

There are two possible explanations (at least) for the difference between
Knoblauch’s .393 and Lofton’s .405. Maybe Lofton really is better at
getting on base than Knoblauch, and the 12-point difference is just a
reflection of this fact. But maybe the two players have the same abilities to
get on base, or perhaps Knoblauch has a superior ability, but by luck or
chance Lofton got a better OBP value in 1999. Which explanation is right?
The professional statistician’s job is to help distinguish differences due to
real effects from differences that can be explained by chance.

Looking for Real Effects

In the course of writing this book, we had the opportunity to pose the
Knoblauch-Lofton question to a nine-year-old baseball fan, showing him
the OBP data in Table 3-2. We pointed out that although Lofton had a
higher OBP in 1999, the difference could be due to luck—maybe Lofton
was more lucky than Knoblauch this season. But the boy, looking at the
table, said that Lofton must be better—especially since he also had a higher
OBP in 1998.

Table 3-2 Two-Year On-Base Percentages for 1999 AL Regular Players



Player

R. Alomar
G. Anderson
B. Anderson

B. Ausmus

D. Bell

A. Belle
M. Bardick
5. Brosius
M. Cairo
1. Canseco
M. Caruso
T. Clark

R. Clayton

R. Coomer
M. Cordova

0. Cruz

1. Cruz

). Damon
R. Davis
C. Delgado

R. Durham

D. Easley

D. Erstad
T. Fernandez

L. Flaherty

He had a point, and a good point. If one player has a better on-base

1999

agr
0422
0.338
0.404
0.36h
0.331
0.400
0.334
0.307
0.335
0.389
0.280
0.361
0.345
0.307
0.365
0.302
0.358
0.379
0.304
Q.377
0.373
0.348
0.308
0.427

0.310

1998

0BFr
0.347
0.225
0.366
0.356
0.364
0,399
D.328
0.371
0.307
0.318
0.231
0.368
0.319
0.2595
0.314
D.284
0.354
0.339
0.305
0.385
0.363
0.332
0.353
0.387

0.261

D. Fletcher
N. Garciaparra
1. Giambi

1. Gonzalez
T. Goodwin
5. Green

R. Greer

B. Grieve

K. Griffey

B. Higginson
B. Hunter

B. Huskey

D. leter

C. Johnson
D. Justice

C. Knoblauch
M. Lawton

D. Lewis

K. Lofton

T. Martinez
E. Martinez
F. MeGriff

M. McLemore
B. McRae

T. O'Leary

0.239
0418
0422
0.378
0.324
0.284
0.405
0.358
0.384
0.251
0.280
0.238
0.438
0.340
0.413
0.293
0.353
0.311
0.405
0.241
0.447
0.4085
0.363
0.227

0.243

0,328
0.362
0.384

0.366

0,324

0.386
0.386

0.365
0,268
0.300
0.384
0,289
0.2e3
0.3el
0.387

0.365
0.429
0.371
0,369
0.3e0

0,214

P. O'Neill

J. Offerman
M. Ordonez
R. Palmeira
D. Palmer
1, Posada
M. Ramirez
). Randa

A. Rodriguez
|. Rodriguaz
T. Salmon
0. Segui

M. Stairs
M. Stanley
5. Stewart
B. Surhoff
M. Tejada
F. Thomas
I. Thome

1. Valentin
M. Vaughn
0. Vizquel
T. Walker
B. Williams

T. Zeile

0.353
0.391
0.349
0.420
0.339
0.241
0.442
0.363
0.357
0.356
0.372
0.355
0.366
0.393
0.371
0.347
0.325
0.414
0.426
0.315
0.358
0.397
0.343
0.435

0.354

0.372
0.403
0.326
0.379
0.333
0.350
0.377
0.323
0.360
0.358
0.410
0.359
0.370
0.364
0.377
0.332
0.298
0.381
0413

0.34
0.402
0.358
0.372
0422

0.350

ability than a second player, then one would expect the first player to get
generally a higher OBP value across seasons. The question is: how
dependable is a high OBP in one year as a predictor for a high OBP in the

next?



Let’s explore the relationship between a player’s OBP in 1998 and his
OBP in 1999. Table 3-2 shows the OBPs for the players who had at least
400 plate appearances in 1999 and had at least 400 appearances in the
previous year; Figure 3-1 shows a scatterplot of the same data.
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Figure 3-1 Scatterplot of 1998 and 1999 OBPs for AL regular players.

Looking at the scatterplot in Figure 3-1, we see a positive relationship.
This means that players who got high OBP values in 1998 tended also to get
high OBP values in 1999. (A positive relationship also means that players
who got low OBP values in 1998 tended to get low OBP values in 1999.)
The scatterplot and the data from Table 3-2 provide evidence of year-to-
year OBP consistency. This implies that underlying the OBPs observed in
each year for a player resides a consistent OBP ability. If players all had the
same ability to get on base, and differences between season OBPs between
players were only due to luck, then there wouldn’t be any pattern in the
scatterplot in Figure 3-2.
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Figure 3-2 Scatterplot of 1998 and 1999 OBPs for AL regular players with a “best line” drawn on
top.

That said, though we do see a relationship in the scatterplot between
1998 and 1999 numbers, it is not a strong relationship. In fact, you can find
pairs of players, such as Mike Bordick and Scott Brosius (see Table 3-3)
where one player (Brosius) had a higher OBP in 1998 and the other player
(Bordick) had a higher OBP in 1999.

Table 3-3 1998 and 1999 OBPs for Mike Bordick and Scott Brosius

1999 OBP 1998 OBP
M. Bordick 0.334 0.328
S. Brosius 0.307 0.371

Predicting OBPs

While we’re on the subject of comparing OBPs for two different years, let’s
pose another question. Suppose that you know a player’s OBP in 1998.
What is the best prediction of his OBP the next year?

This question can be answered by revisiting our scatterplot of the 1998
and 1999 OBP values in Figure 3-1. When we see a relationship in a



scatterplot, it is helpful to summarize this relationship by means of a
straight line that passes through the points. The equation of this straight line
gives a simple formula that relates a player’s 1999 OBP value with his 1998
value. In statistics, there is a basic recipe (called least squares) which finds
the equation of the line which is the “best fit” through the points of a
scatterplot. In this case, the best line has the following formula:

OBP]H‘Q‘;} = ﬂ946 + Tﬁ]. OBP].E".'}B

This line is drawn on the scatterplot in Figure 3-2. This best line Ocan be
used to predict a player’s 1999 OBP if you know his 1998 OBP, and these
predictions are a bit surprising. Let’s illustrate.

Kenny Lofton had a .371 OBP in 1998, when the average OBP value
(among AL regulars) was .350, so Lofton was 21 points better than average
in 1998. It would be reasonable to predict that Lofton would also be 21
points better than average in 1999. However, the prediction using the best
line formula is:

OBP]_BEJ‘J = .U946 + .?Gl DBP].':HJS
and, in Lofton’s case, the best line prediction is:
OBP 49 = .0946 + .761 (.371) = .377

which is only 15 points better than the 1999 average value of .362.
Likewise, if you use the best-line formula to predict any other player’s
1999 OBP, you’ll discover that the 1999 prediction is closer to the 1999
average than the 1998 OBP is to the 1998 average. What is going on?
This illustrates a general result, called “regression to the mean,” which
applies to any baseball statistic that is measured for two years in a row.
(Actually it applies to many situations besides baseball.) In this setting, it
means that a hitter’s OBP tends to be closer to the average in the second
year than it does for the first year. The phenomenon is also called the
“sophomore slump,” and certainly there is no shortage of media attention
for a ballplayer who has a relatively mediocre second season after a
spectacular rookie season. But this relatively weak second year illustrates
this regression to the mean effect—ballplayers who have extremely higher-
than-average seasons one year tend to have less extreme seasons the next.



Probability Models

By comparing the OBPs of AL regulars for two consecutive years, we now
believe that players indeed have different abilities to get on base. But how
can we describe a player’s ability to get on base? Fans use expressions like,
“He’s good at getting on base,” or “He has good bat control,” to describe a
player’s hitting ability. Can we use numbers instead of words to explain a
hitter’s ability?

Statisticians use numbers assigned to chance outcomes, probabilities, to
draw conclusions from data. We know that many things in life are
uncertain. We don’t know in advance the outcome of a coin toss, the value
of the Dow Jones Industrial Average at the end of next month, the winner of
the 2010 World Series, or for that matter the year in which the Phillies will
win their next World Series. But the statistician recognizes that, although
many aspects of life are uncertain, there exist general patterns amid this
uncertainty, and probability is a method for describing those general
patterns.

To understand a hitter’s ability to get on base, the statistician constructs
a probability model, or a model for short. A model is a description of a
random process that could possibly generate the baseball data. (We have
already described several models in Chapter 1 that underlie tabletop
baseball games.) Let’s look at a simple example. In 1999, Roberto Alomar
had 682 plate appearances and got on base 288 times, for an OBP of
288/682 = .422. To investigate how a model works, we will think of a
simple random experiment that could have produced Alomar’s data. Before
we do that, though, we’ll take a quick side trip to look at a model we’re all
familiar with, to get a sense of the variability in “chance” outcomes.

A Coin-Toss Model

Consider the simple experiment of tossing a coin. We are thinking of the
usual two-sided coin, where the chance of throwing heads is the same as the
chance of throwing tails. In coin-tossing, the chance of tossing heads is .5—
we know this since we believe that it’s equally likely to land heads or tails.
The number .5 represents the true proportion of heads—this is the fraction
of heads that we expect to get if we toss the coin repeatedly. We can think
of .5 as an attribute of the coin, which comes from our belief that the coin is



fair. To put it another way, we can say that the coin’s ability to land heads is
.5. Our coin-tossing model simulates a perfect 50-50 split between heads
and tails.

What happens, though, when we turn from the model, which is a
mathematical formulation, and actually start tossing a coin? Let’s contrast
the proportion of heads described by the model with the proportion of heads
observed in an actual series of tosses. Suppose we toss this fair coin 10
times and we observe 7 heads and 3 tails. The observed proportion of heads
is equal to:

Since we got 70 percent heads, does that mean that the coin is not fair? No.
Or does it mean that our model is invalid? No, again. The coin is fair, and
the model is valid, but we were lucky (or unlucky) to get 7 heads in this
particular set of actual tosses. In fact, it is entirely reasonable to get 7 heads
out of 10 tosses. What we have to do in this situation is distinguish between
the observed proportion in our data, which is 70 percent, and the so-called
true proportion, which remains 50 percent if the coin is fair.

Is it possible for the observed proportion of heads in 10 tosses to be
equal to the true proportion of 50 percent? Yes, certainly, one could get 5
heads in 10 tosses. But this won’t typically be the case when you have 10
tosses. In fact, it is more likely in 10 tosses that the observed proportion will
be different from the true proportion.

Let’s consider an illustration of this idea. On a computer, we simulated
the experiment of tossing a fair coin 10 times. Repeating the experiment
100 times, and keeping track of the number of observed heads in each of
these 100 cycles, we arrived at the outcomes summarized in Table 3-4. In
Table 3-5, we used the same data to record the distribution of outcomes
according to whether a 10-toss series resulted in 1 heads, 2 heads, 3 heads,
and so on, along with a calculation of the probability for each of these
outcomes.

Table 3-4 Number of Heads in 10 Tosses for 100 Experiments



5 / 5 4 5 & 5 4 & 5
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Table 3-5 Probabilities for Number of Heads in 10 Tosses of a Fair Coin

MNumber of heads 1 2 3 4 5 o ) 8
Count 1 3 11 23 30 18 11 3
Proportion 0.01 .03 0.11 0.23 0.3 0.18 0.1l 0.03

We see from Table 3-5 that we observed a 5-heads outcome in 30 of
100, or 30 percent, of the experiments. So the chance that we would
observe exactly 50 percent heads in our 10 tosses is only about .3. Saying
this a different way, the chance that the observed proportion is different
from the true proportion is .7. So while our coin-toss model is valid, there is
considerable variation in the results of our 10 tosses of our coin.

There is one situation where the observed proportion will be very close
to the true proportion. Suppose that we were able to toss the coin a very
large number of times—say, a million. In such a case, the observed
proportion of heads will be very close to the true proportion of 50 percent.
In fact, we can state a general rule: as we toss the coin more and more
times, the observed proportion will generally get closer and closer to 50
percent.

Observed and True OBPs

Let’s turn our discussion from coins back to baseball, and look again at the
batting behavior of Roberto Alomar in 1999. Recall that Alomar came to bat
682 times and got on base 288 times:



288
g = 422
This number is his observed OBP based on 682 opportunities to bat.

Now Alomar possesses a certain ability to get on base. This ability is
based on his ability to see pitched balls, his hitting stroke, and his speed to
run to first base. We can signify Alomar’s ability to get on base this season
by a number p, which we will call his true on-base percentage, or true
OBP.

Like the coin-toss probability of 50 percent, this number represents
Alomar’s chance of getting on base in a single at-bat. Is the true OBP equal
to .422 (his observed average in 1999)? Probably not, for the same reason
that the proportion of heads in 10 tosses is unlikely to be equal to the coin’s
true probability.

When we toss a coin, we know the true proportion is one half. Why?
Well, we know something about the composition of the coin (it has two
sides, heads and tails), and we’ve likely had some experience tossing coins,
so we believe the coin to be fair. Is it possible to know Alomar’s true OBP
or his ability to get on base? Not really. We will learn about Alomar’s
ability to get on base from observing his hitting performance for many
seasons. But we don’t know his true probability of getting on base for the
1999 season. If Alomar had millions instead of hundreds of plate
appearances during 1999, we could come up with a very close
approximation of p, his true OBP, but of course this will not happen, so p, at
least for now, will remain a mystery. We can guess that his true OBP is in
the .422 ballpark (pardon the pun), but it could conceivably be .380 or .440.
We don’t know and never will know the exact value of p.

Let’s illustrate the difference between Alomar’s hitting ability and his
season performance by means of a simple simulation. Suppose Alomar is a
true .380 OBP player—the chance that he gets on base in a plate appearance
is 38 percent. We will simulate Alomar’s hitting results for a season of 682
plate appearances. Here is how the simulation might work: Imagine a
spinner, pictured in Figure 3-3, where the pointer of the spinner can land
anywhere on the circle. If the spinner is spun and the pointer falls in the On-
Base region (the emphasized area), we record an on-base event; otherwise,
we record that he didn’t get on base. (The size of the On-Base region, in
this case, is 38 percent of the total area.) If we spin the spinner 682 times,
we simulate a whole season of hitting, and the total number of pointers that



fall in the On-Base region will be Alomar’s number of times on base for the
season.

Ohn-Brese

Don't Get On-Bose

Figure 3-3 Spinner for simulating hitting for Roberto Alomar.

Actually we didn’t actually use a spinner. A computer is a more
convenient tool for performing this kind of simulation, particularly if you
want to run the simulation a large number of times. We did the simulation
100 times, obtaining the number of times on base for each of 100 seasons!
Assuming a true OBP of 380, Table 3-6 shows the number of times on base
that we observed. In Table 3-7, we change these on-base numbers to OBPs
by dividing each by the number of plate appearances (682). Figure 3-4
displays these 100 season OBPs using a stemplot.

Table 3-6 Number of Times on Base for 100 Seasons Assuming Roberto Alomar Is a True .380-
OBP Player

276 260 268 283 262 256 263 254 237 241
249 251 255 248 269 229 253 249 265 260
260 259 269 2g8 267 273 266 277 249 279
263 263 267 264 263 268 271 246 254 242
248 270 258 230 263 258 243 272 274 280
261 265 278 264 259 255 262 246 260 266
279 242 245 257 258 260 280 262 248 289
264 273 264 249 253 247 263 263 276 263
248 241 a7l 249 25l 243 251 247 260 262
257 244 251 274 246 264 244 237 280 266

Table 3-7 OBP for 100 Seasons Assuming Roberto Alomar Is a True .380-OBP Player
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Figure 3-4 Stemplot of 100 simulated OBPs of a true .380 hitter.
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Remember that we are assuming that Alomar is truly a .380 on-base
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player. Also, we’re assuming that he remains a true .380 on-base player for
all of these 100 seasons. But we see from the stemplot that there is a lot of

variation in his season batting performances. In one unlucky season, he had
only a .335 OBP. At the other extreme, in one season he was very fortunate
and had a .423 OBP. These simulated results demonstrate just how different
a player’s seasonal OBP can be from his true OBP (that is, his true
probability, p). Also, it is important to note the size of the variation: there is

an 88-point differential between Alomar’s best (.423) and worst (.335)
seasons.

Learning about Batting Ability



In the previous section we assumed that we knew Alomar’s ability to get on
base, measured as the probability p, and we found plausible values for the
100 season OBPs. As mentioned earlier, we of course don’t know Alomar’s
real on-base probability. But can we get any closer to knowing p, given that
we do know his 1999 seasonal OBP was .4227?

We will use a simple hypothetical example to illustrate how we can
learn about a player’s hitting ability. Suppose a particular veteran skipper—
we’ll call him Casey—has been managing for thirty years. Based on his
experience, Casey classifies hitters into five distinct ability categories. The
“weak™ hitters get on base only about 20 percent of the time, the “average”
hitters get on base 30 percent of the time, the “above-average” hitters have
an on-base rate of 40 percent, the “excellent” hitters 50 percent, and the
“superstars” 60 percent. All of these numbers represent true OBPs; if Casey
rates a hitter at 30 percent, that hitter will get on base 30 percent of the time
if he is given a very large number of chances at bat. (Note that we’re
assuming a very broad range of abilities—a player with p = .200 is pretty
terrible and a player with p = .600 is better than the best on-base men in the
history of the game.)

Now suppose Casey is asked to manage a new team, and he is
unfamiliar with the hitting abilities of the players in his dugout. Moreover,
he is told by the owner (who knows a lot about the abilities of the players
on his team) that they are equally divided between the five hitting-ability
categories described above. That is, one-fifth of the players are truly weak
hitters, another fifth are average, one-fifth are above-average, one-fifth are
excellent, and one-fifth are superstars. There are here, of course, a lot of
unlikely assumptions. First, it is not believable that an experienced manager
like Casey would not immediately get to know his players; he is, after all,
an experienced baseball man. And it is even more surprising that the owner
knows anything about his players. And perhaps most unlikely, talent is
rarely if ever evenly divided between the five ability levels; there are
typically more average hitters than superstars. Nonetheless, these fairly
ridiculous assumptions simplify our example considerably, and will help
illustrate an important point.

Since the manager has no idea which players are good or poor in hitting,
he plans to insert them randomly into the batting lineup. Casey’s philosophy
is simple. “I have no idea who the good hitting players are, so there is no
harm in playing them randomly. But I will learn which players are good



after watching them perform in a week’s worth of baseball games.” Here is
the big question. Can the manager really learn much about a hitter’s ability
to get on base if he observes the player in 20 plate appearances, which more
or less would be the total appearances for a player in a week? Specifically,
suppose a particular hitter, whom we’ll call Mickey, gets on base 8 times in
20 PAs for a .400 observed OBP. What has the manager learned about
Mickey’s true OBP?

We perform a simple simulation to illustrate the process of selecting a
player at random from the dugout and having the player bat for 20 PAs.
(This is not real baseball, but it is a reasonable representation for what is
happening in this example.) We start with a bowl containing five spinners,
one with an OBP area of .200, another with a OBP area of .300, and so on.
(These spinners correspond to the abilities of the players in the dugout.) We
choose one spinner at random from the bowl and then spin it 20 times,
which corresponds to the 20 plate appearances of the hitter. We then record
the spinner we chose (the value of the OBP area p) and the number of spins
in the On-Base region of the spinner, which corresponds to the number of
times on base for the hitter.

We repeat this process (randomly choosing a spinner and spinning it 20
times) for a large number of simulations—1000 of them, to be exact. Since
we are interested in what we learn from 8 on base in 20 PAs, we focus on
only the simulations where the spinner landed at On-Base 8 times for an
observed OBP of .400. We recorded the true OBPs (the ps) for these
players, so we can ask the question: “What were the abilities of the players
corresponding to these 8/20 spinner results?” Table 3-8 gives the results.

Table 3-8 Abilities of Players Who Had 8 out of 20 On-Base in the Simulation Experiment

Tatal

Ability () 0.2 0.3 0.4 0.5 0.6
Name Waak Below-average Above-average Excellent Superstar
Mumhber of Players 5 17 29 36 10 a7
Froportion of Players 0,052 0.175 0.299 0,271 0,103 1

In our simulation, we observed the result “8 on base in 20 PAs” 97
times. Of these 97 occurrences, the hitter was a truly weak hitter (that is,
with a .200 ability) 5 times, for a probability of 5/97 = .052. Since this is a
small probability, we’re pretty sure that this batter isn’t a weak hitter.



Looking further at the table, we see that it is most likely that Mickey has
a true OBP of .500, and it is almost as likely that he is a .400-OBP man—
these two abilities have respective probabilities of .371 and .299. It is
typical practice to group a few likely abilities that collectively have a large
probability. Looking at the table, we see that these abilities:

p =.300, p = .400, and p = .500
have a total probability of:

75 +.299 + .371 = .845

So, based on observing 8 out of 20 PAs, we are pretty confident that Mickey
has a true ability between .300 and .500. We call the interval [.3, .5] a 84.5
percent confidence interval for the unknown ability p.

What has Casey learned about the hitting ability of Mickey based on 20
plate appearances? Actually, very little.To say that a hitter’s true OBP is
between .300 and .500 doesn’t say very much, since we observed from
Chapter 1 that practically all of the OBPs of regular major league players
fall between .300 and .500.

To emphasize how little is learned from 20 plate appearances, let’s
modify our example to include a more narrowly defined set of ability
categories. Suppose that the OBP abilities of the players in the dugout are in
the range .300, .310, .320,..., .600, and again the manager has no clue which
players are good or poor, and the dugout contains an equal number of
players of each ability level. As before, Casey selects players at random to
be in the lineup, and one particular player gets on base 8 times out of 20
PAs. We want to find the probability that this hitter has a .300 ability, a .310
ability, and so on.

Figure 3-5 displays a line graph of the probabilities that the hitter has
each of the possible OBP abilities. We see that the chance that the batter has
a .300 ability is about .03, or 3 percent. In fact, each of the abilities between
.300 and .500 has probabilities between 3 and 5 percent. So we can’t make
fine distinctions in ability—say, between a hitter with p = .400 and another
hitter with p = .410—on the basis of an observed OBP of .400 for 20 PAs.
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Figure 3-5 Probabilities of true OBPs if a batter gets on base 8 times in 20 PAs.

At this point, you may be thinking, “Okay, you’ve convinced me that
you don’t learn much from 20 PAs, but you must know about a player’s
ability on the basis of his season statistics. That’s a lot more plate
appearances.”

To address this question, we repeat the above exercise using more data.
Again we have a dugout full of hitters with abilities in the group [.300,
.310,...,.600], and the manager has no clue which hitters have which
abilities. A certain player (like Alomar) then plays an entire season and gets
an OBP of .430 based on 682 PAs. We did a simulation like the one
described above; Table 3-9 shows the probabilities of hitter ability given an
OBP of .430 in 682 plate appearances.

Table 3-9 Abilities of Players Who Have a .430 OBP in 682 PAs



Ahility (p) 0.380 0.380 0.400 0.410 0.420 0.430

Number of Players Z 11 22 33 4 5

Proportion of Players Dda dz34 et 0.102 J.198 201

Ability () 0.440 0.450 C.480 0470 0.480 0.490

Number of Players a7 34 22 8 3 323
Proportion of Players 0.14& 0,136 0.068 0.025 0,009 0.006 1

Looking at the table results, we see that it is most likely that a hitter
with an observed OBP of .430 actually is a true .430 OBP hitter. But other
ability values close to .430 are also very possible. If we group the most
likely ability values, we see the following values:

.390, .400, .410, .420, .430, .440, .450, .450, .460
have total probability of:

034 + .068 + .102 + .198 + .201 + .146 + .136 + .068 = .953
So this player’s true OBP value is very likely to be in the [.390, .460] range.

Estimating Batting Ability Using a Confidence

Interval

A basic task of professional statisticians is to provide bounds on how well
an estimate (such as a season OBP) correctly identifies a parameter (in this
case p, the probability of getting on base). A common approach to this
inference problem is to calculate a confidence interval for the probability p,
which we illustrated in the previous section. Using a standard formula
taught in all introductory statistics classes, a 95 percent confidence interval
for a probability has the following form:

Estimate = a margin of error

where

, | estimate x (1 — estimate)
Margin of error = 1.96 x " | -
sample size



To illustrate, suppose we are interested in learning about Alomar’s true
ability to get on base, which is measured by the on-base probability p. Our
guess at Alomar’s on-base probability is the observed season OBP value
422, which is based on a sample size of 682 plate appearances. So the
margin of error is equal to

422 x (1 - 422
Margin of error =196 x | ( ) =
682

So a 95-percent confidence interval for Alomar’s true ability to get on base
pis

037

422 + 037
or
[.385, .459]

This means that there is an excellent chance (a 95-percent chance to be
precise) that Alomar’s on-base probability p is between .385 and .459. (This
interval is essentially the same interval that we computed in the previous
section using a different rationale.)

This confidence interval gives an idea of how well we know the true
ability of getting on base. After 682 plate appearances, we’re pretty sure
that Alomar’s on-base probability is not .350 or .500 or any other value not
in the confidence interval. However, values of p such as .390, .420, or .450
are all plausible, since they do fall within the interval.

Suppose it is May 1, 1999, and Alomar has only played one month in
the season. He currently has an observed OBP of .422 based on 150 plate
appearances. What have we learned about his on-base percentage p? Using
the same formula, but with a sample size of 150 plate appearances instead
of 682, the 95-percent confidence interval is as follows:

[.341, .499]

Since our confidence interval is pretty wide (about 150 points), we are
pretty unsure about Alomar’s true OBP based on one month of hitting data.
Maybe he is average at getting on base and his true OBP probability is a
mediocre p = .341, or maybe he is great in getting on base with a high OBP
probability of p = .499. Both values of Alomar’s true OBP are reasonable
given only 150 plate appearances.



Of course, as plate appearances accumulate over time, we learn more
about Alomar’s true on-base probability. Figure 3-6 shows how an OBP
confidence interval moves closer to the true on-base probability p as the
number of plate appearances increases. The vertical lines in the figure mark
different 95-percent confidence intervals around the observed OBP = .422
estimate for different number of PAs. This confidence interval rapidly
narrows to (.35, .5) as the number of PAs increases to 100. After this point,
the lengths of the confidence intervals decrease slowly. Even after 350 PAs
(about half a baseball season for a player starting in every game), the
confidence interval has only narrowed to [.369, .471]. The final half-year
provides little additional information; we saw that after Alomar’s 682 PAs,
the confidence interval has only narrowed to [.385, .459]. Even after a full
season, we are not very sure of a player’s true ability to get on base.
Needless to say, this lack of precision in the observed OBP as an estimator
of the probability of getting on base is never discussed by sportscasters or
sportswriters.
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Figure 3-6 Graph of 95-percent confidence intervals for an on-base probability p as the number of
plate appearances changes from 20 to 2000.

Comparing Hitters

What does this mean? Basically, that seasonal on-base percentages are
highly variable. A player with a .400 OBP for a season has a reasonable
chance of having greater batting ability than a player who had an OBP of
410 in the same season. It is a fact that the .410 player had a better OBP
than the .400 OBP player over the course of that particular season, but the
400 batter may still be the better batter—that is, have the higher probability
of getting on base.

Let’s consider a batter who at some point in the middle of a season has a
.400 OBP. There is no doubt that up to this point the batter has done well.
But from the discussion we just had about the confidence interval for a true
on-base percentage, we might question just how good this player really is.
Is the .400 OBP a true reflection of his ability, or is it just the result of good
fortune? Clearly, again from the earlier discussion, a lot depends on the
number of plate appearances represented by the .400 OBP. In particular, we
might ask whether the batter is truly better than other players with lower
season OBPs. Let us consider three other batters with the same number of
plate appearances as the .400 batter.

Consider two batters—Joe has an observed OBP of .400 and Mike has
an observed OBP of .375 at a particular time during the season. Baseball
people will say that Joe is the better hitter simply because he is currently
performing better in getting on base. But what is the chance that Joe
actually has a larger true OBP, or larger ability to get on base than Mike?
Figure 3-7 (bottom curve) displays the probability that Joe (who is currently
hitting .400) is truly better than Mike (who is hitting .375) for a wide range
of plate appearances. If both hitters have only 100 plate appearances, then
the probability that Joe is better is only about 65 percent, and if the players
each have 600 PAs, then the probability Joe is better is still only 80 percent.
We see that we are not confident that Joe (who hits for .400) is better than
Mike (who hits for .375) based on one season of hitting data.
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Figure 3-7 Graph of the probability that a player with an observed OBP .400 has a better ability
than players with observed OBPs of .325, .350, and .375 as the number of plate appearances
increases from 50 to 700.

Figure 3-7 also compares our batter who hits .400 (Joe) with batters
who have hit for .325 and .350 OBPs. The middle curve is a graph of the
probability that Joe actually is superior to a guy who bats .350 based on
different numbers of PAs, and the top curve displays the probability that Joe
is superior to a hitter who bats .325. As expected, it is more likely that Joe
has greater ability as the opponent’s observed OBP decreases. Let’s say that
we are confident that Joe is better than the other batter if the probability he
is better is 95 percent or higher. (This value is indicated by a dashed line in
the figure.) Looking at Figure 3-7, we see that it takes 550—600 plate
appearances (a full season of PAs) to say that the hitter who bats .400 is
better than the hitter who bats .350. It takes fewer PAs to distinguish hitters
who bat .400 and .325. From Figure 3-7, we see that we are confident the
hitter who bats .400 is better than a hitter who bats .325 after 250 PAs, or
roughly half a season.

As a baseball season progresses, we will be comparing the quality of
hitters by means of statistics like the OBP. Halfway through the season, we
are pretty confident that two hitters that have season OBP values 75 points
apart (like .400 and .325) have different abilities to get on base, and that



these relative abilities are reflected in their numbers. After an entire season,
we can make finer distinctions between hitters, and we can say (with 95
percent confidence) that a hitter who has a 50-point observed OBP
advantage (like .400 and .350) is the better hitter. It is hard, however, to
make reliable distinctions when the margin of difference is less than 50
points, and we’re not confident that a difference of 25 points between two
hitters (like .400 and .375) is meaningful at all.

As you can see, statisticians aren’t just people who make inferences. We
recognize that the statistics that we observe over a season are only measures
of the players’ performance, and we use probability models to help learn
about the players’ abilities. Suppose some hot rookie, lets call him Max
Marvelous, bats .350 next year. A typical baseball fan may conclude that
Max is a great hitter. A statistician would come to a different conclusion:
Max may be a great hitter based on this great hitting season, but we won’t
be convinced that Max has great batting ability until he maintains this great
hitting performance for a number of seasons.
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Chapter 4
Situational Effects

Jim Albert and Jay Bennett

It’s April 4, 1999, and we’re watching the ESPN broadcast of the opening
game of the season, between the Padres and the Rockies. As each player
comes to bat, the announcers give the viewers some insight on how the
players perform in different situations. In this particular broadcast, we learn
the following:

e Tony Gwynn is a very tough hitter with runners in scoring position.
e Vinny Castilla hits 100 points better at home than on the road.
e Todd Helton had a slow start in the previous (1998) season.

e Wally Joyner is pretty valuable to his team, since the Padres generally
don’t win when he is not in the lineup.

All of these statements rely on situational statistics—that is, they tell us,
“in this situation ...,” or, “under these circumstances ...,” this or that tends to
be true. In the last few years, we’ve found these kinds of statistics
everywhere—in newspapers, on talk radio, from the broadcast booth during
the game. Another example: a day after the ESPN broadcast, one of us,
reading the newspaper (The Findlay Courier, April 5, 1999), encountered
the following headline: “Indians Hope to Improve Their Situational
Hitting.” Reading the article, it seems that the Indians didn’t perform well
in 1998 in moving a runner along with a bunt, or getting a runner home
from third with a hit. To improve on this, the team has done more in spring
training to promote situational hitting, although leadoff hitter Kenny Lofton
comments that failure to move a runner is sometimes just bad luck: “The
one thing the stat don’t show is how many times you hit the ball hard in
those situations and having nothing to show for it. Maybe the ball was
caught. Maybe the ball went foul. I know I had that kind of luck a lot last
year.” The article then says that Lofton hit a respectable .289 with runners



in scoring position in 1998, but with runners on third and fewer than two
outs, he hit .222 (4 for 18). Is Lofton just making excuses for himself, or
does he have a point?

Surveying the Situation

In this chapter, we try to understand what we learn from situational
statistics, and what we don’t. We will focus on one basic measure, a
player’s batting average, and explore what can be learned by breaking it
down into situational subsets: What was his average with men in scoring
position, or on the road, or before the All-Star break? We’ll take our data
from the book Player Profiles, published by STATS, Inc., which contains
one of the most extensive collections of situational statistics.

To start, we’ll narrow down our discussion to one player, Scott Rolen, a
third baseman for the Philadelphia Phillies. The 1998 season was Rolen’s
sophomore year in the majors, in which he attempted to show that his
Rookie-of-the-Year performance in 1997 was not a fluke. See Table 4-1 for
his stats.

Table 4-1 Scott Rolen’s Situational Statistics in 1998



AYG AB H AVG A8 ]

Season 290 601 174 First Pitch A00 &0 az
Ahead in Count 348 135 A7

vs. Left 280 132 a7
Behind in Count 205 249 51

vs. Right 292 469 137
Two Strikes 225 298 B7

Groundball 276 170 47
Batting #3 289 Llata] lad

Flyhall .283 116 34
Batting #4 313 32 10
Home 322 286 92 Other ] 1 0

Away 260 ils 82
March/April 271 6 26

Day 287 172 51
May 345 113 39

Night 287 479 123
June 295 105 3l
Grass .2 5d 232 59 July 273 99 27
Turf alz2 369 115 August 245 106 26
Sept/Oct 305 a2 5,

Pre-All Star 303 333 101
Post-All Star 272 268 73 vs. AL 311 6l 1%
vs. NL 287 540 166

Scoring Posn 294 170 20

Close & Late 2749 111 31

None onfout 287 115 a3

First, we look at Scott’s overall hitting. In 1998, he got 174 hits out of
601 at-bats, for a batting average of 174/601 = .290. We’ll see later that this
is a pretty good average—it’s better than the batting average of a typical
MLB regular player in 1998.

The table then breaks down these batting stats by a number of different
situations. The vs. Right and vs. Left rows of the table show how Scott
performed against right- and left-handed pitchers. Generally, it is believed
that one hits better against pitchers of the opposite arm: Since Scott is a
right-handed batter, one expects him to hit better against left-handed
pitchers. Looking again at Table 4-1, we’re a little surprised—Scott hit .292
against right-handers and .280 against left-handers.



Next, the table breaks down Scott’s hitting by the type of pitcher faced.
Some are classified as ground-ball pitchers, since their pitching tends to
induce a lot of ground balls; others are characterized as fly-ball pitchers. We
see that Scott did somewhat better against the fly-ball pitchers (.293) than
the ground-ball (.276).

The next three situations break down the hitting data by the location of
the ball park (home and away), the time of the game (day and night), and
the playing surface (grass and turf, meaning artificial turf). Generally,
ballplayers are thought to play better in their home ball parks than in
opponents’. There are a number of reasons for this—players are more
familiar with the characteristics of their own park, they are better rested
since they aren’t traveling, and they are being cheered by their fans. We see
that Scott hit much better at home (.322) than at away games (.260), which
is what we would expect. There doesn’t appear to be much of a time-of-day
effect—Scott hit just a little better during day games (.297) than during
night games (.287). Also, he hit .312 on games played on artificial turf,
compared with .254 on grass.

After noting that Scott hit better at home, the better average on turf
should not surprise us. Scott’s home park is Veterans Stadium in
Philadelphia, which has artificial turf. So if we combine the situations
“surface” and “home/away,” we see that there really are only three
situations—home, away on turf fields, and away on grass fields. One can
figure out from the table that Scott hit .322 (92 for 286) on home-turf, .254
(59 for 232) on away-grass, and .277 (23 for 83) on away-turf. Generally, in
analyzing situational data, one has to watch for situations or categories that
are highly related or overlap. It is hard to tell if Scott really is a better hitter
on turf since he played most of his turf games at home, in Philadelphia.

Returning to Table 4-1, the hitting data is also divided by different
periods of the season. Scott hit .303 during the first half (before the All-Star
Game) and only .272 during the second half. The month-by-month
breakdown shows he had an especially hot May, batting .345, and a cool
August, batting only .245.

The last grouping on the left-hand side of the table breaks down the
hitting data by game situation. The heading “Scoring Position” indicates the
player comes to bat with a runner at either second or third base. “Close and
Late” occurs when the game is in the seventh inning or later and the batting
team is leading by one run, is tied, or has the potential tying run on base, at



bat, or on deck. “None On/Out” means that the player comes to bat with no
runners on base and no outs. The “Scoring Position” and “Close and Late”
situations represent times in the game where it is especially important for
the player to get a base hit. In contrast, there is less pressure on a player
when there are no outs and no runners on base. Here Scott hit for about the
same average in all three situations— there is little evidence that he hits
better or worse in pressure-packed situations.

The first grouping on the right-hand side of the table tells us how well
Scott hit on different pitch counts. We see from the table that in plate
appearances where Scott hit on the “First Pitch,” he hit .400. In plate
appearances where he was “Ahead in the Count” (where the number of
balls exceeds the number of strikes), he hit for an average of .348. For
“Behind in the Count” situations (pitch counts of 01, 0-2, 1-2, 2-2), he hit
.205, and he hit for an average of .225 when there were 2 strikes in the
count.

Last, the table tells us how Scott hit when he was batting number 3 and
number 4 in the Phillies lineup. He played most of his games batting third,
so this breakdown is not very interesting. Likewise, Scott’s hitting
performance against National League and American League teams is not
that informative, since he played almost all of his games against NL teams.

Looking for Real Effects

It’s pretty obvious that Player Profiles is great reading. A Phillies fan who
especially likes Scott Rolen will have fun analyzing his breakdown
statistics. Although Scott appears on the surface to be a .290 hitter, it seems
his batting average during the season varied greatly, depending on particular
circumstances. In the following situations, he appears to be an excellent
(over-.300) hitter:

e in games played at home

 in games played on artificial turf (but we noted that this might be the
same as home)

e in May

He appears to be especially hot when he swings on the first pitch (.400) and
when he is ahead in the count (.348).



When we look at Player Profiles, we’ll find a wealth of intriguing
numbers. But do all of these numbers—these high and low situational
batting averages— mean anything? In other words, do the observed
differences between the averages in distinct situations correspond to “real”
effects? Was Scott Rolen really a better hitter during home games? During
the next season, should the Phillies manager bench Scott for games played
on grass because of his sub-par 1998 batting average on that surface?
Should we be surprised when Scott hits for a .400 average on the first pitch?

The preface of the Player Profiles book states:

Not all .300 hitters are created equal. Last year, one hit .446 in April,
and one hit under .190 that month. One hit over .400 after the All-
Star Break and one hit under .220 for the final two months of the
season.... When you think about it, calling a player “a .300 hitter”
really doesn’t say very much.

In the rest of this chapter, we’ll use probability models to see if there
really are differences between .300 hitters. Remember Kenny Lofton’s
comment about his bad luck hitting with runners in scoring position? We
will try to explain how much of the variation in the situational data is due to
good or bad luck. Specifically, we’ll explain what we mean by “real” or
“true” situational effects, and see what we learn about them from the
situational data for all of the regular players in the 1998 season.

Observed and True Batting Averages

Recall our discussion about a true proportion and an observed proportion in
Chapter 3: if we toss a fair coin in the air, we know that the chance of
tossing heads is .5—this number represents the true proportion of heads.
But if we toss the coin 20 times, we may get 8 heads for an observed
proportion 8/20, or .4. As we stated, in any situation involving chance, it is
likely that an observed proportion will be different from the true proportion.

In a similar fashion, we can define the concepts of observed and true
batting averages. In 1998, Scott Rolen came to bat 601 times and got 174
hits, so we compute his batting average as follows:

174/601 = .290

This is his observed batting average, based on 601 opportunities to get a hit.



We measure Scott’s ability to hit this season by a number p, which we
call his true batting average. Like the coin probability of 50 percent, this
number represents Scott’s chance of getting a base hit in a single at-bat. It is
very unlikely that his true batting average is equal to his 1998 observed
batting average of .290.

Although Scott’s true average p is unknown, we learn something about
his true average by his performance during the 1998 season. Since he hit
.290 for his 601 at-bats, we would guess that his true average p is close to
.290. Actually, using the formula presented in Chapter 3, we can construct a
95 percent confidence interval for the true average. It turns out to be [.254,
.326]. So we are pretty confident that Scott’s hitting ability p is between
.254 and .326.

Let’s illustrate the difference between Scott’s hitting ability and his
season performance by means of a simple simulation. (A similar simulation
experiment was performed for Roberto Alomar’s on-base percentage in
Chapter 3.) Suppose Scott is really a .300 hitter, and the chance p that he
gets a hit in an at-bat is 30 percent. Imagine a spinner, as illustrated in
Figure 4-1, where the pointer can land anywhere on the circle. (Since we’re
assuming his hit probability is .3, the Hit region is 30 percent of the total
area.) We simulate Scott’s hitting results for a season by spinning the
spinner 601 times. The total number of pointers that fall in the Hit region
will be his number of hits for the season.

Hit

het

Figure 4-1 Spinner for simulating hitting for Scott Rolen.

On the computer, we did this simulation 100 times, obtaining the
number of hits for each of the 100 seasons (assuming that his true batting
average is .300). Table 4-2 shows the number of hits that we observed.



These hit numbers are converted to batting averages by dividing each by the
number of at-bats (601). These 100-season batting averages are displayed
using a stemplot in Figure 4-2.

Table 4-2 Number of Hits in 601 At-Bats for 100 Seasons Assuming Scott Rolen Is a .300 Hitter
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Figure 4-2 Stemplot of 100-season batting averages for a true .300 hitter.

We are assuming that Scott is truly a .300 hitter and remains a .300
hitter for 100 seasons. But the stemplot illustrates that this good hitter has a
variety of good, mediocre, and bad seasons. In two unlucky seasons, he hit
only .260. At the other extreme, in one season he was very fortunate and hit
.346. These simulated results again demonstrate that a player’s true batting
average can be different from his season batting average. Also, the
differences are substantial: we see an 86-point differential between Scott’s
best (.346) and worst (.260) seasons in these simulated seasons.



Batting Averages of the 1998 Regulars

We focused on one hitter and noticed that there can be a significant
difference between one’s ability—that is, his true batting average—and his
season batting performance. But what if we look at the batting averages of
all the players in 1998? Can we use this bigger collection of data to make
some conclusion about the true batting averages of all of these players?

In 1998, there were 246 players (in both leagues) who had at least 300
at-bats—we’ll call these the “regular players,” since 300 is about half the
number of at-bats of a player who plays every game. In Figure 4-3, we’ve
constructed a stemplot of the observed 1998 batting averages for these 246
players.
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Figure 4-3 Stemplot of batting averages of 1998 regular players.

What do we see from this stemplot? The batting averages are
approximately bell-shaped, and most of the averages are clustered in the
.250-.299 range. The median batting average, that is, the value which
divides the data set into a lower half and an upper half, is .276. The weakest



hitter was John Flaherty, who had a .207 average. Two hitters stand out at
the high end—John Olerud at .353 and Larry Walker at .363.

Two Models for Batting Averages

From this graph of the observed batting averages, what can we say about
the true batting averages of these regular ballplayers? Remember we don’t
actually know the true hitting probabilities of these 246 players. All we
know is their batting performance in the 1998 season. We will suggest two
models for the true hitting probabilities for these players and see how well
data that is simulated from these models mimic the actual 1998 batting
averages.

A .276 Spinner Model

One simple model for hitting is based on the use of a random spinner
(shown in Figure 4-4) similar to what was used for Scott Rolen. It consists
of two regions (indicated by the heavy and light sections of the circle) that
we’ll call, respectively, “Hit” and “Out.” The area of the Hit region
corresponds to the true hitting probability of the player. Suppose that the
player is average in ability—we’ll call him “Joe Average.” If Joe is a typical
regular batter, it is reasonable (using 1998 hitting statistics) to let him have
a .276 chance of getting a hit—this corresponds to a Hit area of .276. We
call this model “a .276 spinner.”

Ot
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Figure 4-4 Spinner for an average (.276) hitter.



If Joe has 500 at-bats during the season, we can simulate a season of
hitting for this average player by spinning our .276 spinner 500 times. We
performed this simulation once, and the spinner landed 152 times on the
Hits region, which corresponds to 152 hits during the season. Joe’s batting
average for this simulated season is then, 152/500 = .304. Note that the
observed batting average for Joe is different from his true hitting
probability. As we saw in the case of Scott Rolen, that will typically be the
case. On a computer we had Joe play 10 simulated seasons—Table 4-3
gives the number of hits and batting average for each. We see that there is a
lot of variation in Joe Average’s season performance. In season 6, he was
“hot” and batted .310. In contrast, he “slumped” in season 9 and batted only
.236. Remember, Joe is always an average-ability hitter. Just by chance
variation, he is having good and poor batting seasons. (In contrast, a
sportswriter who observes Joe’s .236 season would probably offer
numerous explanations for his poor year.)

Table 4-3 Simulated Data from 10 Seasons of Hitting by Joe Average

SIMULATION

' 2 3 4 5 : § 9 10
HITS 152 121 131 147 126 155 126 128 118 144
ABS 500 500 500 500 500 500 500 500 500 500
AVG 0.304 0.242 0262 0294 0252 0310 0252 0.256 0236 0.288

Do All Players Have the Same Ability?

The variability of the season batting averages for this average player raises
an interesting question. Is it possible that all players have the same ability
as Joe Average, and that the differences observed in player averages for the
1998 season are therefore just the result of random variability? This seems
like a silly question—we think players have different hitting abilities—but
it might be helpful to check this scenario.

Remember that a hitter of average ability is represented by a spinner
with a Hit area equal to .276—a so-called .276 spinner. If all 246 players in
the major leagues are all average hitters (that is, a set of Joe Average
clones), then we have a set of 246 spinners, each spinner having a Hit area
of .276.



To simulate a season of hitting for all 246 players, we just spin these
246 spinners many times, recording the number of Hits and Outs. After this
simulated season is completed, we compute the season batting averages for
all players, graph the simulated averages, and compare the results with the
graph of the actual 1998 season batting averages.

Figure 4-5 shows what happened when we did this simulation for one
baseball season. The actual 1998 batting averages are displayed in the left
boxplot, and the simulated batting averages are displayed in the right
boxplot.
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Figure 4-5 Boxplots of actual 1998 batting averages and simulated seasonal averages from one
random spinner model.

What do we see? Both groups of batting averages are centered about the
median value .276. But the actual 1998 batting averages are more spread
out than the simulated averages. In the simulated season, only a couple of
players hit less than .240 or more than .320. In contrast, there were a
number of players in the actual 1998 season who had averages lower than
.240 or higher than .320. This suggests that the “equal ability” model
doesn’t provide a good fit to the data.

When we repeated this simulation of baseball seasons many times, the
result was the same. The actual 1998 season batting averages always had
greater spread than the season batting averages simulated from the “Joe



Average clones” model. What do we conclude? A .276 spinner model does
not work for baseball hitting data, which means that hitters do have
different abilities. A more complicated model is needed to represent
baseball hitting data. As we said before, this is a pretty obvious conclusion
—it would seem ludicrous to say that players all have the same hitting
ability—but it illustrates the basic method we’ll use to check the suitability
of other models.

A Model Using a Set of Random Spinners

From our investigation of the .276 spinner, we concluded that players have
different hitting abilities. The next question is, how can we represent these
different abilities? When we take physical measurements of the general
population and collect data about different characteristics—such as height,
arm span, foot size, and so forth—we find that most of the measurements
cluster in the middle and attenuate (or “thin out”) at the high and low
extremes. We call this data distribution “normal,” and when we put it into a
graph, we get the familiar bell-shaped curve. This normal curve is also
found in data describing the abilities of people. For example, if you give
100 people a standardized test on some subject matter such as math, the test
scores will be approximately bell-shaped.

This bell-shaped curve is also useful for describing the hitting abilities
of ball players. Suppose that the true hitting proportions of regular Major
League ball players are described by a normal curve. We’ll let the center of
the curve be .276, which is the typical season batting average for 1998.
Next we have to decide on the spread of this curve. We know that ball
players have different abilities, and the spread of this curve will tell us how
different the abilities can be. We choose a spread for the curve so that the
season batting averages that are simulated resemble the actual batting
averages for the 1998 season. How we figure out this spread is a bit
complicated. But it turns out that if we let the normal curve have a standard
deviation of .021, the season batting averages are a pretty good match to the
actual 1998 data.

The technical name for this model is a random-effects model, or a
random-ability model. To better understand this model, let’s describe in
some detail how one could simulate hitting of all the regular players in a
baseball season.



e The first thing we do is to choose the different abilities of the 246
players who are playing the 1998 season. We choose these abilities
randomly based on the normal curve in Figure 4-6. We did this on a
computer and got the true baseball averages shown in Table 4-4.
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Figure 4-6 Normal model for true hitting probabilities.

Table 4-4 Simulated True Batting Averages for 246 Players



278

226

305
308

278

277

259

To see where these true batting averages come from, we’ve graphed
these 246 averages in Figure 4-7 and placed the normal-ability curve
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averages are in the 250-300 range, which is what we predict from the
normal curve.
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Figure 4-7 Dotplot of the true batting averages with a normal curve placed on top.

Based on the 246 true batting averages we have simulated, we
construct 246 computerized spinners. Each spinner corresponds to a
particular player, and the Hit area for his spinner will be equal to the
true batting average for that particular player. So if Scott Rolen is
assigned a .308 true average, his spinner would have a relatively large
Hit area, and Albert Belle, with a .251 true average, would have a
spinner with a smaller Hit area, and so on. The nine spinners shown in
Figure 4-8 correspond to the boldface averages in the upper-left corner
of Table 4-4.
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Figure 4-8 Spinner models for nine hitters from the random-ability model.

e We then spin all of these spinners for a full season of hitting, where
each player has the same number of at-bats as he actually had in the
1998 season.

We did this simulation for a single baseball season and computed the
season batting averages for all 246 players. How did these simulated batting
averages compare with the actual 1998 averages? Figure 4-9 compares the
two sets of averages by means of two boxplots. Looking at the boxplots, we
see that they seem to mimic the actual 1998 averages pretty well. For the
actual 1998 data, there is one extreme average at the high end, and the
simulated data has one unusually low average. In any event, this simulation
confirms that the “many random spinners” model does a pretty good job of
predicting the distribution of seasonal batting averages.
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Situational Effects
What have we learned from looking at the 1998 batting averages?

» Batters appear to possess different hitting abilities.

e We can describe these different abilities by means of a group of true
hitting averages. The group of true batting averages forms a bell-
shaped curve centered on the typical value .276.

Now we’re ready for a discussion of situational effects. How do players’
batting averages change across different situations? Specifically, using the
data from Player Profiles, we will compare players’ batting averages in the
following situations:

e during home games and away games

 against pitchers of the opposite arm and the same arm
 against ground-ball pitchers and fly-ball pitchers

e during day games and night games

e on games played on grass and on turf

e on games played before and after the All-Star Game



e when the team is in scoring position, when no one is on base and there
are no outs

» when the pitcher is ahead in the count and when there are 2 strikes
First, let’s discuss what is commonly believed about the importance of
several of these situations.

Home vs. Away

It’s well known that all ball parks are not created equal. They differ in the
distances from home plate to the fences, the size and shape of foul territory,
the climate, and countless other particulars. And it is believed, by players
and coaches and fans, that these differences have a significant impact on
hitting. We hear that batters who regularly play in a park that is supposedly
“friendly” benefit from that park. And it is widely accepted that players hit
better at their home ball park than they do on the road. It’s more
comfortable to play in one’s own park, goes the thinking: the players get to
stay in their homes and drive themselves to work, while the away team
which has to travel on planes and buses and stay in motels. And the home

team, of course, is cheered on by local fans.! For all of these reasons, one
expects players to have higher batting averages at home compared to away.

Turf vs. Grass

It is well known that balls hit on artificial turf will behave differently from
those hit on natural grass. It is believed that artificial turf will increase the
number of doubles and triples, since line drives into the outfield will move
fast and more likely evade the outfielders. Also, balls hit in the infield on
artificial turf, we’re told, will more likely reach the outfield. For these
reasons, it is believed that “turf,” as the artificial surface is called, has a
positive impact on players’ batting averages.

The Count

When a pitcher faces a batter, there are 12 possible pitch counts (0-0, 0-1,
0-2, 1-0, 1-1, 1-2, 2-0, 2—1, 2-2, 3-0, 3—1, 3-2). To an experienced fan,
each count conveys a feeling about the batter’s chances of getting a hit. For
example, if the hitter is facing an 0-2 count, it is generally believed that the
pitcher has a strong advantage and the hitter has a small chance of getting a



hit. (Actually, the hitter is likely to strike out after an 0—2 count.) In
contrast, a batter with a 3—0 count can be very relaxed and confident and
has a high probability of walking or getting a hit. Thus it would seem that a
player’s ability to get a hit would vary greatly depending on the pitch count.

Opposite Arm vs. Same Arm

One of the fundamental managerial strategies is to have a hitter bat against
a pitcher of the opposite arm. This strategy is based on the belief that it is
easier to hit a pitch that’s coming toward you than a pitch moving away
from you. As Casey Stengel once said:

There’s not much to it. You put a right-hand hitter against a left-hand
pitcher and a left-hand hitter against a right-hand pitcher, and on
cloudy days you use a fastball pitcher.

According to this logic, one expects a player to have a better batting
average against pitchers of the opposite arm.

Models for Situational Effects

To understand which of the above situational effects are “real,” we’ll use
the same basic strategy that was used in analyzing the set of batting
averages. We will propose a few basic models for situational effects, then
we will fit these basic models to the 1998 batting-average data. Based on
this fitting, we’ll see which models seem to predict the pattern of effects we
see in the 1998 data.

To describe these models, let’s use a hypothetical situation that is not
represented in Player Profiles. Suppose we break down the hitting data by
the size of the crowd—below average (whatever “average” is for that
particular stadium), and above average. We want to know if the size of the
crowd has any effect on the players’ batting averages. For ease of
description, we will refer to these two scenarios as “small crowds” and “big
crowds.”

Suppose one of our favorite players, Tony Gwynn, has 80 hits in 250 at-
bats on small-crowd days and 100 hits in 250 at-bats on big-crowd days.
Given this information, we observe the situational batting averages in Table
4-5. Looking at the table, we might be tempted to say, “Wow!” Tony hit 80



points higher when the attendance is high—apparently, he really loves to
play in front of big crowds!

Table 4-5 Hypothetical Situational Hitting Data for Tony Gwynn
ATTENDANCE

Small Crowd Big Crowd Oifference

Batting Average 80250 = 320 LOQr250 = 400 AQ0D - 320 = 080

But wait a minute. We are learning that there is a lot of variation in
batting data for a single season. Maybe Tony doesn’t care if he’s hitting in
front of a big or small crowd, and there actually isn’t any real situational
effect due to attendance. The attendance effect of 80 points that we see in
the hypothetical season above might be due to chance variation. Tony may
actually have the same true batting average on small- and big-crowd days,
but by luck he just happened to do much better this year on big-crowd days.
What we’re trying to do here is to decide how much of the variation in
situational hitting data is due to real effects and how much of the variation
is due to luck or chance variation.

For each player, let’s define two true batting averages. The first average
pg is the true batting average of the player when he plays in front of big

crowds, and the second average pg is the true average in front of small

crowds. We’ll call the true situational effect the difference between the two
batting averages:

True effect = pp — Ps

We want to learn about the sizes of the true effects for all of the hitters in
1998.

In the description of the models to follow, it will be convenient to write
the two batting averages as

True batting average for small crowds: pg
True batting average for big crowds: pg = pg + EFF

Here we’re using the abbreviation EFF to stand for the True Situational
Effect. To put this another way, EFF measures how much better a player hits
when there is a good crowd in the stands.

When we talk about situational effects, there are three possible
scenarios. We’ll describe these models using our hypothetical above-
average/below-average attendance situation.



Scenario 1 (No Situational Effect)

One possibility is that there is no true effect due to attendance. A major-
league ball player has been playing in front of crowds his whole life, and
maybe he is oblivious to the size of the crowd. If this is a reasonable
statement, then there is no reason to expect the batters to hit for a different
average on small-crowd and big-crowd days.

If there is no situational effect due to attendance, what would true
batting averages look like? We would see a distribution like the one shown
in Figure 4-10, which shows the same normal curve we saw in Figure 4-6.
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Figure 4-10 Normal curve for batting averages when there is no situational effect due to
attendance.

Scenario 2 (Situational Bias)

Let’s consider a different scenario. Suppose hitters actually like big crowds,
and when they see a big crowd, they get excited and try harder. And since
they try harder, they are generally more successful in hitting. If this is true,
then a player’s true batting average on big-crowd days will be higher than
the player’s true batting average on small-crowd days. Also, we assume



here that the big crowd has the same effect on all of the players. So if this
effect is, say, 40 points— that is, the average is 40 points higher for big
crowds than for small crowds— then every player will have this same
effect. The statistical term for this type of behavior is a bias.

Table 4-6 and Figure 4-11 illustrate what we mean by a bias. Suppose
that the hitting abilities of the players on small crowd days follow a normal
curve with mean .256 and standard deviation .021. In Table 4-6, we show
the true batting averages for 50 representative hitters on poor-attendance
days. In the top graph of Figure 4-11, we display these true averages using a
dotplot.

Table 4-6 Fifty Representative True Batting Averages for Games with Small Crowds
PLAYER  TRIE AVG

A 258 N 262 M 261 NN 257
B .239 0 245 BB .230 00 263
c  .270 P 228 ¢ .249 PP 786
D 206 Qa  .279 Db 236 aa  .283
E ey R 241 EE 231 RR pa4
F .26l s 256 FF 235 ss 261
6 .26l T .25 66 .248 ™ 256
H .28l u 251 HH  .260 w244
| 250 v Z2ad Il 254 vV 301
) 253 W 250 N 278 WWw 251
K .229 X 221 KK 251 ™ 226
L 221 Y 234 LL 224 Yy 293
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Figure 4-11 Dotplots of 50 typical “small crowd” and “big crowd” true batting averages when there
is a situational bias of 40 points due to attendance.

Next, suppose that there is a bias of 40 points. That means that every
player bats for a 40-point higher average when there is a big crowd, in
which case:

EFF = .040

To get the true batting averages for our 50 hitters on big-crowd days, we
simply add 40 points to each small-crowd batting average in Table 4-6. The
resulting averages are shown in Table 4-7.

Table 4-7 Fifty Representative True Batting Averages for Games with Above-Average Attendance



A 25E8+.040 N L262+.040 AR 261+.040 NN 257+.040

B L39+.040 0 £245+.040 BB 230+.040 0a .263+.040
G 270+.040 F 2284040 HH 24940440 PP .266+.040
D 206+,040 f 2794040 1] 2 36+,040 an 283+.040
E ETT+.040 R L2 1+.040 EE 231+.040 RR Edd4 040
F L261+.040 5 L256+.040 FF 235+.040 55 26 1+.040
G LB1+.040 T £h6+.040 GG 248+.040 T .256+.040
H Z81+.040 u 2514040 HH 260+.040 uu 2444 040
I 280+,040 v L264+,040 I o S+, 040 W A01+.040
] 253+.040 W L250+.040 1 278+.040 ww 251+.040
K L29+.040 X 221+.040 KK .251+.040 XX 226+.040
L L21+.040 ¥ £34+.040 LL 2 2d+.040 YY .2593+.040
] L41+.040 MM .256+.040

The bottom graph of Figure 4-11 displays the true “big crowd”
averages. Comparing the two dotplots, we see the effect of the situational
bias. All of the dots in the top graph have been shifted to the right by 40
points to get the dots in the bottom graph. This emphasizes the fact that a
situational bias means that all players have the same batting-average
improvement due to a good park attendance.

Scenario 3 (Situational Effect Depends on Ability)

The third scenario is the most complicated description of what may be
going on. Maybe there really is a boosting effect due to the size of the
crowd, but the size of the effect depends on the player. For example,
suppose that there are two players, Joe Cool and Harry Hyper, who react
differently to big crowds. Joe is good in not letting outside influences affect
his hitting. His true batting average when there are big crowds is
approximately equal to his average when there is no one in the stands.
Harry, in contrast, feeds on whatever energy level is present in the ball park.
If attendance is low and no one is cheering, he is complacent, and his
batting average suffers. On the other hand, if the ball park is filled to
capacity and the crowd is cheering, Harry gets pumped and hits for a high
batting average. Harry would have a large situational effect due to the park
attendance.



In this scenario, we are saying that players actually possess different
abilities to use the situation. Harry is more successful than Joe in using the
crowd to his advantage. If Harry and Joe are both second baseman, then the
manager might prefer to use Joe on small-crowd days and Harry on high-
attendance days.

Finding Good Models

We’ve described three possible scenarios for a given situation effect. We’ll
nickname these scenarios as “no effect,” “bias,” and “ability effects.”

* No effect. There is no true situational effect. Any differences that we
observe in the season situational batting averages are solely due to
chance variation.

* Bias. There is a true situational effect, but it is the same for all players.
 Ability effects. Players have different true situational effects.

How do statisticians find the best model for the 1998 hitting data?
Actually, we don’t want to bore you with a long explanation of the method
of finding the model. What’s more important here is an understanding what
we mean by “best.” We know that baseball hitting is a complicated process,
and no model, including the ones described above, will perfectly describe
what is going on with respect to situational effects. But what we do in
statistics is try to find a single simple model that seems to explain pretty
well the hitting data that we observe in Player Profiles. There are two
important aspects of the model. First, we want the model to be simple so
that it is understandable. Second, the model should be good in the sense that
it makes reasonable predictions about current and future baseball data. The
“many random spinners” model for batting averages is an example of a
good statistical model. It is easy to understand, and it predicts, reasonably
well, the pattern of season hitting data that we observe.

What Do Observed Situational Effects Look Like
When There Is No Effect?

Before we look at the situational data of the 1998 hitters, it will be helpful
to consider a scenario where there is no situational effect. We will simulate



situational data for a season, and by looking at the observed situational
batting averages, we’ll understand the great variability that is inherent in
this type of data.

Let’s recall the “random spinners” model for hitting data. Here each of
the 246 hitters has an associated random spinner, where the Hit region in
the spinner corresponds to the true batting average. We spin these spinners
for an entire season of hitting, and in this way simulate the season batting
averages for the group of players.

We introduce a new situation where we know there is no effect. Let’s
suppose that, when we do this simulation, half of the time we spin the
spinner in the dark and the other half of the time we spin in the daylight.
So, for example, consider Roberto Alomar, who has 588 at-bats in the 1998
season. For 294 of the at-bats, we’ll spin Alomar’s spinner in the dark, and
for the remaining 294 at-bats we’ll use the spinner in the daylight. After we
use the spinner for all 588 at-bats, we will record the number of hits that
Alomar gets in the dark and in the light. We will compute Alomar’s batting
average in each situation, and then we can compute the observed situational
effect:

Observed situational effect = AVG g,y — AVGyiop,

When we did one simulation, Alomar got 87 hits in 294 AB in the dark
for a batting average of 87/294 = .296. In the light, he had 71 hits in 294 AB
for an average of .242. Alomar’s observed situational effect in this case is:

Observed situational effect = .296 — .242 = 0.54

So Alomar hit for 54 more points in the dark in this simulation season.
To many people, this would represent a significant effect—Alomar must
like the dark! But of course this is not the case, since it was the spinning,
and not real hitting, that took place with the lights out.

To investigate further, we repeated this simulation for all 246 players
(using their 1998 at-bat totals) and computed situational effects for all
players. In Figure 4-12, we graphed the 246 effects using a stemplot.
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Figure 4-12 Stemplot of seasonal situational effects when there is not a true effect.

In this silly example, does there exist a true situational effect? If the
same spinner is used in the dark and in the light, do you think the chance of
getting the pointer to land in the Hit region will change depending on the
light in the room? Of course not. If you spin the spinner the same way each
time, the chance of getting a Hit will remain the same regardless of the
light. We know in this case that there is no true situational effect.

Now look at the stemplot in Figure 4-12. Even though there is no dark-
light effect, some of the players have large dark-light effects for this
simulated season. One player batted .358 in the dark and .241 in the light
for a whopping effect of .358 — .241 = .117. On the other side, there was
one player who batted .262 in the dark and .372 in the light—110 points
greater in the light. The situational effects are bell or normal shaped,
centered about the average value of 0, which is what we would expect. But
the spread of these effects is large, and practically all of the observed effects
fall between —100 and +100 points. This simulation demonstrates that, even
when there is nothing going on, the observed situational effects can look
deceptively interesting.

The Last Five Years’ Data

Although we are focusing on interpreting the 1998 situational data, Player
Profiles also gives the same situational hitting data for the previous five-
year period, from 1994 through 1998. This five-year data is very useful for
understanding the significance of observed situational effects. Looking at



the book, we see that Butch Huskey in 1998 hit for an average of .299
against left-handed pitchers and only .230 against right-handers—here we
observe a situational effect of 69 points (.299 — .230 = .069). Does this
mean that Huskey (who is a right-handed hitter) is a much better hitter
against lefties? Maybe or maybe not. It’s possible that Huskey has the same
hitting ability against lefties and righties, but by chance he just happened to
do better against lefties in 1998. One way of checking if this 69-point
differential is real is to look at his performance over the last five years. If he
exhibits the same effect in the previous years, one would have more
confidence that the situational effect really exists. The data in Table 4-8,
taken from Player Profiles, helps us take just such a look at Huskey’s five-
year history.

Table 4-8 Butch Huskey’s Batting Data for the Five-Year Period 1994-1998
LAST FIVE YEARS (1994-1998)

AE H AvG

Left 389 117 0.301
Right 9hhb 2445 0.254

We observe a left-right average difference of .3010 — .254 = .047, which
is pretty large. So we might conclude that Huskey is a much better batter
against lefties But, wait: the last five years’ data includes the year 1998. So
one reason that Huskey has a large five-year effect is that he experienced a
large effect in 1998. It would be better to remove the 1998 data from the
last five years, creating data for the four-year period 1994-1997, as shown
in Table 4-9.

Table 4-9 Butch Huskey’s Batting Data for the First Four-Year Period 1994-1997
FIRST FOUR YEARS (1954-1897)

AB H AVG
Left 272 82 0.301
Right 703 185 0.263

We see that in the last four years, Huskey had a .301 — .263 = .038
average difference. This is reasonably large, so we believe that Huskey does
hit for higher average against lefties. But the 1998 difference of .069 seems



to be larger than his true advantage. We will use the last four years data to
give support to our conclusions about the true situational effects.

The “No Effect” Situations

Recall the simulation in which we spun our spinners half the time in the
dark and half the time in the light. In that situation, even when we knew that
there was no situational effect, the observed situational effects fell between
—100 and +100 batting average points. Interestingly, we see this same
pattern of season effects for all of the following situations:

e pre-All-Star Game vs. post-All-Star Game
e day games vs. night games

e grass vs. turf

In Figures 4-13, 4-14, and 4-15, we have used stemplots to graph the
observed 1998 situational effects for pre/post, day/night and grass/turf for
all 246 players. We see in this actual data basically the same pattern of
effects that we saw in our light/day simulated data. For each of these three
situations, the player effects are bell-shaped around 0 and spread out
between —100 and +100 points.
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Figure 4-13 Stemplot of observed 1998 differences AVG(pre-All-Star Game) — AV G(post-All-Star
Game).



Figure 4-14 Stemplot of observed 1998 differences AVG(day games) — AVG(night games).
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Figure 4-15 Stemplot of observed 1998 differences AVG(grass) — AVG(turf).

To emphasize this point, Figure 4-16 displays parallel boxplots of the
1998 effects for the pre/post All-Star game, day/night, grass/turf situations
together with the hypothetical dark/light values from our situation. Note the
similarity of these four datasets, in terms of both the average value and the

spread.
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Figure 4-16 Boxplots of pre/post-All-Star game, day/night, and grass/turf 1998 situational effects.
For comparison, a boxplot of the simulated dark/light effects is shown.

So we conclude that their is no general effect for these three situations.
Players don’t generally hit any better or worse in the last half of the season
than the first half of the season. There is no general hitting advantage or
disadvantage in playing a night game compared to a day game. And there is
no general hitting effect with regard to the type of field (grass or turf).

One way to demonstrate the lack of a general effect for these situational
variables is to compare the 1998 observational effect with the last-four-
years (1994-1997) effect for all of the players. For example, consider the
pre-All-Star/post-All-Star effect. Table 4-10 shows the pre-All-Star and
post-All-Star batting averages for four of the players.

Table 4-10 Batting Averages for Four Players Before and After the All-Star Game

1998 1994-1997
PLAYER PRE POST PRE-POST PRE POST PRE-POST
Edgardo Alfonzo 0.267 0.288 -0.021 0.287 0.289 -0.002
Jermaine Allensworth 0.300 0.214 0.086 0.257 0.258 -0.001
Roberto Alomar 0.291 0.271 0.020 0.323 0.307 0.016
Sandy Alomar 0.261 0.196 0.065 0.315 0.271 0.044

We see from Table 4-10 that Edgardo Alfonzo hit 21 points better in the
second half of the season in 1998, but hit only 2 points better in the second



half in the previous four years. Jermaine Allensworth hit 86 points better in
the first half in 1998, but hit 1 point worse in the first half in 1994-1997.

Suppose that for each player we record the pre/post effect in 1998 and
the pre/post effect in 1994—-1997, and then graph these values in a
scatterplot, as shown in Figure 4-17. We don’t see any increasing or
decreasing pattern in the graph, which means that there is little relationship
between the players’ pre/post situational effect in 1998 and the
corresponding effects in the four previous years.
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Figure 4-17 Scatterplot of 1998 situational effects and the previous four-year period situational
effects for the pre/post All-Star Game situation.

Since there is no general effect for these three situations, does this mean
that there is no real situational effect for any of the individual players? No.
It is possible that some players do take advantage of some situations. For
example, it is possible that some batters have a stroke that is especially
well-suited for artificial turf, and so they hit for a higher true average on
turf than on grass. However, our analysis seems to indicate that this
turf/grass effect, if it exists at all, applies only to a relatively small group of
players. If many players had a turf/grass effect, then we would see it in the



observed situational effects. But the data we see is very consistent with a
model where there is no turf/grass situational effect for any of the players.

The “Bias” Situations

For three other situations, namely home vs. away, ground-ball vs. fly-ball,
and same-handed vs. opposite-handed, there is evidence of a general
situational effect. Generally, one can say that:

e Hitters bat 12 points better at home games compared with away
games.

 Hitters bat 12 points better against ground-ball pitchers than fly-ball
pitchers.

 Hitters bat 15 points better against pitchers of the opposite arm than
pitchers of the same arm.

Let’s try to understand what this general effect means. It is well known
that it is easier to hit in some ball parks (Coors Fields, in Denver, is an
example) and relatively difficult to hit in others (Dodger Stadium comes to
mind). So one would expect that players that hit in easy-to-hit or hard-to-hit
ball parks might have different true home vs. away effects from other
players who play in “average” ball parks. However, the ball-park effect is
somewhat diluted, since players don’t play all of their games in their home
ball park, and all players have opportunities to hit in easy-to-hit or hard-to-
hit ball parks.

What this general effect is telling us is that a home field appears to have
the same impact on all of the players who regularly play in that ball park.
Likewise, facing a ground-ball pitcher (instead of a fly-ball pitcher) has the
same positive effect on all hitters, and facing a pitcher of the opposite arm
has the same beneficial effect (15 points) on all hitters. Again, it should be
emphasized that some players might really take advantage of the situation
relative to other players. For example, one player might really take
advantage of his home ball park and have a true home vs. away effect. But
our analysis says that there are not too many players with unusually large or
small situational effects, and the 1998 data is consistent with a model which
says that the situation has the same impact on all players.

The stemplots of the observed situational effects for home/away,
opposite/same, and ground-ball/fly-ball are shown in Figures 4-18, 4-19,



and 4-20. The home/away and opposite-handed/same-handed stemplots
resemble the day/night, pre/post, and grass/turf graphs that were shown
earlier. The only difference is that the average home/away effect is about 12
points and the average opposite-handed/same-handed effect is about 15
points. The ground-ball/fly-ball effects are more spread out—they range
between —140 and +250 points. There is a simple reason for this wider
spread—the number of at-bats for these categories is small (not every
pitcher is classified as a ground-ball or fly-ball type) and so there is more
variation in the batting averages for these categories.
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Figure 4-18 Stemplot of observed 1998 differences AVG(Home — Away Games).
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Figure 4-19 Stemplot of observed 1998 differences AVG(opposite — same-handed).
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Figure 4-21 shows boxplots of the 1998 effects for these three situations
and contrasts these effects with the simulated effects from our artificial
dark/light example. Note that the average values of the home/away and
opposite/same effects are a little larger than the dark/light effects, but the
spreads of these three datasets are similar.
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Figure 4-21 Boxplots of home/away, same-handed/opposite-handed, and ground-ball pitcher/fly-
ball pitcher 1998 situational effects. For comparison, a boxplot of the simulated dark/light effects is
also shown.

Since these three situations are biases, they affect all hitters the same
way, and there is no reason that a player who has a large situational effect
one season will also have a high situational effect the next season. To see
this, let’s compare the same-handed/opposite-handed situational effects for
the 1998 season and the 1994—-1997 seasons. Suppose that, for each player,
we record the same-handed/opposite-handed effect in 1998, and the same-
handed/opposite-handed effect in the period 1994—-1997, and then plot this
data on a scatterplot, as shown in Figure 4-22. We don’t see any positive or
negative drift in the scatter of points, which tells us that there appears to be
no relationship between one’s ability to hit opposite-handed pitchers
(relative to same-handed pitchers) in 1998 and the corresponding opposite-
handed hitting ability the previous four years.
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Figure 4-22 Scatterplot of 1998 situational effects and the previous four-year period situational
effects for the same-handed/opposite-handed situation.

The “Ability” Situations



Up to this point, we have shown that situational effects are essentially bias
effects. All of the above situations, such as home/away and same-
handed/opposite-handed appear to affect all players the same way. So for
these situations, there appear to be few “situational stars”—players who
take particular advantage of a given situation.

There are, however, two situations—the pitch count and the runners-on-
base situation—that we haven’t yet talked about, and as it turns out, these
are probably the most interesting. For these situations, players appear to
possess different true situational effects. Among the eight types of
situational effects we are studying, it makes some sense only with these two
to talk about unusually small and unusually large individual player effects.
When it comes to the pitch count and runners-on-base situations, it appears
that individual ability varies significantly from player to player.

How did we decide that the pitch count situation, say, was different
from the earlier six? We did try to fit a model which said that pitch count
was a bias situation. That is, we tried to fit a model which said that each
batter loses the same amount of hitting effectiveness when the pitch count is
two strikes. But the model didn’t fit very well in the sense that it did not
predict the actual pitch count situational data that we see in Player Profiles.
Instead, the observed pitch count situational effects we see in the book are
more spread out than what one would expect if pitch count were really a
bias effect. The same thing happened when we tried to fit a bias model to
the scoring-position/none-on-out data. The actual data we see in the book
have more variation than we would expect to see if this situation affected
each hitter the same way.

Let’s analyze the pitch count data first. Figure 4-23 shows a stemplot of
the observed situational effects.
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Figure 4-23 Stemplot of observed 1998 differences
AVG(ahead in the count) — AV G(behind in the count).

The center of these effects is at about 158 points. So players generally
hit 158 points lower when the count is at two strikes (pitch counts 0-2, 1-2,
2-2, 3-2) instead of being ahead in the count. This is a very large effect. If
you are watching a game and a pitcher gets two strikes on the batter, then
it’s pretty likely the batter will be heading back to the dugout in very short
order.

What is even more interesting about this data than the size of the
general effect is its range. Looking at the stemplot, some batters actually
had a pitch count effect near zero—they hit for about the same average
when they were ahead in the count or when they had two strikes. In
contrast, two hitters had a pitch count of over 300 points! These hitters
either were extremely good when they were ahead in the count or they were
terrible when the pitch count got to two strikes.

Since the situational effects depend on ability, some players are better
than others in handling different pitch counts. To find good and poor players
in this situation, let’s compare this data with the previous four years’ data.
For each player, we find the 1998 situational effect (AVG when ahead in



count — AVG when two-strikes), and also find the same situational effect
for the years 1994—-1997. A scatterplot of the 1998 effects and the previous
four-year period effects is shown in Figure 4-24.
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Figure 4-24 Scatterplot of 1998 situational effects and the previous four-year situational effects for
the ahead-in-count/two-strikes situation.

What is notable about this graph is that there is a positive drift to the
scatter of points. This means that there is a relationship between a player’s
1998 effect and his 1994—-1997 effect. Hitters who have high 1998 effects
also tended to have high effects in the previous four-year period; similarly,
low-effect hitters in 1998 tended to be low in the previous period. This
confirms that the pitch-count effect is an ability-based effect, and not the
result of chance. The relationship between the 1998 effect and the 1994—
1997 effect isn’t very strong—there is still a lot of scatter in the graph. But
we didn’t see this positive relationship for any other of the six situations
that we previously analyzed.

Since the pattern of pitch count effects corresponds to real effects, it
makes sense to pick out the players who are unusually high or low for both
1998 and the 1994-1997 periods. These players correspond to points which



are in the upper right or lower left of the scatterplot. We’ve labeled some of

the extreme points in the scatterplot in Figure 4-25.
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Figure 4-25 Situational effects for the ahead-in-the-count/two-strike situation with scatterplot of
1998 situational effects and unusual players from the previous four-year period identified.

There is a strong connection between a player’s pitch-count situation
effect and his likelihood of striking out. To see this, Table 4-11 lists six
players in the lower left part of the plot who have small ahead-in-the-
count/two-strike effects, and, at the other extreme, in Table 4-12, eleven
players who have large pitch-count effects. The table gives the number of

at-bats, number of strikeouts, and the strikeout rate for the players in the last
five years. Players who have small pitch count effects are relatively unlikely
to strike out—their strikeout rates are in the 4—15 percent range. In contrast,
the players who have high effects generally strike out about twice as often
—these rates fall between 19 and 30 percent. Players in the two groups
represent very different types of hitters. Tony Gwynn is representative of
the first group—a hitter who has tremendous bat control and a short stroke.
Jim Thome represents the second group of hitters—he has a long batting
stroke that is well suited for power but at the cost of striking out a lot. So



differences between these pitch-count effects are meaningful. They
correspond to different batting styles, and the different abilities of players to
control the bat.

Table 4-11 Players with Low Ahead-in-the-Count/Two-Strike Effects

At-tafs Strtkeouts  Percent

Wilton Guerrero JEl 117 15
Chris Stynes 672 7 8
Keith Lockhart 1263 125 10
Lance Johnson 2415 147 &
Tony Gwynn 2458 a7 1
Delvi Cruz 890 110 12

Table 4-12 Players with High Ahead-in-the-Count/Two-Strike Effects

At-Bats Strikoouts Parcent

Shane Andrews 1151 344 a0
Russ Davis 1201 314 26
Tony Clark 1659 429 26
Reggie Sanders 1964 K52 28
lim Thome 2214 625 28
Kevin Young 1360 335 25
Carl Everett 1442 339 24
Ray Lankford 2442 632 26
Fred McGriff 26497 521 1a
leff Blauser 1956 415 21
Caecil Fieldar 2287 563 25

How Large Are the True Ability Effects?

Another thing that we learn from the scatterplot of 1998 effects and 1994—
1997 effects is that the true pitch-count effects are likely smaller than what
we think based on the 1998 data. First, consider a player like Tony Gwynn.
If we’re interested in his true pitch-count effect, do you think it is better to
use the 1998 data, or the data in the four-year period 1994-19977? Actually,



it’s better to use the four-year data, since it is based on a lot more at-bats.
(Tony had 1997 at-bats in the 1994—-1997 period compared to 461 at-bats in
1998.) In other words, Tony’s pitch count effect in 1994-1997 is likely
closer to his true effect than the effect that we observe in 1998.

We can learn about the relationship between the 1994—1997 effects and
the 1998 effects by fitting a “best” line to the scatterplot that was graphed
below. The equation of this best line is given by the following:

Previous Four-Year Effect = .1 + .3(Effect in 1998)

This equation tells you how to predict a player’s previous four-year
effect if you know his 1998 effect. Since the four-year effect is the best
estimate of a player’s true effect, this prediction is informative about the
true effect.

Let’s illustrate how this works. Suppose a player in 1998 bats 300 points
better when he is ahead in the count as opposed to 2 strikes behind. That is,
his batting average when he is ahead in the count is .3 larger. Using this
equation, we predict that his four-year batting average advantage is:

1+ .3 (.300) =.190

So his true advantage is actually more like 190 points. Suppose, on the
other side, that a player in 1998 actually bats the same whether he is ahead
in the count or two strikes behind. That is, his 1998 observed effect is 0.
Using the equation, we predict his four-year batting average effect is:

A +.300)=.100

Although this person’s pitch-count effect is below average, it is more likely
to be 100 points than O points.

The moral of this discussion is that you shouldn’t be deceived by large
situational effects. Even when players appear to have different situational
effects (such as in the pitch-count situation), the true effects are generally
much smaller than the effects that we observe in a single season.

Game Situation Effects

Finally, let’s talk about the last effect, which compares a player’s batting
average with runners in scoring position vs. his batting average when the
bases are empty and there are no outs. We’ll call these the “clutch” effects,
since they indicate how the players perform in a clutch, a stressful situation.



First, let’s look at the stemplot of the observed clutch effects for the 1998
season. (See Figure 4-26.)
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Figure 4-26 Stemplot of observed 1998 differences AVG(Scoring Position) — AVG(None on/none
out).

The average effect is approximately 0. That is, about half of the players
hit for a higher average when runners were in scoring position, and the
other half hit better in the none-on/out situation. But we note a great spread
in these effects— from —170 points to +220 points.

There is one simple explanation for this large range of effects. The
players take only about half of their bats in one of these two situations. So
these observed scoring position vs. none on/out effects are based on a
relatively small number of at-bats. For this reason alone, there will naturally
be more spread in these effects.

But this one explanation is not sufficient to account for all the variation
we see in the stem-plot. As it turns out, the variation is due to more than
chance, and there is some evidence that players do possess different true
clutch effects. We can check this by looking at the scatterplot in Figure 4-
27, which plots the 1998 effects against the 1994-1997 effects.
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Figure 4-27 Scatterplot of 1998 situational effects and the previous four-year period situational
effects for the scoring position/none on-out situation.

The points in this plot tend to drift slightly upward (as you move from
left to right), which indicates that generally players with small clutch effects
in 1998 tended to have small effects in the previous four-year period, and
players who performed in the clutch in 1998 tended to perform in the clutch
in 1994-1997. The value of the correlation between the 1998 and 1994—
1997 effects is +.172, and is +.125 with the one unusual point in the lower
left section of the plot removed. The relationship in this clutch-effect
situation is weaker than the relationship that we saw earlier for the pitch-
count situation.

Although there is evidence that players differ in their ability to perform
in the clutch, the evidence is relatively weak, so we are reluctant to single
out especially good and poor clutch hitters. Let’s say at this point that a
player might possess an ability to hit especially well or poorly in the clutch,
but we don’t quite have enough data to say who that player may be.

A Lot of Noise



When we open up Player Profiles and look at the batting averages broken
down by different situations, we see a lot of fascinating high and low
numbers. One player hits for a much higher average at home games,
another player has a low average the first half of the season, a third player
possesses a very poor average when he’s behind in the count, and so on.
These are intriguing discrepancies. They must be trying to tell us
something.

Or maybe not. What we learned is that most of what we see in Player
Profiles is, statistically speaking, mainly “noise,” or random variation. That
is, it’s similar to what you get when you toss a coin. And when the
situational batting average data you look at covers only a single year, it’s
very noisy. Only taken over a longer time span, such as the last five years,
does it really start to tell us much.

Our basic model for batting averages is that players do indeed possess
different true batting averages, and these true batting averages are bell-
shaped about the typical value .276. That’s where the normal curve peaks.
When we think of the effect of a given situation, say home vs. away, our
model suggests two bell-shaped curves for batting averages—one for the
averages for games played at home, a second for games played away. Using
this model, we placed situations into three categories.

First are the no-effect situations, the ones where no general pattern
exists. Players seem to bat much the same before the All-Star Game as after.
And they bat the same during day and night games. And the same on grass
and turf fields. If you find a player that bats 80 points better during day
games, we can probably find another who bats 80 points better at night.

Second are the bias situations, the ones where a general effect exists,
but there is little evidence that individual players take advantage or
disadvantage of a given situation. So, for example, we can say hitters
generally bat 12 points better at home, and that appears true for most
players. And managers are right to send up that right-handed pinch hitter
against the lefty reliever. But beyond a few obvious and time-honored rules
of thumb (including as well the higher batting average against ground-ball
pitchers), there is not much to tell.

Finally, the pitch-count and clutch situational data are ability situations,
since players seem to handle these situations differently. For example some
players seem to bat the same no matter if the pitch count is 3—-0 or 0-2, and
other players bat much worse when the count goes to two strikes. There is



some evidence that different players perform differently under pressure
situations, although the 1998 data are not sufficient to identify players who
are truly great hitters with runners in scoring position.

After all is said and done, Kenny Lofton does have a point: When he
talks about the role of luck in hitting, his observations are pretty accurate.
Over five years you will see trends and tendencies, but in a given situation
or even in a complete single season, chance is what seems to rule.

1 Contrary to myth, even in our home town of Philadelphia.
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Chapter 5
Streakiness (or, The Hot Hand)

Jim Albert and Jay Bennett

One fascinating aspect of baseball is the widely-held belief, among fans as
well as the media, that players can be “streaky.” It’s often said of a
particular player that in the last few games, or weeks, or even months, he’s
had a “hot” or “cold” hand. And it seems entire teams can go on a streak, as
we found when we did an Internet search for the words “streaky” and “hot
hand”:

“Rays Streaky in Spring”

—Florida Sports Network, March 24, 1998

This article describes the Devil Rays’ tendency to play a little streaky—
citing two losing streaks of six and four games in their 1998 spring
exhibition season. The writer cautions the fan not to read too much into
these losing results, and the manager is quoted as saying that at this point in
the season, he is more concerned about individual performances than team
results.

“Braves Have No Trouble Beating Streaky Pirates”
—Observer-Reporter (Washington, Pa.), May 19, 1999

In this article, the hitting heroics of a “slumping” Chipper Jones are
described—he went on a 9 for 50 (.180) slide before this game. The article
also noted that the Braves’ Bret Boone reached base by a hit or a walk in 20
straight games. The reference to the “streaky Pirates” in the title refers, of
course, to the fact that they have been playing unusually well in the games
before the present one.

“Streaky Cal Softball Team Gets Two Splits”
—The Daily Californian (Berkeley, Cal.), May 4, 1998



The writer of this piece seems to be saying that there were two
completely different Cal softball teams on the field in two doubleheaders
one weekend. In the two victories, Cal’s hitters were described as
“phenomenal,” and in the two losses, Cal was unable to get any solid
contact with the bat. The Cal catcher describes their hitting as contagious:
“If someone gets a big hit, the rest of us go out thinking, ‘If she can hit it
out, so can I.” It’s such a mental game.” The writer also says that the Bears
have been plagued by inconsistencies at the plate all year long.

In an ESPN.com profile of Todd Zeile, the Texas Ranger third baseman
is described as a streaky hitter. He typically starts slowly and does his best
hitting late in the season, says the analyst for the website.

Finally, In Mike Zaidlin’s “Thinking Baseball” column on the World
Wide Web (www.thinkingbaseball.com), the author criticizes Don
Zimmer’s strategy of playing hitters who appear to have a “hot hand.”
Zaidlin thinks that Yankees management puts too much faith in the notion
of a “hot hand,” because it is based on too small a number of at-bats.

Thinking about Streakiness

What are these writers talking about when they say a team is on a hot or
cold streak, or a player has a hot or a cold hand? One thing they obviously
mean is that the team or player is going through an unusually long stretch of
good (winning) or bad (losing) behavior. If a hitter like Chipper Jones bats
only 9 for 50, we say that he has a cold hand because he normally hits for a
much higher average, and 50 at-bats appears to be a long time for him to go
with only 9 hits. And if a team like the Devil Rays has several long runs of
uninterrupted losses, as well as long runs of uninterrupted wins, we say the
team is streaky, since it seems to be winning or losing “clusters” of games.
Most of the articles above seemed to be talking about the streaky and
hot-hand performances that were observed during a season. But there is a
second, deeper meaning of streakiness: sometimes the word is used to
describe the nature or ability of a player or team. A player such as Todd
Zeile may be called streaky since people believe that his true batting ability
is streaky. On some days, says this theory, Zeile feels very comfortable with
the bat, and he has a high chance of getting lots of hits. Then, on other days,
Zeile’s batting stroke seems to be out of sync, and he has a much smaller
chance of getting a hit. Similarly, we might say that a team is on a hot
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streak when we believe that as a group the players are performing to the
best of their ability and the team has a high probability of winning. (We
could also describe this situation by saying that the team is “in a groove” or
even “on a tear.”) At other times, the team may have problems, such as
injuries or dissension in the clubhouse, that we believe have an adverse
effect on performance, and so the team has a small probability of winning.
(Then the team is “slumping” or has “gone cold.”)

Fans and sportswriters frequently confuse or don’t distinguish between
the performance and ability interpretations of streakiness. When a team
goes through good spells and bad spells, clusters of winning and clusters of
losing, we are observing streaky behavior. It is natural in such situations for
the fan or sportswriter to provide some rationale for the observed
streakiness: the performance is explained by something in the nature of the
team. For example, one might say that a team’s tendency to go on cold
streaks is due to the inexperience of the players, the inconsistency of the
starting pitchers, the tactics of the manager, and so on. But, as we will
shortly see, it’s possible that the team is not really streaky by nature, but
due to chance or luck, they appear to be performing streakily.

One goal of this chapter is to clearly distinguish between a player or
team’s true streaky or hot hand ability and the streaky or hot hand
performance that we observe during a baseball season. We first will discuss
some common mistakes that people make in interpreting baseball averages.
Then we will focus on the first-half batting performance of Todd Zeile in
the 1999 season. Looking at his hitting record, we will notice several
interesting patterns that indicate that Zeile may be a streaky hitter. Next, we
will propose several models for Zeile’s hitting ability. One model, which we
will call Mr. Consistent, says that Zeile is the ultimate consistent hitter—he
comes to every at-bat with the same chance of getting a hit. Then we’ll
work with a very different model, called Mr. Streaky. In this model, Zeile is
either hot or cold during a single at-bat where the chance of getting a hit
when he is hot is a large number and the chance of hitting when he is cold is
small. In addition, in the Mr. Streaky model, if Zeile is hot on a particular
at-bat, he is very likely to remain hot in the next at-bat.

Once we have described ways of measuring streaky performance and
models for Zeile’s true hitting behavior, we show how we can learn about
Zeile’s hitting behavior (the model) on the basis of his hitting data (the
statistics). We extend our basic method to the win/loss records of the 30



major league teams in 1998. Some of these teams performed very streakily
in 1998, and we will see which teams actually seem to possess true
streakiness based on their season performances.

Interpreting Baseball Data

Before we talk in more detail about streakiness, it will be helpful to
describe some basic difficulties that people have in interpreting baseball
statistics. We focus on interpreting a batting average, although the
difficulties we describe will apply to interpreting any baseball statistic.

Let’s suppose that your favorite player is Tino Martinez of the Yankees.
The Yankees opened the 1999 season at Oakland, and, to learn about how
your favorite player performed in his first game, you look at the published
box score, shown in Table 5-1.

Table 5-1 Box Score of the New York Yankees in Their First Game of the 1999 Season

Battar Pos AB R H R8I AVG
Knoblauch 2B 3 a 1 0.333
Jeter 35 c| 2 3 1

0'Neill RF 3 Q 0 0 0
Williams CF 4 0 ] 1 0.25
Martinez 1B 4 0 0 0 1]
Davis CH 2 1 1 1 0.5
Ledee LF 4 0 0 0 0
Brosius 3B 3 Q 0 0 a
Giradi C 3 a 0 0 0

We see that Tino went O for 4 in the game, so his current 1999 batting
average (based on this single game) is 0/4 = .000. Now the typical fan is
interested in drawing some conclusion about Tino’s batting ability on the
basis of this .000 average. Can the fan conclude that Tino’s in a slump? That
is, can the fan conclude that Tino is a slow starter and his swing is a little
rusty?

Here the fan is interested in making a statement about Tino’s batting
ability from this game’s hitting statistics. We can measure Tino’s batting



ability in terms of a probability p. This number is the chance that Tino gets
a base hit on a single at-bat. The fan is interested in saying something about
Tino’s hitting probability based on his 0-for-4 game performance. Of course
we don’t know Tino’s hitting probability, but we can make an educated
guess at this probability based on his hitting record in his previous nine
years in the major leagues (see Table 5-2).

Table 5-2 Hitting Statistics for Tino Martinez in the First Nine Years of His Major League Career

Year AR N AVG
19390 &8 15 221
1991 112 23 205
1992 460 118 257
1943 408 Lo8 .265
1994 az9 26 261
1995 519 152 293
1996 585 174 292
1997 594 L7e 296
1998 231 149 281

We see that Tino’s seasonal batting averages generally increased over
time, hit a peak in 1997, and dipped slightly in 1998. If we make the
assumption that Tino is a little bit past his prime as the 1999 season begins,
it is reasonable to assume that his hitting probability in the opener against
Oakland is p = .280.

If one thinks of Tino as a true .280 hitter, many baseball fans will have
trouble predicting how Tino will hit during the season. To start off, how
many hits will Tino get in a game where he has four at-bats? Well, many
Tino fans will think that their man will go 1 for 4 in this game, since .280 is
close to .250 = 1/4. Moreover, these fans will be unpleasantly surprised if
Tino goes hitless (as in the game described above), or pleasantly surprised
if he goes 2 for 4.

Actually, although it is most likely that Tino will go 1 for 4 in this game,
the probability that he gets exactly one hit is only 42 percent. So actually, it
is more likely (58 percent) that Tino will not get one hit. Moreover, there is
a sizeable probability (27 percent) that Tino will go hitless. So the above



game result (0 for 4) is entirely consistent with Tino being a .280 hitter, and
there is no reason to think that he is in a slump.

Now, maybe you are not surprised by the above comments. After all,
you can’t learn much about a player’s true batting average on the basis of
one game. But suppose you watch Tino’s hitting for the first seven games of
the season, as shown in Table 5-3. For these seven games, Tino was 4 for
25, for a .160 average. Now, for most fans, Tino appears to be a slump.
Intuition tells us he is clearly not a .280 batter for this first week in the
season.

Table 5-3 Batting Data for Tino Martinez for the First Seven Games of the 1999 Season
Date Apr & Apr & Apr7 Apr 9 Apr 10 Apr 11 Apr 13

H/AB o/d Ls 14 111 Q3 o4 1id

But this intuition is wrong. There is a reasonable chance that a true .280
hitter will have a slump like this one. If a true .280 hitter comes to bat 25
times, as Tino did in his first seven games, the chance that he will get 4 or
fewer hits is 13 percent. Now 13 percent is not a high probability, but if you
watch seven .280 hitters bat for one week, there is a high probability that
you’ll see one of them get 4 or fewer hits. So we shouldn’t be too surprised
by Tino’s 4-for-25 stretch. He may really be a .280 hitter but, by chance
variability, he was unlucky during this first week of the season.

The moral here is that one has to be very cautious in interpreting
baseball averages from a small number of at-bats. It is common for fans to
believe in the so-called law of small numbers. This law says that one will
observe what one expects, even over a small sample size. So if a player like
Tony Gwynn is a .333 hitter, you think that he will get 1 out of 3 hits in
every game. The law of small numbers isn’t true. Even if Gwynn is a true
.333 hitter, it is very likely you will observe him hit for significantly lower
and higher averages if your observations are based on a small number of
games.

Moving Averages—Looking at Short Intervals

It’s clear from the preceding discussion of Tino Martinez’s batting average
that one needs to be careful about drawing conclusions from very limited
sets of data. The problem is, when you are talking about streaks, you are
often talking about relatively brief bursts of activity (or clusters of



inactivity)—an eight-game hitting streak by a .220 hitter, or a five-game
stretch where a .300 hitter can’t get on base. To get a sense of how we
might deal with the statistics of streakiness, we’ll take a look at Todd
Zeile’s hitting statistics for the first half of the 1999 season. (We are looking
at only the first half of his season because that’s when this book was
written.) Table 5-4 gives the game date and the number of hits and at-bats
for each of the first 80 games that Todd played.Two particular streaks—one
hot and one cold— are in boldface.

Table 5-4 Todd Zeile’s Batting Statistics for the First Half of the 1999 Season
Date Hits/AR

Apr & 1/4 Apr 29 1/4 May 22 1/4 Jun 14 /3

Apr & 23 Apr 30 1/4 May 23 Qr3 Jun 16 12

Apr 7 34 May 1 14 May 24 2/5 Jun 17 1/3

Apr 9 1/4 May 2 w2 May 25 214 Jun 18 03
Apr 10 oz May 3 v May 26 24 Jun 19 1/4
Apr 11 24 May & 1/4 May 28 1/4 Jun 20 L4
Apr 12 214 May & 2/ May 22 34 Jun 21 14
Apr 13 4 May 7 o4 May 30 or2 Jun 22 1/4
Apr 14 Lz May &8 ovd May 31 14 Jun 23 o/d
Apris /a4 May 2 34 Jun 1 1/3 Jun 24 i
Apr 16 w2 May 10 04 Jun 2 04 lun 25 &
Apr17 w3 May 11 1/4 Jun 4 0ra Jun 26 214
Apr 18 1/5 May 13 215 Jun 5 /4 Jun 27 34
Apr 20 /3 May 14 Ovid Jun & 0r4 Jun 28 1/3
Apr 21 114 May 15 24 Jun 7 3/3 Jun 29 3/5
Apr 22 0/4 May 16 1/3 Jun B 1/5 Jun 30 4/4
Apr 23 o/4 May 17 /3 Jun & 0r3 Jul 2 1/4
Apr 25 25 May 18 13 Jun 11 0r4 Jul 3 215
Apr 27 113 May 19 1id Junlz 25 Jul 4 1/3
Apr 28 24 May 21 1/3 Jun 13 1/4 Jul 5 23

For the 80 games shown, Todd had 84 hits in 301 at-bats, for a batting
average of 84/301 = .279. Now, if we look at this table carefully, we’ll see



short time periods where Todd was unusually hot and cold. For the eight-
game period from April 15 through April 23, Todd had a tough hitting
stretch where he only got 2 hits in 29 at-bats:

2

90 = 069

In contrast, look at the period from June 27 through July 5, when Todd

was on fire, getting 17 hits in 31 at-bats:

;—; = .548

So, although one could reasonably call Zeile a .279 hitter, he hit for much
smaller (.069) and much larger (.548) averages over short time periods.

A moving average plot, shown in Figure 5-1, is an effective way of
displaying these short-term batting averages. This graph plots the short-term
batting average of Zeile over all groups of eight adjacent games. (In the
language of statistics, this is called a moving average with a width of 8.) In
games 1 through 8, Zeile got 11 hits in 29 at-bats for a .379 average. In
Figure 5-1, this average (.379) is plotted against the mean game number
(4.5 is the mean of 1, 2,..., 8). Moving one game ahead, we look next at the
group of eight games numbered 2 through 9. There, Zeile had 11 hits in 28
at-bats, and the batting average (.393) is plotted against the mean game
number (5.5). We continue in this way, stepping ahead one game at a time,
until we get to the final group of eight games, numbered 73 though 80.
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Figure 5-1 Moving average plot of Zeile’s hitting data using a width of eight games.

In Figure 5-1, we use dots to call out the two particularly interesting
eight-game stretches noted earlier. Also, we show Zeile’s season batting
average (.279) as a dashed horizontal line.

This graph is a good way of displaying Zeile’s pattern of hitting for the
first half of the 1999 season. We see that, after an initial hot streak, Todd
had a slump in the first part of the season, then a good hitting stretch from
games 40-50, two minor slumps from games 50-70, finishing with a hot
streak at the end of the period. Generally, it seems remarkable how much
spread there is in these eight-game batting averages. But to get a better
sense, we can measure how much streakiness we see in this plot by
calculating the difference between the largest and smallest moving average:

Largest 8-game average — smallest 8-game average

Here this difference is .548 — .069 = .479, which appears large. Zeile hit
479 points better on his best 8 games than his worst 8 games.



Runs of Good and Bad Games

Another way to describe Zeile’s hitting behavior is to look for interesting
patterns of good and bad games across time. Remember, Zeile’s batting
average for all 80 games is .279. We will say that Zeile’s batting for a
particular game is good is if his average on that day exceeds .279; otherwise
we’ll say he had a bad hitting game. So, if Todd bats 2 for 4 (.500) for a
game, we’ll call it a good game and denote it by a “+”; and if he hits 1 for 4
(.250), we’ll call it bad and denote it by a “0”. In Figure 5-2, we have
classified the 80 games.

April Moy e July

DATE 111111111 2R2222223 1111111112222222233 1111111122222222223

04400440+ 0000000044400 00004004 00404+ 040+ 004440400 +0000+ 0004+ 044+ 00000000444+ +04-44

Figure 5-2 Classification of Zeile’s games into good (+) and bad (0) hitting games.

One interesting pattern in the sequence of good and bad days is a run, a
streak of consecutive bad games (like “00000) or good games (“++++).
The first part of the Zeile game-hitting sequence is “0++00++”. Looking at
Figure 5-3, we see that Todd started with a run of one bad game, a run of
two good games, a run of two bad games, and a run of two good games.
Two interesting runs are underlined in the figure. In each case, Zeile had
eight consecutive bad hitting games. It’s also interesting that Zeile followed
his second eight-day hitting slump by hitting well in eight out of nine
games.

O+++00++0+00000000+++0000004+ 00-+00+ 04+ 0+ 04 0044+ 04 00+ 00004000+ 044+ 0000000 O+ 0 +-4
Figure 5-3 Identification of two long runs in Zeile’s hitting sequence.

So one interesting pattern is a long run of good or bad hitting games.
These long runs indicate that Zeile might be a streaky hitter. Another thing
that we can compute is the total number of runs of good and bad games.
Let’s suppose that Zeile is really a streaky hitter. Then we would expect him
to follow good hitting days with good days and likewise bad hitting days
with bad days. (“When you’re hot, you’re hot, and when you’re cold,
you’re cold.”) In this case, there will generally be many runs of long length



and few runs of short length, and the total number of runs in the sequence
will be small.

We’ve counted the number of runs in the Zeile sequence in Figure 5-4
by labeling the beginning of each run with a number. We see that there are
36 runs in this hitting sequence. Is 36 a small number of runs? Actually, at
this point of the discussion, we don’t know, but we’ll come back to this
question later.

04—+ 004+ 0+ 0000000 0+++ 0000004+ 00+ 00+ 04+ 0+ 04+ 0044+ 04+ 00+ 000 04+ 000+ O+++ 0000000 0+++++ O+++
12 34 867 8 9 11 11 111111222 222 22 22 333 13 3 33
01 23 456 78901 2 345 &7 89 012 3 i 56

Figure 5-4 Counting the number of runs in Zeile’s hitting sequence.

Numbers of Good and Poor Hitting Days

We can also look at Zeile’s hitting data by counting his hits per game, then
categorizing each of the 80 games according to hit count. Table 5-5 shows
the number of 0-hit games, the number of 1-hit games, etc. We see that
Todd had seven games in which he had either 3 or 4 hits, and 26 games (out
of 80) in which he was hitless. If these numbers seem high to the average
fan, they provide evidence that Zeile was a streaky hitter.

Table 5-5 Count of the Number of Games in Which Zeile Had 0, 1, 2, 3, and 4 Hits

Mumber of Game Hits a 1 2 3

v
o
L )
o}
n
o

Count

What Is Zeile’s True Hitting Ability?

So in our look at Zeile’s hitting data for the 80 games, we saw some
interesting features. Todd had some unusually small and large batting
averages over short time intervals, he had several long runs of bad hitting
days, and he had some games in which he hit especially well. At this point,
the question is: Should we be surprised by these observations? Do these
data suggest that Zeile was really a streaky hitter during the first half of
1999?

We will try to answer this question by proposing some simple models
for Zeile’s true batting ability and see what we learn about these simple



models on the basis of Zeile’s hitting record in 1999. For simplicity, we
assume only two distinct models, although the basic method can be used to
distinguish between a large number of models. We will describe this
statistical method in three parts.

First, we’ll assume that Zeile is really a consistent player who comes to
every at-bat with the same chance of getting a hit. Also, we will assume that
his chance of hitting on a given at-bat is not influenced by what he did on
previous at-bats. This type of player is the ultimate “Mr. Cool.” If Zeile is
this type of player, we’ll look at the kind of batting record he will achieve in
an 80-game schedule.

Next, we’ll assume that Zeile really is a streaky hitter. We carefully
define what we mean by streaky. We’ll assume that the chance that he gets a
hit may change on different at-bats. We will say that, in a particular game,
Zeile is either “hot” with a large chance of getting a hit, or “cold” with a
much smaller chance of hitting. Moreover, if Zeile is hot in a given game,
he is more likely to remain hot (than become cold) for the next game.
Likewise, cold at-bats are more likely to be followed by cold at-bats. If
Zeile is this type of streaky hitter, we will see how he would perform in an
80-game season.

Finally, we will talk about how we learn about Zeile’s true hitting ability
(consistent or streaky) based on the patterns we saw above. Suppose, for
example, that we observe two long runs of bad hitting games. Based on
these data, what is the chance that Zeile is a consistent hitter and what is the
chance that he is a streaky hitter?

Mr. Consistent

Most people believe that Todd Zeile is a streaky hitter. But what if Zeile
were not streaky? In fact, suppose that Zeile was the ultimate non-streaky,
or consistent, hitter? What would that mean?

We use the basic spinner model to represent Zeile’s success (or failure)
in a single at-bat. (Here we are just considering official at-bats, ignoring
events such as walks and sacrifices.) We visualize a spinner with two
regions designated “Hit” and “Out.” (See Figure 5-5.) The Hit region
corresponds to the chance that Zeile will get a hit on the single at-bat.



Hit
(1.28%

Chit
0.72%

Figure 5-5 Spinner for a consistent hitter.

Suppose that the same spinner is used for every at-bat during the
season. This means that Zeile has the same chance of getting a hit over all
80 games. This assumption probably seems far-fetched. You might think
that the chance of getting a hit will depend on a number of factors,
including the pitcher, the ball park, the game situation, and so on. You may
be right. But let’s pretend for now that the hitting probability doesn’t
depend on these factors. We think of Zeile as a hitting machine who
actually has the same chance of getting a hit every time he comes to bat.
We’ll call this hitting probability p.

Another important assumption made here is the independence of hitting
results of different at-bats. Suppose that the spinner is spun and Zeile gets a
hit on his first at-bat. This successful result will have no bearing on what
happens on the next at-bat. One aspect of our spinner is that it has no
memory—it doesn’t remember how many times a Hit or Out was spun in
the past. So the chance of getting a hit on a particular at-bat will be the
same number p no matter if Zeile has done well or poorly in his previous at-
bats. This property of independence is actually the opposite of streakiness,
and instead represents the hitting characteristics of a player that we’ll call
“Mr. Consistent.” This player is the ultimate “cool customer,” who has the
same chance of getting a hit under all possible circumstances.

How Does Mr. Consistent Perform During a Season?

Suppose that Zeile really was a consistent hitter. What would his hitting
data for the 80 games look like? We can answer this question by simulating
from the spinner model. We assume that Zeile’s chance of getting a hit on
every single plate appearance is p = .280 (close to his .279 average for the



80 games in 1999). Then we simulate the results of all 80 games using the
actual at-bat numbers of Zeile for the first half of the 1999 season. (We
actually do this simulation on the computer, but it is equivalent to using our
random spinner many times.)

Figure 5-6 displays moving average plots for Zeile’s data and hitting
data for eight other simulated players using our Mr. Consistent model. Of
course, the center plot in the figure should look familiar—it’s Zeile’s
moving average plot that we saw earlier. How do the consistent hitter
graphs compare with the graph of Zeile? Actually, what stands out is the
large spread (up and down pattern) of the moving averages of the consistent
hitters. An extreme situation is the hitting of the consistent hitter at the
lower right. Remember, this guy is a true consistent hitter; he gets a hit with
probability .280 on every single at-bat. Nonetheless, he appears very
streaky during this 80-game stretch. He is very hot in the first part of the
season, gets cold in the middle, then is somewhat hot, and seems to fade
near the end of the half-season. The player really is consistent —our use of
the spinner model guarantees that—but his hitting performance during these
80 games is very streaky. The hitting patterns of the other seven players
aren’t quite so volatile as the one in the lower right, but all of the hitters
show some streaky behavior. In other words, consistent hitters can appear
very streaky in their hitting performances.
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Figure 5-6 Moving average plot of hitting by Zeile and eight simulated consistent hitters with a
hitting probability of p =.280. In all graphs, moving averages are computed using adjacent groups of
eight games.

We can describe the streakiness that we see in these graphs using the
same statistics we used to describe Zeile’s data. These statistics include:

e The difference between the largest and smallest moving averages,
using groups of eight games. (We will call this statistic MAX — MIN.)

e The number of long streaks (either good or bad), where “long streak”
is defined as eight or more consecutive games.

e The number of runs in the sequence of good and bad games.
e The number of hitless games.
e The number of games with three or more hits.

Table 5-6 gives the values of these five statistics for each of the
simulated seasons. To see if Zeile is different from a truly consistent hitter,



we see if his statistics appear different from the statistics of the others. To
make this comparison easier, we have computed the mean (arithmetic
average) of each type of statistic for the consistent hitters

Table 5-6 Statistical Values for Todd Zeile and Eight Simulated Consistent Hitters

%, "*:?5‘%, ﬁ"“f-?o, 2, T,
* 2, %, £ e -
% "
Zeile 0.4749 £ 36 26 !
Consistent 1 0.362 1 42 23 !
Gonsistent 2 0,361 1 41 26 Fi
Consistent 3 0.316 0] 11 21 5
Consistent 4 0.317 0 43 21 4
Consistent 5 0.333 o 42 28 4
Consistent & 0.295 o 34 20 b
Consistent 7 0,297 1 38 26 3
Consistent 8 (.333 1 42 25 5
Mean 0.327 (W] 40.4 238 5.1
p-value 0.010 0.06 0.26 0.34 0.23

Let’s illustrate this comparison using the statistic “Maximum moving
average — Minimum moving average” shown in the first column of the
table. Recall that Zeile had a maximum moving average (using eight-game
groups) of .548 and a minimum moving average of .069 for a difference as
follows:

MAX — MIN = .548 —.069 = .479

Should the value .479 surprise us? Well, in order to make a judgment on
that we have to look at the MAX — MIN values for our eight simulated
consistent hitters:

362, .361, .316, .317, .333, .295, .297, .333

The simulated players’ MAX — MIN values range between .295 and .362,
with a mean value of .327. Zeile’s value, .479, is larger than all of them. So
it appears that Zeile’s difference between his best and worst moving



average is larger than one would anticipate if Zeile really was a consistent
hitter. Thus, there is some evidence that Zeile is not a consistent hitter,
although we really can’t say at this point that he is streaky.

In a similar fashion, we can look at the other four statistics to see if
Zeile’s value is similar to the values for the consistent hitters.

o Zeile had two long streaks (of eight games or more). This statistic
appears unusually large, since none of the simulated consistent hitters
had more than one long streak.

e We observed 36 runs in Zeile’s sequence — is the number 36
unusually small for a consistent hitter? We would say yes since only
one out of the eight consistent hitters had 36 or fewer runs.

e We thought Zeile’s 26 hitless games statistic was large, but three of the
eight simulated players had 26 or more hitless games. So the large
number of hitless games doesn’t appear unusual for a consistent hitter.

e Finally, we thought Zeile’s seven games of 3+ hits were large, but two
of the eight simulated hitters had seven or more games with 3+ hits. As
with hitless games, this statistic does not definitively set Zeile apart as
a streaky player.

We can’t draw very strong conclusions from Table 5-6 since we only did
the simulation eight times. We would do better if we simulated hitting data
from the consistent model a large number of times, and then made a call on
whether Zeile’s hitting behavior fit into the Mr. Consistent model.

To check this out, we simulated data from a large number of consistent
hitters (1000), and for each simulated hitting season we recorded values of
the five statistics shown in Table 5-6. To see if Zeile’s hitting statistics
conforms to this model, we compute a p-value. This is the probability,
assuming a consistent model, of observing a value of the statistic at least as
extreme as the Zeile value. To illustrate, we observed a MAX — MIN value
of .479 for Zeile. Using the simulated hitting data, we find the following:

p-value = Pr(MAX — MIN value is at least as large as .479) = .01 Thus,
if we assume this consistent model, the chance of observing a MAX —
MIN moving average difference of .479 or greater is only .01, or 1 percent.
Thus it is safe to say that Zeile’s data appear different from hitting data
generated from a consistent model.



Likewise, we look at the p-value row of Table 5-6 to check for
agreement of Zeile and the simulated consistent hitters with respect to the
other four statistics. The only other p-value that appears unusually small
corresponds to “long runs.” Zeile’s two long runs are unusual for hitters
who are truly consistent. The p-values for the other three statistics are in the
.23—.34 range. These statistics (number of runs, number of hitless games,
and number of 3+-hit games) for Zeile seem to agree with the statistics for
the simulated consistent hitters.

So, what have we learned? Even if a hitter is truly consistent, with the
same chance of getting a hit on every single at-bat, his batting performance
across 80 games can look pretty streaky. Even so, Zeile’s hitting
performance looks a bit different from the performance of true consistent
hitters. The statistics that seem to stand out for Zeile are the great range
between good and poor short-run batting averages (MAX — MIN) and the
two long runs of bad hitting games.

Mr. Streaky

In the above discussion, we gained some understanding of Zeile’s hitting
performance by assuming he really was consistent, then seeing how he did
and did not seem to fit into the Mr. Consistent model. But what if Zeile
really was a streaky hitter? What does it mean to be streaky? And how do
streaky players perform during a baseball season?

First, to be streaky, a hitter must have at least two possible hitting states.
For simplicity, we’ll assume that there are exactly two, which we’ll call
“hot” and “cold.” When a hitter is hot, his hitting mechanics are great, he
sees the ball well, and he has a high probability of getting a base hit. We
will denote this probability as py. In contrast, a “cold” hitter is struggling

with his hitting motion and is not swinging well. In this cold state, the batter
has a small probability p of obtaining a hit.

As mentioned earlier, Todd Zeile’s true batting average for 1999 is
around .280. If Zeile really is a streaky hitter, there will be a big difference
between the chance of getting a hit when he’s hot and the chance when he’s
cold. We will assume that Zeile hits 100 batting points better than average
when he’s hot, and 100 points lower than average when he is cold.
Accordingly, we will assume that py = .380 and p = .180. The hot hitting

probability is similar to the average of Tony Gwynn in his best hitting



season; the cold probability is similar to that of a weak-hitting shortstop
who’s in the Major Leagues because of his defensive ability. (You might not
agree with the numbers we’ve assigned to a hot hitting probability and a
cold hitting probability, but there should be a significant difference between
the two.)

So one basic assumption about our truly streaky hitter is that in some
games he hits for a high probability and in others he hits with a small
probability. A second assumption describes how the streaky hitter moves
between hitting states for different games. A streaky hitter has the tendency
to stay hot for a number of games. If a streaky player is hot for one game,
then it is likely that he’ll remain hot for the next game (and unlikely that
he’ll change to cold). In other words, “If you’re hot, you’re hot!” Likewise,
if a player is a cold hitter one game, then he will likely stay in a cold state in
the next game. We will let the letter s (for “stay”) denote the probability of
staying in the same state from one game to the next:

plhot in second game if hot in first) = s
plcold in second game if cold in first) = s

To be streaky, it makes sense to let the probability s be a large value,
like s = .9, which means that the hitter is likely to remain in the same state.
Figure 5-7 illustrates the probabilities of shifting between hot and cold
states for successive games. Note that if the chance of staying in the same
state is .9, the chance of switching states (from cold to hot or hot to cold) is
1.

First Game Saecond Gamea
9 T
Hiot _, R
“ —J- ]
A Cold
Cold —=—"__ _—
= Cold

=

Figure 5-7 Probabilities of changing states for a streaky hitter.



If a player is streaky in the manner we just described, how will he hit
during a season? We learn about his season hitting by means of a simulation
like the one done for the consistent hitter. This simulation is a little more
complicated to run, however, since the probability of getting a hit can
change from game to game.

Here’s how it works. First, we visualize two spinners (shown in Figure
5-8), one to use when the hitter is hot, and the second to use when the hitter
is cold. The spinners differ with respect to the sizes of their Hit and Out
regions. For the Hot spinner, the hitting area is py(.380); for the Cold

spinner it is pc (.180).

“Hot" Spinner “Cold" Spinner

0.18
0.38

0.62 0.82

Figure 5-8 Spinners for a streaky hitter.

Suppose we want to simulate Mr. Streaky’s hitting for his first ten
games: the results of this simulation are shown in Table 5-7. To start off, we
flip a coin to decide the player’s hitting state for the first game; if the coin is
heads, he’ll be hot, and if the coin lands tails, he’ll be cold. We observe
heads, which means that Mr. Streaky is a hot hitter for this first game. We
grab our Hot spinner and spin it for his 4 at-bats in his first game. The
spinners lands in the Hit region twice, which means that he was 2 for 4 in
his first game.

Table 5-7 Simulation of Mr. Streaky’s Hitting for Ten Games



Game 1 ) 3 4 5 & 7 8 a 10

State Haot Haot Hat Hot Haot Hot Hot Cald Cald Cold
Hitting Probability 0.38 3.38 0.38 0.38 0.38 .28 0.38 a.18 a.18 0.18
AB 4 3 4 4 2 4 4 4 3
H 2 Q 1 3 1 ] 1 ] 1 0

Let’s move on to the second game. We use the switching probabilities to
determine the state of Mr. Streaky for this game. He was hot in game 1, so
he’ll remain hot in game 2 with probability .9 and switch to cold with
probability .1. We use a random spinner, as pictured in Figure 5-9, to
determine if Mr. Streaky stays in his current hot state or switches to cold. In
this particular simulation, the result of the spinner is Stay, so Mr. Streaky
will be hot in game 2.

o010
Suiteh

0.50
Stay

Figure 5-9 Spinner to decide on switching or staying in current hot or cold state.

Now that we know that the hitter is hot in game 2, we use the Hot
spinner to simulate hitting. Table 5-7 indicates that he has a tough game 2,
going hitless in three at-bats. We continue in this manner to simulate the
results of the remaining games. We use the switching/staying spinner to
decide the state of a game, and then the Hot or Cold spinner to determine
the hitting results of that game. Refer again to Table 5-7 to get the simulated
hitting results for all ten games.

The results of this particular simulation are interesting. There is a clear
pattern in Mr. Streaky’s hitting states—he was really hot (hitting with a high
probability) in the first seven games and cold (hitting with a small



probability) for the remaining three. However, it is difficult to detect this
true hitting behavior by just looking at his hitting statistics. For example,
Mr. Streaky was 0 for 3 and 1 for 4 (twice) on days where he was a true hot
hitter.

How Does Mr. Streaky Perform During a Season?

Earlier we looked at how truly consistent hitters would perform during an
80-game season. How would truly streaky hitters perform in the same span
of games? First, we use the streaky model described above to simulate data
for eight hitters. Figure 5-10 shows moving average plots of the batting
averages of Todd Zeile (middle graph) and our eight simulated streaky
hitters. If we compare these moving averages with those of the consistent
hitters of Figure 5-6, we generally note more up and down behavior in the
streaky graphs. That is, it seems that hitters who are truly streaky, in the
way we have defined them, will tend to have unusually high and low
batting averages over short stretches of games. But, this is not always the
case—for example, the moving average plot of the streaky hitter in the
upper center graph of Figure 5-10 looks pretty flat. Although this player is
really streaky, he had a pretty consistent hitting pattern over the season.
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Figure 5-10 Moving average plot of hitting by Zeile and eight simulated streaky hitters with hot
and cold hitting probabilities of p = .180 and pyy = .380. In all graphs, moving averages are

computed using adjacent groups of eight games.

Next, to measure the streakiness that we observe in these graphs, we
compute the same five statistics that we used earlier to describe the
streakiness we saw in Zeile’s hitting. The values of these statistics for our
eight simulated streaky hitters are given in Table 5-8.

Table 5-8 Statistical Values for Todd Zeile and Eight Simulated Streaky Hitters
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First, let’s compare the statistics for the eight consistent hitters (Table 5-
6) with the corresponding statistics of the streaky hitters in Table 5-8. The
streaky hitters tend to have larger values of Max — Min (the difference
between the largest and smallest moving averages), a smaller number of
runs, a larger number of hitless games, and a larger number of 3+-hit
games. It is harder to say that the streaky hitters tend to have a different
number of long streaks based on this small amount of simulated data.

Does Todd Zeile’s hitting data agree with the hitting data for our
simulated streaky hitters? To make this comparison, we simulate 1000 80-
game seasons using our streaky model. For each season, we compute the
five streaky statistics; the p-value row of Table 5-8 gives (for each statistic)
the probability that a truly streaky hitter obtains a statistic value as least as
extreme as Zeile’s value. In Table 5-9, we compare these p-values with the
ones that we obtained earlier for the simulated consistent hitters.

Table 5-9 Observed Statistics and p-Values of These Statistics for the Consistent and Streaky Hitters
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Streaky hitters
Note that for each one of the five game statistics, the p-values are larger
for the streaky model. This means that the chance of observing Zeile’s
statistic (or one that’s more extreme) is higher for the streaky model than
for the consistent model. In other words, our streaky model shows a better
fit to Zeile’s data than does the consistent model.

Mr. Consistent or Mr. Streaky?

We have described two probability models for Zeile’s hitting data and
presented some evidence that the streaky model provides a better
description of Zeile’s performance. We will now be more specific. Suppose
that, before looking at any data, you believe that the Mr. Consistent and the
Mr. Streaky models are equally plausible descriptions of Zeile’s hitting.
After seeing Zeile’s data, what do you believe about these two models?

We will illustrate a simple way of computing the following:

Pr(Zeile is a streaky hitter)

To do this, we will use the simulated data of the consistent and streaky
hitters and one unusual statistic from Zeile’s hitting data. Zeile had seven
games in the first half of 1999 where he had three or more hits. Based on
Zeile’s performance, we consider the two following mutually exclusive
events:

“Fewer than seven 3+-hit games”

and



“Seven or more 3+-hit games”

We will compute the probability that Zeile is a streaky hitter based on
the second of these: seven or more 3+-hit games.

Suppose that we have 2000 hitters like Todd Zeile, and there are two
possible models for his hitting—consistent or streaky. If we think that the
chance Zeile is a consistent hitter is the same as the chance that he is a
streaky hitter, then we’ll call 1000 of these hitters consistent and 1000 of
them streaky. We put these numbers in Table 5-10.

Table 5-10 Table Classifying Hitters by Ability (Consistent or Streaky) and Performance (Fewer
than Seven or At Least Seven 3+-Hit Games)

Less than seven Seven or maore
3+-hit gamas I+-hif games Tatal
Consistent hitter . B 1000
Streaky hitter * . 1000
TOTAL . . 2000

Earlier, we simulated 1000 hitters from the consistent model and found
that 23 percent of them, or 230 hitters, had seven or more 3+-hit games.
(That means that 1000 — 230 = 770 hitters had fewer than seven 3+-hit
games.) Similarly, of the 1000 hitters from the streaky model, 43 percent, or
430 hitters, had seven or more 3+-hit games. (So 1000 — 430 = 570 hitters
were in the other category.) We place these values in Table 5-11.

Table 5-11 Table Classifying Hitters by Ability and Performance with Some Counts Filled In

Less than seven Feven ar more
J+-Rhit gamas J+-hit gamas Total
Gonsistent hitter f70 230
Streaky hitter 570 430 1000
TOTAL 1340 aa0 2000

To find the probability that Zeile is a consistent or streaky hitter based
on his data, we focus on the column headed “Seven or more 3+-hit games’
in the table. There were a total of 660 hitters in our simulation who had a
large number of 3+-hit games like Zeile. Of these 660 hitters, 230 (35
percent) were consistent hitters and 430 (65 percent) were streaky hitters.

5



So we can say, on the basis of Zeile’s large number of 3+-hits games, the
following:

Pr(Zeile is streaky) = .65, Pr(Zeile is consistent) = .35

The probability (65 percent) that Zeile is streaky is somewhat larger
than the initial probability of 50 percent, which means that there is some
support for true streakiness in Zeile’s data. In a similar fashion, we can use
another interesting statistic, such as his large number of “long streaks,” to
compute the probability that he is streaky based on this statistic and the
initial assumption that the models Mr. Streaky and Mr. Consistent are
equally likely.

Table 5-12 summarizes these calculations for each one of the five
“streaky statistics.” With the exception of the MAX — MIN statistic, we
see that the probability that Zeile is a streaky hitter (in the way that we have
defined it) is in the .6 to .7 range, which is higher than the initial probability
of .5. The probability that Zeile is streaky is .95 using the MAX — MIN
statistic—this tells us that the big difference between Zeile’s best and worst
moving average is pretty significant and is more typical of a hitter who is
truly streaky:.

Table 5-12 Values of Five Interesting Statistics for Todd Zeile and the Probabilities That He Is a
Streaky Hitter
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Zeile 0479 2 36 26 7
Pristreaky) 0.95 0,75 0.66 0,67 0.65
Priconsistent) 0.05 0.25 0.34 0,38 (.35

Team Play

We have spent quite a bit of time analyzing the streaky behavior of a single
hitter, and we have found that there is some evidence that Todd Zeile is
truly streaky. But are groups of players or teams generally streaky? If we



performed the above analysis on all major league players or all teams,
would we find that many of them are streaky or possess the hot hand?

To partly answer this question, we will look at the win/loss sequences
for all 30 major-league teams in 1998. For each team, we collected the
game results for all 162 games (approximately) played that season. Figure
5-11 shows this data for the Anaheim Angels. We see they won their first
two games, lost the next three, won the next three, lost the next two, and so
on.

Games 1-81:
WA LL LW WA L WAYIL AL L WAL WSO WA WA L LD LA L LW LW L WA L L LU LW WA WA WA L WA LW DWW WAW LW LLWW
(rames B2-162:

LLLLLLWLWLLWLLWLLWWLWLWLWLLLLWWLLLWWWWLWWLWLWWLWWWWWLLWLWLWLWWLWLLLWLLLLWWLLLWLLW
Figure 5-11 Win/loss sequence of the 1998 Anaheim Angels.

Were the Angels streaky in 1998? To begin, when we look at the above
sequence we see some interesting patterns. Specifically, we see a large
number of wins at the end of the first half of the season (including a
winning streak of nine games), and a losing streak of six games at the
beginning of the second half. As in the analysis of Zeile’s data, one can
quantify these clusters of wins and losses by the computation of moving
winning fractions. Suppose we use a width of 12 games, which corresponds
to about two weeks of games. Then we compute moving winning fractions
for all groups of 12 games. To start, we look at the Angel’s record in games
1 through 12, which is boxed in Figure 5-12. The Angels won 6 and lost 6
in this period for a winning fraction of .500.
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& wins, & losses
Figure 5-12 Win/loss sequence with winning fraction for games 1 through 12 displayed.

We next look at games 2 through 13. From Figure 5-13, we see the
Angels won 5 and lost 7, for a winning fraction of .417.

W :I\Fﬁl LLLWWYWLLWL L W L A A WA A VAAY L L LW LA LA LA L L L L L W A A LA LA WS LA LWL LW

& wins, 7 losses

Figure 5-13 Win/loss sequence with winning fraction for games 2 through 13 displayed.
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5 wins, 7 losses

Figure 5-14 Win/loss sequence with winning fraction for games 3 through 14 displayed.

Next, we look at games 3 through 14;—again we see 5 wins and 7
losses, for a .417 winning fraction.

Suppose that we compute this winning fraction for all groups of 12
games. Figure 5-15 graphs the winning fractions against the mean game
number. This graph dramatically shows the periods where the Angels were
hot and cold during the season. After an initial lukewarm period, the Angels
were hot for a short period (around game 20), and then cold for a period.
Then the Angels had an extended hot spell from game 50 to game 80,
including a 12-game stretch where they actually had a winning fraction over
.90. They followed this long hot stretch with an extended cold spell. They
conclude the season with a hot spell and a cold spell.
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Figure 5-15 Moving fraction plot of the winning pattern of the 1998 Anaheim Angels.



How can we measure the streakiness that we see in this graph of moving
fractions? A simple way is just to compute how far the moving fractions are
from the overall season winning percentage. The team went 85—77 in 1998,
for a winning fraction of .525, which is the location of the horizontal line in
Figure 5-15. We can measure the size of the streakiness by finding the sum:

Black = Sum|distance (moving average — .525)]

This sum essentially is the size of the black region of the graph, so we
will call this statistic “Black.” If we see a lot of black in the graph, then the
team had a pretty streaky season. For the Angels, we compute the following
number:

Black = 21.7

How does the streakiness that we see in the Angels’ season performance
compare to that of other teams? Figures 5-16 and 5-17 display the moving
fraction graphs (using a window of 12 games) for all 30 major-league teams
in 1998. Looking at these graphs and comparing the sizes of the black areas,
we see some teams—such as Anaheim, Baltimore, and Detroit—that appear
to have had unusually streaky seasons. Each of these teams has a large
chunk of black in its plot, indicating that it had at least one major slump or
hot period in its season. Other teams—such as Atlanta, Los Angeles, and
Cleveland—appear to have had unusually consistent seasons, since their
moving fraction graph stays pretty close to a horizontal line. We can
describe the amount of streakiness in each team’s graph using the Black
statistic. Table 5-13 gives values of Black for all of the teams. The values
are consistent with what we saw in Figures 5-16 and 5-17: Anaheim,
Baltimore and Detroit are in the 20—27 range, while Atlanta, L.os Angeles,
and Cleveland are much smaller, in the 11-16 range.

Table 5-13 Values of the Streaky Statistic Black and the p-Value of This Statistic Assuming a
Consistent Team



Team

Baltimore
Anaheim
Detroit
Cincinnati
Florida
Fittsburgh
New York Yankees
San Francisco
5t Louis
Tampa Bay
Chicago Cubs
Toronto
Milwaukes
San Diego

Seattle

Gray

26.6

21.6
20.7
20

19.9
18.4
18.4
18

17

16.8
16.7
166
le.5

16.4

p-valne

0.002
0.04
0.05
0.08
0.o7
Q.12
0.0%
0.25
0.31
0.38
0.48
0.47
0.5
0.47

0.5

Boston
Chicago White Sox
Montreal
Philadelphia
Arizona
Atlanta
Oakland

New York Mets
Minnesota
Colorado
Kansas City
Texas
Cleveland
Houston

Los Angeles

6.3
l&6.2
l&6.1
1.1
15.8
16.8
15.6
15.5
15.4
14.9
14.8
l4.6
14.1
13.1

0.52
0.58
0.52
0.56
0.56
0.52
0.65
0.65
0.66
0.74
0.73
0.77
0.83
0.88

0.98
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Figure 5-16 Moving fraction plots of the winning patterns of National League teams in 1998.
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Figure 5-17 Moving fraction plots of the winning patterns of American League teams in 1998.

So the 30 major league teams in 1998 appear to vary quite a bit with
regard to their consistency across the season, but do these patterns mean
anything? We’ve observed that some teams performed streaky, but that
doesn’t mean that those teams actually are streaky. It is possible that they
are all consistent teams, but by luck or chance variability, their season
performances happened to look streaky.

A Consistent Team

To see if these streaky patterns of team performance mean anything, we
propose a few simple models for team abilities and see what type of streaky
behavior during a season is predicted based on these models. The simplest
model is The Consistent Team. This team wins each game during the season
with the same probability. It doesn’t matter if this team is playing the



Yankees or Mets or Devil Rays—the team will always win with the same
probability. The winning probabilities of this consistent team are displayed
in Figure 5-18 as .525 on game 1, .525 on game 2, .525 on game 3, and so
on. Moreover, the results of different games are independent. The chance
that our consistent team wins a particular game is unaffected by what
happens in previous games. The Consistent Team, as we have defined it,
seems pretty unbelievable—since the chance that a team wins a baseball
game clearly depends on a number of different factors—but we’ll show that
it is a useful model to consider.
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Figure 5-18 Graph of the probability of winning across games for The Consistent Team.

Now that we’ve defined The Consistent Team, we can see how it
performs in a 162-game season by using simulation. Let’s illustrate how we
do this simulation using the Angels as an example. As mentioned earlier, the
Angels had a winning fraction of .525 in 1998. Suppose that this team was
truly consistent and it won each game with probability .525. We then can
play a complete simulated Angels season by using a random spinner 162
times, where the Win region in the spinner is equal to .525. After we
simulate the Angels season, we check for streakiness using the moving
fraction plot that we’ve used earlier. We see some black area in the graph,
and we measure the size of the streakiness by the statistic Black.

We repeat this simulation for 1000 seasons, and for each we compute
the statistic Black. So when we are done, we get 1000 values of the streaky



statistic Black. This simulation tells us how much streakiness we will
observe in the team performance if the team was truly consistent.

In the 1998 Angels season, we observe some streakiness and Black =
21.7. To see if this is unusually large for a consistent team, we compare it to
the values of Black in the simulation. We compute a p-value which is the
chance that the value of Black is at least as large as 21.7, assuming the
consistent model. In Table 5-13, we see the following:

p-value = Pr(Black is at least as large as 21.7) = .04

Since this probability is small, it seems that the 1998 Angels are not
behaving like a truly consistent team.

We repeat this simulation for each of the 30 teams. The p-values of the
observed values of Black are shown in Table 5-13. What is remarkable is
that most of the p-values are large, and only six of the thirty teams (shown
in bold type) have p-values under 10 percent. If all 30 teams were truly
consistent teams, then one would expect 3 out of the 30 teams to have a p-
value smaller than 10 percent, and the six observed p-values under 10
percent are not much more than what we expect. So we can conclude that
the streakiness (black matter) that we observe in the moving fraction plot
generally agrees with the observed streakiness of a truly consistent team.

A Streaky Team

We have described what it means for a team to be truly consistent. What
does it mean for team to have a streaky nature? We use a notion of
streakiness here that is different from what we used for Todd Zeile. We do
this to show that there are a number of plausible ways of representing
streaky behavior. This model, like the one used earlier, assumes that the
winning probability can change across the season. Also, if a team is playing
well (or poorly) during a particular game, it is more likely to play well (or
poorly) in the next game.

If a team is streaky, we will assume that during the season it can be in
one of three possible states, which we will call “hot,” “cold,” and
“lukewarm,” or “average.” When the team is hot, it wins with a high
probability py, when it is lukewarm it wins with a smaller probability p,.,

and when it is cold it wins with the smallest probability p- Also we divide
the 162-game season into 9 periods of 18 games and assume that during the



season the team will be hot for three periods, lukewarm for three periods,
and cold for three periods. (Here 18 days is approximately 3 weeks, so
we’re assuming that a team will remain in the same winning state for about
three weeks.) Figure 5-19 shows how the winning probability can change
for this type of streaky team. In this graph, the cold, lukewarm, and hot
winning probabilities are assumed respectively to be .425, .525, and .625.
We see that this particular team is hot for the first 54 games, lukewarm for
the next 36, cold for the next 36, lukewarm for the next 18, and cold for the
final 18.
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Figure 5-19 Graph of the probability of winning across games for a streaky team.

Just as before, we use a simulation to see how a streaky team, of the
type just described, will perform during a 162-game season. We illustrate
how we do this simulation for Anaheim. In 1998, this team had a winning
fraction of .525. We assume that, when Anaheim is hot, it wins with a
probability of .625—that is, .1 greater than its season winning fraction.
Likewise, it wins with probability .1 lower, or .425, when it is cold. When
the team is lukewarm, it wins with probability .525. We divide the season
into nine periods, where the team is hot for three periods, cold for three
periods, and lukewarm for three periods. (The periods are randomly placed
in the season.) After we have decided on the winning probabilities for all
games, we simulate game results (wins and losses). Based on a moving
fraction plot, we compute the statistic Black.



For each team, we perform this simulation using the streaky team model
for 1000 seasons. Each time we do the simulation, we compute the streaky
statistic Black. For each of the six teams that appeared streaky, we compute
a p-value. This is the probability that the statistic Black is at least as large as
the observed value, assuming the streaky model. The results are shown in
Table 5-14.

Table 5-14 Values of the Streaky Statistic Black (p-Values of This Statistic Assume a Consistent
Team and a Streaky Team Model, and the Probability the Team Is Streaky)

p-valus p-valus

Teaim Gray Cafisistent model Streaky model Pritean is streakyl
Cincinnati 20.7 0.08 0.3 0.74
Florida 20 0.07 0.23 0.77
Anaheim 21.7 0.04 0.14 0.7/8
Baltimore 26.6 0,002 0.ale .89
Detroit 21.6 0,05 0.13 0.72
Mew York Yankees 154 0.04 0.37 0.8

To understand what Table 5-14 is telling us, let’s focus on Anaheim. We
saw early that Anaheim had a moving fraction plot that looked streaky, and
we measure this streakiness by the value Black = 21.7. We saw that this
value is a bit unusual for a team that is truly consistent. That is, if a team
went through the season always winning with the same probability, then the
chance that you would see a Black value this large or larger is only 4
percent. Now, if the team was really streaky (in the way we defined it), we
see that the chance of seeing this extreme value of Black is 14 percent,
considerably more than 4 percent. So Anaheim’s streaky performance is
more consistent with a streaky model than a consistent model. Also, if we
thought initially that Anaheim was equally likely to be a consistent or
streaky team, then Table 5-14 says that the new probability that Anaheim is
streaky (given this data) is .78. Looking at the whole table, we see that there
is some evidence that each of the teams is truly streaky, and that Baltimore
has the strongest evidence of streakiness.

Thinking about Streakiness—Again



What have we learned about streakiness? First, and maybe most important,
we understand now (we hope) that there is a difference between observed
streakiness and streaky ability. Every day during the baseball season, we’re
confronted with interesting observed statistics—say, that Barry Bonds is 0
for 12 in his most recent series of at-bats. Stats like these are just
indications that Barry is having a hitting problem. But they are not, after all,
much more than statistics in isolation. We’re more interested in streaky
ability, and what we learn about this ability based on larger collections of
data.

In this chapter, we’ve described several models, such as consistency and
streakiness, that tell how an individual’s (or team’s) hitting (or winning)
probability changes over time. For Todd Zeile, we described two models,
called Mr. Consistent and Mr. Streaky, and showed that there is some
evidence that Zeile was exhibiting streaky behavior. We did a similar
analysis for the 1998 teams, and found some evidence that a few of them
were truly streaky.

One basic thing we have learned is that it is pretty tough to interpret
streakiness data. Even if a hitter like Zeile is really consistent—that is, he
gets a hit at each at-bat with the same probability—we can see very
interesting patterns. The problem is how to make sense of those patterns.
Our old caution—about drawing inferences from small datasets—becomes
especially important if you are trying to draw meaningful inferences from
the ups and downs of a player or team. One should, at the least, be very
cautious in thinking a player is streaky just because an announcer says he
was hot last week, and this week he’s cold.

There is a related issue that fans should be aware of—namely, selection
bias. Why did we decide to look at the hitting statistics for Todd Zeile?
Well, we had heard through the media that he was a streaky player. In other
words, we selected Zeile since his hitting statistics were interesting to look
it. Now consider the opposite situation: What if we had heard from a TV
broadcaster that Tony Gwynn had gotten 4 hits in his last 12 at-bats? Would
we have picked up on this information, and done a statistical study? The
answer is a clear No, since this data is not interesting—hitting statistics like
these are what we expect from Gwynn, since his lifetime batting average is
over .300. It would be interesting to hear, say, that Tony is hitless in his last
20 at-bats, since this data would be far from what we expect. But Tony
going 4 for 12? That’s old news.



The point we’re trying to make is that we look at interesting baseball
data and ignore noninteresting data, and that fact alone makes the
interesting baseball data appear more significant than it really is. We say
that inference from this data is biased, or misrepresentative of reality, since
the data has been selected exactly because it appears unusual.

To properly decide if hitters or teams are generally streaky, we need to
look at a large amount of data that doesn’t suffer from selection bias. We
did this in the case of the team data—we looked at all teams that played in
the 1998 season and didn’t select the ones that had interesting win/loss
patterns. What we found is that only six of the thirty teams had streaky
patterns of wins and losses that did not conform to a consistent (constant-
probability) model. Only one team (Baltimore) was unusual with respect to
streakiness. Suppose that we look for true streakiness among 30 teams and
decide that there is “significance” if the p-value is smaller than 10 percent.
Then, even if all of the teams are consistent or non-streaky, we would
expect, by chance, that 10 percent of the 30 (or 3 teams) would show
“significant” streakiness. So really there is not strong support in this 1998
season for teams displaying streakiness.

There is currently an active effort among statisticians to detect
streakiness (streaky ability) from sports data. Researchers in the area of
human psychology say that people generally are unable to understand the
patterns inherent in coin tossing, and that there is no statistical evidence for
streakiness. What do we think? On one hand, we think that true streakiness
may exist based on our experience playing sports. When shooting
basketball as youths, there were days when we felt that we had the right
shooting touch and could make any basket we tried. On these days, we
believed we had a true hot hand. However, as adults, we look at this
experience differently. In the statistics literature, we see that most people
have been unsuccessful in detecting true streakiness from sports data. True
streakiness is hard to detect since it is a small effect, similar to the small
situational effects described in Chapter 4. As demonstrated in this chapter,
we’ve shown that even truly consistent teams or players can demonstrate
very streaky patterns of wins and losses (or good and bad days), and it is
difficult to find true hot-hand behavior in this big cloud of chance streaky
behavior. A baseball fan should be suspicious of any talk in the media about
a player or a team being truly streaky—the reporter is likely reacting to an



interesting pattern of performance, similar to the patterns one sees when a
coin is flipped.
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Chapter 6
Measuring Offensive Performance

Jim Albert and Jay Bennett

On April 17, 1960, a trade unique in baseball history was consummated.
Cleveland outfielder Rocky Colavito was swapped even up for Detroit
outfielder Harvey Kuenn. What made this trade so remarkable was that
Colavito was the 1959 American League home-run co-champion (he hit 42
of them), while Kuenn was the 1959 American League batting champion
(with a .353 average). Never before (and never since) have two players
been traded for each other just one year after such tremendous personal
accomplishments. The trade begged the question, which type of player is
more valuable, a great power hitter or a great hitter for average?

The 1959 offensive stats for Colavito and Kuenn are shown in Table 6-
1. Colavito had a big edge in home runs, and he received more free passes
to first base. Kuenn got more hits overall, and aside from home runs, more
extra-base hits. So the situation is complicated: It really is not easy to say
that one of these players was better than the other—there are simply too
many categories to compare. Nonetheless, the general managers of
Cleveland and Detroit must have seen clear-cut (although opposing)
advantages, or they would not have made the trade.

Table 6-1 1959 Offensive Records for Rocky Colavito and Harvey Kuenn

Player AB H 28 iR HR 5K 5F b Cs &8 68 HEP
Rocky Colavito 28 151 24 0 42 Q 3 3 3 71 3! 2
Harvey Kuenn 861 198 4z 7 9 3 4 7 Z 48 1 1

The Great Quest

If there is one great quest in baseball statistics, it is the search for the best
formula for evaluating offensive performance. Who is the more valuable



player, a Tony Gwynn type of hitter, who has a high batting average but
little power? Or a Mike Schmidt type, who displays great power but has a
low batting average? And just how valuable is speed in a player? Or the
ability to draw a walk? Or ...

The question of how to quantify offensive performance is a classic
statistical problem. Offensive statistics offer a rich but not overwhelming
set of dimensions with which to measure players.The question becomes
how best to combine these different measurements into a single number that
best reflects the offensive value of the player.

We examined the players with the top three career batting averages in
each decade. Only players with more than 5000 plate appearances were

considered.! Each player was assigned to a single decade according to the
midpoint of his career. For example, Rogers Hornsby debuted in 1915 and
retired after the 1937 season. His career midpoint was 1926, so for our
purposes here, he is assigned to the 1920s. (And 1926 was, incidentally, the
year Hornsby, as player-manager, led the St. Louis Cardinals to their first
World Championship.)

Table 6-2 shows for each decade the total number of players, and the
number and percentage of players who had more than 5000 career plate
appearances.” A total of 5000 plate appearances indicates a substantial
major-league career; less than 10 new players per year (on average) achieve
this milestone. The low percentage of 1940s players in this category is most
likely caused by military service in World War II.

Table 6-2 Total Players from Each Decade and Number and % with More Than 5000 Plate
Appearances



Derade Total =500 =500

1880s G000 29 3.2%
1890s 789 a7 6.0%
1900s 1013 39 3.8%
1910s 1557 s 3.7%
1820s 1208 5d 4.5%
1930s S60 58 6.0%
1840s 1222 46 3.8%
1950s 1046 54 §.2%
1960s 1144 /1 6.2%
1870s 1307 100 7.7 %
1880s 1353 93 6.7%
1990s 2069 121 5.8%

Table 6-3 lists the leading players in each decade according to batting
average. Scanning this list, we see only the names of very good hitters. All
players prior to 1980 are in the Hall of Fame, except Browning, Jackson,
Alou, Garr, and Oliver. Puckett was elected recently. Molitor, Gwynn, and
Boggs are destined for the Hall, and Mike Piazza is likely to make it as
well. But were they truly the best of their period in producing runs? For
example, Richie Ashburn is a personal favorite of ours, but even we doubt
that he was a greater hitter than his contemporary Mickey Mantle. And was
Paul Waner a better hitter than Jimmie Foxx? And say Hey! Where’s Willie
Mays?

Table 6-3 Players with Highest Career Batting Average from Each Decade’



Decade Playar AVG

1880s Fate Browning 341 Cap Anson 333 Reger Connor 317
1890s Ed Delahanty 346 Eilly Hamilten 344 [Dan Brouthars 342
19005 Willie Keeler 3d1 Map Lajoie 338 Hanus Wagner 327
1910s Ty Cobb 366 loe Jackson J3R5 Tris Speaker 345
1920% Rogers Hornsby 388 Babe Ruth 342 Harry Hailmann A4
1930z Lew Gehrig 340 Al Simmaons 354 Faul Waner 233
1940s Tad Williams 344 loe DiMaggio 325 Joe Medwick 324
19508 Stan Musial 331 lackiz Robinson 311 Richie Ashburn 408
19605 Roterto Clemente 317 Matty Alou 307 Hank Aaron 305
1970s Rod Garew JE8 Ralph Garr 306 Al Oliver 303
1980s Kirby Puckett 318 [Don Mattingly 307 Faul Malitor 306
19903 Tony Gwynn 338 Wade Boggs a7a Mike Fiazza a2l

Over the years, many systems have been offered to ascertain the
offensive value of players. And each year, more are added to the list by
sportswriters and fans. The 1999 Big Bad Baseball Annual alone listed over
20 systems for evaluating offensive performance. What’s going on here?
Isn’t the tried and true Batting Average enough?

As it turns out, the answer is No. Batting average actually has a
relatively poor correlation with runs scored. Interestingly, the best way to
gauge the value of systems for rating individual offensive players is to
analyze team data. In baseball, a single individual is rarely responsible for
production of a run. Batters get on base, then other batters advance them.
The “offensive credit,” as it were, is shared—by the runner who got on base
and scored, the players who advanced the runner, and the player who batted
him in for the RBI. The fact that scoring is a series of events involving more
than a single player is one reason why the standard counts for runs scored
and runs batted in are not satisfactory evalua-tors of individuals. Even the
sum of total runs scored plus RBIs minus HRs has not achieved widespread
use.

Over the next few pages, we’ll take a look at some of the most widely
used stats for offensive performance, analyze how closely they align with
runs produced, examine what they tell us, and what they don’t tell us, about
the run-producing value of noted players.



Runs Scored per Game

Let’s start our investigation by looking at the runs scored per game by
teams in 1998 as presented in Table 6-4. Runs per game (R/G) ranged from
the low of 3.827 by the Tampa Bay Devil Rays to the high of 5.957 by the
World Champion New York Yankees. (Coincidentally, both teams were in
the Eastern Division of the American League.) This represents quite a
spread. Over the course of the 1998 season, the Yankees scored more than
50 percent more runs per game than the Devil Rays.

Table 6-4 Runs per Game for Major League Teams in 1998

Tagm funs per Game
New York Yankees 5.957 Anaheim Angels 4.858
Texas Rangers b.BOZ Cincinnati Reds 4,630
Boston Red Sox 5,407 San Diego Padres 4,623
Houston Astros 5.395 Minnesota Twins 4,531
Seattle Mariners 5,335 Detroit Tigers 4,457
Chicago White Sox 5.315 Kansas City Royals 4.435
Cleveland Indians 5247 Philadelphia Phillies 4,401
San Francisco Giants 5.184 Milwaukee Brewers 4,364
Atlanta Braves 5.099 New York Mets 4,358
Colorado Rockies 5,099 Los Angeles Dodgers 4,130
Chicago Cubs 5,098 Florida Marlins 4,117
Baltimore Orioles 5,043 Arizona Diamondbacks 4,105
Toronto Blue Jays 5,037 Pittshurgh Pirates 4,012
St. Louis Cardinals 5,000 Montreal Expos 34978
Dakland A's 4,963 Tampa Bay Devil Rays 3.827

Now let’s suppose you had absolutely no knowledge of baseball except
for the information in Table 6-4 (minus the team names), and that you are
asked to guess how many runs per game a certain team scored in 1998.
What would be your best guess? You wouldn’t pick the highest or lowest
value, since this would make your possible error very large. Most likely you
would pick some value in the middle of the distribution. Perhaps you would



calculate the average (or mean) of all the values (4.794 runs per game) and
use it as your best guess.

In fact, the average is the best guess (or estimate) you can make ...
without any further information, that is. Table 6-5 shows the runs per game
values, the guess based on the average, and the difference between this
guess and the actual value. We will refer to this difference as the Error in
the estimate. At the bottom of the Error column is the average value of the
errors, 0. Basically, what this means is that if you use the average value as
your guess, you will overestimate as much as you underestimate in repeated
guesses.

Table 6-5 Predicting Runs per Game for MLLB Teams in 1998 (Prediction = Average)



Team

New York Yankees
Texas Rangers
Boston Red Sox
Houston Astros
Seattle Mariners
Chicago White Sox
Gleveland Indians
San Francisco Giants
Atlanta Braves
Colorado Rockies
Chicago Cubs
Baltimore Oricles
Toronto Blue Jays

5t. Lowis Cardinals
Dakland A's
Anaheim Angels
Cincinnati Reds

San Diego Padres
Minnesota Twins
Detroit Tigers
Kansas City Royals
Philadelphia Phillies
Milwaukee Brewers
New York Mets

Los Angeles Dodgers
Florida Marlins
Arizona Diamondbacks
Pittshurgh Firates
Montreal Expos

Tampa Bay Devil Rays

Average

Ring per Game

£.957
5.802
5.407
5.395
5.335
§.31%
5.247
5.184
5.098
£.099
£.098
£.0432
5.037
5.000
4.963
4,858
4.630
4,623
4.531
4.457
4.43%
4.401
4.364
4.358
4.130
4.117
4.10%
4.012
3.97%

3.827

4.794

Estimate

4.794
4.794
4.794
4.794
4.794
4.794
4.794
4,794
4.794
4.794
4.794
4.794
4,794
4.794
4.794
4.794
4,794
4.794
4.794
4.794
4.794
4.794
4.794
4.794
4.794
4.794
4,794
4.794
4.794

4.794

4.794

Error

1.163
1.008
513
601
541
Bl
453
390
305
305
304
.249
.243
.206
.169
Jed
-.164
A71
-.263
-.337
-.359
-.203
430

-.436

-.819

-.967

000

Error = Error

1.362
1.017
378
.36l
.293
271
205
Jd52
.93
083
093
e
59
042
029
004
027
K029
0a8
114
129
154
185
.190
Ad]
A58
ATE
611
&7l

935

3040



Another column presents the square of the error; that is, Error x Error.
Doing this has a great advantage. Now each error, whether positive or
negative, has been converted to a positive value. So, an error of —1
(overestimating by 1 run per game) is treated the same as an error of 1
(underestimating by 1 run per game). The average of the squared errors, or
Mean Squared Error (MSE), is presented at the bottom of the column. The
square root of MSE, or Root Mean Squared Error (RMSE), an estimate of
the standard deviation of the error distribution, provides a measure of how
much you may expect to overestimate or underestimate in your guesses.
Approximately two-thirds of all errors are between —RMSE and +RMSE
runs per game. Here the RMSE is the square root of .300, which equals .548
runs per game. From the Error column in Table 6-5, we see that 20 teams
(exactly two-thirds of 30 teams) have estimates with errors between —.548
and .548.

One can show mathematically that the average guess results in the
lowest possible MSE among all other possible guesses. Let’s demonstrate
this point with an example. Suppose you had guessed 5 instead of 4.794.
How would the MSE have changed? Table 6-6 is exactly the same as Table
6-5 except that 5 has been substituted for 4.794 as the estimate. The Error
column has been calculated the same way, by subtracting the estimate from
actual runs per game. The first change we notice is that the average error is
not 0 anymore. It’s —.206, reflecting the tendency of 5 to overestimate the
runs per game for a team. The MSE value (the average of Error x Error) is
.342, which is greater than the MSE value .300 in Table 6-5, when the
average 4.794 was used as the estimate. Since RMSE is just the square root
of MSE, the RMSE value is greater as well (.585 versus .548 runs per
game).

Table 6-6 Predicting Runs per Game for MLLB Teams in 1998 (Prediction = 5 Runs/Game)



Team

New York Yankees
Texas Rangers
Boston Red Sox
Houston Astros
Seattle Mariners
Chicago White Sox
Cleveland Indians
San Francisco Giants
Atlanta Braves
Colorado Rockies
Chicago Cubs
Baltimore Orioles
Toronto Blue Jays
5t. Louis Cardinals
Oakland A's
Anaheim Angels
Cincinnati Reds

San Diego Padres
Minnesota Twins
Detroit Tigers
Kansas City Royals
Philadelphia Phillies
Milwaukee Brawers
New York Mets

Los Angeles Dodgers
Florida Marlins
Arizona Diamondbacks
Pittshurgh Pirates
Maontreal Expos

Tampa Bay Devil Rays

Average

Runs per Game

5957
5.802
§.407
5.395
5.335
5.315
5.247
5.184
5.099
5.099
§.098
5.043
5.037
5.000
4,963
4.858
4.630
4.623
4.531
4.457
4.435
4.401
4.354
4.358
4.130
4.117
4,105
4.012
3.975

3827

4.794

Estimata Eror
& 957
5 802
5 A07
5 395
& 335
5 315
5 247
5 14
al 099
5 093
& D98
B 043
5 037
5 .0oo
b =037
5 - 142
5 -.370
5 -.377
B ABG
5 543
b -.565%
5 -.595
5 -.636
5 -.642
5 870
5 883
b -.89%
5 -.988
5 -1.025
5 -1.173
5 -.206

Etror % Etror

215
Bdd
166
188
112
098
061
034
010
010
010
002
001
000
001
020
JA37
142
220
295
319
368
404
A12
JEB
J78
801
A75
1.050

1.378

342



Figure 6-1 shows the RMSE value for every reasonable guess of runs
scored per game. For each guess (shown on the x-axis), we followed the
same procedure as in Table 6-6 (where 5 was the guess). That is, using the
guess as the estimate, we subtracted it from each data value to obtain an
error; the errors were squared and the average value of their squares
calculated. The square root of the average gave us the RMSE for that guess.
The plot shows the RMSE for each guess. The RMSE values for our
guesses of 4.794 and 5 runs per game are included in the line. For example,
our original guess was 4.794 runs per game based on the runs scored per
game averaged over all teams. The calculation in Table 6-5 gave a RMSE of
.548 runs per game if this value were used as an estimate. Figure 6-1
displays a dot on the curve where the RMSE result of this guess is plotted.
Another dot shows the RMSE value when 5 runs per game is the guessed
estimate. Note that this dot is higher than that for the 4.794 guess because
the RMSE for a guess of 5 runs per game is higher. In fact, the RMSE
reaches its lowest level with the 4.794 runs per game guess. Clearly, the
RMSE is smallest when the guess is based on the average runs scored per
game.
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Figure 6-1 Root Mean Squared Error (RMSE) values for different guesses of team runs scored per
game in 1998.



Batting Average and Runs Scored per Game

We have established that, without any knowledge about the teams, the best
prediction of run production is a blind guess based on the average runs
scored per game. But what if more information is available? How much can
we improve on our guess?

We will examine this with respect to the most popular measure of
offensive production, the Batting Average (AVG). Batting Average is the
most quoted of all baseball statistics in the print and broadcast media; it is
simply the number of hits divided by the number of at-bats. But is AVG
worthy of its standing as the number-one baseball stat for individual
offensive performance? As the ratio of two easily obtained quantities, it has
the strength of simplicity. AVG also has intuitive appeal. It seems
reasonable that greater production of hits would lead to greater production
of runs. But how strong is this relationship?

Figure 6-2 plots runs scored per game vs. AVG for all teams in the 1998
season. As expected, the plot shows a strong correlation between the two
measures. Teams with high AVGs tend to have high run production, and
teams with low AVGs tend to have low run production. Still, note that the
New York Yankees had the highest run productivity without having the
highest AVG. On the other hand, the Tampa Bay Devil Rays had the lowest
run productivity and yet were far from being the worst team in AVG.
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Figure 6-2 Runs per Game vs. Batting Average for 1998 MLB Teams. (Dots represent actual data,
line represents AVG Line.)

We have drawn a line through the dot cloud. This line is special in the
sense that it has the lowest RMSE of any other possible line through the
plot. The RMSE for this line is calculated using the same technique used in
Tables 6-5 and 6-6. Here the estimate based on a single average value is
replaced by the value of the line for the appropriate AVG:

Estimated Team Runs per Game = —5.592 + (39.03 x AVG)

Let’s use this AVG Line to predict the run production for the New York
Yankees.The Yankees’ 1998 AVG was .288, and so we predict the Runs per
Game to be as follows:

Estimated Team Runs per Game = —5.592 + (39.03 x .288) = 5.646

This prediction is less than the actual Yankee rate of 5.957 Runs per Game.
The Yankees scored more frequently than we might expect based on the
Team Batting Average.

Table 6-7 presents the predictions for all 1998 teams based on the Team
Batting Average as well as the calculations of the MSE for these
predictions. It has several similarities with Table 6-5. In both, the average of
the estimates equals 4.794, which is the average runs scored per game over



all teams. Also, the average of the errors is 0 in both tables. However, the
big difference is in the MSE and RMSE values. The AVG Line produces a
MSE value of .089 in Table 6-7. After taking the square root, this translates
to a RMSE value of .299 Runs per Game, almost half the RMSE value for
the blind guess estimate in Table 6-5.

Table 6-7 Predicting Runs per Game for MLB Teams in 1998 (Estimate = AVG Line)



Taam

New York Yankees
Texas Rangers
Boston Red Sox
Houston Astros
Seattle Mariners
Chicago White Sox
Gleveland Indians
San Francisco Giants
Atlanta Braves
Colorado Rockies
Chicago Cubs
Baltimore Oricles
Toronto Blue Jays
5t. Louis Cardinals
Dakland A's
Anaheim Angels
Cincinnati Reds

San Diego Padres
Minnesota Twins
Detroit Tigers
Kansas City Royals
Philadelphia Phillies
Milwaukee Brewers
New York Mets

Los Angeles Dodgers
Florita Marlins
Arizona Diamondbacks
Pittshurgh Pirates
Montreal Expos

Tampa Bay Devil Rays

Average

funs per Game

5.957
5,802
5.407
£.395
5335
5315
5.247
5.l84
5.099
5.099
5,098
5.043
5.037
5.000
4.963
4 858
4,630
4623
4.531
4457
4,435
4.401
4,364
4.358
4.130
4,117
4,105
4.012
3.975

3.827

4.794

Estimate

5644
helz
5.334
5.325
5.177
5.001
5.040
5.087
5.004
5772
4.729
5.068
4,773
4.484
4.453
5.014
4.640
4,289
4,779
4.702
4.675
4,705
4.543
4.501
&4.227
4.105
4.024
4.319
4.120

4.595

4.794

Error

.310
131
074
070
168
313
207
097
094
e74
.369
-.024
264
hle
510
—-.166
-.011
334
248
—.245
—.240
-.304
.17g
143
-.098
012
081
307
~.144

-.768

000

Error = Error

096
017
005
L00E
028
a8
042
L00g
009
454
l3e
001
070
266
260
024
L000
A1z
.061
.060
058
0oz
.03z
.0zo
010
000
LO0E
.094
021

580



This should not come as a surprise. The AVG Line is the line with the
best fit to the data. The errors in Table 6-5 were based on an estimate which
ignored any team information and estimated a single run production value
of 4.794 Runs per Game for all teams. Using the information derived from
the Batting Average, we can now estimate team run production correctly
within .3 Runs per Game for two-thirds of the teams; before, our estimates
were correct within .6 Runs per Game for two-thirds of the teams. Batting
Average has thus allowed us to shrink considerably the error in our
estimates.

Figure 6-3 is the same as Figure 6-2, but with the addition of a vertical
line showing the error of using the AVG Line to predict run production for
each team. The figure gives a visual demonstration of the effectiveness of
the AVG Line in predicting team run production. The two greatest errors are
for the Tampa Bay Devil Rays and the Colorado Rockies. Both teams were
expected to score more runs on the basis of Team Batting Average.
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Figure 6-3 Runs per Game vs. Batting Average for 1998 MLB teams. (Dots represent data, line
represents AVG Line; vertical lines represent Error.)

Figure 6-4, which is similar to Figure 6-3, shows the effectiveness of
prediction on the basis of the overall average Runs per Game. A guess
based on this average makes no use of any additional information about the



teams, so the prediction is a flat line at the average value. The lengths of the
error bars in Figure 6-3 are generally shorter than those in Figure 6-4,
which shows why the AVG Line is a better fit to the data and has a lower
RMSE.
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Figure 6-4 Runs per Game vs. Batting Average for 1998 MLB teams. (Dots represent data, line
represents overall average runs per game, vertical lines represent Error.)

Up to this point, the Batting Average looks pretty good: it appears to be
correlated with team run production. When used in the AVG Line formula,
it improves estimation of run production over blindly guessing at the runs
scored with the average. But while this is a good start, AVG really hasn’t
been tested. What if we looked at some other batting measures? Would they
do any better?

Slugging Percentage and On-Base Percentage

The Slugging Percentage (SLG) is another standard measure of individual
baseball hitting performance. Batting Average counts each hit equally,
whereas SL.G weights each hit according to the number of bases attained:



1B +(2x2B)+(3x3B) +(4xHR) H+2B+(2x3B)+(3xHR)
AB - AB

To put it another way, SLG is a measure of total bases achieved divided by
at-bats.

The use of the term “percentage” in Slugging Percentage is a misnomer.
While SLG is typically less than 1, we see that it is possible for it to be
greater than 1, and possibly as high as 4 if every at bat produces a home
run. SLG is best understood as either of the following:

SLG =

e a Rate—the rate at which bases are produced per at-bat

e an Expectation—the expected or average number of bases produced
per at-bat

With its emphasis on extra-base hits, SLG improves the rankings of
power hitters over high-average “banjo” (non-power) hitters. At least, the
“slugging” part of the name is very apt. Table 6-8 presents the players with
the highest Slugging Percentage in each decade. The table has much in
common with Table 6-3, which simply lists those with the highest Batting
Average. But the ordering has changed, and many new players have
appeared.

Table 6-8 Batters With Highest Career Slugging Percentage from Each Decade

Decade Playar S

1880s Roper Connor JA86 Pate Browning Aa7 Harry Stovey Aal
18905 Dan Brouthers £19 Ed Delahanty 505 Sam Thampsoen 505
1900s Map Lajoe AeT Honus Wagner 466 Sam Crawford 402
1910s Joa Jackson 517 Ty Cobb b1z Tris Speaker 500
18203 Eaba Ruth 550 Rogers Hornskby 57T Hack Wilson 545
1930s Lou Gehrig 832 Jdimmie Foxx e09 Hank Greenberg .B0s
19405 Ted Williams B34 Jog DiMaggio B79 Jahnny Mizs bBaz
19505 Stan Musial 559 Mickey Mantle 557 Ralph Kiner 548
1960s Willie Mays BE7 Hank Aaron ERE Frank Rokinzon B37
19705 Dick Allen 534 Willie Stargell 529 Reggie Jackson A9
19805 Mike Schmidt BET Jim Rice 502 George Bratt A87

19905 Manny Ramirez Roiele] Barry Bonds 585 Mark MeGwira 588



e Harry Stovey replaces Cap Anson in the 1880s.

e Sam Thompson replaces Billy Hamilton in the 1890s.

e Sam Crawford replaces Wee Willie Keeler in the 1900s.
e Hack Wilson replaces Harry Heilmann in the 1920s.

e Jimmie Foxx and Hank Greenberg replace Al Simmons and Paul
Waner in the 1930s.

e Johnny Mize replaces Joe Medwick in the 1940s.

e Mickey Mantle and Ralph Kiner replace Jackie Robinson and Richie
Ashburn in the 1950s.

e Willie Mays and Frank Robinson replace Roberto Clemente and Matty
Alou in the 1960s.

e The 1970s, 1980s, and 1990s saw a complete overhaul; Carew, Garr,
and Oliver were swept away by Allen, Stargell, and Jackson, while
Schmidt, Rice, and Brett replaced Puckett, Mattingly, and Molitor. In
the 1990s, Ramirez, Bonds, and McGwire replaced Gwynn, Boggs,
and Piazza.

Table 6-8, when compared with Table 6-3, also has a large number of
present and future Hall of Famers; only Browning, Joe Jackson, Stovey, and
Allen are not in the Hall of Fame among the pre-1980s players.

Two principles appear from the comparison of Tables 6-8 and 6-3:

e Power hitters replace singles hitters in the SLG ratings. The players
who are in both tables were power hitters who also hit for average.

e The differences between the two tables appear to be greater in recent
years. This suggests that in the past, power hitters were also great
hitters for average, while recent hitters are more apt to be good power
hitters or good hitters for average, not both.

Figure 6-5 plots Team Runs per Game vs. Slugging Percentage. As in
Figures 6-3 and 6-4, we have also plotted the SLG Line and the errors for
each data point. The formula for the SLG Line is as follows:
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Figure 6-5 Runs per Game vs. Slugging Percentage for 1998 MLB teams. (Dots represent data, line
represents SLG Line, vertical lines represent Error.)

Estimated Team Runs per Game = —-2.135 + (16.50 x SLG)

Another popular measure for hitting performance is the On-Base
Percentage (OBP), which we examined extensively in Chapter 2. Recall
that OBP is defined as follows:

H + BB + HBP
AB + BB + HBP + SF

OBP is used as an estimate of the probability of getting on base in a plate
appearance. Table 6-9 lists, by decade, the batters with the highest career
OBPs. Again, aside from re-ordering players who appeared in the AVG and
SLG lists, a number of new players have entered the picture: Cupid Childs
in the 1890s, Roy Thomas and Hughie Jennings in the 1900s, Eddie Collins
in the 1910s, Max Bishop in the 1920s, Mickey Cochrane in the 1930s,
Eddie Stanky and Arky Vaughan in the 1940s, and Eddie Mathews in the
1960s. Mike Hargrove, Joe Morgan, Keith Hernandez, Jack Clark, Frank
Thomas, and Edgar Martinez are new faces in the 1970s, 1980s, and 1990s.

OBP =

Table 6-9 Batters with Highest Career On-Base Percentage from Each Decade



Decas

1880s

18905

19005

1910s

1920s

1930s

19405

18505

1960s

1970s

19803

1990s

Player

Feta Erowning
Billy Hamilton
Roy Thomas

Ty Cobhb

Babe Ruth

Lou Gehrig

Ted Williams
Mickey Mantle
Frank Robinson
Mike Hargrove
Kaith Hernandez

Frank Thomas

oge

403
455
413
433
A74
447
482
421
389
396
384

A432
Some of these new players are in the Hall of Fame (Jennings, Collins,
Cochrane, Vaughan, Mathews, and Morgan), and some may be worthy of

Roger Connor
Dan Brouthers
Honus Wagner
Tris Spasker
Rogers Harnsby
Jimmia Foxx
Eddie Stanky
Stan Musial
Willie Mays
Rod Carew

Mike Schmidt

Barry Bonds

397

AZ23

291

A28

A34

A28

410

A17

384

393

380

A28

Cap Anson
Cupid Childs
Hughie Jennings
Eddie Collins
Max Bishop
Mickay Cochrane
Arky Vaughan
Jackie Robinson
Eddie Mathaws
Jaa Margan
Jack Clark

Edgar Martinez

AZ3
415
ADE
A05
AT7e

392

consideration for the Hall (Bishop, Hernandez, Thomas, and Martinez). But
do we really think that Mike Hargrove was the best offensive player of the
1970s? Or that Eddie Stanky was the second best player of the 1940s? OBP

seems to recognize some excellent players overlooked by AVG and SLG,

but it also produces some strange rankings.
Figure 6-6 plots Team Runs per Game vs. On-Base Percentage. We have

also plotted the OBP Line and the errors for each data point. The formula
for the OBP Line is:
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Figure 6-6 Runs per Game vs. On-Base Percentage for 1998 MLB teams. (Dots represent data, line
represents OBP Line, vertical lines represent Error.)

Estimated Team Runs per Game = -7.273 + (36.03 x OBP)

In order to compare how well AVG, SLG, and OBP predict 1998 Team
Runs per Game, we took the errors in their predictions from Figures 6-3, 6-
5, and 6-6 and then sorted them. Table 6-10 presents these results. We see
that AVG had the largest single error (overestimating Tampa Bay’s Runs per
Game by .768). In fact, AVG had four estimates which were off by more
than any estimate based on OBP, which was never off by more than .466
Runs per Game in its predictions. SLG also had two estimates worse than
any estimates from OBP. So ... Batting Average is not looking as good as it
initially did, and both SLG and OBP seem to do a better job. But we cannot
judge by several extremes. We have to examine the entire distribution of
errors for AVG, SLG, and OBP.

Table 6-10 Errors in 1998 Team Runs per Game for AVG, SL.G, and OBP Lines

AVG SLG OBP
.516 .544 .374
.510 497 233
.369 .381 229
334 .342 213
313 323 .178




AVG SLG OBP
310 .253 142
.264 139 115
207 134 .092
.158 133 .080
131 102 .079
.097 .084 .064
.094 .022 .061
.081 .019 .060
.074 -.004 .058
.070 -.015 .049
.012 -.019 .034
-.011 —-.030 .017
-.024 —-.036 .006
—-.098 -.089 -.013
—-.143 -.121 -.014
—-.144 —-.136 —-.031
—-.156 —-.194 -.072
-.179 —-.216 —-.131
—.240 —-.238 —-.159
—.245 —.240 —-.186
—.248 —-.244 —-.240
-.304 -.261 —-.253
-.307 —-.364 —-.259
-.674 —-.381 —.262
—-.768 —-.385 —.466

One way to get a visual perspective on the spread of errors for the
different models is to graph side-by-side boxplots of the distributions. We
do this in Figure 6-7. If we examine the SL.G boxplot, we see the entire
extent of the distribution of SLG errors in predicting 1998 Team Runs per
Game. The distribution ranges from underestimating one team’s run
production by .544 Runs per Game up to overestimating another team’s run
production by .385 Runs per Game. You may recall from Chapter 2 that the
box in the center of the plot represents the central half of the distribution;
50 percent of the SL.G errors fall within this box, 25 percent above the box,
and 25 percent below it. The line in the middle of the box represents the



central point (or median) of the entire distribution, with 50 percent above
the line and 50 percent below it.
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Figure 6-7 Boxplots of 1998 Team Runs per Game Errors for AVG, SLG, and OBP.

A good predictor of Runs per Game results in a tight distribution of
errors, one which limits the size of the error in either direction. Viewing the
boxplots in Figure 6-7, the better predictor is one with a more limited range
(the difference between the highest and lowest values) and a narrower box.
Visual inspection of Figure 6-7 indicates that SLG appears to have less
spread in its errors than AVG, and OBP has less spread in its errors than
SLG.

The results are best summarized by looking at the Root Mean Squared
Error (RMSE) for each predictor. The RMSE values in Table 6-11 as well as
their visual counterparts, the boxplots in Figure 6-7, all indicate that OBP
was the superior measure of batting ability leading to runs in 1998. This is a
somewhat surprising result, given the explosion of home runs in that
epochal year.

Table 6-11 Root Mean Squared Error for 1998 Team Runs per Game Estimates

Batting Average Slugging Percentage On-Base Percentage
299 .248 .178




What about other years? Could this have been true only in 1998, or does
it hold in other years as well? We performed the same analysis for each
season since 1876, the inaugural year of the National League. In each year,
we found the AVG Line, SLG Line, and OBP Line with respect to
predicting Team Runs per Game in that season and calculated the RMSE for
each of the three lines.We then found which Line (AVG, SLG, or OBP) had
the lowest RMSE (that is, the best fit to Team Runs per Game). Figure 6-8
plots this minimal RMSE value and indicates which measure (AVG, SLG,
or OBP) generated it.
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Figure 6-8 RMSE of fit to Team Runs per Game since 1876. (Minimum RMSE from AVG, SLG,
and OBP.)

We see that the RMSE of the best fit among the three models shows
great variability from season to season. In 1948, Slugging Percentage
provided the best fit (RMSE = .32 Runs per Game); thus, AVG and OBP
both had RMSEs greater than .32. SLG also provided the best fit in 1968,
where RMSE is .12 Runs per Game. In that year, scoring was very low; the



reduced variability in runs scored may have contributed to the improved
capability of SLG to predict run production.

Another interesting feature of Figure 6-8 is the improved consistency in
fit over time, especially in post-1960 seasons compared to pre-1960
seasons. From 1958 on, every season had a measure with an RMSE value
less than .24 Runs per Game. On the other hand, in 35 of the first 82
seasons, the best fit had RMSEs greater than .24. Contributing to this effect
may have been the gradual expansion of Major League Baseball from 16
teams in 1960 up to the current 30 teams. Also contributing to this effect are
the short seasons (fewer than 100 games) in the early years of professional
baseball, which allowed greater variability in run production from the basic
hitting events.

For our purposes, the most interesting feature is the relatively few
seasons in which Batting Average had the best fit to team run production.
AVG has not provided the best fit to run production since 1955. If all three
measures (AVG, SLG, and OBP) were equally capable of predicting Team
Runs per Game, we would expect AVG to have the best fit (lowest RMSE)
in about one-third of the seasons. In fact, AVG was best in only 16 of 124
seasons, while SLG and OBP split the remaining seasons almost equally (50
and 58 seasons, respectively). The probability of this happening if AVG,
SLG, or OBP were equally effective measures is less than 1 in 5 million!*

It is not clear at this point whether Slugging Percentage or On-Base
Percentage is the best predictor of run production, but it is abundantly clear
that Batting Average is the worst of the three. So the king is dead! Long live
the king! But which measure is the new king? SLG and OBP are viable
candidates, but why should we restrict ourselves to these choices alone?
Can other models provide us with even greater improvements in predicting
run production? And if so, how can they be applied to our ultimate goal,
evaluating individual players?

Intuitive Techniques

It was not long after the end of World War II that dissatisfaction with the
basic crop of baseball offensive performance measures (AVG, OBP, and
SLG) initiated research into alternatives. Activity started slowly in the
1950s and really accelerated in the 1960s. Baseball fans must have been
thinking, “Hey, we’ve split the atom! We’re sending men to the moon!



There’s got to be a better way of measuring ballplayers!” Whether this
internalized outcry was real or not, activity peaked in the early 1980s, not
coincidentally with the creation of the Society of American Baseball
Research (SABR). Since then, development has stabilized around several
well-established measures.

By far the most popular group of techniques falls into a category we call
intuitive. With intuitive techniques, no rigorous statistical model is used.
(We’ll get to those in Chapters 7 and 8.) Instead, the intuitive researcher
relies on a vision or paradigm for the workings of baseball, and, inspired by
the standard MLB statistics we’ve talked about earlier in this chapter,
“mixes and matches” them to more accurately reflect his or her sense of the
game.

The three measures recognized by Major League Baseball discussed
earlier all had their origins as intuitive techniques. To develop the Batting
Average, it was not necessary to perform analysis of reams of data or
develop probabilistic models simulating baseball games. It arose out of a
common-sense understanding of baseball. To put it plainly, it makes sense.
The other official MLB offensive statistics, OBP and SLG, were developed
from a similar intuitive sensibility. Fans of the game used these official
measures as a starting point. All three had a role to play in the intuitive class
of new statistical techniques. These new developments run the gamut from
simple tweaks of the standard existing measures to major recombinations of
the standard batting data. What we’ll see in the balance of this chapter is
how AVG, SLG, and OBP can be combined in ways that create paradigms
of the game that are closer to what actually happens on the field.

On-Base Plus Slugging (OPS)

Given the relative parity between On-Base Percentage and Slugging
Percentage as estimators of team run production, perhaps combining the
two would prove to be a useful predictor. This was not the genesis of a
model called On-Base Plus Slugging (OPS), but perhaps it provides a
reasonably simple explanation for its effectiveness:

OPS = OBP + SLG
A hes Db Dalorms s oo e

Actually, OPS was developed by Pete Palmer as an easily calculated
approximation to his more detailed Linear Weights model (to be covered in



Chapter 7). Table 6-12 presents the leading OPS batters in each decade.

Most of these players appeared on the SLG list or the OBP list. One new
player is Reggie Smith, who struck a good balance of power and getting on-

base but was not a leader in either category separately.

Table 6-12 Batters with Highest Career On-Base Plus Slugging from Each Decade

Dacade Flayor (1)

18805 Roger Connor B8B83 Pate Browning .Bed Cap Anson .B38
18905 Dan Brouthers G4z Ed Delahanty 817 Sam Thompson BE8
1900s Honus Wagner B57 Map Lajoie 847 Elmer Flick B34
19105 Ty Cobb 545 Joe lackson 540 Tris Spaaker 828
1920z Eaba Ruth 1.163 Rogers Hornshby 1.010 Hack Wilson 540
1930s Lou Gahrig 1.080 Jimmie Foxx 1.038 Hank Greenberg 1.017
19405 Tad Williams 1.115 Joe DiMaggio 877 Jahnny Mize 959
19508 Mickey Mantle 977 Stan Musial 876 Ralph Kiner 246
19605 Willie Mays 541 Hank Aaron S28 Frank Robinson 826
19705 Dick Allan 212 Willie Stargell B89 Reggis Smith BE55
1980s Mika Schmidt 808 George Brett BET lack Clark B54
1990s Barry Bands 1.023 Manny Ramirez 1.010 Frank Thomas 1.000

Figure 6-9 plots the minimal RMSE among SL.G, OBP, and OPS for
each year from 1876 through 1999. This is similar to Figure 6-8, except
AVG has been eliminated from consideration, and OPS has taken its place.
Clearly, SLG and OBP taken together as OPS produce a far-superior model
than using either individually. A typical RMSE in twentieth-century
baseball is about .15 Runs per Game. This means that using OPS, the
number of runs scored by a team per game can be predicted within about
.15 Runs per Game for two-thirds of the teams. However, OBP appears to
be at least on a par with OPS in predicting runs scored for nineteenth-
century teams. (At this point, we can eliminate SL.G from consideration
before proceeding to the next challenger.)
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Figure 6-9 RMSE of fit to Team Runs per Game since 1876. (Minimum RMSE from SLG, OBP,
and OPS = OBP + SLG.)

Total Average (TA)

Another model that has received a lot of attention is Total Average (TA),
introduced by sportswriter Thomas Boswell in 1981. TA is a modification
of Slugging Percentage. Where SLG is the ratio of total bases to at-bats, TA
is the ratio of total bases to total outs. The logic of substituting outs for at-
bats is a powerful one. For the most part, the number of outs per game is a
constant 27. Thus, it seems natural that the number of runs generated per
game should be related to the number of runs per out, which in turn could
be related to the number of bases generated per out. This relationship
should be tighter than total bases per at-bat since the number of at-bats is
more variable over games. Boswell calculated outs by subtracting hits from
at-bats and adding Caught Stealing (CS) and Grounded Into Double Plays
(GIDP). Like others before and after him, Boswell expanded his model
beyond Total Bases (TB) achieved by hitting to include other aspects of



offense such as walks (BB), Hit By Pitcher (HBP), and Stolen Bases (SB).
The formula for Total Average is as follows:

_ TB+BB +HBP +SB
" AB—-H +CS + GIDP

It should be noted that the concept of using a bases-to-outs ratio to rate
offensive performance had been introduced earlier in 1979 by Barry Codell
in SABR’s Baseball Research Journal. Codell’s Base-Out Percentage is
identical to TA except that the number of sacrifice hits (SH) and sacrifice
flies (SF) are added to both the numerator (bases) and denominator (outs).
This is consistent with the basic concept, since sacrifice hits and sacrifice
flies are both outs that advance runners. (One could argue that CS and
GIDP should subtract a base as well as adding an out.) However, TA is the
more popular formulation of this concept and the one we will analyze here.
As expected, the two formulations provide very similar results. (Because
team data on Grounded Into Double Plays was not available, GIDP was
assumed to be 0 in the calculation of TA here.)

First, let’s look at the Total Average leaders in each decade, as shown in
Table 6-13. Joe Morgan, a productive hitter with some power and
tremendous base-stealing ability, has moved to the second spot in the 1970s.
Billy Hamilton who stole 912 bases has moved to the top of the 1890s list.
Clearly, TA’s inclusion of SB and CS has given an edge to players whose
base stealing is a significant part of their game.

Table 6-13 Players with Highest Career Total Average from Each Decade



Decade

1880s

18905

1900s

1910s

19205

19305

19405

19508

19603

1970s

1980s

1990s

Player

Roger Cannor
Billy Hamilton
Honus Wagner
Ty Cobh

Babe Ruth
Lou Gehrig
Ted Williams
Mickey Mantle
Willie Mays
Cick Allen
Mike Schmidt

Barry Bonds

]

S5z

1.191

549

1.090

1.420

1.248

1.274

1.120

1.027

275

593

1.239

Fate Browning
Dan Brouthers
Elmer Flick
Tris Speakar
Rogers Hornshy
Jimmie Fowx
Joa DiMaggio
Stan Musial
Frank Robinscn
Joe Morgan
Jack Clark

Frank Thomas

245

1.0&1

815

1.030

1.118

1.171

1.043

1.067

1.008

247

809

1.151

Harry Stovey
Ed Delahanty
Fred Clarke
Joe Jackson
Hack Wilzon
Hank Greanberg
Johnny Mize
Ralph Kiner
Hank Aaran
Willie Stargell
George Brett

Manny Ramirez

Figure 6-10 shows that OBP, OPS, and TA are equally capable from
1876 to the mid-1890s. Then, OPS dominates into the mid-1930s. Total

924

1.035

BE3

1.027

1.011

1.133

1.028

1.041

984

214

BT

1.122

Average has the edge from then up to the present day. In fact, TA has been

the best estimator since 1991.
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Figure 6-10 RMSE of fit to Team Runs per Game since 1876. (Minimum RMSE from OBP, OPS,
and TA.)

Batter’s Run Average (BRA) and Scoring Index (DX)

TA, then, has a slight edge over OPS. But perhaps a better model than OPS
can be created by combining OBP and SLG in a different way. Richard
Cramer and Pete Palmer did just that when they multiplied OBP and SLG to
create Batter’s Run Average (with the infelicitous acronym BRA):

BRA = OBP x SLG

The idea here is that scoring runs is the product of getting on-base (OBP)
and advancing the runners (SLG). Figure 6-11 plots the minimal RMSE
among the OPS, TA, and BRA models. BRA appears to be less effective
than TA, but more effective than OPS. So, it seems that multiplying OPS
and SLG produces a better model than adding the two values.
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Cramer and Palmer were neither the first nor the last researchers to
create a model based on this concept. Two of the most notable researchers
also adopt this principle in their models. Earnshaw Cook was a metallurgist
with a great interest in baseball statistics. His 1964 book Percentage
Baseball was the first work in baseball statistics to gain the attention of
sportswriters and the national media. The volume overflows with Cook’s
ideas, and his enthusiasm for his subject is evident throughout. However, at
times, this energy obscures the clarity of his exposition. Perhaps Cook’s
most lasting contribution was his development of the Scoring Index (DX).
His original concept of DX can be expressed this way:

IB+BB+HBP+E TB+SB
DX = x
BFP BFP
BFP is the number of times a player came to bat (Batter Faced Pitcher) and
E is the number of times the player was safe on an error. DX was developed
to be linearly related to runs scored per BFP. He altered the formula in 1971
to this:




_ H+BB+HBP TB + SB-CS
~ AB+ BB + HBP AB + BB + HBP
The biggest change in this revised expression is the substitution of Hits (H)

for singles (1B) in the first term. The formula is now very similar to BRA,
with the inclusion of base-stealing data.

Runs Created (RC)

The other sabermetric heavyweight to adopt this concept was Bill James
(who in fact invented the term “sabermetrics” in honor of SABR). The basic
concept of James’s Runs Created (RC) model is as follows:

RC - (H+BB)TB

AB + BB
Since SLG = TB/AB, we see that RC is approximately the same as BRA x
AB. So, RC estimates the total number of runs produced while BRA and

DX estimate the rate of run production per at-bat or plate appearance. In
1985, James got really serious, as evidenced by his technical version of RC:

(H+ BB+ HBP - CS - GIDF)(TE + .26 (BB - IBE + HBP) + 52 (SH + SF + SE))

RC = ——
AB + BB + HBP + SH + SF
The technical RC model (dubbed TECH-1) came with 13 additional
versions (TECH-2 through TECH-14) to handle seasons in which some data
was not available. Most of the modifications to the original formula are
common-sense adjustments (e.g., subtracting runners eliminated by caught
stealing and double plays from the on-base term). Unless indicated
otherwise, references to the Runs Created model will use the TECH-1
version.

In his 1984 Baseball Abstract, James indicates that the .26 and .52
multipliers were chosen empirically to improve the fit of Runs Created to
total runs scored within each league. In performing this optimization with
respect to data, James has moved beyond the realm of intuitive techniques
and crossed into data analysis. (Techniques such as these, which involve
linear regression, are covered in the next chapter, but since RC is primarily
a result of intuition, we will cover it here.)

Since RC predicts total run production, we divide it by the number of
games (to obtain RC/G) before fitting it to Runs per Game and comparing it



with the other models. Figure 6-12 plots the minimal RMSE values among
the TA, BRA, and RC/G models for team run production. RC/G is superior
to BRA, as it should be, since it is basically BRA with more data included
in the calculation as well as the optimized weights .26 and .52.°> And RC/G
also seems to have an edge over TA.
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Figure 6-12 RMSE of fit to team runs per game since 1876. (Minimum RMSE from TA, BRA and
RC/G.)

How does RC/G rate players decade-by-decade? Table 6-14 lists the
results of our calculation for individual players, in which we divided RC by
an estimate of the number of “games” a player’s offensive record
represents. This can be done by estimating the total number of outs and
dividing by 27. So, Runs Created per Game for an individual player may be
calculated as follows:

Table 6-14 Players with Highest Career Runs Created per Game from Each Decade®



Decade

18805
18905
1900s
19103
19205
1930s
18403
19505
1960z
19705
1980s

19905

RC/G=

Playar

Fata Browning
Billy Hamilton
Haonus Wagner
Ty Cobh

Babe Ruth
Lou Gehrig
Ted Williams
Stan Musial
Willie Mays
Dick Allen
Mike Schmidt

Barry Bonds

RCAG

8.61

10.40

8.02

9.77

13.87

11.84

13.78

9.89

8.62

7.99

P

10.41

RC

Roger Connar
Dan Brouthers
Elmer Flick

Jog Jackson
Rogers Hornsby
Jimmie Foxx
Joe DiMaggio
Mickey Mantle
Frank Robinson
Willie Stargell
George Bratt

Frank Thomas

8.41
9.96
7.55
9.26
10.56
10.85
9.68
9.79
8.39

.42

10.33

(AB-H +SH + SF + CS + GIDP) [ 27

Cap Anson
Ed Delahanty
Map Lajoie
Tris Speaker
Hack Wilson
Hank Greenberg
Johnny Mize
Ralph Kiner
Hank Aaron
Joe Margan
Jack Clark

Manny Ramirez

This value represents the total number of runs produced by a team
composed solely of the player analyzed.” For example, Stan Musial’s RC/G

is 9.89. According to the RC model, we expect that a team composed

7.62

9.50

/.51

9.05

8.75

10.31

9.32

8.93

8.30

7.00

/.06

10.11

entirely of Stan Musial clones in each of the nine batting slots would score

an average of 9.89 Runs per Game. Obviously, Stan the Man was a very
great hitter, since teams in this period scored less than half this value, or
about 4.5 Runs per Game. This list comes very close to a typical fan’s

perception of great hitters. We might not have expected the presence of Jack

Clark or Manny Ramirez, but in general the list does not have lots of

surprises.

More Analytic Models

This has not been an easy chapter, and we suspect many of you have spent

considerable effort following our arguments. You might even feel like

you’re out of breath, having stretched a double into a triple. So we will take
a moment now to take stock of where we are and how we got here.

Up to this point, the models we have examined were constructed not
from any statistical analysis but based on a belief, view, or principle that



describes, in a common-sense way, how baseball works. The Batting
Average, our starting point, is based on the premise that scoring runs is
related to how often a player gets hits. The On-Base Percentage expanded
this view to include additional ways of getting on base, primarily through
bases on balls. The Slugging Percentage took a somewhat different view
and expanded Batting Average by weighting hits in accordance with bases
obtained. Another model, Total Average, weighted hits and included walks
and hit by pitch data, with stolen bases thrown in for good measure; TA also
is a ratio of good events (bases) to bad events (outs), as opposed to good
events as a percentage or expectation with respect to opportunity (at bats or
plate appearances). Two models (On-Base Plus Slugging and Batter’s Run
Average) combine On-Base Percentage and Slugging Percentage into a
single measure through addition and multiplication, respectively. Runs
Created expanded on the Batter’s Run Average, employing a more detailed
accounting of events in which batters get on base and advance runners.

Note that all of these models except Runs Created work completely with
integer values (simple counts and weights). They combine these counts to
establish impacts of (a) getting on-base and (b) advancing runners relative
to the degree of opportunity. For the most part, RC does this as well. But
here we see the use of non-integer weightings (.26 and .52) for events that
advance runners, but not as effectively as hits advance runners.

Figure 6-13 compares the models with respect to their annual RMSEs
averaged over the 46 years from 1954 through 1999. This period was
chosen because of the completeness of its data and greater relevance to
baseball as it is played today. The standard MLLB models (Batting Average,
Slugging Percentage, and On-Base Percentage) stand out from the rest as
having distinctly worse fits than the newer alternative models. The Runs
Created per Game model had the lowest average RMSE (.136). However,
the other models (BRA, DX, TA, and OPS) have RMSEs not much greater
than RC/G’s. Are these differences in RMSE significant?
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Figure 6-13 Average yearly RMSEs for various models (1954-1999).

Table 6-15 compares each pair of models with respect to their RMSEs
in each year. For each pair of models, the percentage of years in which the
model on the row had a lower RMSE than the model in the column were
counted. For example, out of the 46 years of data used, Runs Created per
Game had a lower RMSE than Total Average in 70 percent of the data (32
of the 46 years). The question remains whether this difference is significant.
Perhaps the two models are equally capable, but chance gave RC/G the
edge. If the two models have equal capability to estimate run production,
then in each year there is a 50/50 chance that one or the other will have the
lower RMSE. Under this equal-capability assumption, there is only a 1.1-
percent chance that one of these models will dominate the other with a 32 to
14 edge or greater. This is a very small chance, and so we conclude that in
the years 1954-1999, RC/G is a superior model to Total Average. In fact,
since it dominates all the other models to an even greater extent, it seems
that RC/G provides the best fit to team data of the models considered so far.

Table 6-15 Percentage of Years That Row Model Had Lower RMSE Than Column Model (1954—
1999)



Model REAG I 8RA ars 0x SLG 6P AVG

RC/G . F0% 80% 83% B7% 98% 100% 100%
TA . . 57% 61% T2% G93% 96% 100%
ERA . * . 4% 72% G8% L100% 1008
0Ps . . . . 7% GE% 9E% 100%
(1} 4 ’ ’ . . . 93% Q6% 100%
SLG . . . . . . 61% 96%
oBP ' . . . . . * 29%

AVE . . : . . . : .
Except for TA vs BRA, TA vs. OPS, and SLG vs. OBP, all differences in

model performance are statistically significant in that the probability of

getting the result is less than 5 percent.® TA, BRA, and OPS are comparable
and do very well, considering their simplicity relative to RC/G. Cook’s DX
does not perform as well as this group, but it is a definite improvement over
the MLB standard statistics, which bring up the rear. The question remains,
how much further can we improve on these models by applying statistical
analysis techniques? The improvement in the Runs Created model gained
through the use of optimization gives us some cause for optimism. So far
(except for the optimization used in the Runs Created model), we have used
statistics merely to evaluate models; now we wish to employ statistics to
construct them.

But before we continue, let’s see how our models rated Rocky Colavito
and Harvey Kuenn in 1959. Table 6-16 provides ratings for the major
models considered in this chapter. Of course Kuenn, as the 1959 American
League batting champion, had a higher AVG than Colavito. Colavito’s HR
power provided him with a slight edge over Kuenn in SLG. But this is the
only model in which Colavito dominated. All of the alternatives (OPS, TA,
and RC/G) rated Kuenn distinctly higher. One has to conclude that when all
aspects of offense are considered, Kuenn gave the greater offensive
performance in 1959. Unfortunately, looking forward, 1959 turned out to be
a career year for Kuenn. The performances of both Kuenn and Colavito
dropped for their new teams in 1960. Still, all of the models rated Kuenn’s
1960 performance better than Colavito’s. In the subsequent five years,
though, Colavito had at least four seasons which topped his 1959 season,
while Kuenn, who was traded to a variety of teams, never regained his 1959



form. Ironically, Cleveland made a good trade on the basis of 1959
performance, but Detroit got the better performer in the early sixties.

Table 6-16 Offensive Model Ratings for Rocky Colavito and Harvey Kuenn in 1959

Flaper 84 agr g ars T REAG
Rocky Colavito 257 337 b1z B449 857 £.512
Harvey Kuenn 353 402 501 903 923 &8.668

1 The sum of at-bats, walks, and hits by pitcher was used here for plate appearances.

2 The primary data source for this chapter was Sean Lahman’s database (now called The Baseball
Archive), available on the web at www.baseball1l.com. The database—actually a set of databases—
is of inestimable value to statistical researchers. The two used here are the team database and the
player batting database. Several data items (such as Grounded Into Double Play) are unavailable.
Others are incomplete: Sacrifice Flies (complete from 1954 on), Caught Stealing (complete from
1951 on), Sacrifice Hits (complete from 1894 on), Hit by Pitcher (complete from 1887 on), and
Stolen Bases (complete from 1886 on). Where a data item was unavailable, its value was assumed
to be zero. The analyses presented here were performed initially with Version 2.2 of the database,
which covered all seasons through 1998. The analyses were extended to include the 1999 season
when Version 3.0 of the database was made available.

3 This table and all other tables of player evaluations in this chapter use player records through the
2002 season.

4 This value was calculated as the probability of 16 successes or fewer in 124 trials for a binomial
distribution with a probability of success in each trial equal to 1/3.

5 This raises the issue of whether RC/G provides enough improvement in its prediction to justify the
increased complexity of its calculation. This statistical issue is important but beyond the scope of
this book.

6 Readers of the first edition of Curve Ball (2001) may be puzzled by the disappearance of Rickey
Henderson and Tim Raines from the top 1980s players in Tables 6-9, 6-13, and 6-14. Both
Henderson and Raines started their careers in 1979 and were still active in 2002. This places the
midpoint of their careers in the 1990s decade, not the 1980s decade. If placed in the 1980s,
Henderson and Raines would have the top two OBPs (.402 and .385, respectively), and the best
and third-best TAs (1.007 and .928, respectively), based on their career data through 2002.
Henderson would have the second-highest RC/G (7.25) if placed in the 1980s.

7 Actually, the values presented in Table 6-14 somewhat overestimate the actual RC/G since GIDP
data were not available.

8 In statistics, this is called a .05 level of significance. A level of significance is a quantitative
evaluation of the strength of the data when testing a hypothesis. Here, the hypothesis is that the
two models being compared have the same capability in predicting team run production. The level
of significance specifies that we will accept this hypothesis as being true unless the data shows that
this hypothesis is extremely unlikely (has probability less than the level of significance). The lower
the level of significance, the more proof we are demanding before we reject the hypothesis. All
statistical tests are based on this premise, which is similar to our legal tradition’s principle that a
person (hypothesis) is innocent (true) until proven guilty (false).
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Chapter 7
Average Runs per Play

Jim Albert and Jay Bennett

Many models developed to evaluate hitting productivity sum the bases
attained, then divide that sum by an appropriate measure of opportunity (for
example, at-bats). The simplest example is the Slugging Percentage (SLG),
which is the total bases attained by hits divided by at-bats:

1B +(2x2B) + (3 x3B)+ (4 x HR)
AB

One of the best models from Chapter 6, Total Average (TA), was a more
complicated example of this form. In this chapter, we will look at how
additive-type models like SLG and TA (which sum weighted play
frequencies) can be improved by using actual baseball data in their
modification. The three data analysis techniques arrive at very similar
conclusions (for the most part). In the end, we will have found estimates of
the average number of runs that each play event can be expected to produce.

SLG =

Finding Weights for Plays

Looked at in a more general way, what we have been doing in several
different models is to give each event in a game a certain weight. In the
example of Slugging Percentage, we weight hits, with each type of hit
having a weight equal to the number of bases attained: 1 for singles, 2 for
doubles, 3 for triples, and 4 for home runs. Each weight is a measure of the
impact of the hitting event within the model. So, the SLG model is based on
the premise that a home run has 4 times the impact of a single, but only 2
times the impact of a double. Other models have done similar things. Total
Average uses the same weights for hits as SL.G, and adds walks, hit by
pitcher, and stolen bases—each with a weight of 1.



Least Squares Linear Regression (LSLR)

If we generalize the idea of assigning weights to particular play events, and

if we don’t restrict ourselves to integer weights' (1, 2, 3, etc.), we can use a
powerful statistical technique to optimize the assignment of weights to each
play. In Chapter 6, we used this statistical technique to find the line which
minimized the Root Mean Square Error for a model. Without delving into
any detail, we were in fact using a statistical technique called least squares
linear regression. The term itself captures the technique’s salient features.
The word “linear” refers to the line which is constructed. The phrase “least
squares” reflects the technique’s capability to minimize the sum of the
squared errors (which forms the basis of RMSE). So far we have used this
technique just to gauge how well each model estimates team run production.
But the technique is more powerful than we have let on. As many researchers
have discovered, least squares linear regression can be used to construct as
well as measure models. And not just any models. It constructs the best
possible linear model with respect to RMSE.

You may recall that the definition of Total Average is as follows:

_TB + BB + HBP + SB
" AB-H +CS + GIDP

Since TB is just total bases obtained from hits, this is really equivalent to the
following:

[IB +(2x2B)+ (3 x3B)+(4x HR)| + BB + HBP + SB
AB-H + CS + GIDP

In reality, all of the play events have weights, so let’s put them in explicitly:

TA

TA =

[(1=1B)+(2=2B)+ (3 =3B+ (4« HR)] + [(1 =BB)+ (1= HBP)+ (1 = 8B)]
TA =

AB -H + CS + GIDP

In the previous chapter we found that TA was one of the better models in
estimating team run production. It performed well in the sense that over the
course of baseball history, the difference between its estimates and the actual
run production was better than that of estimates based on standard offensive
measures like Batting Average. Still, the question remains whether it is
possible to improve on TA. One way to do this is to preserve the basic
pattern of summing up weighted numbers of the different events used by TA,
but simply change the weights. For example, maybe TA would provide better



estimates if the weight for HR was increased from 4 to 5 or reduced from 4
to 3.5 or reduced from 4 to 3.8, or ... As you can see, the possible choices are
infinite. And that’s just one weight. There are six others that can also be
adjusted. Actually, the great strength of least squares linear regression lies in
its ability to guarantee finding the weights that produce the best estimate for
a given pattern such as TA.

So far, we haven’t deviated at all from the Total Average definition. But
here we’ll make a minor change. The TA denominator (AB — H + CS +
GIDP) is the total number of outs, ignoring sacrifice hits and sacrifice flies.
Since each team gets approximately the same number of outs per game over

the course of a season, we can replace this with G, the number of games.?
Having made this change, we will now call our model LSLR for Least
Squares Linear Regression model:

(IxIB +(2x2R)+(3x3B) +(d=xHRE)+{1xBB)+ (1 x HBP) + (1 = SB)

LSLR =
G

Our goal is to find weights for singles, doubles, triples, etc., that improve on

the TA estimates. So, we have to generalize the weights to arbitrary values to

which we have given the names w,, ., For example, currently, wyy has the
value 4, but we will find a new value for wyr which minimizes the error in

estimates. In addition, since there is little (if any) difference between walks
and hit by pitcher we will use the same weight wgg for both events. So, for

now, until we find those values, we now have:
(Wig % 1B) + (Wog x 2B) + (W x 3B) + (Wyp x HR) + (Wgp x (BB + HBP)] + (W x SB)

LSLR =
G

Finally, we will divide each event by the number of games:

( 1B ) ( 2B 3B HE BE + HBP
I;;ngR = .“-FF B B — + I|-1-"2-H o — =+ 'r’l-“j: 4 + 11"]”]"]’: b4 + H"".HH w — +
o (7 o & i

SB
Wegx —
(7

This form works best for least squares linear regression. Notice that we now
have the model expressed simply as a sum of weighted quantities; here the
quantities are frequencies of different events per game.

We will not go into any details about how the best weights are calculated.
Descriptions of regression algorithms can be found in a standard statistics




textbook. The results of the calculation are shown in Table 7-1 with respect
to team data from the 1954—-1999 seasons. The weights found for LSLR are
very different in scale from the TA weights. This is because the regression
techniques scale the weights using the same scale as the values being
estimated. So, the LSLR weights are in terms of runs. For example, the
regression estimates that each triple is worth, on average, 1.18 runs. When
comparing the TA and LSLR weights, the important thing to focus on is the
relative value of the weights within each model.

Table 7-1 Weights in Total Average and in Linear Least Square Regression Model Fit to 1954-1999
Team Runs per Game

Weight Wog Wag Wig Wag Wig Wie RMSE
TA 1 1 1 2 3 i 159
LSLR 16 .36 .52 E7 1.18 L.50 142

In the Total Average model, stolen bases, walks, hit by pitcher, and
singles all have the same weights. The LSLR model finds a big difference in
the values of these events. Stolen bases have a weight less than half that of
walks and hit by pitcher, and less than a third that of singles. We may
quibble about the exact values of each of these events, but it seems
reasonable that singles should have a greater value than walks and hit by
pitcher, which in turn should have a greater value than stolen bases. Singles,
walks, and hit by pitcher all put the batter on first base, but a single usually
advances all runners, while walks and hit by pitcher only advance runners
who are forced. Moreover, singles can advance runners two bases, while
walks and hit by pitcher are limited to a one-base advance at most.
Comparisons between walks or hit by pitcher and stolen bases are less clear-
cut. The argument rests on the relative merits of getting on base as opposed
to advancing while on base. In most situations, getting on base produces
greater run potential than a single runner advancing one base. Besides, walks
and HBPs often advance runners in addition to creating another base runner
with the opportunity to score.

With respect to hits, LSLR places less weight on extra-base hits than TA
does. The LSLR weight for home runs is less than 3 times that of singles
(compared to 4 times in TA). The LSLR weight for triples is approximately 2
times that of singles (compared to 3 times in TA), and the LSLR weight for
doubles is roughly 1.3 times that of singles (compared to 2 times in TA). It
appears that LSLR finds additional value in getting on base beyond the



number of bases attained. This is similar to the position taken by OPS, which
adds On-Base Percentage to Slugging Percentage, thereby creating an overall
effect similar to that found in the LSLR weights for hits.

On the whole, the LSLR weights make sense. But how well do they
estimate team run production? As expected, the RMSE for LSLR is less than
that of TA. After all, regression techniques are guaranteed to find the weights
that minimize RMSE. Remember that TA and LSLR are virtually identical in
form; their only difference is in the values given to the weights for the
various events. What makes linear regression so powerful is that it requires
no knowledge at all about baseball. In order to create Total Average, Thomas
Boswell utilized his insight into baseball as an experienced sportswriter to
distill what he thought were the essential elements of run productivity. And
his model performed quite well. But linear regression was able to construct
an even better model without the researcher having any understanding at all
about baseball. We could give the team baseball data to a Greek statistician
who has never seen a baseball game, who doesn’t know what a strike, single,
or out is, and that statistician would be able to develop the weights for this

model as capably as the most knowledgeable sabermetrician can.’

The property of the LSLR model producing the lowest possible RMSE is
guaranteed only for the set of data with which it was derived. This means
that the LSLR model in Table 7-1 is the best linear model only for the 1954
through 1999 seasons. Employing the same graphical technique from
Chapter 6, Figure 7-1 plots the lower RMSE (from TA or LSLR) when
estimating team runs in each separate season. In the period 1954-1999, we
find that LSLR had a lower RMSE than TA in 35 of the 46 seasons. So,
although LSLR was better overall in that period (as guaranteed by the least
squares fit), there were individual years (as recently as 1996) where TA had
the better fit.
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Figure 7-1 RMSE of fit to team runs per game since 1876 (Minimum RMSE of TA and LSLR).

More important is finding out how well LSLR estimates run productivity
in the years before 1954. This is important because it provides a way to
validate the LSLR weights independently—with a set of data different from
the data used to develop the model. As it turns out, LSLR has a lower RMSE
than TA in 57 out of the 78 seasons from 1876—1953. Its fit compared to that
of TA in this earlier span of seasons is almost as good as it was in 1954—-1999
(better in 73 percent vs. 76 percent of the years). Given the more reasonable
nature of its weights and the improved fit over all of baseball history, we
must conclude that LSLR is superior to TA as a model for team run
production.

We can make an even stronger statement about LSLR. It is not only
better than Total Average, but it is better than any other possible additive
model that uses the same data in a linear fashion (by summing the weighted
frequencies of plays). In fact, LSLR is superior to the whole family of
additive models, including:

e Batting Average and On-Base Percentage, where each on-base event has
the same weight;



e Slugging Percentage, where each hit is weighted by the number of
bases; and

e OPS, where each walk and hit by pitch has a weight near 1, and each hit
has a weight near 1 plus the number of bases attained (e.g., a double has
a weight near 1 + 2 = 3).

We can’t yet say, however, that LSLR as a model provides a better fit
than all weighted models. The Batter’s Run Average (BRA), Scoring Index
(DX), and Runs Created (RC) models, which are based on multiplying OBP
and SLG, do not belong to the additive class. Let’s look at the basic Runs
Created model:

(H+ BB)TB
RC =
AB + BB

If we expand H and TB into the individual play counts, we have:

(IB+2B+3B+HR+BBI[IB+(2=2B)+ (3= 3B)+ (4 = HRJ]

RC
AB + BB

This multiplicative form is different from that of LSLR, so it is possible that

regression applied to this version of the RC model could have a better RMSE

than .142 runs per game. As it turns out, for the period from 1954-1999,

Runs Created per Game (RC/G),* the best model we have examined in this
class, has an RMSE of .146 runs per game. Figure 7-2 plots the RMSE for
the model with the lower RMSE when estimating team runs in each separate
season. (LSLR has the lower RMSE in 27 out of the most recent 46 seasons.)
Using only the results from 1876-1953 as a test of model superiority, LSLR
has a lower RMSE in 43 of the first 78 seasons in baseball history. This is
not strong enough proof that LSLR is superior to RC/G, but the result does
indicate that LSLR is at least as good as RC/G in estimating team run
productivity.
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Figure 7-2 RMSE of fit to team runs per game since 1876 (Minimum RMSE of LSLR and RC/G).
These results are both good and bad news. Good in the sense that we
have found the best model, but bad in the sense that we now know that we
cannot do any better than an RMSE of about 0.14 runs per game using an
additive type model. Remember that two-thirds of the observed team runs
per game fall within one RMSE of the values predicted by the LSLR model.
So, out of all the team predictions in the last 46 years of MLB history, LSLR
is correct within .14 runs per game for two-thirds of all estimates. Looking
back at team runs per game in the 1998 season, we see that changing a
team’s run productivity by .14 runs per game could move the team up or
down as many as 6 places in Table 6-4. This accuracy cannot be topped by
any other linear model with this data. While it is possible that a model of
some other form could produce better estimates, the ones we have examined
(BRA, DX, and RC) do not provide any improvement. If we add LSLR to
the dotplot in Figure 6-13, we find (not surprisingly) that LSLR has the
lowest average RMSE of all models considered so far. (See Figure 7-3.)
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Figure 7-3 Average yearly RMSEs for various models (1954—1999).

Adding Caught Stealing to the LSLR Model

There is one way that we can improve the LSLR model’s fit: by using
additional information. One piece of information that we have not used is the
number of times runners have been caught stealing (CS). Since we have this
data for 1954-1999, it is easy to modify the LSLR model to use this
information. All we have to do is add the appropriate CS per game rate
multiplied by a new weight, wcg:

( iB ) ( 2B 3B HR BB + HBP
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Using regression techniques on data from 1954-1999, we obtain the results
in Table 7-2 for LSLR with CS. (For comparison, we have also included the
earlier results for LSLR without CS.) Since being caught stealing has a
detrimental effect on scoring runs, unlike the other weights, CS has a
negative weight. And in absolute terms, it has the smallest of all weights.
While we find that including CS has indeed decreased RMSE, it has done so
by a disappointingly small amount, from .1423 to .1421. Why is this so?

Table 7-2 Least Squares Linear Regression Model (With and Without Caught Stealing) Fit to 1954—
1999 Team Runs per Game

Weight (Runs) Wes Wg Wi Wig Wag Wsg Wig RMSE

With CS -11 19 .3h B2 B8 1.17 1.49 1421

Without CS . AE 36 52 &7 118 1.50 1423



One way to investigate this almost negligible impact is to delve deeper
into the relationships among the play event quantities—that is, how the
frequency of one event type is related to the frequency of another. Figure 7-4
plots caught stealing per game (CS/G) vs. stolen bases per game (SB/G) for
each team in the years 1954-1999. An increasing trend is evident in the
graph. The five teams with the highest stolen-base rate per game are noted in
the graph. Three of these teams (the 1976 Oakland A’s, the 1977 Pittsburgh
Pirates, and the 1992 Milwaukee Brewers) are also among the teams with the
highest rate of being caught stealing. This should not be surprising to most
baseball fans. Teams that are fast try to take advantage of their skills and
attempt to steal more bases; so the frequency of stolen bases is high, but the
number of times they get caught stealing is also high. Slower teams do not
steal as often, so their number of successes and number of failures are both
low.
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Figure 7-4 Team CS/G vs. SB/G (caught stealing per game vs. stolen bases per game) from 1954—
1999.



Such strong correlations make the linear regression weights difficult to
interpret. Sometimes the factors are so closely correlated with each other that
it is impossible to separate the effects of one from the other. Imagine if the
correlation between two factors was even stronger, so strong that the points
formed a shape closer to a line. In this case, it would be impossible to
determine which factor caused the effect being estimated. Laboratories that
conduct research requiring statistical analysis strive to design their
experiments to eliminate dependencies between the factors being analyzed.
And they often have the luxury of controlling their environment in order to
preserve the independence of the factors.” However, when data is recorded in
an uncontrolled environment (such as a season of baseball games), it is rare
that the quantities collected are completely independent of one another.

The addition of caught stealing in the LSLR model reduces RMSE very
little because most of its information at a team level is already captured by
the number of stolen bases. When CS is not included in the LSLR model, we
see that the SB weight drops from .19 to .16. Basically, since SB already
carries most of the information about caught stealing, it also assumes the
negative effects of caught stealing once CS is removed from the model. So
we see that when two quantities used in the model are strongly related, the
inclusion of one affects the weight of the other. When both are present—as
SB and CS were in our original regression model—the two actually compete
with each other for dominance of the total weight that they actually share. In
conclusion, since the addition of CS provided little improvement in fit, and
since it is closely related to SB, which is already in the LSLR model, there is
no reason to add it to the LSLR model. But we now understand that the .16
weight for stolen bases encompasses the effects from unsuccessful steal

attempts as well as from successful ones.®

Adding Sacrifice Flies to the LSLR Model

Maybe we’ll have more success with a different piece of information. Let’s
try sacrifice flies (SF). Just as we did for caught stealing, we just add the
appropriate SF per game rate multiplied by a new weight wgp:
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Table 7-3 shows the weights and RMSE with sacrifice flies included in the
regression model. This time we do see some larger changes. RMSE has
dropped from .142 to .138. The SF weight itself is large, greater than all
plays except triples and home runs. In fact, the weights for all play events
except home runs have decreased with the addition of sacrifice flies to the
model.

Table 7-3 Least Squares Linear Regression Model (With and Without Sacrifice Flies) Fit to 1954—
1999 Team Runs per Game

Weight (Runs) Weg Wig Wag War Wag Wig Wag RMSE
Without SF B B2 &7 . 1.18 1.50 Relay 1423
With SF 14 49 Bl 73 1.14 1.50 .33 1381

The number of sacrifice flies per game is correlated with other play
events. The strongest correlation is between sacrifice flies and doubles.
Figure 7-5 plots sacrifice flies per game vs. doubles per game for teams from
1954-1999. There does appear to be a slight upward trend. Still, none of the
leading teams in doubles is also a leader in sacrifice flies, and similarly none
of the leading teams in sacrifice flies is also a leader in doubles. The cloud of
points seems more shapeless than the pattern seen in CS/G vs. SB/G. So,
SF/G is not correlated with any other play event rate as strongly as CS/G
was with SB/G.
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Figure 7-5 Team SF/G vs. 2B/G (sacrifice flies per game vs. doubles per game) from 1954—-1999.

While RMSE has dropped much more than it did with CS, the SF weight
seems inordinately high. It is difficult to believe that a play in which the
batter is out could be more valuable than a walk, much less a double. This
leads us to believe that there is some added information carried by SF that is
not contained in the other play events. In regression, the quantities used in
the formula may possess more meaning than the analyst originally surmises,
and this is why some statisticians refer to these quantities as “carriers.”
These quantities may carry more information than their literal name implies.
For example, perhaps the number of SFs embodies some unknown intangible
quality of the team beyond the tendency to hit sacrifice flies.

The definition of sacrifice fly could give us some perspective. Recall that
a sacrifice fly always drives in a run. This is part of its definition. And it is
not surprising that a play which always results in a run would be highly
correlated with run productivity. But is there some hidden meaning or
interpretation of SF data? One question, for example, is whether the SF
weight captures the value of the situation in which the sacrifice fly tends to
occur (a runner on third base with fewer than two outs). Is it possible that



this situation, even more than the play itself, ties SF closely to run
production?

So we have arrived at a quandary. It is possible to reduce the error in our
estimate, but this improvement is obtained by using a weight for sacrifice
flies that is suspect. Perhaps further enlightenment will come from taking a
more detailed view of individual plays and their influence in scoring runs.

The Lindsey-Palmer Models

Sabermetrics has many notable contributors; Bill James and Pete Palmer are
perhaps the best known. And then there is George Lindsey, a Canadian
defense consultant who has a great love for baseball. Like many of us who
pursued research in this area much later, he was dissatisfied with the state of
baseball statistics in the late 1950s. He saw no reason why the quantitative
techniques he applied in his day-to-day job could not be used to gain a better
understanding of the game. His research papers on baseball, published in the
early 1960s, were among the first to appear in scientific journals.

George Lindsey’s Analysis

Lindsey’s research focused on run production, its effect on winning the
game, and the use of this knowledge to determine the effectiveness of
various strategies (bunting and stealing, for example). In an age when
baseball data was not nearly as available as it is today (remember the first
modern baseball encyclopedia was not published until 1969), Lindsey
employed the services of his father to gather play-by-play data for 27,027
situations in 373 games broadcast during the 1959 and 1960 seasons.

His analysis of this play-by-play data produced probability distributions
of runs scored in all base-out situations. (One man on, no out; one man on,
two out; and so forth through to bases loaded, two out.) Figure 7-6 shows
some of his results for the most extreme situations. We can see that the least
variable situation is represented by the pie chart in the lower right of the
figure—two outs and no runners on base—where the probability of scoring
any runs is less than 7 percent. At the other extreme (no outs and bases
loaded), the team at bat has an 82 percent chance of scoring runs. While this
probability is high, it may not be as high as we expect; scoring runs even in
this most advantageous of all situations is not a sure thing. Still, there is
twice as great a chance that a big inning (three or more runs) will result than



that the team will not score at all. We also compare two other extreme and
opposite situations: bases empty with no outs vs. bases loaded with two outs.
In this pairing, we find that each situation has close to the same probability
that no runs will score (75 percent vs. 67 percent). But bases loaded with two
outs is the more volatile situation, primarily because the chance of scoring
three or more runs is almost three times greater than in the bases empty with

Nno outs situation.
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Figure 7-6 Probability of scoring runs in selected extreme situations (Lindsey, 1963).

These results are interesting by themselves, but Lindsey was only getting
started. Table 7-4 shows the 4 probability distributions from Figure 7-6 as
well as all of the other 20 base-out situations. Taken together, the two
columns “Bases Occupied” and “Outs” identify all 24 possible base-out
situations within an inning. The “ % of Situations” column gives some
feeling for how often each situation occurs. The most common situation is
none on and no outs; this is expected, since every inning starts this way. In
general, the situations become increasingly rare as the number of base
runners, and how far they have advanced, increases.

Table 7-4 Distribution of Runs Scored in Remainder of Inning (Lindsey, 1963)



PROBABILITY OF

SITUATION SCORING RUNS EXPECTATION
Bases & of
Oecupled  Duts  Situations 0 Runs 1 Run 2 Runs =2 Runs Runs
None Q 24.,3% TFa7 136 068 D49 461
1 17.3% B85 {085 .039 021 243
2 13.7% 533 042 018 ooy Aoz
1 8] 6.4% B4 66 27 103 .B13
1 7.8% T34 24 a2 050 498
2 7.B% BES 045 048 D21 219
2 Q 1.1% 3E1 344 129 146 1.194
1 2.4% BE10 224 104 DEZ 671
2 2.9% TE88 158 038 Ola 297
3 0 0.2% J20 540 10 130 1,390
1 0.7% 307 529 104 LED 580
2 1.2% 738 208 030 024 356
1,2 0 1.4% 395 220 131 254 1.471
1 2.6% 571 A63 119 147 539
2 3.3% J21 100 .0al D48 403
1,3 Q 0.4% 130 410 180 280 1.940
1 1.1% 387 A00 1056 A28 1,115
2 1.6% J17 Ae? 045 071 532
23 0 0.3% 180 250 260 310 1.960
1 0.7% 270 240 .280 210 1.560
2 0.8% BEE 055 70 DET BET
Full Q 0.3% 180 260 210 380 2.220
1 0.8% 303 242 72 2R3 1.642
2 1.0% B71 092 102 135 BZ3

The middle columns present the probabilities of scoring different
numbers of runs in each situation. The column on the far right gives the
expected number of runs scored in each situation. These values were



calculated by Lindsey from the complete set of run-scoring probabilities,

which are presented here for only the most common run totals.” As expected,
bases loaded with no outs has the greatest expected value (2.22 runs) while
no base runners with two outs has the lowest expected value (.102 runs).
Further scrutiny of the table shows that a greater number of base runners
does not always compensate for an increase in outs. Only 1.64 runs are
expected to be scored with the bases loaded and one out, while no outs with
runners on first and third or second and third are expected to produce 1.94
and 1.96 runs, respectively. The possibility of a double play ending the
inning with no runs scored is responsible for much of this effect.

Having set up the data as shown in Table 7-4, Lindsey realized that he
could use it to estimate the value of each hit in terms of runs. The easiest hit
to analyze is the home run, as shown in Table 7-5. At first glance, this table
is somewhat daunting, but it is more easily understood once broken down
into its three major components: (1) the Initial State, (2) the Final State, and
(3) the Change in State.

Table 7-5 The Run Values of Home Runs



INITIAL STATE

Bases

Oecupied

None

1,2

13

23

Full

Duts

o]

% af

Situations

24.3%

17.3%
13.7%

£.4%
7.6%

7.8%

1.1%
2.4%

2.9%

0.2%
0.7%

1.2%

1.4%

2.6%

3.3%

0.4%
1.1%
1.6%

0.3%
0.7%

0.8%

0.3%
0.8%

1.0%

Expected
Runs
481
243
A0z

813
ASE
219

1.194
E71

297

1.390
580

355

1.471
239
AD3

1.940
1.115
53z

1.960
1.560

BET

2.220
1.642

B23

FINAL STATE
Bases
Oecupied ity

MNone [u]
Mone 1
Mone 2
Mone Q
Mone 1
Mone 2
Mone 0
Mone 1
MNone 2
Mone 0
MNone 1
Mone 2
MNone u]
Mone 1
Mone 2
Mone Q
Mone 1
Mone P
Mone Q
Mone 1
MNone 2
Mone 0
MNone 1
Mone 2

Expected
Runs
451
243
A0z

el
243
102

Ail
243

02

Ael
243

102

A6l
243

102

Ael
243
102

Ail
243

02

Ael
243

102

fuing

Tatal

fuing

1.48l

1.243
1.102

2.451
2.243

2.102

2461
2.243

2.102

2461
2.243

2.102

346l

3,243

3.102

3.4861
3.243

3.102

3461
3.243

3102

4481
4.243

4,102

CHANGE

fung

1.648
1.74%

1.883

1.267
1.572

1.805%

1.071
1.263

1.747

1.990
2,304

2.699

1.521
2.128

2.5870

1.501
1.683

2415

2.241
2.601

3.279



1. The Initial State. The first four columns are carried over from Table 7-4.
They describe the initial state when the batter comes to the plate
(identified by the bases occupied and the number of outs), the percentage
of time that the state occurs, and the average number of runs scored in the
inning after a plate appearance under these circumstances.

2. The Final State. The next five columns describe the final state, the game
situation after the batter’s plate appearance. Since we are analyzing the
effect of a home run, the outs do not change from the initial state, and the
bases are empty in all cases. The third final state column presents the
expected number of runs from the final base-out state. These values were
found by looking up Expected Runs in Table 7-4 for the base-out situation
that exists in the final state. Since bases are always empty after a home
run, this has to be one of three values: .461, .243, or .102 runs, depending
on the number of outs—0, 1, or 2, respectively.

The fourth column is the number of runners who scored on this play.
For a home run, this is just the number of base runners in the initial state
plus 1.

So, we have two run components: the number of runs that scored on
the play and the expected number that may still score in the future, based
on the number of outs and the runners left on base after the play. The total
value of the final state in terms of runs (displayed in the fifth final state
column) is the sum of these two components.

3. The Change in State. The third part of Table 7-5 is the change between
the two states. Since we are performing this analysis in terms of runs, we
interpret this change to mean the difference in run value between the
initial state and the final state. The run value of the initial state is the
expected number of runs given in the fourth initial state column. The run
value of the final state is the total number of runs given in the fifth final
state column. The change in runs is calculated as follows:

Change = total runs (final state) -
expected runs (initial state)

This change is the run value of the play (HR in this case) in the
particular situation defined by the initial state.



Let’s see how we can apply Tables 7-4 and 7-5 to one of the greatest
moments in baseball history (the #24 all-time moment as picked by The
Sporting News in 1999). In 1986, the California Angels were one out away
from their first trip to the World Series. They led the Boston Red Sox 5-4 in
the top of the ninth inning, and Dave Henderson was Boston’s last chance.
The Bosox had a runner on first and two outs. According to Table 7-4, the
Red Sox had less than a 5-percent chance of tying the game and about a 7-
percent chance of going ahead. Overall, the Red Sox could only be expected
to score an average of .219 runs in this situation.

However, Henderson connected for a two-run homer and gave the Red
Sox the lead. The final base-out state was two outs with no runners on base.
Since the Red Sox still had another out, they had a chance to score more
runs. According to Lindsey’s data, they could only expect to score .102 more
runs on average in the remainder of the inning. Since they already scored
two runs from the home run, the expected run value of this final state is 2 +
.102 = 2.102. Subtracting the expected run value of the initial state from that
of the final state, we obtain:

Change = total runs (final state) — expected runs (initial state)
=2.102 - .219 = 1.883

To put it another way, before Henderson’s HR, the Red Sox had 4 runs
with the expectation of scoring .219 more runs. After the HR, the Red Sox
had 6 runs with the expectation of scoring .102 more runs. So, the value of

the HR in terms of runs is 6.102 — 4.219 = 1.883 runs.® Although
Henderson’s HR produced two RBIs, its run value was actually less than 2.
This is because the initial state with a runner on first base had a run value
(.219 runs) greater than the final state (.102 runs), in which the bases were
empty after the HR. In fact, looking down the Change in Runs column of
Table 7-5, we see that this is true for all HRs. According to Lindsey’s model,
the RBI statistic overstates the true value of any home run except one hit
with the bases empty. In essence, a home run converts all potential runs into
actual runs, leaving the bases depleted of all run potential.

Another interesting observation in scanning down the Change in Runs
column of Table 7-5 is that the value of HRs increases with the number of
outs. For example, Henderson’s two-out HR with a runner on first base had
greater value (1.883 runs) than if he had hit it with one out (1.745 runs) or no
outs (1.648 runs). This makes sense. As outs increase, the opportunities for



putting runners on-base and advancing them to score decreases. Lindsey’s
model provides quantitative support for our intuitive feel for the game.

To proceed with the analysis, we assume that HR frequency is
independent of the situation; that is, a home run is equally likely to occur in
any base-out situation. This is a big assumption, but one that is standard in
most baseball models. Under this assumption, we can construct a distribution
of HR values based on the initial state and Change in Runs column of Table
7-5.

We have done just this in Table 7-6, where the rows representing the
initial states are sorted by run value (“Change in Runs”). Each row also
includes the number of occurrences observed for each kind of situation (“#
of Situations™) followed by its percentage (“ % of Situations”) as compared
to the total number of situations observed. We see that the greatest value of a
home run is 3.279 runs (bases loaded, two outs), less than the 4 RBIs
credited to a grand slam.This maximum value is found in only 283/27,027 =
1 percent of all HRs. The smallest value is 1 run (bases empty with 0, 1, or 2
outs). This value is also the mode of the distribution (the most common
value). It occurs in 14,935 out of the 27,027 situations used to create Table 7-
5; so, 55 percent (a majority) of HRs have a value of 1 run.

Table 7-6 Distribution of Run Values for Home Runs



Fases itz #of %of Cum. % of Change

Oeelpied Situalions Situations Sitwations in Runs
None 0 6561 24.3% 24% 1
None 1 4664 17.3% 42% 1
None 2 3710 13.7% 55% 1

3 o 67 0.2% B6% 1.071
3 1 202 0.7% 56% 1.263
2 0 204 1.1% 57% 1.267
2,3 0 73 0.3% BE% 1.501
1,3 0 119 0.4% 58% 1.521
2 1 £857 2.4% 60% 1.572
1 o 1728 6.4% 67% 1.648
2,3 1 176 0.7% 68% 1.683
1 1 2063 7.6% 75% 1.745
3 2 327 1.2% 76% 1.747
2 2 77a 2.9% 79% 1.805
1 2 2119 1.8% 87% 1.883
1,2 0 367 1.4% 88% 1.990
1,3 1 305 1.1% 0% 2.128
Full 0 g2 0.3% 0% 2.241
1,2 1 700 2.6% 92% 2.304
2,3 2 211 0.8% 93% 2.41%5
1,3 2 4149 1.6% 95% 2.570
Full 1 215 0.8% 96% 2.6801
1,2 2 B96 3.3% 99% 2.699
Full 2 283 1.0% 100% 3,279

Note that a home run with no outs and a runner on third does not have
much greater value than one with the bases empty. This makes sense, since it
is expected that this runner should be able to score anyway, with 3 outs
available to the offense; the HR contributes a minimal amount to scoring this
runner. In fact, the lower HR values are dominated by situations with 0 or 1
out and runners in scoring position. The higher HR values are dominated by
situations with multiple runners and two outs; these are high-risk situations
where there is much to gain but little opportunity to do so.



The “Cum % of Situations” column in Table 7-6 tracks the percent of
situations with HR values less than or equal to that of the current row. A
visual perspective of the HR value distribution can be obtained by plotting
this column as the cumulative probability of HR value. Such a plot (Figure
7-7) shows us how the probability grows as larger and larger HR values are
accumulated, starting from O runs. The line in the plot indicates the
probability that a HR has a value less than or equal to a given number of
runs (indicated on the x-axis). We see that the probability is 0 until 1 run is
reached, since it is impossible for any home run to be worth less than 1 run.
At 1 run, the cumulative distribution jumps up to 55 percent; as mentioned
earlier, there is a 55-percent chance that a home run is worth exactly 1 run.
The plot keeps increasing as HRs with greater and greater value are
included. It does not rise steeply at first. There is still only about a 57-
percent chance for a HR to have value less than 1.5 runs, not much of an
increase over the 55 percent of HRs with value less than or equal to 1 run.
So, there is only a 57 percent — 55 percent = 2-percent chance that a HR is
worth between 1 and 1.5 runs. Between 1.5 and 2 runs, the plot rises quickly;
there is about an 88-percent chance that a HR has a value less than or equal
to 2 runs. This shows us that there is a good chance (88 percent — 57 percent
= 31 percent) that a HR is worth between 1.5 and 2 runs. From here, the
graph rises steadily until it reaches 100 percent at the maximum HR value of
3.279; since this is the maximum, 100 percent of HR values are less than or
equal to it and 12 percent (100 percent — 88 percent) are worth between 2
and 3.3 runs.
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Figure 7-7 Cumulative distribution of run values for home runs.

Using Table 7-6 (or Table 7-5), we can calculate the average value of a
home run. This is done by simply multiplying its value in each situation by
the percentage of times the situation occurs, then summing over all
situations:

Average HR Value = (1243 x 1) + (L173 x 1)+ (L137 x 1) + (.002 x 1.071) + ...
+ (L0088 x 2.601) + (.033 x 2.699) + (.01 x 3.279) = 1.42 runs

What does this value represent? Certainly we have seen that in Lindsey’s
model, some HRs are worth less than 1.42 runs while others are worth more.
But on average, for a large sample of situations, Lindsey found that in 1959—
1960, a good estimate of the value of a home run was 1.42 runs.

The next question, naturally, is what about the average run values for
other plays? Lindsey performed calculations following the same procedure
for singles, doubles, and triples. For now, we will just summarize our own
numbers, based on Lindsey’s calculations, in Table 7-7.2 On average, the
difference between the most and least valuable hits is less than one run.
More intriguing are the run value ratios which indicate that a HR is on



average about three times as productive as a single. For the sake of
comparison, the rightmost column presents the relative values of these hits in
terms of bases. We see that a base interpretation of value appears to
overestimate the run value of extra-base hits. Besides the home run, a triple
is worth less than three times the runs of a single, and a double is worth less
than twice the runs of a single.

Table 7-7 Average Values of Hits with Respect to Runs and Bases

fatio of Run Valve fo

Average Run Valve Run Valve of Single Rase Value
Single 0.454 Runs 1 1 Baze
Double J.E18 Runs 1.80 2 Bases
Triple 1.064 Runs 2.35 3 Bases
Home Run 1.419 Runs 3.13 4 Bases

Lindsey’s analysis provides some insight into why the Slugging
Percentage (SLG) provides a relatively poor estimate of team run
production. As discussed in the previous chapter, SLG is just total bases
divided by at-bats, where total bases uses the 1:2:3:4 ratios for singles,
doubles, triples, and home runs. Perhaps a modified version of SL.G which
uses the average run values for hits to determine average runs per at bat
(instead of SL.G’s average bases per at bat) would be an improvement.

Lindsey calculated run productivity using the following formula, where
each hit is weighted by its average run value from Table 7-7:

(.454 x 1B) + (.818 x 2B) + (1.066 x 3B) + (1.419 x HR)
AB

Average runs per at bat =

When Lindsey’s estimate of average runs per at-bat is used to estimate team
runs per game in the years 1876-1999, its RMSE is lower than SLG’s RMSE
in 108 out of the 124 years. So, simply modifying the 1:2:3:4 weights to
.454:.818:1.066:1.419 provides a significant improvement in estimating team
runs.

Palmer Enters the Picture

Pete Palmer has been a consultant for the official statisticians of the
American League, chairman of SABR’s statistical analysis committee, and
an editor of baseball encyclopedias including the current standard, Total
Baseball. From the mid-1960s into the early 1980s, Palmer conducted his



own research on evaluating offensive performance building upon the
foundation established by Lindsey. Palmer moved this work forward on two
fronts:

1. He expanded the model beyond hits to include walks, hit by pitcher,
steals, caught stealing, and outs. For each of these plays, he calculated the
average number of runs added or (in the case of caught stealing and outs,
subtracted) by the play.

2. He developed a computer simulation to model run production through
baseball history. The simulation allowed him to replace Lindsey’s data in
Table 7-4 (taken from a relatively small set of games from only two
years) with separate tables of run production in all base-out initial states
for different periods of time. Surprisingly, as shown in Figure 7-8, Palmer
found little variability in the average run values of different plays across
the decades of baseball in the twentieth century. (The one exception is
outs, which we will address shortly.)
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Figure 7-8 Average run values for different plays in different periods of baseball history (Palmer
Simulation).



Based on these results, Palmer settled on the following estimate of runs
scored, which he called the Linear Weights formula:

IWTS =(46 x 1B) + (.80 x 2B) + (1.02 x 3B) + (1.40 x HR) +
[.33 x (BB + HBP)] + (.30 x SB) + (—.60 x CS) + [-.25 x (AB — H)]

A comparison of the Linear Weights model with Lindsey’s model shows very
little difference in the average runs for the various hits. Because neither a
walk nor a hit by pitcher has the advancement capability of a hit, they have
less run value than a single.

One major feature of Palmer’s model that is not part of Lindsey’s is
Palmer’s inclusion of outs from plate appearances (as estimated by AB — H)
and outs from being caught stealing. These plays, which have negative run
values, make it possible for LWTS to have a value below zero if not enough
positive plays (hits and walks) are accumulated to offset the expected runs
lost from outs. So, LWTS does not estimate the total number of runs
produced. Instead, it estimates the number of runs produced above the
average expected for the number of play events.

For example, let’s consider the offensive records of two New York
shortstops in 1999. The Mets’ Rey Ordonez was defensively brilliant, but
offensively challenged. Derek Jeter of the Yankees, though maybe not quite
as good defensively, was a thoroughly superior offensive player. Table 7-8
presents their offensive statistics for 1999 as well as their Linear Weights
ratings. According to Palmer’s model, Jeter contributed many more runs
(almost 74 more) than expected by an average player in a season while
Ordonez contributed about 8 less than the average player.

Table 7-8 Run Production by Derek Jeter and Rey Ordonez in 1999 as Estimated by LWTS

Flayer AB H 18 28 B HR 58 5 BB HEF LTS
Derek leter 627 219 1449 37 9 24 19 8 gl 12 73.81
Rey Ordonez 8520 134 107 24 2 1 8 1 49 1 -8.14

As we saw in Figure 7-8, the run value of an out has fluctuated
throughout baseball history. Palmer uses the run value of an out to adjust
Linear Weights ratings for the average productivity of players. So, the run
value of an out is larger in years when run production is high (-.30 from
1921-1940) and smaller in periods of low run production (—.24 from 1901—
1920). This makes sense, since each out decreases the opportunity to score



more runs, and thus is more damaging in eras when you expect to score a lot
than in eras when runs are harder to come by.

Whether or not you believe in the juiced ball, it is indisputable that 1999
was a year with high run production throughout the major leagues. So, the
run value of an out was closer to —.30 runs than to Palmer’s standard value
of —.25. Using —.30 instead of —.25, then, we obtain LWTS ratings of —27.44
and +53.41 runs for Ordonez and Jeter respectively. So, after adjusting for
run production during the year, we find that Jeter was actually closer to the
average 1999 player, while Ordonez was even farther from average than

originally thought.'? In essence, the Linear Weights formula as given above
with a —.25 run value for outs estimates runs above average, where
“average” represents an historical standard, not average with respect to a
particular year such as 1999.

Palmer’s modifications to Lindsey’s ideas do improve estimates of team
runs scored. LWTS, like Runs Created, provides a cumulative (actually, net)
estimate of runs produced. So, as with RC, we must divide it by games
before correlating it with team run production data. We found that the RMSE
for LWTS/G is less than that of Lindsey’s model in 45 of the last 46 years of
baseball history. Since the weights for hits are only slightly different, the
improvement in fit is due mainly to the inclusion of walks, hit by pitcher,
and stolen bases in the model.

Comparing the LSLR and Lindsey-Palmer Models

Practically speaking, the regression model LSLR and the Lindsey-Palmer
model are basically the same. Both models assign average run values to each
play. The difference lies in the techniques used to find those values or
weights. The LSLR model weights were found using the standard statistical
techniques of linear regression based on team data from 1954—-1999. Lindsey
and Palmer found their weights empirically—by analyzing the changes in
large numbers of actual baseball game situations, and the results produced by
each play type.

Despite the different paths taken by each model, LSLR and the Lindsey-
Palmer models arrive at very similar weights. Using the Palmer version of
LWTS, Table 7-9 compares the models. The weights for singles and walks
are close matches. The LSLR model gives less weight to doubles and greater
weight to triples and home runs. The difference in the doubles weight is



especially large. There are several possible reasons for this. One is that the
base-running assumptions used to generate the changes in base situations for
the LWTS model are too liberal. However, a calculation of the Lindsey
weight, assuming just a 2-base advance, only reduces the double weight to
.76 runs. Another possibility is that the LSLR weight for home runs has been
increased at the expense of the double weight because of the correlation
between HRs and doubles. A third possibility is that the weights reflect
additional information carried by the frequencies of plays. The LWTS
weights reflect only the value of the play itself, since they are constructed by
calculating the change in run production produced by each play. The linear
regression technique used to develop the LSLR weights only discovers
overall tendencies in run production as the number of play events changes.
This may be good or bad. It’s bad in the sense that we are not sure exactly
what each measure represents within the LSLR model. It’s good in the sense
that the LSLR model may capture aspects of baseball within the data that are
not measured explicitly.

Table 7-9 Model Weights for LSLR (with Sacrifice Flies) and LWTS

Weight (Runs} Wsp W g Wag Wsp Wi Wi Wgg
LWTS .30 A6 A0 . 1.0z 1.40 33
LSLR with SF 14 44 .6l T3 1.14 1.50 33

This is related to the question about sacrifice flies that initiated our
investigation of the Lindsey-Palmer approach. What is the true value of a
sacrifice fly in terms of runs? Notice that we do not have a LWTS weight for
sacrifice flies in Table 7-9. However, we can use Lindsey’s data in Table 7-4
to calculate one.

We do this in the same way that we evaluated the value of a home run in
Table 7-5. In fact, it is easier. A home run can occur in all 24 base-out
situations, but a sacrifice fly can only occur in 8 base-out situations, those
with less than two outs and a runner on third base.'! A sacrifice fly
guarantees that a run will score and at least one out will occur. We have
assumed that only one out occurs and only the runner on third advances. So,
our calculation, shown in Table 7-10, is much less complex than the HR
calculation.

Table 7-10 The Run Values of a Sacrifice Fly



INITIAL STATE FINAL STATE CHANGE

Basas #af Expected Basas Expected Total
Decupied (ks Situations Ruis Oecupled (hits Runs Runs Kuns Ruins
3 o] 67 1.39 Mone 1 243 1 1.243 147
1 202 0.980 Mone 2 02 1 1.102 22
1,3 0] 119 1.540 1 1 A58 1 1.498 442
1 305 1115 1 2 219 1 1.219 104
2,3 0] 73 1.560 2 1 B7L 1 1671 289
1 176 1.560 z 2 297 1 1.297 —.263
Full o] g2 2.220 1,2 1 839 1 1.939 281
1 215 1642 1,2 2 A03 1 1.403 -.239

Looking at the “Change in Runs” column, we see that a sacrifice fly
produces an increase in expected runs only with one out and a runner on
third, or runners on first and third. In the worst case, a sacrifice fly with no
outs and runners on first and third loses almost half a run on average.
Weighting each change in runs by the relative frequency of the situation, we
find that the average value of a sacrifice fly in runs is about —.12. This is far
different from the result of .73 runs found by the regression techniques for
the LSLR model. We conclude that the LSLR weight for sacrifice flies
probably captures the high expected runs value of the state in which it
occurs. Note that the expected runs for the initial state in Table 7-10 range
from a minimum of .98 runs to a maximum of 2.22.This is high relative to
the expected runs for all 24 initial states.

It appears, then, that we have found a case where linear regression may
not provide a useful weight for evaluating player performance. Even though
the inclusion of SF with a .73 run weight reduces the RMSE, it is not
advisable to include the weight in the LSLR model. The lesson here is that
while reducing error (RMSE) is the major objective, it should not be done at
the expense of creating a model that does not have some common sense built
into it as well. The results of regression analysis should not be accepted
without questioning model assumptions, the data used for the analysis, and
ultimately the reasonableness of the answers.



One characteristic that both techniques have in common is their reliance
on data for the development of the model. Regression techniques require a
set of data describing the value to be estimated and the quantities used in the
estimation. In our case with LSLR, the data set contained runs scored and the
number of various play events per team per season from 1954—1999. For
Lindsey, the data set was detailed play-by-play results from games in the
1959-1960 seasons. For Palmer, the data sets were the frequencies of various
plays in each year, which were used to drive his computer simulation.

Is it possible to break our dependence on data to develop a run
production model? In some ways, the intuitive models examined in Chapter
6 did this. None of those models was developed using data. Each was
inspired by a theory about what contributed to run production. However,
here we have something different in mind. We would like to use principles of
probability to build a model based on how the game is played.

1 As Bill James did when developing his Tech-1 version of Runs Created.

2 Since theoretically each team has 27 outs in each game, the number of games G is approximately
equal to (AB — H + CS + GIDP)/27. For our purposes, the division by 27 is not needed; 27 is a
scaling factor which is constant for all teams.

3 Of course, interpreting the results of the regression would be quite challenging for a Greek
statistician (or any statistician) who was not familiar with baseball.

4 Since RC (as well as the BRA and DX models) can be described as a weighted sum of cross product
terms, it is possible to use linear regression techniques to find better weights for hits, walks, and
stolen bases in those models as well. Using the RC Tech-1 model form, we found that the 1954—
1999 RMSE could be reduced to about .140 runs per game using better weights. Interestingly, the
weights for walks, hit by pitcher, and stolen bases were not far different from the .26 and .52 values
in the RC Tech-1 model. This is an independent verification of the effectiveness of James’s
empirical development of these weights.

5 For example, suppose a new drug is being tested for its effectiveness. If we gave the new drug only
to male subjects and a placebo only to female subjects, the two factors, medication and gender,
would be completely dependent. Whatever differences we find in subject response, we would not be
able to tell whether it was from the new drug or the difference in gender. So, to preserve
independence of these factors, we can set up the experiment so that half of each gender gets the new
drug and half the placebo. We have the capability to control the factors so that the effects of gender
and medication can be separated.

6 You may have noticed slight changes in the weights of other play frequencies when caught stealing
was added. This is because CS and the other play events are interrelated. We examined the
relationship between stolen bases and caught stealing because it was the most extreme, but there are
other quantities which are correlated with one another. The frequency of home runs in particular has
strong correlations with other play frequencies. This is especially true of doubles and walks/HBPs.
Apparently teams with more home runs also tend to have more doubles and also reach first on walks
and hit batsmen more frequently However, none is as strongly related as CS to SB, so the effects of
these other relationships are relatively small.



7 Lindsey calculated this by multiplying the runs scored by the probability that they would be scored
and then summing these products for all possible runs scored from 0 to oo. Of course, there is a
practical limit to the number of runs scored in an inning, the record being 18, Chicago White
Stockings (NL) (vs. Detroit Wolverines), seventh inning, September 6, 1883 (The Book of Baseball
Records, Seymour Siwoff [ed.], New York: Elias Sports Bureau, 1999). For example, a team is
expected on average to score .102 runs when they have no base runners and two outs. This value
was calculated as follows:

83 «0runs + 042 = 1 run + 018 < 2 runs + 007 = 3 runs =
042 runs + .036 runs + .021 ruans = .099 runs

The reason for this slight underestimation of Lindsey’s value of .102 runs is that we assumed that
the number of runs associated with the probability of scoring 3 or more runs was exactly 3. Lindsey
did not publish the separate probabilities of scoring 3 runs, 4 runs, 5 runs, etc., which would have
allowed us to reproduce his value exactly.

8 The Red Sox did not score more runs that inning, but they did go on to win the game and the AL
Championship Series only to be thwarted themselves by ill-luck at the hands of the New York Mets
(or the hands of Bill Buckner) in the 1986 World Series.

9 Although we used his procedures for calculation, the results in Table 7-7 are slightly different from
Lindsey’s 1963 run values: single (.41), double (.82), triple (1.06), and home run (1.42).

10 Using the formula with a —.3 run value for outs, Chipper Jones of the Atlanta Braves had the
highest 1999 LWTS rating of 72.20 runs above average while Mike Caruso of the Chicago White
Sox had the lowest LWTS rating —47.73 runs below average. Of Caruso’s 132 hits in 529 at bats,
only 17 were for extra bases. Ordonez had the sixth lowest LWTS rating in 1999, while Jeter had
the seventh highest.

11 A runner on third base is not required for a sacrifice fly. A batter can be awarded a sacrifice fly for
scoring a runner from any base. For example, on April 3, 2001, the Phillies’ Brian L. Hunter scored
the game-winning run from second base on a long fly out by Doug Glanville, who was awarded a
sacrifice fly. However, such sacrifice flies with no runner on third base are so rare that our
calculation is unaffected by ignoring them.
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Chapter 8
The Curvature of Baseball

Jim Albert and Jay Bennett

One feature that makes baseball lend itself to statistical analysis is the
discrete nature of the game. Every inning unfolds play by well-defined play,
and at the conclusion of each play, the inning must be in 1 of 25 well-
defined states. We can break down these states into 8 distinct base
situations:

None on.

Runner on first.

Runners on first and second.

Runners on first and third.

Runners on first, second, and third (bases loaded).
Runner on second.

Runners on second and third.

Runner on third.

We can also break down the states into 3 distinct out situations (0, 1, and 2
outs). We combine these 3 out and 8 on-base possibilities to get 24 states (3
x 8 = 24), then add 1 for the final state of the inning (3 outs), giving us a
total of 25. Every situation before and after a play in baseball must fit into
one, and only one, of these 25 unambiguous and clearly distinguished
states.

Compare this with other sports. In football, we could consider one
team’s possession as equivalent to a team’s inning at bat. How many
possible states are there at the end of each play in a single possession? With
some simplification, there are 100 different positions on the field, one for
each yard mark. Then there are 4 different downs. And then there are 10
different yards to go (for first down). If we multiply these values, we obtain
a large number



Field positions x downs x yards to go = possible states

100 = 4 x 10 = 4000

The number 4000 may seem large, but it is a lower bound—that is, it’s
extremely understated. The number of yards to go for a first down may be
greater than 10, and both this value and the field position value (the line of
scrimmage) are actually continuous. In other words, the ball is rarely placed
exactly at a yardline mark, so neither of these values has to be an integer.
Any fractional value for yards to go, or any line of scrimmage between yard
markers, would also have to be considered, thus making the number of
possible states virtually infinite.

So there are at least 160 (or 4000/25) possible states in football for
every comparable base-out state in baseball. And football is relatively
discrete compared to other major sports, like basketball, hockey, and soccer,
which have a continuous flow in both time and space. The number of
possible situations these other sports present is literally infinite, and in the
course of each game or match, there are very few moments where the action
is paused in an easily defined and numerically described state.

The DLSI Simulation Model

Several researchers besides Lindsey and Palmer have taken advantage of
baseball’s relatively simple, static, and discrete structure to create
probabilistic models of run production. Among the earliest was the Scoring
Index model developed by D. A. D’Esopo and B. Lefkowitz in a 1960 SRI
internal report. Their work was not available publicly until it was published
in the groundbreaking collection of papers Optimal Strategies in Sports in
1977." In the interim, essentially the same model was developed
independently by Thomas M. Cover and Carroll W. Keilers, who used it to
create a batting statistic called the Offensive Earned Run Average (OERA).

At its heart, the D’Esopo-Lefkowitz Scoring Index (DLSI) model starts
with the basic premise of the BRA, DX, and RC/G models: scoring runs is
the product of two related types of events, getting on base and advancing
runners. However, their model puts a different spin on this premise,
separating run production into two processes:



1. Getting on base: An event that describes getting on base a particular
number of times in an inning.

2. Advancing around the bases: An event that describes scoring a given
number of runs when a particular number of players get on base in an
inning.

For ease of computation and explanation, we’ll make some basic

assumptions here about the types of events that occur in a plate appearance

and how runners advance on the bases. The variant of the DLSI model we
use assumes that the only possible events in a plate appearance are

BB/HBP, 1B, 2B, 3B, HR, and out. All outs are effectively strikeouts (i.e.,

single outs leaving runners in place). A single scores runners on second and

third bases, but only advances a runner on first to second base. A double
advances all runners two bases. Although you might quibble with this
choice of rules, we will see that this model gives results pretty similar to
real baseball.

The Probability of Scoring Two Runs

Using the DLSI model, suppose that we are interested in the following
event:

{exactly 2 runs score in an inning}

We need to think of all of the possible ways for runners to reach base so that
2 runs can be scored. We will explain shortly that 2 runs can score when 2,
3, 4, or 5 runners reach base in the inning. So if for now we take that as a
given, we can break down the event {exactly 2 runs score in an inning} into
the following events:

12 players reach base in an inning, and exactly 2 runs score}
or
{3 players reach base in an inning, and exactly 2 runs score}
or
{4 players reach base in an inning, and exactly 2 runs score}

or



{56 players reach base in an inning, and exactly 2 runs score}

The tree diagram in Figure 8-1 illustrates the two steps of this process: (1)
players reach base, and (2) players score 2 runs.

_ 2 REACH 2 RUNS
~ BASE SCORE
— 3 REACH 2 RUNS
BASE SCORE

— 4 REACH 2 RUNS
BASE SCORE

5 REACH 2 RUNS
BASE SCORE

FIGURE 8-1 Tree diagram for scoring exactly 2 runs in an inning.

To compute the probability of scoring 2 runs in an inning, we first
assign probabilities to the branches of the tree diagram. At the first set of
branches, we compute the probabilities that 2 players reach base, 3 reach
base, 4 reach base, and 5 reach base. We will call these probabilities Pr(2
reach base), Pr(3 reach base), and so forth. Then, at the second set of
branches, we find the probability of scoring 2 runs if 2 players reach base,
which we will denote Pr(2 runs | 2 on base), the probability of scoring 2
runs if 3 reach base Pr(2 runs | 3 on base), and so forth. We place these
probabilities on the branches of the tree diagram in Figure 8-2.

pr

l"-"-'::l---"' —

o Read=

~ pr(3 Reach Base)

2 REACH BASE

3 REACH BASE

4 REACH BASE

5 REACH BASE

Pr{2 RUNS | 2 ON BASE)

Pri2 RUNS 13 OMN BASE)

Pri2 RUNS | 4 ON BASE)

Pri2 RUNS 15 OMN BASE)

2 RUNS SCORE

2 RUNS SCORE

2 RUNS SCORE

2 RUNS 5CORE



FIGURE 8-2 Tree diagram for scoring exactly 2 runs in an inning (expanded with probabilities of
scoring for different numbers of players reaching base).

After all of the probabilities of the branches have been assigned, we find
the probability of scoring 2 runs by multiplying probabilities along each
branch of the tree, then summing the products:

Pr(2 runs) = Pr(2 reach base) x Pr(2 runs | 2 reach base) +
Pr(3 reach base) x Pr{2 runs | 3 reach base) +
Pr(4 reach base) x Pr(2 runs | 4 reach base) +

Pr(5 reach base) x Pr(2 runs | 5 reach base)

Let’s back up and explain some of our logic. In order to score 2 runs, at
least 2 players have to reach base. After all, if no players get to first base,
how can any runs score? And if only 1 player reaches first base, the player
may or may not score, but at most 1 run will score. In general, if we want to
find the probability of scoring R runs (where R = 2 in this setting), we only
have to look at innings in which at least R players get on base.

Next, we see that to find the probability of 2 runs scoring we don’t have
to look at innings where 6 or more batters get on base. Why is this? Let’s
look at the case where 6 players reach first base on walks. Assuming that no
players are caught stealing, hit into double plays, or are thrown out at a
base, 3 runs will score in this inning; the first 3 walks will load the bases
and each of the next 3 will force in a run. Because of our assumptions about
outs, the order in which outs are interspersed with the walks does not matter
—3 runs will still score in this inning. And this is the most conservative
estimate! The walk (or hit by pitcher) is the least productive of on-base
events. If we substitute any type of hit (single, double, triple, or home run)
for one of the walks, more than 3 runs are liable to score. So, we can say
that if 6 players reach base in an inning, at least 3 runs will score.
Consequently, if we wish to compute the probability of scoring exactly 2
runs, we don’t have to consider any innings in which 6 or more players get
on base.” In general, if we want to find the probability of scoring R runs, we
can ignore innings in which at least R + 4 players get on base.

This is why in finding the probability of scoring a specific number of
runs R in an inning, we have only to look at four cases: innings in which R,
R+ 1,R+2,and R + 3 players get on base.



The Probability of Scoring No Runs

So what is the probability of scoring R runs in each of these cases? Let’s
examine the simplest case, where R = 0 (no runs score in the inning).

We first focus on computing probabilities at the second set of branches
of the tree; that is, the probability of scoring 0 runs given different number
of players on base. The first value we need is the probability of scoring O
runs when 0 players get on base. An easy question: the probability is 1
because if no players reach base, no runs can score:

Pr(0 runs | 0 reach base)=1

How about the probability of scoring 0 runs when 1 player gets on base?
Assuming no stolen bases (a basic assumption of the model), there is only
one way that a run can be scored with one on-base event; that is, if the event
is a home run. So, the probability of no runs scored (when 1 player gets on
base) equals 1 minus the fraction of on-base events that are home runs. The
fraction of on-base events that are home runs, denoted by {4, is defined as
follows:

. HR
‘" BB+ HBP+ 1B + 2B + 3B + HR

So,

Pr(0 runs | 1 reaches base)=1-f,

While we are at it, let’s define proportions for all on-base events that are
walks/hits by pitcher, singles, doubles, and triples:*



BB + HBP
BB+ HBP +1B+2B +3B + HR

Fraction of walks [ hit by pitcher f; =

1B
BB+ HBP+1B+2B+ 3B+ HR

Fraction of singles f, =

2B

Fraction of doubles f, =
BB + HBP + 1B + 2B + 3B + HR

a8
BE+HBP+1IB+2B+3B+HR

Only two more cases to go, but they are the most difficult ones. Let’s
consider the probability of scoring 0 runs when 2 players get on base:

Fraction of triples f; =

e When the first player to get on base gets a walk or hit by pitcher, the

following sequences do not score a run: BB—BB, BB—1B, BB—2B.*
The probability of these sequences is f, (fo + f1 + f>)-

o Similarly, when the first player to get on base gets a single, the
following sequences do not score a run: 1B—BB, 1B—1B, 1B—2B.
The probability of these sequences is f; (fo + f1 + f>)-

e + When the first player to get on base gets a double or triple, only two
sequences do not score a run: 2B—BB, 3B—BB. The probability of
these sequences is (f, * f3) fo-

To summarize, if 2 players get on base, the probability of not scoring any
runs is:

Pr(Oruns | 2 reach base) = f(fo +f1+fo) + L ([u +[1+f) + (s +f3) [y

=(fo +[D) i+ + (1 =f) ],

We are down to the last case, the probability of scoring no runs when 3
players get on base. We can calculate this value by enumerating all the
sequences as we did above. It turns out when you do this (consider this an
at-home exercise), the non-scoring sequences are the ones above for 2
players on base with a walk or HBP appended at the end (e.g., BB—2B



becomes BB—2B—BB). So, the probability of scoring 0 runs if three
players get on base is just Pr(0 runs | 2 reach base) times the fraction of on-
base events that are walks/HBP:

Pr(0 runs | 3 reach base) = Pr(0 runs | 2 reach base) x f

The probability of scoring no runs (similar to the tree diagram for scoring 2
runs in Figure 8-2) is the weighted sum of these probabilities: Pr(0 runs | 0
reach base), Pr(0 runs | 1 reaches base), Pr(0 runs | 2 reach base), and Pr(0
runs | 3 reach base). The weights are just the probabilities of putting the
respective players on base: Pr(0 reach base), Pr(1 reaches base), Pr(2 reach
base), and Pr(3 reach base). So,

Pr(0 runs) = Pr(0 reach base) x Pr(0 runs | 0 reach base) +
Pr(1 reaches base) x Pr(0 runs | 1 reaches base) +
Pr(2 reach base) x Pr(0 runs | 2 reach base) +

Pr(3 reach base) x Pr(0 runs | 3 reach base)

In order to complete this calculation, all we need is a formula for the
probability that a given number of players get on base. (These will be the
probabilities at the first set of branches in our tree diagram.) Fortunately,
this is a well-understood statistical process and can be calculated quite

simply as follows:”

(B+2)(B+1)p°(1-p)
2

Pr(B reach base) =

where B is the number of players who get on base and p is the probability
that a batter gets on base in a plate appearance. So, the probabilities we
need are



0+2)0+Dp"(1-p)

Pr(0 reach base) = 5 =(1-py
Pr(1 reaches base) = 1+21 +21}p1 a-p) =3p (1-p)

Pr(2 reach base) = b +21Jp2 A-py =6p (1-p)y

Pr(3 reach base) = B+2@+Vp A-pf =10p"(1-p)

2

Clearly, a reasonable estimate for p to use in calculations is our old friend

the team on-base percentage.® Based on our probability formula for B, we
can estimate the average number of players to reach base in an inning (g) as

follows:’
_ , .o m 3D
Average reaching base in an inning: B = e
—p

Through some clever insight into the sequence of hits and walks that
produce runs, D’Esopo and Lefkowitz found that the average number of
runners left on base in their model is

L = Pr(0 runs | 1 reaches base) x [1 — Pr(0 reach base)] +
Pri0 runs | 2 reach base) x [1 — Pr(0 reach base) — Pr(1 reaches base}] +

Pr(0 runs | 3 reach base) x[1 — Pr(0 reach base) —

Pr(1 reaches base) — Pr(2 reach base)|

The amazing thing about this model is that these formulas used to calculate
the probability of not scoring provide you with all the tools you need to
estimate the average number of runs scored per inning. The basic principle
behind this result is the Law of Batter Conservation:

Every batter 1s either out, scores, or 1s left on base.

Since the model assumes that only batters are out and that runners either
score or are left on base, the average number of runs scored in an inning (7



) is just the average number of players who get on base () minus the
average number of runners left on base (7,) in an inning. D’Esopo and
Lefkowitz called their estimate of the average number of runs scored per
inning the Scoring Index, which (as mentioned earlier) we abbreviate as
DLSI.

A DLSI Example

Maybe we can get a better handle on this simulation model if we perform a
sample calculation. The year 1959 was one of the most interesting in
baseball history. It was the only year in the decade from 1955 through 1964
that the Yankees were not in the World Series. The Dodgers, in only their
second year in Los Angeles, took advantage of the Yankees’ absence to win
the series with a team generally regarded as one of the weakest of all World
Champions. The greatest part of the challenge for the Dodgers was to defeat
the powerful Milwaukee Braves in a single National League playoff game
after the conclusion of the regular 154-game season.® For our purposes,
1959 marks the beginning of serious baseball run production models by
Lindsey, D’Esopo, and Lefkowitz, so in their honor we’ll use the 1959
National League for our example. We start with Table 8-1, which provides
totals for the National League in 1959.

TABLE 8-1 1959 National League Data
lnmings Al BB HEr 18 28 i Hi

11,047 42,330 3974 232 7744 17588 324 1155

Run production can be characterized by the probability p of getting on
base estimated by the following:
_ BB+ HBP+ 1B +2B +3B + HR
- AB + BB + HBP

p

974 + 232 + 7744 + 1788 + 324 + 1159
- 42330 + 3974 + 232

and by the proportions of on-base events (walks, singles, etc.):

=.32708



\ BB + HBP 4206
fo= = ———— = .27633
BB+ HBP + 1B +2B + 3B+ HR 15,221

1B 7744

fi= = = .00877
BB+ HBP + 1B+ 2B+ 3B+ HR 15,221
2B 1788
fy= = =.11747
BB+ HBP+1B+2B+3B+HR 15,221
3B 324
fa= = - .02129
BB+HBP +1B+2B+3B+HR 15,221
HR 1159
/i 2% _ 07614

" BB+HBP +1B+2B+3B+HR 15221

These are the basic elements used by the model. Batters got on base about
32.7 percent of the time, and of the times that they got on base, 27.6 percent
were via a walk or hit by pitch, 50.9 percent via a single, 11.7 percent via a
double, 2.1 percent via a triple, and 7.6 percent via a home run.

The most complicated part is the three-step procedure used to calculate
the average number of runners left on base per inning:

1. We calculate the probability of not scoring when 1, 2, or 3 runners reach
base:

Pr(0 runs | 1 reaches base)=1—-f, =1-.076 = .924
Pr(0 runs | 2 reach base) = (f, + 1) (f1 + f2) + (1 = f)fy
= (.276 + .509) (.509 + .117) + .924 (.276)
=.747
Pr(0 runs | 3 reach base) = Pr(0 runs | 2 reach base) f
=.747 = .276

=.206

As we might expect, the probability of not scoring at all drops from 92
percent to 75 percent to 21 percent as more runners reach base.

2. We calculate the probabilities that 0 batters reach base, exactly 1 batter
reaches base, and exactly 2 batters reach base:



Pr(0 reach base) = (1-p)’ =(1-.327) =.305
Pr(1 reaches base) = 3p (1 —p]';" =3 %.327 (1-.327)" =.299
Pr(2 reach base) = 6p° (1-p)' = 6 x .327° (1 - .327)" = .196
3. We then use these values to calculate the average number of runners left
on base per inning:
L = Pr(0 runs | 1 reaches base) x [1 - Pr(0 reach base)] + Pr(0 runs | 2 reach base) x
[1 - Pr(0 reach base) — Pr(1 reaches base)] + Pr(0 runs | 3 reach base)

[1 —Pri0 reach base) — Pr(1 reaches base) — Pri2 reach hase)|

or

L=1(.924 x [1-.305]) + (.747 x [1 - .305 — .299]) +
(.206 x [1 —.305 — .299 — .196]) = .979

The last step is easy. Using p, we can immediately calculate the average
number of runners reaching base per inning;:

3p B 3 x 32708
1-p 1-.32708

B= = 1.458
The average number of runs scored per inning is just the average reaching
base minus the average left on base. Therefore:

DLSI =R =B —L = 1.458 — .979 = .479 runs per inning

is the estimated average number of runs scored per inning by National
League teams in 1959.

Notice that in the course of this calculation, the simulation model
required the computation of other values, such as the average number of
runners left on base, various probabilities of putting runners on base, and
probabilities of scoring with runners on base. This makes the calculation
somewhat longer than other models, but it does provide the benefit of an
added richness to our understanding of the game. Using these results in
some additional calculations, we can compute the distribution of runs
scored per inning, that is, the probability of scoring. For example, recall that
the probability of not scoring in an inning is calculated as follows:



Pr(0 runs) = Pr(0 reach base) x Pr(0 runs | 0 reach base) +
Pr(1 reaches base) x Pr(0 runs | 1 reaches base) +
Pr(2 reach base) x Pr(0 runs | 2 reach base) +

Pr(3 reach base) = Pr(0 runs | 3 reach base)

We have already calculated most of these values. The only extra value we
need to calculate is:

Pr(3 reach base) = 10p" (1 - p)’ = 10 % .327" (1 -.327)" = .107
Substituting these values, we obtain:

Pr(0 runs) = (.305 x 1) + (.299 x .924) + (.196 x .747) + (.107 = .206) = .750

So, we might expect that no runs were scored in about 75 percent of the
innings played by National League teams in 1959.

D’Esopo and Lefkowitz used such a calculation as a test of their model.
They calculated a distribution of runs scored per inning with their model
and compared the result against Lindsey’s data and against similar data they
collected from 100 games in the 1959 National League baseball season.
Table 8-2 shows the data they collected as well as predictions based on our
version of their model. The agreement is quite good, considering the
relatively simple assumptions of the simulation model (no stealing, no
bunting, no advancement on outs).

TABLE 8-2 Runs Scored Per Inning in 1959 National League Season (DLSI Model Results
Compared with Data)



DATA

Runs Scored Lindsey 0'Esope and DL Mode!
Lefhowitz

0 73.0% T4.4% F5.0%

1 14.6% 12.9% 12.6%

2 7.0% &5.8% 6.7%

E| 2.9% 2.9% 3.2%

4 1.4% 2.1% 1.5%

5 0.7% 0.7% 0.6%

& or more 0.4% 0.3% 0.5%
fverage Runs 0.488 0.489 0.479

Table 8-2 also shows the average number of runs scored per inning in
the data together with the model prediction. In fact, a total of 5462 runs
were scored in the 1959 National League season over 11,047 innings, for an
average of .494 runs per inning. The simulation model prediction is
somewhat lower than the averages from the data.

L.essons from the Simulation

You might at this point ask, if you haven’t asked already, what makes this a
simulation model? After all, the calculation is similar to that for the other
models we have covered (for example, Total Average or Runs Created),
except DLSI is more complicated. And you might comment that you
thought a baseball simulation was a computer program that played many
games over and over to produce results that replicated actual game
play.While computer programs are the most common form of simulation
today, you should recall that APBA, Strat-O-Matic, and Sports Illustrated—
the board games we discussed in Chapter 1—are simulations too. These
games do not require a computer, although if you want to simulate many
entire seasons, you would have to use a computer version.

The D’Esopo-Lefkowitz model differs from these board games only in
the relative simplicity of its rules and its assumption of a single average
level of performance for all hitters. (What distinguishes the D’Esopo-
Lefkowitz model from the other models reviewed is its genesis from the
rules of baseball applied in a probabilistic way.) But we could use the rules



they define as well as any assumptions we wish for the probability of
getting on base and on-base profiles to actually play games of baseball
either as a board game or as a computer program.

We could, for example, construct a game very similar to All-Star
Baseball. The game would be a much simpler one, consisting of a single
disk. The disk would have six slices: walk, single, double, triple, home run,
and out. All batters would use this disk. If the game were to simulate play
during the 1959 National League baseball season, the sizes of the slices
would be determined by the data we just discussed. Recall that the
probability of getting on base was p =.32708. So, according to the rules
established by the assumptions of D’Esopo and Lefkowitz, the probability
of getting an out is 1 — p = .67292. The out slice would span an arc of
67292 x 360 = 242 degrees. The remaining 118 degrees would be divided
into five slices for walks and the various hits in accordance with the values
fos f1> [~ f3, and f, For example, the home run slice would be:

fax 118 = 07614 x 118 = 9 degrees

If we played this game using the rules for runner advancement assumed by
D’Esopo and Lefkowitz for the equivalent of many seasons of virtual play
(completing all innings until three outs are recorded), we would obtain
results for the runs scored per inning which would exactly match those
estimated using the equations described. The simplicity of the model’s rules
and player ability assumptions allows us to circumvent the whole process of
replaying every plate appearance in every game. The results of playing out
the simulation can be obtained simply through calculation, using a few
formulas. This is the strength of the D’Esopo-Lefkowitz model.

The weakness of the model also lies in its assumptions. The same
simplicity which allows us to capture the information from thousands of
seasons of replays with only a few calculations also means that some
richness of detail—from the running game, “small ball” advancement from
outs, and variation from different player abilities—has not been included.
The D’Esopo-Lefkowitz model simulates baseball with very broad strokes.
Nonetheless, as indicated by its distribution of runs per inning in Table 8-2,
the simulation produces quite reasonable results despite the simplicity of its
rules. The model tends to underestimate Team Runs Scored per Inning,
perhaps because of its lack of a more sophisticated set of rules describing



the advancement of runners on outs.” These could be incorporated into the
more general version of the model developed by Cover and Keilers.

Now that we have some familiarity with the mechanics of calculating
runs per inning with the model, let’s examine some aspects more closely.
The model says that there are two key elements in run production:

e The variable p, which states the probability of getting on base (and
avoiding being out).

e The parameters f, 1, f», f3, and f,4, which we will refer to collectively

as the on-base profile. This profile describes the distribution of all on-
base events considered in the model (walk, hit by pitcher, single,
double, triple, and home run), and it always sums to 1.

How much can these elements vary from team to team and from year to
year? Considering the modern era of baseball, from 1901 through 1999, a
typical value for p is .33, close to the 1959 National League average. The
1908 Brooklyn Dodgers had the lowest p, with .266 batters reaching base
per opportunity. Lest you think that such a low probability of getting on
base is a phenomenon only of the deadball era, consider that this value was
challenged by the New York Mets in 1965 (with p =.278). The 1950 Boston
Red Sox had the highest (p = .385), almost 50 percent higher than the
minimum value. Not surprisingly, the quintessential on-base batter, Ted
Williams, was on this team, although he played little more than half of the
season. And a team as recent as the 1994 New York Yankees had an
exceptionally high value (p = .377), albeit in a strike-shortened season. So
there is, from team to team and season to season, considerable variation in
this measure of performance.

Table 8-3 shows the range of values for each component of the on-base
profile statistic. The table shows a great deal of diversity within each
component. For example, the majority of on-base events for some teams
were singles (as high as 69 percent for the 1902 St. Louis Cardinals), while
others had less than half (as low as 39 percent for the 1999 Oakland A’s).
However, since the components for each team must add up to 1, they are
not independent of each other; you can’t increase one component without
decreasing at least one of the others. What we are interested in finding is a
realistic combination of components which produces the most extreme (low
and high) results in run production.



TABLE 8-3 Range of Team On-Base Profile Values (1901-1999)

BB+HEF 18 28 ik HR

f f, fi f; fy

Maximum 378 685 A77 069 A18
1949 AL Phi. 1902 ML St.L. 1997 ML Man. 1903 AL Bos. 1961 AL NY

Average 2TT &B27 118 26 051

Minimum 74 391 072 005 002
1921 ML Fhi. 1999 AL Oak. 1902 ML Phi. 1958 AL Balt. 1908 AL Chi.

To understand how the on-base profile affects run production, we
assume that the typical on-base probability p is .33. We calculated the run
production of each team from 1901-1999 using its own unique on-base
profile, but using the same on-base probability (p = .33) for all teams. We

then found the teams with the highest (1947 New York Giants)'® and the

lowest (1908 Chicago White Sox)'' run production. Since the on-base
probability was held constant, the only difference in run production was
their on-base profiles. The bar charts in Figure 8-3 compare the on-base
profiles of these two teams. Remember, these are not the teams with the
highest and lowest run production overall, but the teams that had the best
and worst on-base profiles if the probability of getting on base is kept at .33
for all teams.
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FIGURE 8-3 The best and worst team on-base profiles (1901-1999).



Only 10 percent of the 1908 White Sox on-base events were extra-base
hits (not walks or singles), while almost 25 percent of the 1947 Giants on-
base events were extra-base hits. As we would expect, the 1947 Giants have
a more productive on-base profile than the 1908 White Sox because of the
shift of walks and singles to extra-base hits. In fact, when we compare the
values in these on-base profiles to the ranges of the individual components
in Table 8-3, we see that the profiles are not at all extreme, except in home
runs, where the 1947 Giants have one of the highest fractions, while the
1908 White Sox have the lowest.

How does the predicted run production change for our simulation model
as either the on-base profile or the probability of getting on base changes?
Let’s see how the predicted run production will change if we take each of
our two extreme on-base profiles, keep them fixed, and change p, the
probability of getting on base. Figure 8-4 plots the predicted runs per inning
in this scenario. The upper line in this chart shows the predicted runs per
inning for the 1947 Giants on-base profile, while the lower line shows the
predicted runs per inning for the 1908 White Sox on-base profile. The
bullets identify the predicted runs per inning for each team for the actual
historical on-base probability p of each team.

1.0
0.8 - 15947 New York Giants
08 | On-Bose Profile
0.7 |
15908 Chicago White Sox
n.e | Cn-Baze Profife
0.5 |
0.4 |
0
£ 03]
=
=
= 02
Ll
(i
. 0.1
=
-
o 0.0 | .
26 28 .30 32 .34 .36 38 A0

FROBABILITY OF ON-BASE EVENT ()

FIGURE 8-4 DLSI for best and worst on-base profiles as the probability of getting on base
changes. (Bullets [¢] indicate DLSI for team’s actual value of p.)



The 1947 Giants had an on-base probability near the historical team
average, but the 1908 White Sox had an on-base probability way below
average. Following the 1908 White Sox line upwards, we see that a team
with a poor on-base profile could be as productive as the 1947 Giants if
they could compensate for their lack of power with an increase in on-base
probability near the historical maximum of .385. Since these are the best
and worst on-base profiles, and since the plot encompasses the highest and
lowest team p-values from 1901-1999, the predicted run production for all
teams in the twentieth century lie in the area bounded by these two lines.

Looking at the 1947 Giants profile, we see that run production does not
increase linearly with the probability of getting on base; that is, the line
curves upward so that run production increases faster as p increases. The
1908 White Sox profile shows a similar (though slightly less pronounced)
effect. The vertical distance between the two lines shows the effect of
different on-base profiles; that is the effect of varying the distribution of
different types of hits. Increasing p increases run production, and improving
the on-base profile increases run production, but they improve it in different
ways.

DLSI and Runs per Play

Predicted run production for the 1959 National League falls somewhere in
the middle of the extremes shown by the Giants and White Sox.Taking
another look at the 1959 National League data, what would happen if we
added one more walk? That is, keeping everything else the same, how
would run production change if the total number of walks were 3975
instead of 3974? Redoing (with greater precision) the calculation described
earlier, with this very slight variation, we find that run production would be
4784369 runs per inning, or .0000336 runs per inning higher than with the
historical data (.4784033). In 1959, the National League played 11,047
innings. Multiplying this change by the total number of innings gives us the
total change in runs

0000336 x 11047 = .57

Doesn’t this seem familiar? It looks very close to the run value for a walk or
hit by pitcher in the Lindsey, Palmer, and regression models described in
Chapter 7. Perhaps the result will continue to match if we do the same thing
for singles, doubles, triples, home runs, and outs. Table 8-4 shows the



variant data, the predicted change in runs per inning, and the total increase
in runs from the play (by multiplying the increase and the number of
innings).

TABLE 8-4 Change in Run Production in 1959 National League Season When Increasing Each
Play Count by 1 (Indicated in Boldface)

“WHAT IF" 1959 NATIONAL LEAGUE DATA RUN CHANGE

Per Per
Play AB BEHEP IR 28 IR HE inning play
Walk/HEP 42,330 4207 7744 1788 3za 1159 0000336 37
Single 42,331 4206 7745 1788 3z4 1159 0000476 53
Double 42,331 4206 7744 1789 324 11548 0000662 73
Triple 42 331 4206 Tra4 1788 325 1159 0000895 99
Home Run 42,331 4206 7744 1788 324 1160 0001434 1.58
Out 42,331 42086 T4 1788 3z24 1159 -0000263 -.28

Figure 8-5 compares the changes in run production with run values for
the same events in the Palmer model. The values are very similar. The
biggest difference is in the run value for home runs, which is given more
value by the simulation model than by the 1959 NL data. Perhaps this is a
reflection of the simulation’s assumptions about runner advancement. If the
simulation does not allow runners to advance on outs, it may give added
weight to home runs, which needless to say are very good at advancing
runners. Another possibility is that the increased value of home runs stems
from the assumption that runners are never thrown out on the bases. If a
walk is followed by a home run, the runner will always score; in Palmer’s
model, he might be erased on a double play or caught stealing. Similarly,
the value of a double is certainly reduced by the assumption that doubles

never drive in runners from first.'? Still, the agreement in run values is very
good, considering the simplicity of the simulation’s assumptions.
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FIGURE 8-5 Run values for plays in the 1959 National League season: DLSI values vs. Palmer’s
Linear Weights values.

The changes in run production predicted by the simulation as we add an
additional event to the data is one way of measuring run value per event.
Another way of doing this is to calculate the slope of the on-base profiles in
graphs like the one in Figure 8-4. However, as we observed in Figure 8-4,
these on-base profile lines are curved upwards; that is, their slopes increase
as the probability of getting on base increases. Does this mean that plays
may have different run values depending on a team’s ability to get runners
on base?

Let’s test this with an example. In 1999, the Cleveland Indians scored
more runs than any other team (1009)"® while the Minnesota Twins scored
the fewest (686). According to the simulation model, would an extra hit
have had more value to the Indians than it would to the Twins? Table 8-5

gives the 1999 season data for these two teams.' The major differences
between them appears to reside in their abilities to draw walks and hit home
runs.

TABLE 8-5 1999 Data for the Cleveland Indians and the Minnesota Twins
Toam fanings AR it HEP 18 28 8 L

Cleveland 1458 5634 743 55 1079 309 a2 209

Minnesota 14449 5495 500 49 10340 285 30 108



What run values do we get if we add 1 event to each play type, as we
did in Table 8-4 for the 1959 National League? Figure 8-6 displays the
results. As we expected, each walk and hit has more run value for the better
offensive team, the Cleveland Indians. Even each out is more damaging to
the Indians than to the Twins. This is because each out is one less
opportunity to score runs, and since the Indians are more productive, the out
has a greater negative effect on runs scored. As we suspected from our
observation of the curves in Figure 8-4, the run values of plays appear to
vary depending on the run productivity of the team. In particular, the linear
models of run production (Lindsey, Palmer, regression, and even Total
Average) appear to be special cases of this more general simulation model.
Essentially, they provide good estimates of run values for average or typical
performances, but do not account for changes in run value for more extreme
cases.

3% A6 55 6d T oM L3 110 1.63 167 -30 43
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FIGURE 8-6 Run values of different plays as estimated by the DLSI model for the 1999 Cleveland
Indians and Minnesota Twins.

Does this mean that they are not useful in evaluating offensive
performance of players? Not necessarily, as we shall see.

Where Do We Stand?

After reviewing many models, we find that they really divide into two
groups: additive and product models.



Additive Models

These are the models in which each play is given a value. The values for all
plays which occur are summed. In order to account for differences in
opportunity, the sum is divided by a representative total for the number of
chances to bat. The models often differ in the set of plays considered.

For Batting Average, hits are the only plays considered. Each hit has the
same value, 1. These values are summed, one for each hit, and then divided
by the number of at-bats, the quantity that represents opportunity. Slugging
Percentage is the same as Batting Average, except that each hit is given a
different value, the number of bases attained. On-Base Percentage is also
the same as Batting Average, except it includes more plays, walks and hit
by pitcher; it also expands the number of opportunities considered from just
at-bats to (almost) all plate appearances.

Total Average, also an additive model, combined elements of the
Slugging Percentage and the On-Base Percentage. Each hit was given a
value equal to the number of bases, as in Slugging Percentage, and
walks/HBPs were each given the value 1. Total Average also extended the
plays included by giving each stolen base the value of 1. A notable
innovation in Total Average was using the number of outs (not at-bats or
plate appearances) as the dividing measure of opportunity. Total Average
provided a significant improvement over the three ML B-recognized
measures of offensive prowess (AVG, SLG, OBP) in its ability to estimate
annual team run production per game.

Lindsey and Palmer basically used the same framework as in Total
Average, but used estimates of the average number of runs each play
produced as the play values. They developed these values from play-by-
play analysis of actual (Lindsey) and simulated (Palmer) games.This gave
their values a more solid logical foundation than the other additive models.

Finally, several researchers used least squares linear regression on
annual team offensive data to derive play values comparable to those of
Lindsey and Palmer. The play values derived from regression provided the
best fit (as measured by RMSE) to annual team run production per game.
However, in some cases (as we observed, for example, with the high value
attributed to sacrifice flies), the values obtained from regression may have
captured other attributes inappropriate for the evaluation of individual
players.



Product Models

We have examined two types of product models. One, the BRA model,
multiplies On-Base Percentage and Slugging Percentage. This is a departure
from the additive model approach, where the weights from different events
are simply added. Here, after weighting the events, the result of getting on
base is multiplied by the weighted counts of events. Cook’s Scoring Index
also used this principle, as did James in his Runs Created model, which
produced the best fit to team data in this group.

The second product model type is the DLSI simulation developed by
D’Esopo and Lefkowitz (and generalized by Cover and Keilers). Here the
rules of baseball were used to develop formulas which estimated the
expected runs scored per inning if millions of simulated games of a simple
form of baseball were played. The model says that the average number of
runs per inning is the average number of runners to reach base minus the
average left on base:

DLSI=R=B-L
The average number to reach base should look familiar:
Bo P

1-p
Remember that a good estimate for p is the On-Base Percentage, the
fraction of plate appearances in which the team gets on base. Since not
getting on base means that you were out, then 1 — p is the fraction of plate
appearances in which the team gets out. So, B is a ratio of on-base events to
out events. This ratio has elements of to On-Base Percentage (ratio of on-
base events to plate appearances) and Total Average (the ratio of bases to
outs).

Another interesting feature of the DLSI model is the assumption that
each player to reach base is a potential run, and the team’s inability to
advance the runner subtracts from this value to find the number that
actually score. At this point it diverges from Total Average, which takes the
basic ability to get on base and then adds extra bases from hits. Another
way to perform this subtraction is through multiplication by a value less
than 1. This is what you do every day when you get a discount at a store.
You pay less than the retail price, but instead of getting some amount off the



retail price, you pay a fraction of the retail price, where the fraction is a
number less than 1. So, DLSI could also be calculated as follows:

DLSI = R = B x fraction

In this case, the fraction is the percentage of runners that score. So we see
that the D’Esopo-Lefkowitz model can be viewed as another product
model, a variant of BRA, where B assumes the role of On-Base Percentage
and the discounting fraction assumes the role of the Slugging Percentage.

In order to summarize how well each model’s estimates are correlated
with run production, we took our most complete set of team data (1954—
1999) and found the best line (and its associated RMSE) for each model for
all the 46 years of data as a whole (instead of within each year, as was done
in Chapter 6). The models are listed in Table 8-6—according to RMSE from
low to high, so that the models at the top were correlated best with run
production. We have identified each model as an additive or product model.
To give some perspective, the highest team run production in this era was
6.228 runs per game (the 1999 Cleveland Indians), the lowest was 2.858
(the 1968 Chicago White Sox), and the average was 4.323. The standard
deviation is 0.563 runs per game. Remember that the standard deviation is
the RMSE for the simplest of models, picking the average (4.323) as the
estimate for all teams in all years.

TABLE 8-6 RMSE:s for Various Models of Team Run Production per Game (1954-1999)



RMSE

Made! Abbraviation T¥pe (Runs/Gamea)
Regression (without 5F) LSLR Additive .1423
Runs Created (Tech-1) RC/G Product 1458
Linear Weights LWTS/G Additive 14849
’Esopo-Lefkowitz Scoring Index oLsl Froduct 1626
Batter's Run Average BRA Product .1565
Total Average TA Additive 1681
Runs Created (Basic) RCAG Product 1585
On-Base plus Slugging OFs Additive .15495
Slugging Percentage SLG Additive 2175
On-Base Percentage OBF Additive L2029
Batting Average AVG Additive Ale9

We notice right off the bat that the MLB sanctioned models (AVG, OBP,
and SLG) provide the worst correlation with run production. Still, as poor
as AVG, SLG, and OBP are as estimators, they do reduce the RMSE
substantially, from .563 down to the .3 to .2 runs per game range. Major
improvements are found by adding OBP and SLG to obtain OPS, or by
multiplying them to obtain BRA. From this point on, improvements in
estimation are much less dramatic, no more than a reduction of RMSE from
.16 to .14 runs per game. OPS and BRA have definite advantages in the
simplicity of their calculation (especially if SLG and OBP are already at
hand), but the four additive and product models at the top of the list have
the edge when it comes to fit (lower RMSE). DLSI and LWTS/G have
additional credibility because of their construction through a logical
analysis of the effect of plays within games. The regression model has the
best fit, but this is really a fait accompli, since the model was designed from
this same data.

Player Evaluations in the Best Models

Despite the differences in these models, they demonstrate a remarkable
similarity in their relative evaluations of players. Let’s look at the 740
players with more than 5000 plate appearances through the 1999 season.
Figure 8-7 plots the evaluation of these players by the Runs Created model



vs. the Linear Weights model. Each point represents the evaluation of a
player’s hitting career using the two models. Several players with
extraordinarily high evaluations (Ruth, Williams, Gehrig, Hamilton, and
Thomas) are noted. We see that both models place these players at
extremely high levels. The other players form a very tight band; when
LWTS/G rates a player highly, RC/G does so as well.
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FIGURE 8-7 Career player run production estimated by the Runs Created and Linear Weights
models.

The line shown in Figure 8-7 is the best line fit of the player evaluations
by the two models. If we examine the variation of RC/G player evaluations
about this line, we find that the differences between the RC/G evaluation
and the line have a standard deviation of .17 runs per game. This means that
using LWTS/G, we can predict the RC/G measure to within .17 runs per
game for two-thirds of the players and within .34 runs per game for 95
percent of the players. Given that RC/G player evaluations can range from 2
to 14 runs per game, this is very good agreement.

There is some indication that LWTS places greater value on speed than
RC does. We have identified three players whose RC/G evaluations are low
given their LWTS/G evaluations: Billy Hamilton, Barry Bonds, and Rickey



Henderson, all exceptionally good runners. Other players with similar
LWTS/G ratings have higher RC/G ratings.'”

One way to examine this in more detail is to create a residual plot,
which shows the difference between the actual value and a predicted value.
Here, the residual is the difference between the actual RC/G player
evaluation and the RC/G evaluation predicted from LWTS/G (represented
by the line in Figure 8-7). Figure 8-8 presents the residual plot for the best
line in Figure 8-7.
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FIGURE 8-8 Career player run production: RC/G residuals vs. RC/G values predicted by LWTS/G.

As an example, consider Lou Gehrig. The RC/G evaluation of Gehrig’s
run production is 11.84 runs per game. The LWTS/G evaluation of Gehrig’s
run production is 5.661 runs per game above average. The best line in
Figure 8-7 says that RC/G and LWTS/G are so closely related that a good
estimate of a player’s RC/G can be found from LWTS/G using the
following formula:

RC/G estimate = 4.41 + 1.1914 x LWTS /G
For Gehrig, this means that:



RC/G estimate = 4.41 + 1.1914 x 5.661 = 11.15

The residual for this estimate is simply the difference between the actual
RC/G evaluation (11.84) and the RC/G estimate predicted by LWTS/G
(11.15) or .69 runs per game. As we can see from Figure 8-8, this is a very
large residual compared to most others, which lie between %.4 and +.4 runs
per game. So, even though RC/G and LWTS/G both agree that Gehrig had
one of the best offensive records of all players, there is some disagreement
over the degree to which it was better.

What the residual plot allows us to do is to investigate the departures
from the best line in Figure 8-7 in greater detail. We have noted some other
players with large negative residuals—including Hamilton, Bonds, and
Henderson, who have large departures from the line. Now the residual plot
allows us to see other players whose RC/G values are below the best line in
Figure 8-7, and several are likely to be familiar to contemporary fans: Vince
Coleman, Eric Davis, Joe Morgan, Tim Raines, and Dave Lopes were all
speedy players. The plot provides further evidence that LWTS and RC
appear to differ over the value of speed (e.g., stolen bases) in producing
runs.

The residual plot has an added interesting feature. Looking back at
Figure 8-7, we might have noticed some slight curvature in the relationship
between RC/G and LWTS/G. If the relationship were straight we would
expect the best line to shoot right through the cloud of points, with some
points below the line and others above it in all areas of the plot. However,
points on the extreme left end of Figure 8-7 and those at the extreme right
end (e.g., Ruth, Williams, Gehrig) tend to be above the best line. Does this
tell us the relationship is not a straight line, but curves instead? The residual
plot in Figure 8-8 confirms this.The line in that plot indicates a smooth fit
that balances points above and below. This line indicates the true curved
nature of the relationship, and makes it easier to see by accentuating the
curvature. (Still, looking closely at Figure 8-7, one can see the curvature
there as well.)

What is the reason for this curvature? Both models fit team run
production data very well and seem to agree very well in the general player
evaluations. But disagreement between the models tends to increase as we
depart—in either direction—from the average players. And this seems to be
especially true for the Olympian players such as Gehrig.



Player Evaluations on an Average Team

Perhaps the reason for the discrepancy between the results predicted by the
RC/G and LWTS/G models lies not with the models themselves but with
how they are applied to evaluate players. The LWTS model, when applied
to player data, rates the player on how many more runs are created by the
player than by an average player. In Figure 8-7, we see that it is possible for
a player’s LWTS rating to be negative. That is, the player produces fewer
runs than the average player. Of course, in Figure 8-7, we were looking
only at players who had substantial major league careers, so the great
majority had to be productive offensively. Players with negative ratings
(such as the infielders Mark Belanger, Ozzie Guillen, Larry Bowa, Don
Kessinger, and Bobby Richardson, as well as the catchers Jim Hegan and
Bob Boone) must have had very valuable defensive skills in order to
compensate for their lack of run production.

All product models (such as RC) take a different approach. They
evaluate the player not relatively (with respect to an average player) but
absolutely—in isolation, not within any standard context. The player is
evaluated in accordance with how well a team composed exclusively of that
player would produce runs. Therefore, product models always produce a
positive result for their evaluation of players. They estimate the cumulative
number of runs produced, while LWTS estimates a differential between this
player and the average player. The advantage to the RC method is that it is
not necessary to find or define a standard against which to evaluate each
player.

Unfortunately, there is a down side to product models as well. They tend
to be unrealistic for players at either end of the offensive production
spectrum. Let’s look at a very extreme example in recent memory, Mark
McGwire in 1998. Not only did McGwire hit home runs at a record pace in
1998, but when he wasn’t trotting around the bases he very frequently
walked to first base. McGwire had 162 walks (which outnumbered his 152
hits); next highest in walks was Barry Bonds, with 130. The reason, of
course, for walking McGwire is to avoid his power and leave it to the next
man in the lineup to knock in the runs.

But what if the next batter in the lineup is ... Mark McGwire? The walk
then becomes an extraordinarily effective force in producing runs. There is
really no rationale for pitching carefully and giving the previous batter



(Mark McGwire) a walk just so you can face the next batter (Mark
McGwire) with an additional runner on base. This is just the situation
created when the product models are used to estimate the cumulative
number of runs produced by a lineup consisting of one player. The method
evaluates players in a context which is outside the realm of possibility
(imagine a team of McGwire clones!) and so exaggerates the effectiveness
of players at the extreme ends of offensive productivity.

Figure 8-9 is a plot similar to that in Figure 8-7 except that the players
evaluated are those from the 1998 season with 100 or more at bats. The
figure displays the same curvature as seen in Figure 8-7. The residual plot
in Figure 8-10 (constructed from Figure 8-9 just as the residual plot in
Figure 8-8 was constructed from Figure 8-7) emphasizes this curvature.
Mark McGwire and Larry Walker stand apart from all other players in both
figures. The curvature is a result of the players being evaluated by RC/G
with respect to teams composed only of that player in isolation. Is it
possible to use RC/G to evaluate a player in the more appropriate context of
an average team?
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FIGURE 8-9 1998 player run production estimated by the RC and LWTS models.
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FIGURE 8-10 1998 player run production: RC/G residuals vs. RC/G values predicted by LWTS/G.

Let’s see what happens if we analyze these players using RC/G with a
different method. We will do this analysis within the context of an average
team in 1998. Table 8-7 summarizes the steps in the calculation of the data
used. The second column of Table 8-7 shows the average statistics for a
team in 1998. These values were obtained simply by dividing the Major
League totals by 30, which is the number of MLB teams. The last line of
the table is the number of outs estimated from the data, calculated as
follows:

TABLE 8-7 Offensive Data for Average 1998 Team If Mark McGwire Replaced an Average Player



Team Without Ave. Team Avg. Team With Mac

Play Avg. Team MeGwire ! Avg. Player With Mac Minus Avg. Team
AB 5570.6 509 5096.5 E&05.5 34,9
H 1483.0 1652 1366.7 1508.7 25.8
2B 291.3 21 266.5 287.5 3.8
3B 20,0 0 27.4 27.4 -2.6
HR 168.8 70 154.4 224.4 56.6
BE 548.2 162 501.6 663.6 115.3
HBP 52.9 6 48.4 54.4 1.5
IBB 356 28 325 60.5 25.0
5B 109.5 1 100.1 101.1 -8.3
cs 50.1 0 45.9 45.9 -4.3
SH 56.8 o 52.0 52.0 -4.8
SF 46.7 4 428 46.8 0.0
Duits 4241.3 361 3880.3 4241.3 ]
RUNS CREATED . . 770.44 950.48 180.04

Outs =AB-H + CS + SH + SF

Using this formula, we estimate that the 1998 Average Team had 4241.3
outs in the season:

Average team outs = 5570.6 — 1482.97 + 50.13 + 56.83 + 46.73 = 4241.3

Now what would happen if we replaced an average player on this team with
the 1998 version of Mark McGwire (something every GM dreams of).
Since the number of outs a team has in a season should be relatively fixed,
we will do this by preserving the number of outs the average team had in
the 1998 season. The third column lists McGwire’s impressive 1998
offensive data. Using the same formula, we estimate that McGwire required
361 outs to achieve his totals:

McGuwire outs =509 =152 + 0+ 0 + 4 = 361

We will now replace one average player on the 1998 Average Team with
Mark McGwire. To do this, we will first calculate what the 1998 Average
Team’s data would look like if we subtracted one average player with the
same number of outs as McGwire had in 1998. So, removing this one



average player reduces the Average Team’s data by a percentage equal to
McGwire’s outs divided by the Average Team’s outs, or:

361/4241.3 = 8.5%

The fourth column of Table 8-7 shows the data for the 1998 Average Team
with one less average player. Each value is simply 100 percent — 8.5 percent
= 91.5 percent of the 1998 Average Team values in the second column of
the table.

Now, in order to see what the 1998 Average Team would have been like
with Big Mac replacing one of its average players, all we have to do is add
Mac’s data in column 3 to the reduced team data in column 4. The resulting
data are shown in the fifth column of Table 8-7. Notice that the number of
outs is exactly the same as that for the 1998 Average Team in the second
column of Table 8-7.

Out of curiosity, we might want to see how much this team differs from
the 1998 Average Team. These results are displayed in the sixth column.
They were calculated by subtracting the second column from the fifth
column. The Average Team with Mac would have had about 35 more at-
bats and 26 more hits. This is because McGwire had a better-than-average
chance of getting a hit, so an equal number of outs produces more hits and
thus more at-bats. With Mac, the Average Team would have had a
whopping 56 more home runs and 115 more walks, approximately 33
percent and 20 percent increases, respectively. Incredibly, the number of
intentional walks would increase by about 70 percent.

We are now ready for the final steps. First, we apply the RC formula to
the data for the 1998 Average Team without one average player (fourth
column of Table 8-7):

(H+BB+HBP-CS-GIDP) [TB + 26 (BB -IBB + HBP) + 52 (SH + SF + SB))
AB + BB + HBFP + SH + S5F

RC =

Doing this, we find that this team is expected to generate a total of 770.44
runs using 3880.3 outs. The next step is to apply the RC formula again, this
time to the data for the 1998 Average Team with McGwire (fifth column of
Table 8-7). We find that this team is expected to generate a total of 950.48
runs using 4241.3 outs.

So we conclude that when his performance is considered within the
context of an average team in the 1998 season, McGwire would add 950.48



— 770.44 = 180.04 runs using 361 outs, the difference between the runs the
team would be expected to score with and without him. Since 361 outs is
equivalent to 361/27 = 13.37 games, McGwire’s contribution is
180.04/13.37 = 13.47 runs per game. This is 1.36 runs per game less than
the 14.83 value estimated by James’s standard method for evaluating
individual players.'® So, placing McGwire within a realistic team context
reduces his RC/G estimate by almost 10 percent.

To what extent are other players affected by making a similar
adjustment? Figure 8-11 plots the change in Runs Created per Game for
each player vs. the original Runs Created per Game estimate. What has
happened is that the adjusted RC evaluation method has reduced the RC/G
estimates for the best and worst players while providing little or no effect
on those more typical players in the center of the spectrum.
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What are the implications of this adjustment relative to the
comparability of the RC and LWTS evaluations of players? Figure 8-12
replicates our analysis from Figure 8-9, except that that Figure 8-12 uses the
adjusted RC player evaluation method instead of James’s standard method.
A new best line is plotted, and it now appears to go straight through the



points, with no bend in points above the line at the extreme ends. This is
confirmed when we examine the adjusted RC/G residuals in Figure 8-13.
Not only is the plot flat, with no evident curvature, but the spread of the
points has been reduced as well.
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This analysis indicates that much of the difference between the Linear
Weights and Runs Created models lies not only in the models themselves,
but how they are used to evaluate players. Also we see that each model has
its advantages. If we wish to evaluate players, the Linear Weights model is
simpler than the Runs Created model. However, the Runs Created model
has greater flexibility in its ability to analyze run production beyond the
context of an average team. And yet even with these differences, there is a
strong correlation between:

1. each model with team runs scored; and

2. the two models themselves.

Thus, in evaluating players, a fan can’t go too far wrong using either of
these models for evaluating players.

Sorting Out Strengths and Weaknesses

Let’s review what we have learned about evaluating players:



1. The batting performance of players should be measured with respect to
the number of runs they contribute to team offense.

2. If these player evaluations are normalized with respect to the number of
opportunities the player had to produce offensively, the number of outs
is a better measure than at-bats or plate appearances for this purpose.
Number of outs can be converted to equivalent games by dividing by 27
(a theoretical standard).

3. The standard measures used by Major League Baseball and the media
were the worst evaluators of offensive performance among those
reviewed.

4. A model’s correlation with runs produced by teams in a season is an
important measure to establish its capability to estimate run production.
However, to blindly use one model over another just because its
correlation is higher (or its predictive error is lower) is not wise. The
model should be checked to insure that its structure is a logical
representation of our understanding of baseball.

5. A simulation model (the DLSI model) emulates the most basic elements
of baseball play in such a way that run production can be reasonably
modeled without the need to actually play out the simulation using
random number generators.

6. Models can be described as either additive or product. Product models
are a better reflection of the curved nature of run production, but
additive models are simpler to use in evaluating players.

7. The best of the additive models (Linear Weights) and product models
(Runs Created) are related to logical constructs derived from actual
baseball play. Linear Weights are constructed from data analyses and
simulation, while Runs Created is related to the basic equations of the
D’Esopo-Lefkowitz model. These two models are strongly correlated in
their player evaluations, especially after the Runs Created model is
applied in the context of an Average Team.

There are many issues we have left unresolved. Much of this book places
great emphasis on the difference between observed performance (e.g., a
player’s batting average in a season) and ability (e.g., the underlying
probability of getting a hit). These past three chapters have focused on



reducing the standard multidimensional array of observed player offensive
data into a single value that is strongly correlated with runs scored. We have
not discussed the relation of this value to some underlying parameter for a
player’s ability to generate runs. Actually, it is not too difficult to calculate
confidence intervals for such a parameter for many of these measures.

We have also skirted the issue of adjusting player evaluations for
different playing conditions. This issue as it relates to comparing players
from different eras is a cottage industry in itself, with many worthy
publications that address the topic. Interested readers may wish to examine
books such as Michael Schell’s Baseball’s All-Time Best Hitters to see how
this question has been addressed.

However, if we rank players within each decade as we did for many
measures in Chapter 6, we are in essence making a gross adjustment for the
nature of the game in each decade. Given the capabilities demonstrated by
the Runs Created model, the list of outstanding hitters in Table 6-14 is a
very reasonable compilation of the 36 greatest career performances in
generating runs. As great as these players were, many were dogged by the
question of whether they produced in clutch situations. (As followers of the
Phillies, we well remember fellow Philadelphians’ doubts about Mike
Schmidt in this regard—that is, until he led the Phillies to a World
Championship in 1980.) In Chapter 10, we will examine the clutch hitting
issue and put some of the work in Chapter 7 to use in attempting to quantify
contributions to winning.

1 This is an excellent work, now out of print but probably still obtainable in many college libraries.
The techniques presented by many papers in the collection are as relevant today as when they were
published more than two decades ago.

2 Note that the model does not consider the case where a batter reaches first base on a fielder’s
choice as an on-base event.

3 We use the notation f;; where n indicates the number of bases for the hit involved and n = 0 for a
walk or hit by pitcher
4 To simplify, we will use BB to symbolize a walk or hit by pitcher. Both have the same effect.

5 Many will recognize this as a negative binomial distribution for the number of players who get on
base before 3 outs occur. The simplified model assumes that all outs occur from batters, not
runners. A batter is either out or safe on base.

6 D’Esopo and Lefkowitz used a slightly more involved estimate for p. Their estimate was also
based on OBP, but it added errors and subtracted double plays from the numerator. In addition, it
added sacrifice flies to the denominator.

7 A bar over a symbol is often used to denote the average value, as in the average number of base
runners in an inning here.
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See the essay on manager Fred Haney and the 1959 Milwaukee Braves in The Bill James Guide to
Baseball Managers for a wonderful description of how such a great team as the Braves of this
period could have been upset in their quest for a third consecutive National League title.

Using RMSE tests such as those in Chapter 6, we find DLSI to be one of the best models tested. It
has smaller RMSEs than the basic Runs Created formula (which uses a comparable set of data),
but larger RMSEs than Runs Created Tech-1, which has the advantage of using more data (e.g.,
stolen bases, caught stealing, sacrifice flies).

The top on-base profiles included such recent teams as the 1994 Cleveland Indians and the 1997
Seattle Mariners, as well as the legendary 1961 New York Yankees, with Maris and Mantle (which
had the highest fraction of home runs, f4 = 11.8 percent). Apparently, one factor that separates the

1947 Giants from these other high on-base profile teams is their higher fraction of triples, possibly
a result of the unusually deep center field of the Giants’ home park, the Polo Grounds. The 1990s
included some teams with low production on-base profiles; the two lowest were the Los Angeles
Dodgers and the Boston Red Sox, both from 1992.

Not only did these White Sox play during the deadball era, but their home field, South Side Park,
was “the poorest hitting field in major league history” according to Michael Schell in Baseball’s

All-Time Best Hitters.

These last two observations—on home runs and doubles—were suggested by David Grabiner in
personal correspondence.

The fifth highest total in this century and the highest since the Boston Red Sox posted 1027 runs
in 1950.

The number of innings was estimated by multiplying the number of games by 9.

According to The Hidden Game of Baseball, Palmer’s simulation produced lower SB values,
closer to .20 runs. He raised the value to .30 runs since he was persuaded that stolen bases were
more apt to occur in close games than they were to occur randomly as assumed in his simulation.
This rationale for increasing the SB value is weak, whether a game is close or not does not enter
into run production. It is possible that stolen bases occur more frequently in base-out situations
(such as runner on first base and two outs) when the extra base has more value. Within the context
of Palmer’s model, this rationale for increasing SB value makes more sense than the “close game”
argument he gave in The Hidden Game of Baseball.

Apparently, James has developed a similar method for adjusting his Runs Created evaluation for
individual players. We have not seen the method, but the description in the 1999 Big Bad Baseball
Book indicates that it follows principles similar to those presented here, except that at-bats rather
than outs are used as the basis for player replacement.

OceanofPDF.com


https://oceanofpdf.com/

Chapter 9
Making Sense of Baseball Strategy

Jim Albert and Jay Bennett

Our primary goal in the last three chapters was to measure offensive
performance. In the process of doing this, we compared a number of
classical and modern measures of hitting performance. Also, we introduced
some statistical tools that are helpful in evaluating other baseball issues. In
this chapter, we’ll show how these same tools are helpful in making sense
of three popular Major League strategies.

What’s Wrong with Baseball?

In his November 23, 2002, ESPN.com column, entitled “Things Wrong
with Baseball,” Peter Gammons listed 25 “traditional things” that bother
many people who care about the game. We admit to being bothered by
some of them ourselves. For example, one of the 25 items was listed as
“Players who slide into first base.” It reminded us, of course, of a favorite
player, Roberto Alomar, who slides into first instead of running through the
base. Whenever we see this, we always think: Isn’t it obvious that you can
reach first base quicker by running through the bag? Then there’s the item
about “the best-of-five Division Series.” To put it bluntly, we don’t like that
either. We think an important playoff series, in order to be meaningful,
needs to be best of seven—we’ll talk about the whole issue of playoff
series, and in particular the World Series, in Chapter 12.

But our real reason for bringing up the Gammons list of irritating things
about baseball is to point out that three traditional and well-established
baseball tactics—the sacrifice bunt, the intentional walk, and stealing—
seem to get under the skin of a lot of fans. Here are the relevant items from
the list (with our emphasis added):



1. Major League teams that bunt before the seventh inning.
2. National League managers who intentionally walk the eighth hitter.

3. One National League GM insists, “We need stricter consequences for an
intentional walk.”

4. Meaningless steals of third base.

Note that the first item refers to bunting—in the Big Leagues, mainly
done as a sacrifice move, in order to advance a runner. The second and third
items of course bring to mind the awesome Barry Bonds, who was given far
more than his share of free passes to first in the 2002 season. (In the third
item, the unnamed general manager is suggesting that the pitching team
“pay” for the intentional pass by having all base-runners advance, even
when they are not forced.) Lastly, the fourth item addresses the issue of
stealing bases—under what circumstances does it pay off? (We devote most
of our discussion in this chapter to stealing second base, but we do address
steals of third.)

Our intent here is to critically examine these time-honored baseball
strategies. George Lindsey, in his famous 1963 paper, was one of the first
people to look at baseball strategy from a statistical perspective. Using data
collected from the 1959 and 1960 seasons, Lindsey found situations where
attempted steals, sacrifice bunts, and intentional walks were good strategies.
Our technique here is to introduce some of the calculations used in
Lindsey’s analysis, and provide some insight about the value of the
strategies.

Lindsey’s Run Potential Table

To get started, let’s recall Lindsey’s analysis of play-by-play data described
in Chapter 7. Using records compiled by his father, Lindsey found the
distribution of runs scored for each of the 24 possible bases-outs situations.
(See Table 7-4, where the bases occupied and number of outs, taken
together, define 24 distinct situations.) We can summarize the run
distributions by the expected runs or run potential table shown in Table 9-1
—the entries in the table represent the expected or average number of runs
scored in the remainder of the inning in each of the 24 situations. We see
from the table that at the beginning of an inning, with no runners on and no



outs, a team will score on average .461 runs in the remainder of the inning.
As the inning progresses, batters will get on base or create outs. Each
change in the bases occupied or the number of outs will change the team’s
potential to score runs. The best offensive situation, as one would expect, is
bases loaded with no outs —a team will score on average 2.220 runs in the
balance of the inning. In contrast, it is tough to score runs when there are no
runners on and there are 2 outs—in this situation, a team will score on
average only .102 runs in the remainder of the inning.

Table 9-1 Run Potential Table (Expected Number of Runs Scored in Remainder of Inning), Using
Data from the 1959 and 1960 Seasons (Lindsey, 1963)

OUTS BASES OCCUPIED

None ) 2 3 12 13 22 Full

] 0.481 0813 1.194 1.380 1.471 1.244 1.9&0 2,220
1 0.243 0.4%8 0.671 0.980 0.939 1.115 1.560 1.642
2 0.102 0.219 0.297 0.355 0.403 0.532 0.687 0823

Old vs. New Data

Although it is nice to recognize Lindsey’s contribution from a historical
point of view, it is reasonable to ask how valuable is a table based on data
collected over 40 years ago. Or, to put it another way, does Lindsay’s
analysis have any bearing on baseball strategy in 2002? To answer these
questions, Table 9-2 presents the run potential numbers from play-by-play
data for the entire 2002 baseball season. (These data appeared in an article
by Derek Zumsteg, a Baseball Prospectus writer, in an ESPN.com article on
October 18, 2002.) Comparing Table S5-1 and Table 95-2, we see some small
differences, but the values in the two tables are remarkably similar, and as
we move from one situation to another, we see the same general patterns.
To be consistent with the work of Chapter 7, we will use Lindsey’s run
production table in our stolen base and sacrifice bunt analyses, with the
understanding that similar conclusions would be reached if we used the
2002 table. (For our discussion of the third strategy—the intentional walk—
we’ll focus on Barry Bonds, so the data used will be from 2002.)

Table 9-2 Run Potential Table (Expected Number of Runs Scored in Remainder of Inning), Using
2002 Season Data



oUTS BASES OCCUPIED

Naone ) 2 3 12 13 22 Full
0 0.511 (.896 1.142 1.405 1.511 1.838 1.254 2,332
1 0.272 0.536 0.682 0.944 0.936 1.185 1.358 1.510
2 0.101 0.227 0.322 0.363 0450 0524 0633 0.6

A Second Important Table

The run potential matrix is particularly useful in the early to middle innings
of a game when the team is trying to score as many runs as possible. In
these innings, it is reasonable to choose strategies that maximize the
average runs scored.

However, in the late innings, the score of a game may be close and a
team may be primarily interested in scoring just enough runs in an inning in
order to tie or win the game. For example, if a team is losing 2—1 in the
eighth inning, the objective is to score at least 1 run to tie or take the lead—
a manager is less interested in scoring as many runs as possible. In these
situations, it is helpful to consider the probability of scoring at least 1 run in
all possible situations. Using Lindsey’s distributions of runs scored in Table
7-4, Table 9-3 gives this probability of scoring table in the same format as
the run potential table.

Table 9-3 Probability of Scoring Table, Using Data from the 1959 and 1960 Seasons (Lindsey,
1963)

0UTS BASES OCCUPIED

None 1 Fi ? 1,2 1.3 2,3 Futlt
0 0.253 0.396 0.619 0.8E0 0.608 0.870 0.820 0.B20
1 0.14% 0266 0.320 0.693 0425 0.633 0.730 0eg’
2 0.067 0.114 0.212 0.262 0.209 0.283 0.332 0.329

With the run potential table and probability of scoring table in hand, we
can assess some of these traditional strategies as they are routinely used in
the Major Leagues.



Stealing Second Base

One of the most exciting plays in baseball is the stolen base. Especially
during World Series and other high-stakes post-season games, television
broadcasters will go to great length to dramatize the situation that unfolds
when a speedy runner reaches first base. With multiple cameras trained on
them, the runner takes a lead, and the pitcher attempts (or feints) to pick
him off. The situation is much like a chess game. The pitcher may decide to
pitch out (throw a pitch outside the strike zone), with the hope that the
runner will attempt to steal and the catcher will have a good opportunity to
throw the runner out at second base. The runner may also repeatedly fake a
steal attempt, trying to distract the pitcher from the batter he’s facing. The
second baseman and shortstop are also on their toes, ready to move if the
runner tries to steal second. If the runner breaks towards second, the hitter
may swing at the pitch to distract the catcher and help the runner reach
second base safely. In other words, there’s a whole lot going on.

But is stealing second base a productive winning strategy for a team? Or
is it one of those plays that’s run more to just spice up the game—say, by
glorifying a particular fast runner? To work toward an answer, we can take a
look at the base stealing data from the 2002 season. Figure 9-1 shows a
dotplot of the season’s stolen bases totals for all 30 teams, broken down by
league. (A dotplot is a graph on which each data value is represented by a
big dot on the number line.) It is interesting to note the wide spread in the
numbers—Florida (the rightmost dot in the NL) stole 177 and, in contrast,
Oakland (leftmost dot in the AL) stole only 46.
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STOLEM BASES

Figure 9-1 Stolen bases for the 30 Major League teams in the 2002 season.



What could explain the wide variation? Maybe teams that can’t score
lots of runs with thin bats feel they need to steal bases to be competitive,
while teams that can score many runs with walks and extra-base hits don’t
need to steal bases. To see if there is a relationship between runs scored and
the number of stolen bases, we constructed the scatterplot shown in Figure
9-2.
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Figure 9-2 Scatterplot of number of runs and number of stolen bases for all teams in the 2002
season.

There isn’t any well-defined pattern in the scatterplot, which means that
over a whole season, there doesn’t appear to be any general relationship
between the number of runs a team scores and the number of bases it steals.
It is interesting to note, though, that the worst-scoring team, Detroit, was
also pretty poor at stealing bases. One could speculate that the Tigers didn’t
steal very much because the team didn’t have players who were good at
stealing. Or perhaps it was the fact that the managers (yes, they had more
than one manager in 2002) didn’t think that the stolen base was an effective
strategy for scoring runs.



One likely explanation for the wide variation in stealing between teams
is that some managers believe that stealing is an effective strategy, and
other managers don’t. In addition, some teams have (and recruit and train)
players capable of stealing, and other teams don’t. Nonetheless, the
question remains ...

To Steal or Not to Steal

Here we focus on the issue of stealing as an effective strategy. Consider a
typical game situation: A runner on first with no outs. Should the runner
steal second?

Looking at Table 9-1, we see that when the runner is standing at first
base with no outs, then the run potential is .813. So, on average, the team
will score about four—fifths of a run in the remainder of the inning. This is
the run potential for the runner currently on first base, and it includes the
impact on that runner of base hits, outs, stealing, and other subsequent
events.

What happens, though, if the runner attempts to steal second? Suppose
he is successful—then the new situation is “runner on second with no outs”
and the new run potential (looking at Table 9-1) is 1.194. So the team has
gained 1.194 — .813 = .381 runs with this successful steal.

At the other extreme, suppose that the baserunner attempts a steal and is
thrown out at second. The new situation, in this worst-case scenario, is “no
runners with 1 out,” which has a run potential of .243. Comparing this with
the initial (“pre-steal”) run potential of .813 runs, we see that the cost of this
unsuccessful steal attempt is .813 — .243 = .570 runs.

Actually, neither of the two situations described above, taken singly,
presents the complete picture. A good baserunner will generally be
successful in stealing second, but occasionally he will be thrown out. In an
attempt to model this fact, we can describe a base runner’s ability to steal
using a number p, the probability that he will steal successfully. It then
follows that 1 — p is the probability he will be thrown out at second base.

Figure 9-3 shows the two possibilities (stealing successfully or being
thrown out), the probabilities of the two outcomes, and the run potential of
the final situation.



P __— STEAL (RUN POTENTIAL = 1.194)

- T~ THROWN OUT AT SECOND (RUN POTENTIAL = 0.243)

Figure 9-3 Two outcomes and run potentials of the “attempted steal” strategy.

If the runner attempts many steals, then 100 X p percent of the time,
he’ll be successful and 100 x (1 — p) percent of the time, he’ll fail. The
expected or average run potential of this base runner will be:

RUN POTENTIAL = [p x (run potential if he succeeds)| +

[(1 — p) x (run potential if he fails)]

[p x (1.194)] + [(1 — p) x (0.243)]

Figure 9-4 graphs this RUN POTENTIAL for different values of the
stealing probability p. This is the diagonal line in the figure. The horizontal
line represents the run potential for the team (.813) if the base runner does
not attempt to steal.

1.1 |
Stealing does Stealing helps
hat .I'Ir-'fl'J
1.0
0.9 | |
I
I
|
08 7 :
w /
=
= Q.7
e’
Lad
0 = = = = The gain
LEL 0.6 . T S The cost
05 0.6 0.7 0.8 0.9

FROBABILITY OF STEALING SAFELY



Figure 9-4 Graph of the run potential of the “attempted steal” strategy for different values of the
stealing probability.

Attempting to steal will be a good strategy when the diagonal line is
above the horizontal line in Figure 9-4. This will happen when p, the
stealing probability, is above .60. When p is smaller than .60, the stealing
strategy will cost the team some runs.

What are typical values of p, the probability of stealing second base
successfully? Figure 9-5 shows a dotplot of the probabilities of successful
steals for the 30 teams in the 2002 season. Although there is a lot of
variation in these numbers, it seems that 70 percent is a typical value.
Looking at Figure 9-4, we see that the gain in the “attempted steal” strategy
is approximately .1 when p = .70. So, from an expected runs perspective, it
makes sense to steal (with a runner on first and no outs) if a player has an
average stealing probability.

0.56 .60 0.64 0.68 0.72 d.76 .80

STEALING FROPORTION

Figure 9-5 Successful stealing proportions for the Major League teams in the 2002 season.

A Different Criterion

The analysis of stealing as a strategy that we’ve presented so far may be
criticized by some people because we assume a team is attempting a steal
because it wishes to maximize the number of runs scored. But maybe the
team is attempting to steal to improve the chances of scoring at least 1 run.
This is clearly the objective late in a game with the score tied or one team
down by just 1 run. Does a steal attempt make more sense if scoring at least
1 run is the purpose?

To check this out, we repeat the above calculations using the probability
of scoring data presented in Table 9-3.

With a runner on first and no outs ...

e The probability the team will score at least 1 run is .396.

e [f the runner attempts to steal and is successful with probability p, the
chance the team will score at least 1 run is [p % (.619)] + [(1 — p) X



(.145)]
Attempting to steal second base is a good strategy when the probability
of scoring using this strategy exceeds the probability of scoring when the
runner stands on first. In math-talk, this is:

[p x (.619)] + [(1 = p) x (.1145)] > .396

In Figure 9-6, we graph the probability of scoring under the two
possible strategies.
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Figure 9-6 Graph of the probability of scoring in an attempted steal of second with no outs for
different values of the probability of stealing safely.

Note from Figure 9-6 that it is beneficial to try to steal second base
(from the viewpoint of scoring at least 1 run) when the stealing probability
is larger than .53. For a slow runner with stealing probability of .55, note
that it is not beneficial to try to steal second base if the goal is to maximize
the number of runs scored. However, if the goal is to maximize the chance
of scoring, it is advantageous to try to steal. This illustrates an important
point. The best strategy in baseball will depend on what a team considers



important in the given situation. In the early innings, it makes sense to
choose a strategy that will help a team score multiple runs—here they want
to choose a strategy to maximize runs. Late in a close game, by contrast, a
team may be interested in scoring just a single run—here, they would like
to choose a strategy that maximizes the probability of simply scoring.

Stealing in Other Situations

In our discussion, we have only talked about the situation where there is a
runner on first with no outs. What about other bases-outs situations?

In Table 9-4, we summarize all of the calculations for a single runner on
first or second base and 0, 1, or 2 outs. We assume we have a good stealer,
one whose success probability is .75. We compare the two strategies (stay
on the base or attempt a steal) by using both criteria (expected runs and
probability of scoring) for each of the six possible situations. The important
results can be found in the “GAIN” column—a GAIN is the increase in run
potential (or probability of scoring) for the attempted steal strategy, so it
measures the benefit of a steal attempt.

Table 9-4 Run Potentials and Probabilities of Scoring for the “Stay on Base” and “Attempted Steal”
Strategies for a Good Stealer (p = 0.750) for Six Different Bases-Outs Situations

NUMBER
SITUATION OF OUTS RUN POTENTIAL PROBABILITY OF SCORING

Runners Stay on Attempl fo Gain in Slay on Attempt fo kain in

on hase base strategy  steal strategy slealing base strategy  steal strategy stealing
1 1] 0813 0.956 0.143 0.396 0,500 0104
1 1 0.498 0.605 0.107 0.266 0.309 0.043
1 2 0.21% 0.223 0.004 0.114 0.15% 0.045
2 1] 1.194 1.103 0.091 0.619 0.696 0.0y
2 1 0,671 0.760 0.089 0.390 0.537 0,147
2 2 0.297 0.266 0.031 0.212 0.157 D015

This table gives us general indications of when it is smart and dumb to
steal a base. From both a run potential and probability of scoring
perspective, it makes sense to try stealing when there is a runner on first
with 0 or 1 out. On the other hand, it is better to stay on base when there is a
runner on second with 2 outs. However, in one situation, with a runner on



second and no outs, things get interesting. If a team wishes to maximize the
run potential, it is advantageous to hold the runner in this situation. But if
simply scoring is the main goal, it makes sense to steal. (This reminds us of
a lyric from the Kenny Rogers song The Gambler—”You got to know when
to hold ‘em ...”)

The Sacrifice Bunt

The sacrifice bunt is another popular baseball strategy with lots of adherents
as well as some detractors. Here’s the basic situation: A team has a runner
on first with 0 or 1 out. A relatively weak hitter is at the plate. The batter is
instructed to bunt (usually by the third-base coach) with the purpose of
advancing the runner from first to second. The hitter is sacrificing his at-bat,
with the goal of advancing the runner and making it more likely that his
team will score. Moreover, by attempting to sacrifice with a laid-down bunt,
the weak batter is making it less likely that he will hit into a double play.

How often is this strategy currently used in baseball? Table 9-5 gives
the players who had at least 10 sacrifice hits (SH) in the 2002 season. We
indicate in the table if the player was a pitcher or nonpitcher.

Table 9-5 Players with at Least 10 Sacrifice Hits in the 2002 Baseball Season

¥
wame

o 5H

). Wilson, Pit Monpitchar 17 1. Vidro, Mon Nonpitcher 11
G. Rusch, Mil Fitcher 14 K. Millwood, Atl Fitchear

D. Eckstain, Ana Monpitehear 14 M. Mordecai, MonwFla  Pitcher 10
T. Glavine, AH Fitcher 13 R. Durham, CW3S/0ak Monpitcher 10
K. Rueter, SF Fitcher 13 1. Haynes, Cin Fitcher 10
). Cirillo, Sea Monpitchar 13 L. Hernandez, SF Pitcher 10
Q. McCracken, Ari Monpitcher 13 1. Vazquez, Mon Fitchear 10
P. Polanca, PhifstL Monpitehear 13 0. Peraz, LA Piteher 10
K. Wells, Pit Pitcher 13 M. Clement, ChC Pitzher 10
M. Young, Tex Monpitchear 13 T. Perez, NYM Monpitcher 10

R. Walf, Phi Fitcher 12



We see that half of these players are pitchers. This makes sense, of
course, because pitchers are generally weak hitters. However, a number of
nonpitchers had a significant share of the sacrifice hits. Should we be
puzzled by this?

To get some more insight, in Figure 9-7 we plot the number of team
sacrifice hits and compare the two leagues.
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SACRIFICE HITS
Figure 9-7 Number of sacrifice hits by all Major League teams in the 2002 season.

Note that the teams in the NL sacrifice a lot more than the teams in the
AL. This is expected, since the American League uses the designated hitter,
and it is extremely rare that an AL pitcher gets to bat. So it seems that the
sacrifice bunt is used often with weak hitters like pitchers, but we note that
this strategy is still popular among some nonpitchers like Jack Wilson and
David Eckstein.

Sacrifice Bunts in the 2001 World Series

Consider the case of Arizona’s Craig Counsell in the fourth game of the
2001 World Series. This Series, between the Diamondbacks and the New
York Yankees is considered one of the most exciting in Major League
history. In Game 4, there was no shortage of drama and surprise.

In the top of the first inning, the leadoff hitter for Arizona, Tony
Womack, singled to center. Then Craig Counsell, the second batter, was
instructed to hit a sacrifice bunt. The bunt was effective—Counsell was
thrown out at first and Womack advanced to second, but the inning finished
without Womack scoring. In the top of the third, the same situation
developed: Womack opened the inning by getting to first base (in this case,
on a walk), and Counsell moved him to second by sacrifice-bunting.



(Again, Womack didn’t score.) In the top of the fifth, Womack started the
inning with a double. Counsell again laid down a sacrifice bunt, moving
Womack to third. The next hitter, Luis Gonzalez, hit a fly ball, but Womack
was thrown out at home plate, ending the inning.

It appears that the Arizona manager, Bob Brenly, liked to play the
sacrifice bunt in this series. Counsell was instructed to sacrifice his at-bat
three times in order to advance the runner one additional base. But in three
sacrifice-bunting attempts, the Diamondbacks came up empty. Does this
mean, then, that the sacrifice bunt is a dumb play?

Managers Do and Don’t Like to Sacrifice

Before we try to answer this, let’s look at the use of the sacrifice bunt in a
few recent seasons. Table 9-6 presents statistics for all 30 Major League
managers in 2000 (from the Major League Handbook 2001, by Stats, Inc.).
For each team, the table gives the number of sacrifice bunt attempts, the
percentage of time the strategy was successful (in terms of advancing a
runner), and the most popular inning for this strategy.

Table 9-6 Sacrifice Bunt Statistics for All Major League Baseball Managers in 2000
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American
American
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American
American
American
American
American
American
American
American
American
American
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Mational
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Mational
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Matianal
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Mational
Mational
Mational
Mational
Mational
Mational
Mational
Matianal
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Manager

Fregosi
Gamer
Hargrove
Howe
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C. Manual
1. Manuel
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Dates
Finella
Raothsfigld
Jcioscia
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Baker
Baylor
Ball
Bachy
Boles
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We see significant variation in the use of the sacrifice bunt from
manager to manager. Alou, Baylor, Bell, Cox, and La Russa seem to like to
sacrifice, while Torre, Hargrove, and Kelly seem not to favor it. The success
rates for all teams seem close to the median value of 81 percent. It is
interesting that there is considerable variation in the popular inning for the
sacrifice bunt—many managers prefer the third inning, where the bottom of
the order is frequently coming to bat, but other managers seem to prefer
sacrificing in the later innings.

Should Curt Schilling Sacrifice?

Clearly, one of the key factors in deciding whether to sacrifice is the
strength or weakness of the batter. Let’s first consider the situation where a
weak batter, like Curt Schilling, comes to bat with a runner on first with no
outs. Is it a good strategy for him to sacrifice?

If a team is thinking about sacrificing, then it seems that the objective is
to score a single run. So we focus on maximizing the probability of scoring
at least 1 run. There are two possible options for Schilling—either he can
attempt to sacrifice, or he can hit away.

If he attempts to sacrifice, he’ll either be successful in advancing the run
or he won’t. Let’s assume Schilling is a pretty good bunter and he’ll
successfully sacrifice with probability .8. (That value is roughly the average
success rate among the 2000 teams.) Table 9-7 shows how one can compute
the probability of scoring in this scenario. If he succeeds, there will be a
runner on second with 1 out and (from our probability table) the chance of
scoring in that situation is .390. If he fails, the runner will remain on first
with 1 out, and the chance of scoring is .266. Combining these two
possibilities, we see that the probability of scoring if he attempts to sacrifice
is as follows:

Table 9-7 Computation of the Probability of Scoring if Curt Schilling Attempts a Sacrifice Bunt
with Runner on First and No Outs



NEW SITUATION

Frobability af scoring

Muitcome Probability Runners futs runs in that silwalion
Sacrifice successful 0.8 2 1 0.390
Sacrifice fails 0.2 1 1 0,266

Probability of scoring = 0,365
[.8 x .390] + [.2 x .266] = .365

Suppose instead that Schilling decides (or more likely is told) to hit
way. In the last five seasons (1998 through 2002), he has had 341 plate
appearances, with 279 outs, 40 singles, 5 doubles, 1 triple, no home runs,
and 16 walks. Using these data, we can approximate the probabilities of the
different events when he hits away, and these numbers are shown in Table
9-8. Each event will result in a new bases-outs situation. Using our
probability table, we can find the likelihood of scoring in that situation. (We
assume that a single will advance a runner to second, and a double will
score the runner.)

Table 9-8 Computation of the Probability of Scoring if Curt Schilling Attempts to Hit Away with a
Runner on First and No Outs

NEW SITUATION

Probability of scoring

ufcome Frobability Runners quts rons in that situation
Cut 0.818 1 1 0.266
Single 0.117 1,2 a 0.605
Double 0.015 2 0 1.000
Triple 0.003 3 0 1.000
Harme run 0,000 none 0 1.000
Walk 0.047 1,2 0 0.605

Probability of scoring = 0,335



As before, we find the probability of scoring by multiplying the event
probabilities by the corresponding probabilities of scoring, then summing
the products. We arrive at the probability of scoring, if Schilling hits away,
of .335. So what, then, should Schilling do? We compare the probabilities
of scoring in the two scenarios:

e Option 1: Schilling attempts to sacrifice: Probability of scoring = .365
e Option 2: Schilling hits away: Probability of scoring = .335

The answer is clear. Since the probability of scoring is significantly
higher if he sacrifices, that is the right strategy:.

How About Craig Counsell?

Again, the choice of whether to bunt or hot out depends on the batter. When
Craig Counsell comes to bat, we’re looking at a very different hit-away
profile. If we use his data in the 1999-2002 span, we see that he will get out
with probability .651, single with probability .188, and so on. If Craig
Counsell hits away when there is a runner on first with no outs, then the
probability of scoring is .406. (The calculations are summarized in Table 9-
9.) This probability is significantly higher than the probability of scoring
when attempting to sacrifice (.365), so Craig really should not sacrifice.
(Bob Brenly, are you listening?)

Table 9-9 Computation of the Probability of Scoring if Craig Counsell Attempts to Hit Away with
Runner on First and No Outs

NEW SITUATION

Prabability of scoring

thtcome Prabability Ruiners Juis runs i that situalian
Ot 0.651 1 1 0.266
Single 0.188 1.2 0 0.605
Double 0.042 2 0 1.004
fripla 0,008 3 0 1.000
Hame run 0,007 none O 1.000

Walk 0.108 1,2 C 0.605

Probability of scoring = 0,406



The moral here is that only weak hitters should sacrifice if the goal is to
maximize the chance of scoring in an inning, but two comments should be
made about this analysis before we go on. First, we ignored the chance of
hitting into a double play. (Remember that one reason for sacrificing was to
avoid the double play.) We could easily include the possibility of hitting
into a double play if we had reliable data regarding the number of sacrifice
bunt attempts and hit-away attempts that result in double plays. The
inclusion of the double-play possibility would reduce the value of hitting
away and make the sacrifice bunt attempt a little more attractive, but it
wouldn’t change the strategy decisions for Schilling. In the case of
Counsell, we can show that the sacrifice bunt would be the better strategy if
the probability of hitting into a double play when hitting away is greater
than .207.

The second comment is that the sacrifice bunt is a more effective
strategy in situations when a single run has a significant effect on the
probability that the team wins a game. In Chapter 10, we will link the runs
scored during an inning with the probability that the team wins the game,
and it may be best to judge the usefulness of a sacrifice bunt using the
probability of winning measure discussed in that chapter.

The Intentional Walk

In the 2002 World Series, the most talked-about strategy was not the
sacrifice bunt but the intentional walk. This is the third strategy we’ll
discuss in this chapter. Barry Bonds walked 14 times in the 2002 Series,
including 6 intentional walks. Many articles in the sports pages talked about
the wisdom or desirability of the intentional walk strategy. Without doubt,
many fans were disappointed seeing one of the greatest hitters of all time, at
his peak, getting walks. The fans’ reaction was understandable—they were
denied the opportunity to see a booming Bonds home run.

To help us get a handle on the magnitude of the intentional walk
phenomenon as it relates to Bonds, Table 9-10 lists the leaders in intentional
walks for the 2002 season. Bonds received a record 68 intentional walks
and the runner-up, Vladimir Guerrero, received only 32—Iless than half of
Bonds’s total. Mark McGwire, in his record-setting 1998 season, received
only 28 intentional walks, and Ted Williams, in his great 1957 season, when
he hit for a .388 batting average, received only 33 intentional passes. (It



should be noted, however, that intentional walks were only recorded
starting with the 1955 season, so we don’t have intentional walk statistics
for all of Williams’s seasons, or for earlier sluggers such as Babe Ruth.)

Table 9-10 Leaders in Intentional Walks for the 2002 Season

Flayer 188
B. Bondsz, SF B8 C. Delgado, Tor 18
V. Guerrara, Mon 32 R. Palmeiro, Tax 1E
|, Suzuki, S=za 27 5. Sosa, ChC 15
B. Giles, Pit 24 M. Ramirez, Bos 14
C. Jones, At 23 J. Edmaonds, 3tl 14
5, Grean, LA 22 M. Anderson, Ph 14
T. Heltan, Cao 21 E. Chavez, Oak 13
L. Berkman, Hou 20 A, Pujals, StL 13
C. Floyd, Bos/MonvF 15 A, Dunn, Cin 12
1. Thame, Cle 18 A, Redriguez, Tex 12

But is there any measurable way to prove it was good baseball strategy
to walk him? The evidence seems overwhelming—it must have made sense
to walk Bonds. Giving him an intentional pass incurs a cost. With an extra
base runner, the batting team will have a higher potential to score runs. The
pitching team must think that the cost of intentionally walking Bonds is
smaller than the cost of having him swing away. Logic dictates this kind of
cost-benefit analysis.

Compare the Costs

Let’s assume that a team is interested in limiting the number of runs scored
by its opponent in an inning, so they would like to minimize the expected
number of runs scored. Here we will use the run potential table based on
play-by-play data for the 2002 season (Table S-2), since it best represents
the run-scoring ability for an average team in 2002. Using this run potential
table, we have an objective way of comparing the cost of the two possible
strategies, walking Bonds and pitching to Bonds. Let’s illustrate this
comparison for one situation: 1 out with runners on first and second.



Suppose we walk Barry. When he walks, the bases are now loaded with
1 out. The run potential of the beginning situation (runners 1,2; 1 out) is
.936 runs (look at Table 9-2), and the run potential of the new situation
(bases loaded; 1 out) is 1.510 runs. The cost of this walking strategy is
1.510 — .936 = .574 runs, which is about half a run. This is a high cost.

But the team thinks that this cost is lower than the cost of pitching to
Bonds. If we decide to pitch to Bonds, we have to consider what Bonds can
do at a single at-bat.

If he gets to bat and swings, the possible outcomes, along with their
probabilities, are as follows:

Single 1737
Double .0769
Home run 1141
Get Out .6303
Triple .0050

These probabilities are derived from 2002 season data—in 403 plate
appearances, Bonds had 70 singles, 31 doubles, 46 home runs, 254 outs,
and 2 triples. To find the cost of having Bonds swing away, we first find the
cost of each possible batting outcome. If Bonds singles, for example, we
compute the value of this play by looking at the difference in run potentials
in the before and after states and adding the number of runs scored on the
play. This computation is called the GAIN in Table S-11. After we do this
for each possible batting play, we multiply the gains by the corresponding
probabilities of the batting events, and add the products to get the cost.

Table 9-11 Computation of Cost of Having Barry Bonds Hit Away with Runners on First and
Second with 1 Out



NEW SITUATION

Fun potential Run potential  Runs scored

Outcame Probability Rumners Outs of starfing stafe  of final sfafe on play Gain
Ot 0.630 1,2 2 0,936 0,450 Q —0.486
Singla 0,174 1, 2 1 (0,936 0,936 1 1.000
Double 0.077 2 1 0.936 0.682 2 1.746
Triple 0.005 3 1 0.936 0.944 2 2.008
Hame run 0.114 Meone 1 0.936 0272 3 2.336
Cost = 0.278

In this particular case (runners on first and second with 1 out), we find
that the cost of pitching to Bonds is .278 runs.

Which is a better strategy in this case? The cost of an intentional walk
was .574 runs and the cost of pitching to Bonds was .278 runs. The
difference in costs is:

Cost of intentional walk — Cost of swinging Bonds = 574 — 278 = .296

So actually, it is better in this case to pitch to Bonds and have him
swing. To put it another way, we gain, on average, about .3 runs by pitching
to Bonds instead of walking him. (And the GAIN is even higher if double
plays are considered.)

We repeated this type of calculation for all 24 bases-outs situations and
computed the difference in costs between the intentional walk and pitch to
Bonds strategies. These differences are shown in Table 9-12—remember
that a positive value means that the intentional walk strategy is more costly.

Table 9-12 Differences in Costs Between the Intentional Walk and Pitch-to-Bonds Strategies: A
Positive Value Indicates That the Intentional Walk Strategy Costs More Than the Pitch-to-Bonds
Strategy

ouTsS BASES OCCUPIED

Noae i 2 K} 12 i2 2 3 Furff
Q 0.30 0,48 0.29 0.65 0,45 0.49 0.31 0,99
1 0.18 0.23 0.07 0.30 0.29 0.25 0.08 0.80

0.04 0.02 -0.11 -0.02 -0.04 -0.02 -0.16 0.e9

Mg



Some of the values in this table are close to zero and may not be
significant. For example, a difference of .04 run may reflect only chance
variation, and not a real difference between the two strategies. Figure 9-8
displays a dotplot of the group of differences in cost.
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Figure 9-8 Dotplot of the differences in costs (intentional walk vs. pitch-to-Bonds) for the 24
situations, with regions of “significant” differences indicated.

Suppose we say that a difference of .1 run or more is “significant.” Then
we can draw some general conclusions about the walking Bonds strategy
shown in Table 9-13.

Table 9-13 The Best Decision, PITCH to Bonds, WALK Bonds, or “???” (Too Close to Call) for
Each of the 24 Bases-Outs Situations

ouTs BASES OCCUPIED

fMone ! z k) 12 I3 2 1 Full
0 Pitch Fitch Pitch Fitch Piteh Fitch Piteh Pitch
1 Fitch Pitch 77 Fitch Pitch Fitch Tt Fitch
2 Y Y Walk b X E Walk Pitch

What does this table tell us?

e In most situations, it is better to pitch to Bonds than to intentionally
walk him.

e The only times when one gains by walking Bonds is when there are 2
outs, runners are on base, and first base is open.

e In four situations (the three bases loaded situations, and runner on third
with no outs), the cost of walking Bonds is the greatest. The cost in
these situations is substantial—between .6 and 1.0 runs.



¢ In some situations, mostly with 2 outs, there is no significant
difference in the costs of the two strategies.

Some Caveats

The intentional walk strategy was recently discussed in the ESPN.com
article by Derek Zumsteg. Using the run potential table, Zumsteg comes to
the same conclusion we have—it’s generally better to pitch to Bonds than
intentionally walk him. But Zumsteg mentions a number of factors that
could alter this strategy. Let’s discuss these factors, since they relate to our
discussion of situational effects in Chapter 4.

Our work is based on the run potential table that gives the mean number
of runs scored for an average team against an average pitcher in a given
bases-outs situation. Of course, not all teams have the same ability to
produce runs—the run potential values for the 2002 Oakland Athletics, say,
is a lot higher than the corresponding run potential values for the 2002
Florida Marlins. Similarly, it will be harder to produce runs against good
pitchers than against poor pitchers. Also, teams playing the 2002 Giants are
very aware that the San Francisco players have varying abilities to produce
runs. The run-producing abilities of Barry Bonds and Jeff Kent are
significantly higher than the abilities of Benito Santiago and David Bell, for
example. Wouldn’t it make some sense to walk Bonds to pitch to the
weaker hitter Santiago, who follows Bonds in the order? Also, since
Santiago is a relatively slow runner and is likely to hit ground balls (as
opposed to fly balls), wouldn’t it make more sense to pitch to Santiago,
since he is more likely to hit into a double play? Also, couldn’t you make
the “walk Bonds, pitch to Santiago” even better by using a pitcher who
tends to induce ground balls instead of fly balls? And doesn’t the choice of
strategy depend on the inning and the score of the game?

The first comment is that the cost of intentionally walking a batter is
large. So although the choice of pitcher, the ability of the following hitter,
and the game situation may change the cost of intentionally walking Bonds,
these adjustments will generally be small relative to the cost of walking
Bonds. In situations where it is hard to choose between walking and
pitching to Bonds (like the 2-outs situations), these other considerations
may lead to one strategy or the other. The second comment is that a team
should be wary about adjusting their strategy according to the situation until



they know that the situation corresponds to a “true” effect. Recall our
discussion about situational effects for hitting in Chapter 4. In a single
season, we see many extremely high and low situational hitting effects (say,
home vs. away batting averages), and these extreme values are just chance
variation. To really understand the true run potential effect according to a
given situation, say the use of a ground-ball pitcher, one has to look at data
for many players over many seasons (as we did in Chapter 4). It would be
interesting to see how the run potential tables can change for different
offensive and defensive teams and how the variability in run potentials can
lead to alternative strategies. But until such a study is done, it seems best to
put most of one’s faith in the “average” run potential table (Table 9-2) and
regard the particular situations as having a minor role in the proper choice
of strategy. Bonds, after all, is obviously a colossal threat to an opposing
pitcher, but that doesn’t mean one should always give him a free pass to
first.
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Chapter 10
Measuring Clutch Play

Jim Albert and Jay Bennett

“At its most critical moments, baseball chooses its heroes and goats with the
randomness of a carnival barker’s rickety spinning wheel. Where she stops
nobody knows.” So wrote Tom Verducci in his Sports Illustrated article
describing the sporting event he would most like to have witnessed.! The
event was Cookie Lavagetto’s double in the fourth game of the 1947 World
Series. The hit, with two outs in the bottom of the ninth inning, not only won
the game for Lavagetto’s Dodgers over the Yankees, to tie the series—it also
spoiled Yankee Bill Bevens’s bid to pitch the first no-hit game in World
Series history.

Out of the 25 greatest moments in baseball history (as selected in the
October 18, 1999, issue of The Sporting News), 10 (or 40 percent)” involve
clutch hits. Here are those 10 great clutch moments, in order as they
appeared in the list:

#1: Bobby Thomson’s home run to win the 1951 National League pennant
playoff for the New York Giants.

#2: Bill Mazeroski’s home run to win the 1960 World Series for the
Pittsburgh Pirates.

#4: Carlton Fisk’s home run to guarantee a Game 7 for the Boston Red Sox
in the 1975 World Series.

#6: Kirk Gibson’s two-out, ninth-inning home run, which turned defeat into
victory for the Los Angeles Dodgers in Game 1 of the 1988 World
Series.

#14: Bucky Dent’s home run to win the 1978 American League East
pennant playoff for the New York Yankees.



#16: Joe Carter’s home run to win the 1993 World Series for the Toronto
Blue Jays.

#21: Chris Chambliss’s home run to win the 1976 American League pennant
for the New York Yankees.

#22: George Brett’s home run to win Game 3 of the 1980 American League
Championship Series for the Kansas City Royals.

#24: Dave Henderson’s two-out, ninth-inning home run in Game 5 of the
1986 American League Championship to keep the Boston Red Sox
alive.

#25: Cookie Lavagetto’s double (described above).

Another 3 events (12 percent’) are moments in which hitters were
unsuccessful in clutch situations:

#9: Vic Wertz’s long drive to center field, caught by Willie Mays, in the
eighth inning of a tied Game 1 of the 1954 World Series.

#13: Willie McCovey’s line drive into the final out of the 1962 World
Series, with the series-winning runs in scoring position.

#18: Yogi Berra’s bid for an extra-base hit with two runners on which was
caught by Sandy Amoros in the sixth inning of Game 7 of the 1955
World Series.

Most baseball fans are familiar with at least some of these moments. While
we all may have favorites that were not included and may disagree with the
rankings, by and large, these are indeed great moments in the history of the
sport.* But what exactly is it that makes them so?

All thirteen occurred in important games. Eight occurred in World Series
games. Of the remaining five, a league championship was at stake in four
and a division championship in another. Of course, it isn’t just the game that
makes these moments special—it is the situation within the game. Eight of
these moments were the final play of a game in which victory was decided.
Four of them (the Thomson, Gibson, Carter, and Lavagetto events) turned
defeat into victory; three (Mazeroski, Fisk, and Chambliss) provided the
winning edge in a tie game; and one (McCovey) was the last failed attempt
to attain victory.



Of course, few games have the inherent drama of a pennant clincher or
the seventh game of the World Series. But throughout the season, even in
inconsequential games between two also-ran teams, spectators are gripped
by dramatic situations in which the game hangs in the balance, where one
play, even just one ball or strike, may be the difference between victory and
defeat. In trying to define which of these should be called a “clutch
situation” (an admittedly vague term), we’ve come up with these criteria:

e The score is close. The fan must feel that whatever happens in the next
play will provide a decisive edge in the score and thereby determine the
outcome of the game.

e The situation is late in the game. In the early innings, there is always
the feeling that there will be time to come back. But as the game
proceeds and the shadows lengthen (in those increasingly rare games
played outdoors and in the daytime), each play gains in importance,
especially when the score is close.

e Runners are on base. It is possible (as we will see later) for situations
with no runners on to be important, but the drama increases when
runners reach base and the probability of scoring increases.

e Two outs is more dramatic than one out, which is more dramatic than
no outs. As outs increase, the number of opportunities to score in the
inning decreases, placing greater value on the opportunities remaining.

Clutch Hits

If we pick a player and say that he hits in the clutch, what exactly do we
mean? Do we mean that he hits better when runners are on base? When the
score is close? When runners are on and there are two outs?

To gain some perspective, we will examine how well Major League
Baseball players as a group have hit in various situations. From 1985
through 1993, the Elias Sports Bureau published the annual Elias Baseball
Analyst. The books provided hitting data for each league in the following
game situations:

e Entire season—all game situations.
e Leading off an inning.
e Runners on—at least one runner on base.



e Runners in scoring position—at least one runner on second or third
base.

e Runners on and two outs.
e Runners in scoring position and two outs.

e Late Inning Pressure (LIP)—a situation in the seventh inning or later
with the score tied or with the batter’s team trailing by one, two, or
three runs (or four runs and the bases loaded). The definition (and
name) of this situation was the creation of the Elias Sports Bureau, who
wanted to capture those circumstances in which the game was close and
there was a decreasing opportunity to change the outcome. LIP has
become standard enough to be listed in The Dickson Baseball
Dictionary.

e Leading off an inning in a LIP situation.
e Runners on in a LIP situation.

e Runners in scoring position in a LIP situation.
Table 10-1 provides American League total at-bats, hits, and overall batting
averages for the years 1984, 1986—88, 1990, and 1992. (We restricted the
comparison to the American League to exclude the batting of pitchers and so
preserve consistency in the types of hitters analyzed.)

Table 10-1 Batting Averages in Various Game Situations, American Leage, 1984, 1986-88, 1990,
1992

Situation AB H AV¥G

All 464,057 121,269 .261

Leading 0Off 111,756 28,856 .258

Runners On 201,183 54,029 269
Runners/Scoring Position 114,773 30,144 263
Runners On/2 Out 84,996 21,208 250

Scoring Position/2 Out 54,478 13,187 242
Late Inning Pressure (LIP) a6,824 16,901 253
LIP Leading Off Le, 745 4,154 .248

LIP Runners On 28,447 7,373 .2h9

LIF Runners/Scoring Position 16,165 4,048 250



Before comparing averages in the different situations shown in Table 10-
1, we must understand that many of these situations are not independent of
one another. Let’s consider “Runners On” and “Scoring Position.” When a
runner is in scoring position, there are always runners on base. This may be
obvious, but it is important to understanding the data in Table 10-1. Every at-
bat tabulated in the Runners in Scoring Position row of Table 10-1 is also
included in the totals for the Runners On row; one situation is a subset of the
other. So, the two rows cannot be compared directly. The Runners in Scoring
Position row must be subtracted from the Runners On row to create Runners
Not in Scoring Position. The AVG in this situation can then be compared to
the Runners in Scoring Position AVG to determine the effect of having
runners in scoring position as opposed to having a runner only on first base.

Figure 10-1 shows the dependencies between the situations in Table 10-
1. Each line connects one situation to another situation (at a higher level in
the hierarchy) of which it is a subset. For example, Scoring Position is
connected to Runners On, which is at a higher level. In a general sense, the
lower the situation is in Figure 10-1, the more we regard it as a clutch
situation.

All Sitwations

Leading OfF . Runners O

LIP
' A

Leading Off in LIP H.'.;-:-Jn.vr:'.- O in LIP Searing Position Runners G d 2 Ouils

-

Seoring Position in LIP Scoring Position!2 Outs

Figure 10-1 Schematic depiction of situational subsets (each line connects a subset at a lower level
to a superset at a higher level).

Each line in Figure 10-1 represents a possible comparison of situations:

e Leading Off an Inning versus Not Leading Off an Inning (Overall or in
LIP).

e Runners in Scoring Position versus Bases Empty (Overall or in LIP).



e Runners in Scoring Position versus Runner on First Base Only (Overall,
With Two Outs, or in LIP).

e Two Outs versus None/One Out (With Runners On or With Runners in

Scoring Position).

e LIP versus No LIP (Overall, When Leading Off, or With Runners in

Scoring Position).

Let’s look at each comparison separately, as presented in Tables 10-2

through 10-6.

Table 10-2 Leading Off an Inning vs. Not Leading Off, American League, 1984, 1986—88, 1990,

1992
OVERALL
AR H AVEG
Leading 0Off 111,756 28,856 2582
Mot Leading Off 352,301 92413 2023
Difference . . —.0041

LATE INNING PRESSURE

AB i AVG
16,745 4156 2482
50,079 12,745 2545

. e -.00&E3

Table 10-3 Runners in Scoring Position vs. Bases Empty, American League, 1984, 1986-88, 1990,

1992
OVERALL
AB H Als
Scoring Position 114,773 30,144 2BE6
Bases Empty 262 874 67,240 .2RBE
Difference . . Nalalas]

LATE INNING PRESSURE

A8 H AvG
16,165 4048 2504
38,377 9528 .2483

. . 0021

Table 10-4 Runner in Scoring Position vs. Runner on First Base Only, American League, 1984,

1986-88, 1990, 1992



OVERALL

LATE INNING PRESSURE

AR H AB H A
Scoring Position 114,773 30,144 16,165 4048 2504
First Base Only 26,410 23,885 12,282 3325 2507
Difference . . -.0138 . . -.0Z03

TWO OUTS

AR H AVG
Scoring Position 54,476 13,187 2421
First Base Only 30,520 a0zl LBEE
Difference . . 0207

Table 10-5 Two Outs vs. None/One Out, American League, 1984, 198688, 1990, 1992

RUNNERS ON FIRST BASE ONLY
AR H AV Al i) AVG
Two Duts 84,996 21,208 2495 30,5820 8021 el
Oor 1 Out 116,187 32,821 ZBZS 55,880 15,864 L2838
Difference * * -.0330 * * -.0210

SCORING POSITION

AR i AV
Two Duts 54,476 13,187 2421
Oor 1 0ut 60,297 16,957 2812
Ditference . . -.038z2

Table 10-6 Late Inning Pressure vs. No Late Inning Pressure, American League, 1984, 198688,
1990, 1992



OVERALL LEADING OFF

A8 H AVG AB H AvG
LIP 66,824 16,901 2529 1&,745 4156 2482
Mo LIP 397 233 104,368 2827 95,011 24,700 2800
Difference . . -.0098 J J -.0l18

SCORING POSITION

AB H AVG
LIP 16,165 4048 2504
No LIP 9B E0B 26,0956 2EAG
Difference * . -0142

Leading Off an Inning vs. Not Leading Off

Hitters appear to bat about .004 points less when leading off than when not
leading off. The difference is not appreciably changed in Late Inning
Pressure situations.

Runners in Scoring Position vs. Bases Empty

Batters hit better with runners in scoring position than when bases are empty,
showing an increase in AVG of .007. However, the effect is not significant in
LIP situations. This effect may be a reflection of pitching skill, which
produces the scoring situation. Since less capable pitchers are likely to put
runners in scoring position more often than better pitchers do, the increase in
AVG may result from the greater chance that the pitcher in scoring-position
situations is on average worse than one encountered in bases-empty
situations. It also seems reasonable that the effect would be less in LIP
situations, when the manager is more likely to replace the less effective
pitcher with a more capable reliever.

Runner in Scoring Position vs. Runner on First Base
Only



In this scenario we are considering only situations where runners are on
base. What we are examining is how batters perform when a runner is on
first base only compared with all situations with a runner in scoring position.
We see large effects here: overall, batting average is reduced by .014. In LIP
situations and with two outs, batting averages are even lower, reduced by
about .020 with runners in scoring position, as compared to when a lone
runner is on first base. This difference may result in part from the first
baseman playing near the base in order to hold the runner on first, leaving a
hole between second and first. The batter is more likely to have this hole
when there is a runner on first base only; if there are runners in scoring
position, the first baseman is less likely to play near the first base bag.

Two Outs vs. None/One Out

With a runner on base, batters have a harder time getting a hit when there are
two outs as compared to when there are one or no outs.When there is only a
runner on first base, batting averages drop about .021 when there are two
outs. There is an even larger drop-off, .039, when a runner is in scoring
position. A possible reason for this difference may be that better hitters are
not given much opportunity to hit with runners in scoring position and two

outs; they are walked instead.” Overall, the decrease is about .033.

Late Inning Pressure vs. No Late Inning Pressure

Batting averages drop in Late Inning Pressure situations. In general, the LIP
effect is a drop of about .010 in AVG. While it may appear that the effect
varies from AVG drops of .010 to .014 (for runners in scoring position), this
difference is not significant.

So we see that the game situation can have an effect on how well a batter
hits. This is likely due to the pitcher, who may draw from his reserve of
strength to make a special effort to bear down as the occasion demands. The
effect can also be the result of managerial pitching strategy: in clutch
situations, he may call on relief pitchers, who in general have more success,
at least in the short run, in getting batters out.

A Player in a Short Series

What happens if we look at the performance of an individual player in a
short series? Let’s pick one of the players from the 25 greatest moments. The



most recent is Joe Carter, whose home run in the 1993 World Series is

remembered by many fans.® The question is, do we recall how well Carter
did in his 28 total plate appearances in the series? He had 3 sacrifice flies, no
walks, no sacrifice hits, and was not hit by a pitcher, so his total number of
at-bats was 25. His 7 hits (including 1 double and 2 home runs) gave him a
.280 AVG and a .560 SLG. Since he had no walks, and sacrifice flies are
included among opportunities for getting on base, Carter’s on-base
percentage (7/28 = .250) was actually lower than his batting average. Carter
scored 6 runs and had 8 RBI.

Table 10-7 provides a situational summary of Carter’s plate appearances
in the 1993 World Series along the lines of those in the Elias Baseball
Analyst. Carter led off a relatively large number of times, in about one-sixth
of Toronto’s innings. He performed poorly in this situation. He did very well
with runners on base, and especially with runners in scoring position.
However, he was not able to come through with runners on when there were
two outs. In Late Inning Pressure situations, he was only successful in one
at-bat. Of course, this was his legendary home run, which produced an
impressive slugging percentage in his limited number of LIP situations.

Table 10-7 Summary of Joe Carter’s Plate Appearances by Game Situation in the 1993 World Series

AR H 28 ki HR 5F AVG SG o8P

Leading Off 9 2 1 0 0] 0 222 333 2E2E
Runners On 11 K| 4] 0 2 3 273 818 214
Scoring Position 5 2 0 Q 1 3 L4000 1.000 250
Runners On/2 Out 2 0 4] q 4] 0 A000 000 0Q0
Scoring Position/2 Out 0 0 4] q 4] 0 000 AL00 L0000
LIP 5 1 4 Q 1 0 200 AB00 200

LIP Leading Off 3 0 4] Q 0] 0 000 000 000

LIP Runners On 2 1 4] Q 1 0 500 2.000 500

LIP Scoring Position 2 1 0 Q0 1 0] E00 2.000 B00
Overall 25 7 1 0 2 3 28O JBE0D 250

So how are we to judge Joe Carter as a clutch hitter in the 1993 World
Series? He was a poor lead-off hitter in many at-bats (for the simple reason



that he did not often get on base—the leadoff man’s main job). On the other
hand, he hit well with runners on, but not with two outs. And of course, he
came through big under Late Inning Pressure, but only once. By what
criterion can we gauge his clutch performance when there are so many
metrics to choose from? One solution is to reduce these multiple criteria into
a single metric that “weights” his performance in different situations. None
of the models we have considered so far in earlier chapters perform this kind
of weighting. They all consider each event generically, without regard to the
situation in which it occurred.

Is it possible to integrate a clutch effect (the effect of game situation) into
player evaluation? Actually, George Lindsey’s data on run production allows
us to do this relatively easily.

Situation Evaluation of Run Production

Recall from Chapter 7 that Lindsey developed a table (Table 7-4) of
expected runs produced in each situation (outs and runners on base) within
an inning of a game. We used this table to estimate the value of each type of
hit in terms of runs. These values (presented in Table 7-7) are the average or
expected number of runs for each hit after the frequencies of all game
situations have been considered. But different players may come to bat in
these situations with frequencies different from the typical values in Table 7-
4,

If we knew the situation for each plate appearance for a player, we could
calculate the expected number of runs produced for the player’s specific
opportunities, instead of using the generic frequencies in Lindsey’s
calculation. In this way we would capture the batter’s specific level of
opportunity as well as his response to it (the results of his plate appearances).

Of course, this requires much more data than the summaries of at-bats,
hits, home runs, etc. We need to know, for every plate appearance, the
situation when the player came to bat and the situation after he came to bat.
Data on each plate appearance is becoming more accessible as the years go
by, but it is still relatively difficult to find in electronic form.” (Of course,
they are available in written form in the official scoresheets, but the sheer
volume of these records make them difficult to use except in very limited
quantities.)



Joe Carter’s batting performance in the 1993 World Series provides us
with a reasonable amount of data and allows us to include a top-25 moment
as well. Table 10-8 lists each plate appearance in chronological order in the
series. The first column identifies the result of Carter’s at-bat in standard
terms. Most of the abbreviations should be readily identifiable, with the
exception of FO and GO, which indicate outs caught on the fly and on the
ground, respectively.The second column indicates the game in the series. The
third column lists the innings, with V and H identifying the visitor and home
half of each; an L in parentheses is appended to the inning if Carter was the
leadoff batter. The next two sets of four columns each describe the state of
the game before and after the play; the state is described by the score
(visiting-team runs are VRuns, home-team runs HRuns), the bases occupied,
and the number of outs. Note that for Carter’s Game-6 home run we have
listed the number of outs after the play as three; this is done since Carter’s
HR ended the game, consequently ending the possibility of scoring any more
runs. Plate appearances in which Carter got on base are marked by squares,
and those in which he drove in a run are marked by triangles. We see that
Carter got a hit in every game except Game 5, when Curt Schilling shut
down Toronto completely. We also see that Carter produced runs only with
the long ball—either a home run or a sacrifice fly.

Table 10-8 Joe Carter’s Plate Appearances in the 1993 World Series (Squares Mark On-Base Events,
Triangles Mark Plays That Scored Runs)



BEFORE PLAY AFTER PLAY

Flay Game nning VRuns HRuns Bases duts ¥Runs HRuns Hases Outs
m 1B 1 2H(L) 2 0 0 0 2 0 1 0
A SF 1 3H 3 2 3 1 3 3 v 2

GO 1 BH(L) 4 4 o 0 4 4 a 1

K 1 TH 4 8 2 1 4 8 2 2

Fo 2 1H 0 0 1 2 o 0 Y 3

m 4 HR 2 4H 5 0 1 a 5 2 a o

FO P BH{L) 5 2 o 0 5 2 Q 1

K 2 EH £ 3 2 Q & 3 2 1
& SF 3 v P Q 3 0 3 Q Q 1
m 1B 3 w 4 a o b 4 0 1 2

Fo 3 BV 4 0 o 2 4 0 Y 3

K 3 A & 1 13 0 b 1 13 1

GO 3 =1 8 2 1 4] a8 2 1 1
m 1B 4 1y ] 0 12 1 0 o] 123 1

Fo 4 aviLi 3 a 0 a 3 & a 1

FO 4 EAUN 7 a o 0 7 & Q 1

Fo 4 &v 8 12 1 Q 8 12 1 1
m 1B 4 Bv 9 14 o 1 9 L4 1 1
m 2B 4 aviL) 15 14 o 0 15 14 2 0

FO 5 1V 0 0 1 2 0 0 0 3

K 5 ay 0 2 1 1 o 2 1 2

GO 5 TViL) 0 2 o 0 0 2 v 1

FO 5 aviL) 0 2 ] 0 4] 2 [y 1
A SF & 1H 0 1 3 1 o 2 Y 2

GO & 3H o 3 o 1 o 3 a 2

FO & SH 1 b o 1 1 5 a 2

Fo 3] BH{L) &) 5 o 4] 6 5 a 1

i HR & 9H & ] 12 1 5] & a 3



Now we will reduce Table 10-8 to its essentials for our calculation. Table
10-9 shows the situation (outs and runners on base) before Carter’s plate
appearance, the situation after Carter’s plate appearance, and the number of
runs scored on the play. The three Expected Runs columns show the number
of runs Toronto would be expected to score in the Before situation, the
number expected to score after the play (including the runs which actually
scored), and the Change (the difference between the Before and After
situations in terms of runs).

Table 10-9 Change in Expected Runs for Joe Carter Plate Appearances in the 1993 World Series
(Squares Mark On-Base Events, Triangles Mark Plays That Scored Runs)



Pitcher

Schilling
Schilling
Schilling

Andersen

Mulholland
Mulholland
Mulholland

Mason

Jackson
Jackson
Jackson
Rivera

Andersen

Greene
Greene
Mason
West
Andersen

Thigpen

Schilling
Schilling
Schilling
Schilling

Mulholland
Mulholland
Mulholland
Mason

Williams

BEFORE PLAY AFTER PLAY

Bases

13

12

12

fuls

Runs

o

[ S o T o B o

Fases

13

123

Quts

Play

1B
SF
GO

K

FO
HR
FO
K

SF
18
FO
K

GO

1B
FO
FO
FO
18

2B

FO
K

GO
FO

3F
G0
FO
FO
HR

EXPECTED RUNS

Befare

As]
980
461

&7l

218

813

1.194

1.390
oz
102

1.940
813

243

A6l

980
.243

243

After Change
813 352
1.102 12z
.243 -.218
2897 -.374
0 -.218
2.4861 1.648
.243 -.218
671 523
1.243 -.147
219 A17
0 -.102
1.115 -.825
498 -.315
1.642 703
243 -.218
243 218
4488 315
A998 .2h5
1.194 733
0 -.2189
218 -.279
.243 -.218
.243 218
1.1a2 A2z
.10z 141
102 -.141
.243 -.218
3.000 2.305

Sum of Change = 1,231

AR



As an example, consider Carter’s first RBI of the series, in the second
row of Table 10-9.As Carter came to bat, Toronto had a runner on third base
with 1 out. According to Lindsey’s data in Table 7-4, a team on average
would score .980 runs in this situation. This is the value of the Before
situation in terms of runs. After Carter’s sacrifice fly, Toronto had bases
empty and 2 outs. According to Lindsey’s data in Table 7-4, a team on
average would score .102 runs in this situation. Since the SF scored the
runner from third, the expected number of runs scored after the play is 1 +
.102 = 1.102. So here a SF was worth 1.102 — .980 = .122 runs, the change
in expected runs between the Before and After situations.

A special case for this calculation occurs in the bottom half of the ninth
and any subsequent innings. The expected values for runs scored in Table 7-
4 are predicated on the team having 3 outs to complete the inning. However,
in the bottom of the ninth, the game ends as soon as the home team scores
enough runs to win the game, thus limiting the run-production capability of
the home team.

For example, consider the situation in Joe Carter’s final at-bat. If this
were an inning in the middle of the game, Table 7-4 indicates that the Blue
Jays would be expected to score .939 runs. This expectation is derived from
the probabilities of scoring different numbers of runs. Toronto has a 57.1-
percent chance of scoring no runs, a 16.3-percent chance of scoring exactly 1
run, an 11.9-percent chance of scoring exactly 2 runs, and a 14.7-percent
chance of scoring 3 or more runs. However, Carter’s situation occurred in the
ninth inning, with his team trailing by a single run. So, as soon as Toronto
scores two runs, the inning ends and there are no more opportunities to score
additional runs. This has the effect of truncating the distribution of runs to no
more than 2, the number needed to win the game. This means that all of the
situations in which more than 2 runs could have scored in a full inning are
reduced to occurrences of 2 runs. So, in this score-inning situation, the
probability of scoring two runs is 26.6 percent, the sum of the probability of
scoring two runs (11.9 percent) and the probability of scoring 3 or more runs
(14.7 percent). The expected number of runs scored with runners on first and
second with 1 out (when trailing by 1 run in the bottom of the ninth inning)
can now be estimated as follows:

(0x.571) + (1 x.163) + (2 x .266) = .695 runs



This result is .244 runs less than in other innings because of the limitation of

not being permitted to score more runs than the number needed to win.?

Performing these calculations for every play, we find the value of each
plate appearance for Carter in terms of runs. This is similar to the calculation
we did in Chapter 7 to determine the average value of each type of hit in
terms of runs. There we generated a different After situation for each
possible Before situation, then calculated the Change in expected runs. Here
we are taking an actual record of plate-appearance results and finding their
values in terms of expected runs produced. If we total the run values in the
Change column of Table 10-9, we find that the net result of Carter’s batting
in the 1993 World Series was +1.231 runs. This means that Carter produced
1.231 more runs (.205 more runs per game) than an average batter would be
expected to produce in the same set of Before situations.

What we have done is integrate clutch effects into the estimate of run
production for a specific batting performance. We have replaced the various
categories of clutch situations of Table 10-7 with a single value of run
production weighted by the situation in which each event occurred.

To see that we have actually accomplished this, let’s examine an
alternate- or parallel-universe batting performance for Joe Carter. The
alternate performance in Table 10-10 is one that Phillies’ fans wish had
actually occurred. Focus your attention on the boldfaced rows. Everything in
Table 10-10 is the same as in Table 10-9 except for these four rows, in which
we have swapped the play results.

Table 10-10 Change in Expected Runs for Joe Carter Plate Appearances in the “Parallel Universe,”
or “Twilight Zone” Version of the 1993 World Series (Squares Mark On-Base Events, Triangles Mark
Plays That Scored Runs)



BEFORE PLAY AFTER PLAY EXPECTED RUNS

Piteher Bases Mt funs Baszes Quts  Play fefare After Change
Schilling Q o 0 1 0 1E A61 B13 362
Schilling 3 1 1 o 2 SF 980 1.102 d22
Schilling 0 o 0 o 1 z0 4Bl 243 218
Andersen 2 1 [u] 2 2 K &7l 297 -274
Mulhalland 1 2 0 o 3 FO 219 0 219
Mulholland 1 o 2 o o HRE B13 2.44a1 1.6458
Mulholland O o 0 o 1 FO A61 243 -.218
Mason 2 o a 2 1 K 1.194 ET] -523
lackson 3 o 1 0 1 SF 1.390 1.243 -.147
lackson 0 2 0 1 2 LB A0z 219 A17
lackson 4] 2 0 o 3 FO 102 0 .102
Rivera 13 o 0 13 1 [ 1.940 1.118 -825
Andersen 1 o 0 1 1 GO 13 498 -.315
Greene 12 1 0 12 2 FO 939 A03 -.536
Greene 0 1] 0 1 1] 1B AB1 813 352
Mason 0 o 0 0 1 FO 461 243 -.218
West 1 o 0 1 1 FO B13 448 3156
Andersen 0 1 0 1 1 1B 243 498 255
Thigpen a o u] 2 o 2B 461 1.154 J33
Schilling 1 2 u] o 3 FO 219 0 -219
Schilling 1 1 Q 1 2 K 498 219 -279
Schilling Q o 4] 0 1 GO 461 243 -.218
Schilling 0 0 1 0 0 HR A61 1.461 1.000
Mulholland 3 1 1 o 2 SF 980 L.10z2 Jdz22
Mulholland O 1 0 o 2 GO 243 102 -.141
Mulholland O 1 0 o 2 FO 243 102 141
Mason a o u] o 1 FO A6l 243 -.218
Williams 12 1 0 12 2 FO B85 318 =377

3um of Change = - 902



Suppose we swap the results of Carter’s first two at-bats in Game 4. So,
instead of singling with runners on first and second with 1 out in the first
inning, Carter flies out without advancing the runners, and in the third inning
he leads off with a single instead of flying out. In Table 10-10, we see that
the run value of the fly out is now —.536 runs (instead of —.218 runs, as
originally), while the single is now worth .352 runs (compared to .703 runs
in reality). So, the swap produces a net change:

[-.536 — (—.218)] + (.352 — .703) = —.669 runs

While we are making changes, let’s swap that depressing (to us Phillies fans)
HR in the ninth inning of Game 6 with Carter’s fly out in his last at-bat in
Game 5. Carter’s second HR is now worth only 1 run (compared to 2.305
runs in reality) and the fly out in his final at bat in Game 6 is worth —.377
runs (compared to —.218 runs in its original spot).” So, the swap produces a
net change as follows:

[-.377 —(—218)] + (1 —2.305) =-1.464 runs

What we have done is preserve the count of individual batting events. In
Table 10-10, Carter still has the same number of singles, doubles, triples,
home runs, and outs as in Table 10-9. He still has the same batting average,
on-base percentage, and slugging percentage. All we have done is change the
situation in which they occurred. When we did this, the run values of the
swapped events changed. If we total the run values in the Change column of
Table 10-10, we see that Carter’s performance in this alternate universe is
now worth —.902 runs, a worse-than-average performance. We have
substantially degraded Carter’s run production merely by changing when the
events occurred, rather than the number of each type of event. This example
demonstrates that this measure successfully integrates a clutch effect (the
when of batting results) into an evaluation of player performance.

A New Criterion for Performance

We’ve been able to integrate certain aspects of situational hitting into player
evaluation. We have used the base and out aspects but (with the exception of
situations in the bottom half of the ninth and extra innings) ignored the
factors which contribute to defining Late Inning Pressure—the inning and



the score. To do this, we have to move from run production, which has been
our major criterion for evaluating players, to a more general level.

The ultimate goal of any baseball team is not to score runs. Scoring runs
is only the means to a higher goal, winning games. Teams can amass large
run totals and still lose. Just look at the same 1993 World Series in which
Carter played. In Game 4, the Phillies scored 14 runs and still lost to
Toronto. And there is a classic example of the same phenomenon: Table 10-
11 shows the scores for the seven games of the 1960 World Series, which the
Yankees lost to the Pittsburgh Pirates.

Table 10-11 1960 World Series Scores

Game Pittsburgh New Yor
1 6 4

2 3 16

3 0 10

4 3

5 5

6 0 12

7 10 9

Total 27 55

The Yankees scored more runs in the first three games than Pittsburgh
would score in the entire series. Overall, the Yankees scored more than twice
as many runs as Pittsburgh. Despite this, the seventh game and the series
were won by a Pirates homer that drove in only one run. There is no doubt
that producing more runs increases your chances of winning. But a hit (even
a single) at the right time can be more important to winning than a grand
slam.

In 1970, a small book called Player Win Averages: A Computer Guide to
Winning Baseball Players, by the brothers Eldon G. and Harlan D. Mills,
developed a new metric for clutch play. The truly revelatory aspect of their
system was that it focused on measuring not the events that lead to victory
(the number of hits, walks, stolen bases, RBIs, etc.), but victory itself. But
how can you measure a player’s contribution to victory? According to the
Mills brothers, you have to arrive at some sense of the degree to which the
player contributes to the probability of winning a game.

They called this measure the Player Win Average (PWA). It was defined
as a ratio of Win Points to the sum of Win Points and Loss Points:




PWA = Win Points/(Win Points + Loss Points)

The points were based on how much the player added to or subtracted from
the probability of his team winning. If a player increased the probability of

his team winning by D, the player was awarded: '

Win Points = 2000 x D

On the other hand, if a player decreased the probability of his team winning
by D, the player was given:

Loss Points = 2000 x )

Every play in a baseball game increases the probability of winning for one
team or the other. Win and Loss Points were awarded on each play to an
offensive player and a defensive player. A batter who got a hit was awarded
Win Points based on how much the hit improved his team’s probability of
winning the game; the pitcher who gave up the hit was given an equal
number of Loss Points. Naturally, the situation is reversed for an out, where
a defensive player (typically the pitcher) is awarded the Win Points and the
batter the Loss Points.

Consider this example, which the Mills brothers reckoned to be the
biggest offensive play of the 1969 World Series, in which the Miracle Mets
defeated the heavily favored Baltimore Orioles. Al Weis, the Mets’ second
baseman, came to the plate in the top of the ninth inning of Game 2 with the
score tied. The Mets had runners on first and third with 2 outs, clearly a Late
Inning Pressure situation. The probability of a Met victory was .510. Weis
singled, placing runners at first and second as well as knocking in the go-
ahead (and eventual game-winning) run. His hit raised the probability of a
Met victory to .849, an increase of D = .339. Weis was therefore credited
with the following Win Points:

Win Points = 2000 x .339 = 678

Orioles pitcher Dave McNally was given an equal number of Loss Points.
In addition to analyzing the 1969 World Series, the Mills brothers used
every play in the 1969 season to assign a PWA rating to every player. Each
play in which a player was the primary offensive or defensive participant
was analyzed. The Win Points and Loss Points from these plays were
summed over the season, then substituted in the PWA formula. The highest
PWA ratings for batters with enough plate appearances (502) to qualify for a



batting championship were achieved by Willie McCovey (.677) in the

National League and Frank Robinson (.615) in the American League."!
McCovey was selected by the sportswriters as National League MVP, but the
American League MVP Award went to Harmon Killebrew, who had a .608
PWA.

When Win Points equal Loss Points, PWA equals .500, which is the
rating for an average player. Clearly, McCovey, Robinson, and Killebrew
were all way above average; their Win Points were all at least 50 percent
greater than their Loss Points. But how low can PWA reasonably get? Bob
Barton, a catcher with San Francisco, had a PWA of .255, lowest among
players with 100 or more at-bats. Among full-time players, Hal Lanier, a
shortstop also with the Giants, had a PWA of .348 in 495 at-bats, with almost
twice as many Loss Points as Win Points. (The Giants appear to have had the
best—McCovey—and worst PWA players in 1969.)

A unique capability of PWA is to measure defensive as well as offensive
performance. In most plays, the pitcher is the defensive player who receives
Win or Loss Points. The Mills brothers tabulated PWAs for pitchers in the
exact same manner as for batters. The highest PWAs for starting pitchers
were .612 for Larry Dierker of the Houston Astros (National League) and
.585 for Denny McLain of the Detroit Tigers and Jim Palmer of the
Baltimore Orioles (American League). The highest-rated relief pitchers were
Tug McGraw (.651) of the New York Mets and Ken Tatum (.643) of the
California Angels. McLain shared the 1969 Cy Young Award with Mike
Cuellar (Baltimore Orioles, .569 PWA). Dierker, however, received no Cy
Young votes, losing to Tom Seaver (New York Mets, .609 PWA).

Because both offensive and defensive players are measured according to
the same metric, it is possible to use PWA to compare the value of pitchers
and batters. McCovey is a clear standout when all players are considered, but
the Mills’s analysis indicates that a good case could have been made for
Tatum over Killebrew as the most valuable player in the American League in
1969.

PWA also has the capability to include fielding in its evaluation of
players. If a fielder made an error, the fielder was substituted for the pitcher
in receiving Loss Points for the play. For example, in the bottom of the third
inning of Game 1 in the 1969 World Series, Don Buford grounded a ball off
Tom Seaver to second baseman Al Weis, who fumbled it, allowing Buford to
reach first safely. Before the play, the Orioles led 1-0 and had no runners and



one out in the bottom of the third inning. After the play, they had a runner on
first, still with only one out. In the Mills’s analysis, the play was split into
two parts:

e Win Points to Seaver. Because Weis was charged with an error, the
implication from the official scorer was that Buford would have been
out if Weis had executed properly. So an intermediate result is created
assuming that Weis had made the play. The result would have left the
Orioles with two outs and no runners on base. Baltimore’s probability
of winning decreased from .658 to .644 for a change of D = .014.
Seaver was awarded Win Points = 2000 x .014 = 28, and Buford was
given 28 Loss Points.

e Loss Points to Weis. However, Weis’s error reversed this intermediate
result and placed a runner on first base with one out. This increased
Baltimore’s probability of winning from .644 to .679 for a change of D
= .035. Buford was awarded Win Points = 2000 x .035 = 70, and Weis
was given 70 Loss Points.

So the final result of the play was that Buford received 70 Win Points and 28
Loss Points, Seaver received 28 Win Points, and Weis received 70 Loss
Points.

An unfortunate aspect of the Mills’s book is that, apart from several
examples, the authors do not provide detail about how they applied fielding
in their analysis of the 1969 season. Although not explicitly stated, it is likely
that fielding was included in the overall player ratings. So the PWA ratings
cited are probably a reflection of fielding (and running) as well as batting
performance.

The Mills brothers provided a play-by-play analysis of the 1969 World
Series. An interesting result was that the true MVP of the series was not the
sports-writers’ choice, Donn Clendenon, but journeyman infielder Al Weis.
Oddly, the authors based this selection not on PWA but on Net Points, the
difference between Win Points and Loss Points. In many ways, this metric
seems a more reasonable measure than PWA. Weis had 1277 Net Points,
almost three times that of Clendenon (450 Net Points). In fact, three
teammates, pitchers Koosman (783), Seaver (564), and Gentry (475), also
had more Net Points than Clendenon. The second highest Net Point total was
achieved by a member of the losing team, starting pitcher Mike Cuellar
(998).



The Mills brothers used PWA to identify “Hidden Heroes,” players who
achieved above-average PWAs despite having low batting averages (less
than .250). In the authors’ view, these players were true clutch performers,
those who rose above their normal ability when the game was on the line.
Thirty years later, most of the players are not familiar, but one player does
jump out. Hall-of-Famer Joe Morgan batted .236 in 1969, but he had a .521
PWA. Still, it is not clear that this PWA rating is a result of clutch
performance. Morgan may have only had a .236 AVG, but he drew 110
walks, so his on-base percentage was quite respectable.

The Mills’s goal in creating PWA was to evaluate clutch performance.
Actually, PWA does not rate clutch performance; instead, it integrates or
weights clutch performance with the frequency of different events. A good
analogy is slugging percentage, which does not explicitly measure a player’s
power; instead, it integrates power (using the number of bases as weights)
with batting average into the evaluation of a player’s hitting performance.
PWA does the same thing, except its weights are based on the game situation
as well as the result of the play. Indeed, this is an even greater achievement
than their original intention. Instead of rating one facet of a player’s game,
they established a structure for evaluating all aspects (including the player’s
clutch performance) into a single quantitative value.

Even so, as carefully thought out as their concept was, the Mills’s work
left some room for improvement. We have alluded to some areas already. In
developing PWA, it is evident that the authors were intent on developing an
average that could replace the batting average, which still reigned supreme
and virtually unchallenged as the king of batting statistics in 1970. This is
evident in the Mills’s comparison of AVG with their statistic PWA for
“Hidden Heroes.”

Late in the book, it seems that the Mills brothers discovered that Net
Points might be more useful in rating players according to contribution to
winning. What are the advantages of Net Points?

e Simplicity. Net Points is easier to calculate than PWA. Just subtract
Loss Points from Win Points, and you’re done.

e Intelligibility. Dividing Net Points by 2000 gives the number of wins
the player contributed above an average player. For example, 4000 Net
Points is equivalent to two wins above average.

e Consistency. Consider Players A and B in Table 10-12. Both have the
same Net Points, but different PWA ratings. Player A has a better PWA



rating because the total number of points accumulated is less than that
of Player B. There are two major ways Player A could have achieved
this. One possibility is that he earned his points in less critical situations
than Player B. In this way, each event would have less value—either
positive or negative. It is not clear that this should entitle Player A to a
higher rating than Player B. In fact, if PWA is truly supposed to
evaluate clutch performance, it could be argued that Player B should be
rated higher than Player A, since his results were achieved in more
critical circumstances.

Table 10-12 Example of Players with the Same Net Points and Different PWA Ratings

Player Win Points Loss Poinls Mel Points P
A 2000 1000 1000 EET
B 3000 2000 1000 AB00

Another possibility is that Player A achieved his results in fewer
plays (or games) than Player B. This presents some rationale for rating
Player A higher than Player B. But then consider two more players, C
and D, in Table 10-13. Player D has accumulated twice as many points
as Player C, yet their PWA ratings are the same. So, dividing by total
points does not give a consistent interpretation of player value in PWA.

Table 10-13 Example of Players with the Same Net Points and the Same PWA Ratings

Flayer Win Points Lass Points Net Points FWA
H 1000 1000 Q 500
1] 2000 2000 Q 500

In general, it is not clear what dividing by total points represents in
evaluating player performance. On the other hand, Net Points provides
a consistent interpretation of player contribution.

Sustained Contribution. Apparently, the Mills’s intent was to construct
PWA as a ratio of accumulated achievement (Win Points) divided by
accumulated opportunity (total points) as a parallel to batting average
(which does the same thing in terms of hits and at-bats). However, in
the Mills’s system, when a player comes to bat, the possibility exists of
getting Loss Points or Win Points. So in each play, the player can be
rewarded or penalized. Net Points provides a measure of the
accumulated net contribution to victory. For this reason, there is no



need to resort to a ratio such as PWA. This can’t be done with hits in

batting average or bases in slugging percentage. Hits and bases can only

be accumulated; we can’t subtract hits or bases from a player.
The title page of Player Win Averages contains the phrase “1970 Edition.”
Apparently, the authors intended to publish an annual analysis of each
baseball season using PWA. Unfortunately, there was no 1971 edition. By
the late 1970s, the 1970 (and only) edition of Player Win Averages was out
of print, and remains so to this day. Other publications and papers have
alluded to the book and the PWA concept.A common criticism is provided by
Palmer and Thorn in their book The Hidden Game of Baseball. “The major
flaw in the Mills brothers’ system is that the Player Win Average weights a
few events very heavily, many others quite lightly ...” (p. 176).'” The
impression is that PWA gives too much weight to a handful of critical events
that drown out the effects of standard plays in evaluating baseball
performance. Experience with a variant of PWA (to be described presently)
in evaluating World Series performance over several years has provided
evidence counter to this view.

Besides such criticism, another more practical reason lies at the heart of
the lack of interest in Player Win Averages at the time. The Mills brothers
provided no description of how to calculate the probability of victory at
different stages of a baseball game. Using computer simulation, the brothers
developed a table of probabilities that was not revealed to readers. Only the
win probabilities of selected situations that arose in the 1969 World Series
could be gleaned from the book. Without this table, it was impossible to
calculate Win and Loss Points; without Win and Loss Points, PWA could not
be calculated. So without the table of win probabilities, no one could use the
technique. The need to capture play-byplay data is a large impediment to
PWA'’s practicality, but the lack of win probabilities made its calculation
impossible for anyone but the Mills brothers ... until 1984.

The Calculation of Win Probabilities

Following the Phillies first and only World Championship, in 1980, John
Flueck and one of us (Jay Bennett) wanted to see if Mike Schmidt was really
the Most Valuable Player in the series. PWA seemed an ideal metric for
determining this, but the effort was stymied because of the lack of the table
of win probabilities. However, recent research in run production models led



to Lindsey’s data. We have already described some of this data, the

distribution of runs scored after a given situation within an inning. Using

data on the distribution of runs scored in each inning and assuming
independence, Lindsey calculated the expected probability of winning given

the score at the end of an inning, as shown in Table 10-14."3

Table 10-14 Probability of Home Team Victory Given the Score Difference (Home Team Minus
Visiting Team) at the End of Each Inning

Inning

H-V i
] LOil
-5 095
—4 142
-3 207
-2 250
=1 389
0 500
1 B11
2 J10
3 93
4 258
5 S05
6 939

024
087
133
198
280

500
B17
J20
.BD4
BET
S13

946
Plotting these probabilities in Figure 10-2, we can see some quantitative

support for the critical nature of Late Inning Pressure. Each line in Figure
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10-2 represents a score differential for the home team over the visiting team.

Looking at the lines in which the home team has the lead, each line curves
upward as the game progresses. The smaller the lead, the more extreme the
curvature. (The value of an extra run increases as the lead becomes smaller,

and this value becomes even greater in late innings.) The difference between

being ahead by 1 run or behind by 1 run after the first inning is about .2 in

win probability, but about .7 in win probability after eight innings.
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Figure 10-2 Probability of home-team victory given the home-team lead (home team minus visiting
team) at the end of each inning.

So, Table 10-14 and Figure 10-2 capture the score and inning aspects of
winning, while Table 7-4 captures the base and out aspects of scoring runs.
Putting them together, we can derive a reasonable replication of the win
probabilities used by the Mills brothers. The calculation to do this is
somewhat like that for expected run production described earlier.

Suppose we wish to calculate the probability of winning when the home
team trails by 1 run with runners on first and second and 1 out in the bottom
of the ninth inning. This is the situation that Joe Carter faced as he
approached the plate in the ninth inning of Game 6 in the 1993 World Series.
Lindsey’s data in Table 7-4 tells us the probability of scoring different
numbers of runs in the remainder of the inning:

e Toronto scores no more runs. In this case (first and second base
occupied, with 1 out), there is a .571 chance that Toronto will score no
more runs in the remainder of the inning; if this happens, Toronto loses
the game. The probability of a Toronto victory is 0 (as shown in Table
10-14).




e Toronto scores 1 more run. Table 7-4 also tells us that there is a .163
chance that Toronto will score exactly 1 more run in this inning. In this
case, the game is tied and goes into extra innings. Toronto would then
have an even chance (.5 probability) of winning (as shown in the ninth
inning column of Table 10-14).

e Toronto scores two more runs. Table 7-4 tells us that there is a .119
chance that Toronto will score exactly 2 more runs in this inning. In this
case, Toronto wins and its probability of victory is 1 (as shown in the
ninth-inning column of Table 10-14).

e Toronto scores 3 or more runs. Table 7-4 tells us that there is a .147
chance that Toronto will score 3 or more runs in this inning. Again,
Toronto wins and its probability of victory is 1.

Table 10-15 summarizes the calculation. Each line of the table represents the
possibility of scoring a specific number of runs in this inning given the
situation (1 out and runners on first and second). The line then goes on to
analyze the consequences of scoring those runs given the inning and the
score. In the last column, we multiply the probability that the home team
scores the runs times the probability that they win if they do. Summing the
results in the last column gives the final result of the probability of winning
given all that could possibly occur in the remainder of the inning. In this
case, the probability of Toronto winning as Carter stepped to the plate was
almost .35.

Table 10-15 Calculation of the Probability of Home-Team Victory When the Team Trails by 1 Run in
the Bottom of the Ninth Inning with 1 Out and Runners on First and Second Bases

SCORING IN INNING RESULT OF SCORING

FriWin PriRuns) =
Rits PriRuns) Honre Lead Given Runs) Prifin Given Runs)
Q 571 -1 o )
1 163 0 5 0815
2 A1 1 1 1190
3 or more 147 2 or more 1 1470

FriWin) = .3475



Let’s look at a more general calculation, where the inning results are not
win, lose, or tie the game, but where the Pr(Win Given Runs) values (other
than tie) are different from 0 and 1. In The Sporting News #18 greatest
moment, Sandy Amoros of the Brooklyn Dodgers made his game-saving
catch in the bottom of the sixth inning with his Dodgers ahead of the
Yankees 2—0 in Game 7 of the 1955 World Series. Yogi Berra had come to
the plate with runners on first and second, no outs. Table 10-16 summarizes
the calculation of the Yankee probability of winning at the moment Berra
came to bat. The Pr(Run) probabilities in the second column are taken from
Table 7-4 for runners on first and second and no outs. The Pr(Win Given
Runs) probabilities in the fourth column are taken from Table 10-14 for the
sixth inning and the appropriate lead. The probability of a Yankee win was
.3758, slightly better than the situation Toronto was in when Carter came to
bat.'# Comparing the situations, both teams had identical bases occupied.
While New York trailed by more runs than Toronto, the Yankees had fewer
outs in the inning and were not in their last at-bat, all of which more than
counterbalanced their disadvantage in the score relative to the Blue Jays. All
of these factors are accounted for in the calculation of the probability of
winning.

Table 10-16 Calculation of the Probability of Home-Team Victory When the Team Trails by 2 Runs
in the Bottom of the Sixth Inning with No Outs and Runners on First and Second Bases

SCORING IN INNING RESULT OF SCORING

Prii¥in Prifuns) =
Runs PriRuns) Homea Laad Givan Kuns} Prilin Given Runs)
o .ag95 -2 16E 0e64
1 220 -1 295 0649
2 131 0 500 0655
3 or mare 254 1 or more J05 1751
PriWinl = .3758

We also see that there is more spread in the Pr(Win Given Runs) for
Carter’s situation (from 0 to 1) than for Berra’s situation (from .168 to .705).
This indicates greater instability in Carter’s situation; that is, the possible
change in victory from scoring 0 or 3 runs in the inning has a greater effect



in Carter’s situation than in Berra’s, and this indicates that the degree of
clutch is more intense in Carter’s than in Berra’s.

Applying this system to Lindsey’s data, Bennett and Flueck were able to
calculate their own table of win probabilities. Figure 10-3 is an application
of these win probabilities to Game 6 of the 1993 World Series. The line
tracks the probability of Toronto victory as it changed after each play. The
effects of plays in which Joe Carter batted are emphasized with heavy lines.
The end of each inning is indicated on the x-axis, giving the score at the end
of the inning (Toronto— Philadelphia). A diamond symbol on the line
indicates the result of the last play of the visitors’ (Phillies’) half of the
inning.

Inning i 2 3 - & i

=]
oo

G

100%

TE%

20% _

FROBAEBILITY OF TORONTO VICTORY

0%

3-0 3-0 3-0 4-1 5-1 -1 5-6 5-6 8-6

SCORE

Figure 10-3 Win probabilities for Toronto after each play in Game 6 of the 1993 World Series.
Effects of plate appearances by Joe Carter are emphasized with heavy lines. The scores at the end of
each inning are marked on the x-axis. Diamonds identify result of last play in visitors’ (Phillies’) at-
bat.

We see that Toronto’s probability of winning rose from the start as they
prevented the Phillies from scoring in the first inning. This trend continued
as the Blue Jays scored three times in the first inning. Carter’s sacrifice fly



was part of this effort; it provided a small boost in the probability by
knocking in the second run of the inning. There was no scoring in the next
two innings. Toronto’s probability of winning rose slightly as they preserved
their lead. The fourth inning saw a small dip in Toronto’s probability of
victory as the Phillies scored a run. By matching Philadelphia with a run of
their own, Toronto restored their three-run lead and inched their probability
of winning to an even higher level. The Phillies had an opportunity to score
some runs in the fifth inning (bases loaded and 2 outs), but failed when Dave
Hollins grounded into the third out. The low point in the inning for Toronto
occurred just after John Kruk walked to load the bases. Note how win
probability is able to account for establishing a scoring threat even if it
eventually fails. Hollins’s big out is shown by the rise (ending with the
diamond symbol) in Toronto’s victory probability from this low point in the
fifth inning. Toronto responded to this scare with another run, to inch ahead
their lead and chances of winning.

The sixth inning was uneventful, but in the seventh the Phillies turned
the tables on Toronto, scoring five runs to take the lead. The plot of
Toronto’s probability of winning looks like the Dow Jones Industrial
Average in free-fall. Toronto did not score in its half of the seventh, pushing
its probability of winning even further down. When the Phillies did not score
in the top of the eighth inning, Toronto had a chance to tie or get the lead.
Joe Carter had Toronto’s first crack at the Phillies, but flied out in a critical
at-bat that decreased Toronto’s chances even further. After Carter, the plot
rises (and the plot thickens) in the eighth inning as a result of a threat with
bases loaded and two outs. Like Hollins on the opposing team, Pat Borders
made the third out, producing a net gain in the probability of the Phillies
winning in the inning since their one-run lead was preserved. In the ninth
inning, the Phillies went down quickly. Toronto came out storming in the
ninth, quickly putting runners on base. The triumphant (or cataclysmic,
depending on your view) impact of Carter’s home run is evident in the steep
rise in the final markings of the plot.

Player Game Percentage (PGP)

In addition to the calculation of win probability, Bennett and Flueck made
other modifications. They adopted the Net Points viewpoint instead of the
PWA ratio concept. Instead of using Win Points and Loss Points, their



measure used the change in probability directly expressed as a percentage.
Half of the change was attributed to the offensive player’s performance, and
the other half to the defensive player’s performance. This simplification
allowed the direct computation of wins above average without the need for
dividing by 2000 (as in the Mills system).

Consider Joe Carter’s home run in the 1993 World Series finale. As
described in Table 10-15, the probability of a Toronto victory was .3475
when Carter came to bat. His home run won the game, so the probability of a
Toronto win was exactly 1 after his at-bat. The change in Toronto’s win
probability was 1 — .3475 = .6525, or 65.25 percent. Half of this change
(32.63 percent) was awarded to Carter, and the negative half of the change
(—32.63 percent) was given to Mitch Williams, the hapless Phillies reliever
who delivered the ill-fated pitch.

For the most part, Bennett and Flueck adopted the procedures used by
the Mills brothers in identifying the major offensive and defensive
contributors in each play, following the examples provided by the Mills’s
analysis of the 1969 World Series. There were departures, however. One of
these was the method used to evaluate errors. Earlier in this chapter, we
looked at the Mills brothers’ analysis of Weis’s error in Game 1 of the 1969
World Series. Basically, the analysis broke the play up into two parts: a
ground-out giving Win Points to the pitcher Seaver, and the error giving Loss
Points to Weis. However, the batter ended up getting 28 Loss Points on the
ground ball to Seaver and 70 Win Points on Weis’s error, for a net gain of 42
points, more than the 28 Win Points given to Seaver. It did not seem right for
the batter to get any positive recognition for this play, much less greater
recognition than the pitcher.

The solution adopted by Bennett and Flueck was not to give any positive
credit to the batter in this play and award the entire negative change from the
error to the fielder. So, using the example above, the first part of the play is
the same (except for the change from the Points framework); the change was
D =.014, or 1.4 percent, so Seaver gets D/2 = (.7 percent, and Buford gets
—0.7 percent. However, Weis’s error produced a negative change (from his
team’s perspective) of D = .035, so he is debited the entire change, —3.5
percent. In this way, only the pitcher receives any positive recognition from
the play.

PGP (and PWA) have very powerful capabilities to quantify defensive
contributions to winning. However, while the mechanics of the probability
calculations are objective, identifying the players and whether their



defensive contributions were outstanding enough for special recognition
remain subjective judgments. This is less of a problem for errors, since MLB
has assigned official scorers the task of identifying misplays in the field. But
how do we identify great plays by fielders? And once recognized, how do we
reward the fielder? Willie Mays’s renowned catch in the 1954 World Series,
for example, was unquestionably a great fielding play. One possibility is just
to give the defensive credit for the out to the fielder instead of the pitcher, as
might be done in the case of Mays’s catch, but is this enough credit for an
extraordinary play? Probably not. So, the other possibility is to analyze it as
an error in reverse. Split the play into two parts, the first being a hit off the
pitcher and the second being the out credited to the fielder. PGP has used
both methods at times for evaluating fielding plays, but there is much room
for improvement in this aspect of its use.

While Bennett and Flueck’s measure was derived from the same
concepts as PWA, there were enough differences (especially the use of their
own table of win probabilities) that they gave their measure its own name,
Player Game Percentage (PGP).

Let’s see how well PGP rated Carter’s 1993 World Series performance.
Table 10-17 is the same as Table 10-8 except that it also presents the
probability of a Toronto victory before and after each play (as a percentage).
The first column (D) gives the change in these probabilities, subtracting the
Before probability from the After probability. Carter’s net contribution over
the course of the series can be found by summing the values in the D column
and dividing by 2 (since the change is split in half between offense and
defense). This calculation produces the following net contribution:

Table 10-17 Player Game Percentage Evaluation of Joe Carter’s Performance in the 1993 World
Series in Chronological Order (Squares Mark On-Base Events, Triangles Mark Plays That Scored
Runs)
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52.80/2 = 26.40

This is roughly equivalent to a quarter of a win over the course of the six

games.'” Carter’s PGP rating is then found by dividing his net contribution
by the number of games:

Net contribution 26.4

: - 4.4
Number of games 6

PGP =
This means that Carter’s play in the 1993 World Series was good enough to
raise a team’s winning percentage by .044. So, a play of this caliber over the
course of a season could raise a .500 team to a .544 team.

We can summarize Carter’s play game-by-game by just adding up his
contributions in each game individually. Figure 10-4 displays these values in
the bars. The line shows Carter’s PGP for the series as it progresses; each
value is the sum of the Game PGPs divided by the number of games to that
point in the series. We see that Carter’s PGP fluttered about the average (0)
level until the big boost in Game 6.
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Figure 10-4 Game history of Joe Carter’s Player Game Percentage throughout the 1993 World
Series.



Looking at Table 10-17, we see that Carter got off to a good start in
Game 1, with major contributions early in the game. His sacrifice fly tied the
game, which Toronto would eventually win. Game 2 saw the best (almost)
and worst of Carter’s play. His home run chipped into the early Phillies lead,
and was Carter’s second biggest play of the series. On the other hand, he
struck out late in the game, putting the brakes on a possible big inning to get
Toronto back in the game; this was his worst at-bat in the series. Despite the
HR, his contribution was negative in this game. His contributions in Game 3
were relatively minor (positively and negatively) in a Toronto victory that
was assured early in the game.

Game 4 was a wild affair that Toronto won 15-14. Carter played a
positive role in Toronto’s victory. His first single set the stage for a big
Toronto first inning. His second single started the rally that eventually
brought Toronto from way behind into the lead, but it gave Carter very little
credit (+.3). When the single was hit, the likelihood of a Toronto comeback
was very remote, a probability of winning less than .01 before the single and
less than .02 after it. Toronto had to score 5 runs just to tie and thus reach a
50-percent chance of winning. The view that Carter’s single was a big hit is
hindsight; PGP (and PWA) evaluate a play at the moment of its resolution,
not after the fact. The credit for the Toronto rally went to the hits made by
Rickey Henderson and especially Devon White, who delivered when the
game was more in doubt, later that inning. Ironically, Carter got more credit
for his double in the ninth inning, setting up a potential insurance run (which
did not score). PGP and PWA operate on probabilities, but sometimes the
remote possibilities do occur.

Game 5 was Carter’s worst game, as it was for the rest of Toronto’s
players. Phillie starting pitcher Curt Schilling took charge and pitched a
shutout. Game 6 started off well for Carter as his sacrifice fly helped Toronto
to an early lead. But unlike Game 4, when his team, trailing by a lone run,
needed a runner, he flied out to lead off the eighth inning; this was his
second greatest negative at-bat of the series, although his final at-bat more
than made up for it.

The analysis of Carter’s at-bats within the context of the game using
probability of victory lets us see the ebb and flow of player production. It
quantifies our intuitive feel for the great dramatic plays such as Carter’s
home run to win the final game and the series. Unlike most statistical
summaries of player performance, a PGP/PWA analysis tells a revealing
story.



Suppose we sort Table 10-17 not chronologically but according to play
type, as shown in Table 10-18. What does this tell us about the value of
different plays? Of course, we must keep in mind that this is a very small
(and unrepresentative) sample of situations in which these plays could occur.
Still, we see that the evaluation of these plays follows our intuition of their
values. The average value of Carter’s home runs (average D = 37.5) is higher
than that of any other play type. The average value of a single (average D =
2.9) is less than that of the double (D = 4.8) and greater than that of the
sacrifice fly (average D = 1.1). All outs (except SFs) have negative values.

Table 10-18 Player Game Percentage Evaluation of Joe Carter’s Performance (Sorted by Play Type)
in the 1993 World Series (Squares Mark On-Base Events, Triangles Mark Plays That Scored Runs)
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However, taking a closer look beyond the averages, we notice exceptions
to these generalities. One single which energized a big opening in Game 4
had greater value than Carter’s lone double. Two sacrifice flies had more
value than some singles; both SFs occurred with one out and the score close.
On the other hand, one SF which occurred with no outs had a negative value;
apparently, an SF with no outs reduces the possibility of a big inning, while
an SF with one out in a close game guarantees the scoring of a run when less
opportunity exists. Also note that Carter’s leadoff outs tended to be more
damaging than other outs. In fact, the average value of Carter’s leadoff outs
was —3.3, and —1.7 for all other outs, excluding SFs. This provides some
quantitative support for the leadoff spot being a critical element of each
inning. '

World Series Most Valuable Players

Continuing the tradition established in Player Win Averages, the first
application of PGP was to evaluate players in the 1980 World Series. Since
then, PGP has been used to analyze each World Series since 1987. Just as the
Mills brothers identified the erroneous selection of Donn Clendenon as the
1969 World Series MVP over Al Weis, it has been interesting to see how
often the sports-writers’ MVP selection matched the PGP selection.
Despite his spectacular home run, Carter did not have the highest PGP
rating in the 1993 World Series.That honor belonged to Paul Molitor
(6.8 PGP), who was the sportswriters’ pick as the Series Most Valuable
Player. The two honors do not always coincide. Table 10-19 presents the
official MVP selected by the sportswriters and the unofficial MVP selected
by PGP. Indeed, at times, PGP has selected a player from the losing team!
These players (Aikens, Pena, Jones, and Gwynn) deserved a better fate.
Some MVPs actually had subpar performances, as indicated by their
negative PGP ratings.

Table 10-19 Most Valuable Players in Recent World Series (Players in Boldface Were on the Losing
Team)



Year

1980
1987
19858
1989
1990
1991
1992
1993
1995
199&
1997
1598
1999
2000

2001

2002

players was so small that a shared award was probably more appropriate.

TEAMS

Winner Loser
Fhiladelphia Kansas City
Minnesota St. Louis
Los Angeles Oakland
Cakland San Francisco
Cincinnati Dakland
Minnesota Atlanta
Toronto Atlanta
Toronto Philadelphia
Atlanta Claveland
Yankses Atlanta
Florida Cleveland
Yankees San Diego
Yankees Atlanta
Yankees Mets
Arizona Yankees
Anaheim San Francisco

SPORTSWRITERS' MVP

HIGHEST PGP

Player

Mike Schmidt, 3b
Frank Viola, p

Orel Harzhizar, p
Dave Stewart, p
Jose Rijo, p

Jack Maorris, p

Pat Borders, ¢

Faul Malitor, dh-1b
Tom Glavine, @
John Wetteland, p
Livan Hernandez, p
Scoft Brosius, 3b
Mariange Rivera, p
Cerak Jeter, 55

Randy lohnzon, p
Curt Schilling, p

Tray Glaus, 3h

PGP

4.6

7.0

L
=]

g
[ |

4.4

Player

Willie Aikens, 1b
Tony Pena, ¢

Kirk Gibson, ph
Mike Moore, p

Josa Rijo, p

Jack Morris, p

Ed Sprague, ph-1hb
Paul Molitor, dh-1b
Tom Glaving, p
Chipper Jones, 3b
Gary Sheffield, of
Tony Gwynn, of
Chuck Knoblauch, 2b
Mariano Rivera, p

Randy Johnsan, p

Troy Glaus, 3h

PGP

8.0
2.8
8.7
E.2
8.5
1.6

8.1
4.8
5.7

4.5

4.4

In 2001, the sportswriters felt that Arizona pitchers Randy Johnson and
Curt Schilling deserved to share the award. Yet according to a PGP analysis,
Johnson clearly gave the superior performance. The MVP award would have
been more properly shared in 2002. Looking at the 2002 World Series game
by game, it may not be clear who the MVP of the Series was. Troy Glaus, the
Series MVP as chosen by the sportswriters, ended up with a slight edge over
teammate Tim Salmon (4.4 vs. 4.3 PGP). Glaus performed more consistently
from game to game, but Salmon had a spectacular Game 2. In this case, PGP
agreed with the sports-writers’ selection, but the difference between the

Later in this chapter, we will present a detailed examination of the 2002
World Series from the PGP perspective.
With two exceptions, the PGP ratings presented for pitchers here did not

include their appearances at bat. PGP rates players with respect to average

performance. Pitchers are at a severe disadvantage compared to an average



hitter, and their ratings generally suffer accordingly. Since pitchers are not
expected to hit, their hitting skills are considered a bonus rather than an
expectation. This is especially relevant in recent World Series play, in which
some games have pitchers batting and others do not because of the
designated hitter rule. The exceptions are Orel Hershiser and Mike Moore.
Hershiser’s 3 for 3 in the 1988 World Series raised his 4.9 PGP rating from
pitching alone to an overall PGP rating of 5.4. Mike Moore’s two-out double
early in Game 4 of the 1989 World Series, which knocked in 2 runs, was
more valuable than his pitching performance (which was excellent in its own
right). His batting performance raised his overall PGP rating to 6.2 from his
pitching PGP rating of 4.2. It would be ignoble to ignore these valuable
(unexpected) contributions when highlighting great performances in the
World Series.

The sportswriters selected a pitcher as MVP in 10 out of 16 World Series
examined, while PGP selected a pitcher only 6 times. From the PGP
viewpoint, the media are not properly appreciative of the relatively rare but
powerful contributions made by offense to team victory. Nowhere is this
more evident than in the evaluation of the 1988 World Series. Kirk Gibson
came to bat only once in the series, but in that one at-bat he turned defeat
into victory, raising the probability of victory from about .13 to 1. Orel
Hershiser pitched very well in two starts, as indicated by his high PGP
rating. However, in both games, the Dodger offense produced early leads (5—
0 after three innings in Game 2, and 2—0 before Hershiser threw his first
pitch in Game 5). Hershiser’s contribution was mainly to preserve a lead
already given to him. Pitching cannot win a game alone, as Gibson’s home
run did. From the perspective of winning games, Gibson’s lone but seismic
contribution (#6 among the game’s greatest moments in the opinion of The
Sporting News) was greater than Hershiser’s accomplished (but not critical)
performance.

Critics of the PWA/PGP system might say “Aha! We told you that too
much weight is given to the big hit!” If that is so, how do they explain that
Tony Gwynn’s performance in the 1998 World Series (on a team that lost in
four straight!) is rated higher by PGP than the performance of Scott Brosius.
After all, Brosius had the biggest hit of the series, a home run in Game 3 that
brought the Yankees from behind into the lead late in the game. And it was
his second home run of the night. (His first, only an inning earlier, started the
Yankee comeback.) Figure 10-5 shows PGP ratings for Brosius and Gwynn
in each game of the 1998 World Series. We see that Game 3 was definitely



the highlight of Brosius’s series; he also had a great performance in Game 2,
but Games 1 and 4 were below average. Gwynn, on the other hand, had no
dramatic game-winning moment (how could he, when the Padres were swept
in the series?), but he had consistently good performances; his PGP rating
was positive in every game of the series. Apparently, PGP is capable of
rewarding consistently good play that contributes to a team’s chances of
winning—even if the victory afforded by the opportunity presented is not
realized. This view is further buttressed by Molitor being rated higher than
Carter in the 1993 World Series despite Carter’s game-winning HR.
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Figure 10-5 PGP ratings of Tony Gwynn and Scott Brosius in the 1998 World Series.

Comparing PGP ratings in Table 10-19, one might get the impression that
since Kirk Gibson had the highest PGP rating, his performance must be rated
the best of all players in recent World Series. However, when comparing
performances in different series, it is better to use Net Contribution.

Net contribution = PGP x number of games

Remember that with each play a player’s Net Contribution can go down as
well as up, so playing in more games is not necessarily an advantage. Listing
the best players from each series according to Net Contribution moves Jack
Morris’s pitching performance in the 1991 World Series (climaxed by his
heroic 11-inning shutout victory in Game 7) to the top of the heap in Table



10-20. Willie Aikens’s name would undoubtedly be better remembered if his
Kansas City Royals had prevailed over the Phillies in 1980. His high Net
Contribution indicates that his 22 total bases in 20 at-bats (for an amazing
1.100 slugging percentage!) made contributions to victory that the rest of the
team (primarily the pitching staff) could not preserve.

Table 10-20 Net Contributions of Highest PGP-Rated Players in Recent World Series

Year Player FiP Games fiet Contribution
1951 lack Marris, p e 7 h3z
1880 Willie Aikens, 1b a.0 ] 48,0
1988 Kirk Gibsan, ph 8.7 5 43.5
1993 Faul Malitor, dh-1b 6.8 =] 40.8
1950 lose Rijo, p 8.5 4 34.0
1992 Ed Sprague, ph-1b 55 <] 33.0
1958 Tony Gwynn, of 8.1 4 32.4
2001 Randy Johnson, p 4.5 7 3l.s
2002 Troy Glaus, 3b 4.4 7 30.8
1995 Tom Glavine, p 51 G 306
2000 Mariano Rivera, p 5.7 & 28.5
1989 Mike Moore, p 6.2 4 24.8
1997 Gary Shaffield, of 3.2 7 22.4
1996 Chipper lones, 3b 37 a 222
1987 Tony Pena, © 2.8 7 19.6
1899 Chuck Knoblauch, 2b 4.8 4 19.7

A common question that comes up in reference to World Series play is
whether PGP can be adapted to evaluate players with respect to the
probability of winning the series as opposed to winning individual games.
This is certainly possible, although we refrain from using the system in this
way. The basic unit of play in baseball is the game. Each player is focused on
that objective. Evaluating players on that basis provides a uniformity and
consistency of the application throughout the season or at any level in the
playoffs.

It should be made clear that PGP and PWA as defined here are not
measures of ability but of observed performance. In order to draw inferences



about ability, they must be modeled using principles similar to those outlined
in other chapters of this book.

The 2002 World Series

To get a detailed view of how Player Game Percentage (PGP) can be used to
evaluate performance and may be used to find the Most Valuable Player
(MVP), let’s use it to analyze the 2002 World Series. This Series pitted the
San Francisco Giants against the Anaheim Angels. The story line spun
around the first-time appearances of a team and an individual in the World
Series. In their 42-year history, the Angels had never before appeared in the
Fall Classic. They had, however, sustained several near misses, most notably
coming within one strike of a World Series appearance in 1986. The 2002
Angels were one of the surprise teams of the American League (the
Minnesota Twins being the other), having finished with a poor 75-87 record
in 2001. Their opponents, the San Francisco Giants, were led by Barry
Bonds, who had arguably put together two of the greatest consecutive batting
years in MLB history. Like the Angels, Bonds himself had come close to
getting into a World Series several times before but had been consistently
denied. Both the Angels and the Giants were wild-card playoff teams; this
was the first time that wild-card teams had faced each other in the World
Series.

A few facts worth considering: The Angels won their first World
Championship, and their third baseman Troy Glaus was named MVP of the
Series. The Series went seven games; the Angels had to take the final two
games to win the trophy. Much of the interest in the Series centered around
strategies of pitching to Barry Bonds. Throughout the playoffs, teams had
given Bonds little opportunity to hit and had walked him instead of risking
one of his famously gargantuan home runs. Had the Giants held their lead in
Game 6, Bonds might have been the first player to walk away (literally) with
the Series MVP award.

But what can statistics tell us about this end-of-season drama? For one
thing, PGP gives us the chance to see objectively whether players’
performances lived up to our subjective impressions of them. Figures 10-6
and 10-7 show the PGP ratings in each game of the 2002 World Series for
each Angels and Giants player. The figures also show the PGP/Game rating
for each player (the sum of the individual game ratings divided by 7). Note



that the PGP rating includes all facets of play (e.g., fielding, running) as well
as hitting. For pitchers, the PGP rating is based on pitching and fielding.
Batting by pitchers is generally not included for reasons explained earlier in
the chapter.
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Figure 10-6 PGP ratings of the Anaheim Angels in the 2002 World Series.
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Figure 10-7 PGP ratings of the San Francisco Giants in the 2002 World Series.

The PGP rating scheme supports the conclusion that Glaus was indeed
the MVP of the Series (with a PGP/Game of 4.4). However, the margin of
victory was a narrow one over teammate Tim Salmon (PGP/Game of
4.3).The relatively short length of the gray band spanning Glaus’s individual
PGP game results in Figure 10-6 indicates that his performance was more
consistent from game to game, while Salmon’s value resided mainly in his
Game 2 performance. Similarly, on the Giants, Barry Bonds (PGP/Game of
3.4) was narrowly ahead of J. T. Snow (PGP/Game of 3.3). Bonds also
showed more consistency than Snow; this is not surprising because Bonds
was given many intentional passes, which should reduce the variability in
the results of his plate appearances. Giants starting pitcher Russ Ortiz had
the curious distinction of giving the best (Game 6) and worst (Game 2)
performances by a pitcher in an individual game of the Series.

Figure 10-8 shows the PGP/Game rating for Glaus, Salmon, Bonds, and
Snow at the conclusion of each game of the Series. Each of these players
was the Series MVP-to-date at some point during the seven games. Snow
was the Game 1 MVP and, at that point, also the Series MVP. He was
succeeded by Salmon in Game 2. Salmon, in turn, held the lead until Game
5, when Bonds overtook him. Then Glaus took the lead in Game 6 and
managed to hold on in a tight finish with Salmon, who had a strong Game 7.
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Figure 10-8 PGP/Game ratings of 2002 World Series MVP leaders after each game.

Figures 10-9 through 10-15 are similar to Figure 10-3. Each figure plots
the probability of an Anaheim victory (POV) as it changed play-by-play in a
Series game. The vertical lines separate the innings of the game, and the
score at the end of each inning (Visitors—Home) is provided below the
graph; diamonds separate the bottom and top halves of the innings. Each
play during which Troy Glaus was awarded a contribution to his PGP rating
is denoted, and the change in POV produced by the play is marked by a bold
line. Since all graphs are aligned with respect to the probability of an
Anaheim victory, an upward slope signifies a positive contribution to
Anaheim while a downward slope signifies a negative contribution. The
figures provide a visual history of the course of each game and the influence
Glaus had on its outcome.
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Figure 10-9 Win probabilities for Anaheim in Game 1 of the 2002 World Series.
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Figure 10-10 Game 2 win probabilities for Anaheim in the 2002 World Series.
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Figure 10-11 Game 3 win probabilities for Anaheim in the 2002 World Series.
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Figure 10-12 Game 4 win probabilities for Anaheim in the 2002 World Series.
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Figure 10-13 Game 5 win probabilities for Anaheim in the 2002 World Series.
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Figure 10-14 Game 6 win probabilities for Anaheim in the 2002 World Series.
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Figure 10-15 Game 7 win probabilities for Anaheim in the 2002 World Series.

Game 1

No one scored in the first inning. In fact, no batters reached first base. The
Giants were the visiting team so Anaheim’s probability of victory inched up
a little as each batter was retired in the top of the inning and then inched
back to 50 percent as each of its batters went down in turn.

In the top of the second inning, the graph shows two sharp downward
lines to the 31-percent level as a result of two solo home runs from Barry
Bonds and Reggie Sanders. In the bottom of the second, Troy Glaus came to
bat for the first time in the Series and hit a solo home run that raised the
POV to 41 percent.

The 2—1 score remained unchanged through the fifth inning. Over this
period, the POV dropped from 38 percent to 33 percent. However, Anaheim
had opportunities in each inning to tie the score. These threats are shown in
the graph by the jagged lines that jut up toward the 50-percent level. Adam
Kennedy started off the third inning with a double that actually raised the
POV above 50 percent. In the fourth inning, Garret Anderson’s leadoff single



and Scott Spiezio’s 2-out double each brought the POV up near 50 percent.
In the fifth inning, back-to-back 1-out singles by David Eckstein and Darin
Erstad again lifted the POV to the 50-percent level. Nevertheless, all of these
runners were stranded. In his second at-bat, Glaus was one of the batters
incapable of advancing Anderson in the fourth inning.

J. T. Snow’s 2-out 2-run homer in the top of the sixth inning increased
the Giants lead to 3 runs and dropped the POV to 14 percent. This play—the
biggest of the game—was instrumental in making Snow the MVP of Game 1
according to PGP. Anaheim did not give up. Glaus’s leadoff HR increased
the POV to 24 percent, and Adam Kennedy’s RBI single pushed it back up to
34 percent. The Angels got no closer than that. Glaus’s strikeout leading off
the eighth inning is representative of the Angels’ futility in the last three
innings. Nevertheless, Glaus had a good game overall and along with Adam
Kennedy the most valuable performance on the Angels team.

Game 2

Game 2 was owned by Tim Salmon, who according to PGP measures had the
most valuable single game performance in the Series. The Angels came out
on fire. After stopping the Giants in the top of the first, they put 5 runs on the
board, raising the POV to 91 percent. The biggest hit of the game was Darin
Erstad’s double, which batted in the first run. Salmon followed with a single
and eventually scored in the rally. Glaus flied out during this inning.

The Giants responded immediately with 4 runs, bringing them within 1
run of the Angels and dropping the POV to 66 percent. The rally was ignited
by two crucial, back-to-back plays: Reggie Sanders’s 3-run HR and David
Bell’s solo HR. Tim Salmon’s 2-run HR in the bottom of the second gave the
Angels a cushion, jacking the POV up to 82 percent. Troy Glaus followed
with a double and advanced to third on a passed ball. Since his double came
with 2 outs and the Angels already had a substantial lead, it advanced the
Angels’ POV only a small amount. In any case, he did not score.

Over the next two innings, the Angels mounted no threats to score, but
the Giants did. Jeff Kent led off the top of the third inning with a HR that
dropped the POV to 72 percent. When Barry Bonds followed with a walk,
the Giants had the potential for another big inning, and the POV dropped
again to 69 percent. But David Bell hit into a double play that killed the
rally, and the POV rose back up to 77 percent. Leading off the fourth inning,



Reggie Sanders smacked a single and stole second base, reducing the POV
to 66 percent. Again the Giants failed to exploit the scoring opportunity.

In the fifth inning, the Giants finally broke through. Rich Aurilia led off
with a double. With 1 out, the Angels opted to give an intentional pass to
Barry Bonds, dropping the POV to 70 percent. This time the strategy did not
work as Benito Santiago singled to load the bases. J. T. Snow responded with
a single in his critical at-bat; this tied the game and dropped the POV to 41
percent. For the first time in Game 2, the Giants had a better chance of
winning than the Angels, even though at this moment the game was tied—
POV takes the bases-outs situation into account (runners on first and third
with 1 out) as well as the score. When Reggie Sanders struck out, it appeared
that the damage could be controlled, and the POV rose to 49 percent. But
David Bell and Shawon Dunston batted back-to-back singles that produced
two more runs, and the POV plummeted to 27 percent by the end of the
Giants’ fifth inning. A game that started as a rout by the Angels had changed
dramatically, as exemplified by the swing in POV in Figure 10-10.

As they did in Game 1, the Angels fought back. Glaus led off with a
single and advanced to third when Kenny Lofton muffed Brad Fullmer’s
subsequent single. Quickly the POV rose back to 47 percent. Here again we
see how the POV takes into account the bases-outs situation (runners on first
and third with no outs) as well as the score (Angels trailing by 2 runs).
Unfortunately, the Angels could only generate 1 run from this situation, and
the POV sank back to 33 percent by the end of the inning. Scott Spiezio
swatted a sacrifice fly that scored Glaus but did not advance Fullmer. This
play dropped the POV to 41 percent. This is one example when an SF is not
a positive contribution to the team. With no outs, the runner on third has a
great likelihood of scoring at some point in the inning. Giving up an out to
get Glaus home without advancing Fullmer diminished the Angels’ chance of
scoring the runs needed to catch the Giants. The risk of not advancing
Fullmer was played out when Bengie Molina grounded into a double play to
end the inning.

Initially, events did not bode well for the Angels in the sixth inning when
their first two batters grounded out. However, the Angels were able to tie the
game when Garret Anderson batted home Darin Erstad, who had doubled.
Inbetween Anderson’s and Erstad’s at-bats, Tim Salmon had walked,;
although he was thrown out at third for the final out, his attempt at
advancing had aided Erstad in scoring the tying run. After six eventful



innings, the game was tied and the POV was right where it started: at 50
percent.

In the bottom of the eighth inning, lightning struck the Giants out of a
clear sky. With 2 outs and a runner on first, it appeared as if the game would
enter the ninth inning in a tie. Then, Tim Salmon belted a homer that gave
the Angels a 2-run lead. With only one more inning to play, it vaulted the
POV to 94 percent. Troy Percival gave up a 2-out solo HR to Barry Bonds,
but the play left the Giants a run short in the end. Here, we have a case
where a home run makes virtually no dent in the probability of winning.

Given the final score, 11-10, it is no surprise that Giants pitcher Russ
Ortiz had the worst single game of any starter in the Series. On the other
hand, Angels middle reliever Francisco Rodriguez, who held the Giants
scoreless in the sixth, seventh, and eighth innings, had the best single game
performance by an Angels pitcher in the Series.

Game 3

In Game 3, the Series shifted to San Francisco. The Giants managed to
manufacture a run in the top of the first inning. Through the efforts of Kenny
Lofton and Jeff Kent, the Giants had runners on first and second with just 1
out. Again, the Angels decided to walk Bonds and load the bases. This
decision reduced the POV to 34 percent. The pressure was on Benito
Santiago to deliver a hit. Santiago hit a grounder that scored Lofton and
advanced the other runners. This dropped the POV only slightly, to 33
percent. Now the pressure was on J. T. Snow to deliver a 2-out hit with two
runners in scoring position. His failure to do so raised the POV to 39 percent.
Since this equals the POV when Bonds came to bat, the decision to walk
Bonds in this case appears to have had a neutral effect here.

In the second inning, neither team scored. Although the Angels mounted
a 2-out threat, it was stymied when Bengie Molina was intentionally walked
to get to the pitcher, Ramon Ortiz, who obliged the Giants by striking out.

The Angels produced an exciting third inning. Before the first out was
made, David Bell’s error had put Tim Salmon on and allowed David
Eckstein (leadoff walk) to score the tying run, raising the POV to 61 percent.
With 1 out, Troy Glaus knocked in the go-ahead run scored by Darin Erstad
who had followed Eckstein with a double. Scott Spiezio tripled home
Salmon and Glaus to raise the POV to 84 percent. In the end, the Angels
were unable to plate Spiezio, which dropped the POV to 78 percent.



The Angels struck again in the fourth inning when they produced four
more runs through a sequence of walks, singles, and stolen bases. The POV
reached 97 percent and only dipped slightly below this level for the
remainder of the game. In the sixth inning, home runs by Rich Aurilia and
Barry Bonds could only reduce the POV to 93 percent.The Angels tacked on
two more runs, but since the game’s course had already been decided in the
early innings, they had little effect on the result.

Spiezio’s third inning triple was the biggest play of the game and made
him the Game 3 MVP. Troy Glaus, too, had a good game and provided a key
single in the third inning.

Game 4

As in Game 3, the Angels built an early lead, but in Game 4, they were
unable to hold it. However, it first appeared as if the Giants would be the
team off to a fast start.

The Giants started off well in the first inning. Leadoff singles by Lofton
and Aurilia had dropped the POV to 32 percent. When Kent struck out, the
POV rose to 39 percent. Again the Angels decided to intentionally walk
Barry Bonds to load the bases. The tactic succeeded when Santiago bounced
into a double play to end the Giants’ chances of scoring.

In the second inning, consecutive singles by Gil, Molina, and Lackey
(the pitcher!) loaded the bases and pushed the POV to 62 percent.
Unfortunately, the Angels were only able to score 1 run on a sacrifice fly by
Eckstein and settled for POV at 57 percent at the end of their at-bat.

In the top of the third inning, the Angels struck again. Salmon led off
with a single and Glaus hit a 1-out HR. The Angels had a 3-run lead and the
POV rose to 80 percent. However, in the bottom of the inning, Lofton and
Aurilia led off with a single and a double. When Kent lined out, the POV
still had been reduced to 67 percent. With first base open, Bonds was again
given an intentional pass. In an uncanny repeat of the first inning, Santiago
hit into an inning-ending double play, raising the POV to 83 percent.

In the bottom of the fifth inning, Rueter (the other starting pitcher!),
Lofton, and Aurilia led off with singles that scored 1 run and reduced the
POV to 53 percent. Even though the Angels still led by 2 runs, the bases-outs
situation made the game almost even at this point. A sacrifice fly by Kent
scored another run but was not a positive contribution as the POV rose to 59
percent. However, an error by Tim Salmon on the play had allowed Aurilia



to advance into scoring position at second base. So, the POV stood at 56
percent as Bonds came to the plate again with first base open. And again he
was given the intentional walk. This time, though, Santiago singled to tie the
game, and the POV dropped to 38 percent. The Giants were not able to
capitalize on the first and second 1-out opportunity, and the POV rose to 50
percent at the end of the inning.

Spiezio led off the sixth inning with a single but was left stranded when
Gil struck out and Molina hit into a double play. In the bottom of the inning,
Tom Goodwin walked and stole second base, but was stranded also.

No one reached base until the bottom of the eighth inning when Snow
opened with a single and advanced into scoring position on a passed ball.
After Sanders popped out, David Bell delivered a single, giving the Giants’
their first lead of the game and dropping the POV to 12 percent. In the ninth
inning, reliever Robb Nen escaped potential trouble from Adam Kennedy’s
single when Brad Fullmer hit into a game-ending double play.

David Bell’s game-winning hit was the biggest play of the game, but
Rich Aurilia was the Game 4 MVP for providing scoring opportunities early
in the game and sparking the Giants big rally in the fifth inning. For the
Angels, Glaus, Adam Kennedy, and reliever Ben Weber made positive
contributions, but were unable to turn the tables on the Giants.

Game 5

The Giants got off to a fast start and never let up. They scored 3 runs in the
first inning and dropped the POV to 21 percent. It never rose higher than 29
percent after that. The inning included a double by Barry Bonds that scored
the first run of the game. Bonds came home with the third run on David
Bell’s 2-out bases-loaded walk.

The assault continued in the second inning. Lofton and Kent singled and
doubled to put runners on second and third with 1 out. Barry Bonds was
again given the open base. Santiago came through with a single that scored 2
runs and dropped the POV to 5 percent. Bonds scored the third run in the
inning on Sanders’s sacrifice fly.

The Angels attempted a comeback. They scored 3 runs in the fifth inning
to raise the POV to 10 percent. The biggest hit was Troy Glaus’s 2-out
double that scored the third run. After the Giants went down in order in the
bottom of the fifth inning, the Angels started the sixth inning with great
promise. Molina and Gil led off with a single and double, and the POV rose



to 29 percent. However, Eckstein, Erstad, and Salmon went down in order to
drop the POV to 14 percent. Jeff Kent’s 2-run homer in the bottom of the
sixth inning dropped the POV back down to 5 percent. It precipitated a long,
slow, steady decline to O percent as the Giants doubled their runs scored in
the final three innings. Although a lot of scoring was done in this period,
these plays (including a fielding error by Glaus) had little effect on the
outcome of the game.

No matter what they did (walk Bonds or let him hit), the Angels’ strategy
backfired in Game 5, when Bonds had his most valuable game of the Series.
Even more valuable was the performance of Jeff Kent who also had his best
game of the Series.

Game 6

The Series moved back to Anaheim and Game 6 started as a pitcher’s duel
between the Giants’ Russ Ortiz and the Angels’ Kevin Appier. No one
scored, and few runners reached first in the first four innings. The only
player to reach second base was Jeff Kent who was forced to second when
Barry Bonds was intentionally walked with 2 outs in the first inning. This
unconventional strategy worked as Santiago fouled out.

In the top of the fifth inning, the Giants drew first blood when Shawon
Dunston’s 2-run homer dropped the POV to 25 percent. Kenny Lofton then
manufactured his own run by doubling, stealing third, and scoring on a wild
pitch to drop the POV to 17 percent. In the top of the sixth inning, Bonds’s
leadoff homer dropped the POV to 7 percent. In the top of the seventh
inning, Kent plated Lofton with a single. The Giants led 5-0, the Angels had
only 9 outs left, and the POV had dropped to 3 percent. The Giants seemed
to be assured of a World Championship.

That’s when it all started to unravel. Fittingly, the first hit of the Angels’
rally was a single by Troy Glaus. When Brad Fullmer followed with another
single, Giants manager Dusty Baker decided to relieve starter Russ Ortiz
with Felix Rodriguez. Ortiz left the game having given the best performance
by a starting pitcher in the Series; ironically, he would not win this game.
Scott Spiezio hit a homer that brought the Angels within 2 runs. The POV
rose to 16 percent, and the Angels suddenly had a pulse.

In the top of the eighth, Darin Erstad greeted the Giants new reliever
Todd Worrell with a leadoff home run that brought the Angels within 1 run
and increased the POV to 29 percent. Salmon and Anderson followed with 2



singles. An error by Barry Bonds allowed the pinch runner, Chone Figgins,
and Anderson to advance to second and third on Anderson’s single. Although
the Angels still trailed by a run, with no outs and two runners in scoring
position, the POV had risen in favor of the Angels to 67 percent. Troy Glaus
then delivered the biggest hit of the game: a double that scored both runners.
With the Angels up 1 run, a runner on second, and no outs, the Angels had a
good opportunity to tack on an insurance run, and the POV stood at 92
percent. However, they were not able to score Glaus, so the POV dropped to
85 percent by the end of the inning. Nevertheless, the Angels’ closer Troy
Percival got all three Giant batters out in the ninth inning, and the Angels
had made a triumphant comeback.

Troy Glaus was the Angels’ MVP for the game. Surprisingly, the Giants
starting pitcher Russ Ortiz gave an even better performance.

Game 7

Initially, it appeared that the Angels would strike first in Game 7. However,
with runners on first and second with 1 out, David Eckstein was doubled off
second when Anderson lined out in the first inning. This allowed the Giants
to put the first run on the board in the top of the second inning on a sacrifice
fly by Reggie Sanders. The Angels tied the game in the bottom half on a 2-
out double by Molina that scored Spiezio from first base.

In the third inning, the Angels used 2 singles and 1 hit batsman off
Giants starter Livan Hernandez to load the bases with no outs and raise the
POV to 72 percent. Garret Anderson belted a bases-clearing double that
raised the POV to 88 percent. Troy Glaus was intentionally walked, but the
Angels were unable to produce more runs and the POV dropped to 83
percent.

The Angels never scored again in the game, but they didn’t need to
because the Giants never scored either despite several rally attempts. In the
fourth inning, Bonds and Santiago both singled with 1 out to drop the POV
to 78 percent, but they were not able to score. In the sixth inning, Santiago
and Snow were stranded on second and third. In the ninth inning, Goodwin
and Bell were stranded at first and second.

There was no single outstanding player in Game 7. Garret Anderson and
Angel starter John Lackey both had good games. Even J. T. Snow on the
losing Giants had a good game. But the edge as MVP went to Angels’
catcher Bengie Molina who knocked in the Angels first run. Ironically, Troy



Glaus, who was named the Series MVP at the conclusion, did not put a ball
in play at all in Game 7.

Examining the flow of the game with respect to probability gives us a
sense of how each player contributed to the outcome of the game. The
descriptions here emphasized not only the key scoring plays, which are
typically noted, but also the threats that did not result in a score. The
prevention of scoring at these moments had as much impact on the Series as
the scoring plays we all remember.

Looking to the Future

This investigation started with ways to measure clutch play. But we may
have accomplished much more. Instead of isolating clutch play and
examining player capabilities with respect to that one facet alone, we have
found a system that integrates clutch play into an overall evaluation of player
performance: One which can be used to compare starting pitchers with relief
pitchers, pitchers with hitters. One which recognizes the importance of a
good bench in winning games. One which is able to evaluate stolen bases
within the context of a game. With the increasing availability of play-by-play
records, evaluating players on the basis of probability of winning using
metrics like PWA and PGP may be the wave of the future.

1 Sports Illustrated, November 29,1999, p. 80.

2 #10 on The Sporting News list was St. Louis Cardinal Enos Slaughter’s dash from first to score the
series-winning run in the 1946 World Series. The percentage would rise to 44 percent if we include
the hit by Harry Walker that initiated the play.

3 Two other moments involved plays in which the hitter was unsuccessful, but an error by a fielder
produced a positive result for the team at bat. The Sporting News’ #8 was Bill Buckner’s error in
Game 6 of the 1986 World Series; and #23 was Catcher Mickey Owen’s dropped third strike, which
would have been the final out of Game 4 in the 1941 World Series.

4 We are partial to events involved in deciding a pennant race, including two on the final day of the
1950 National League season. Phillie Richie Ashburn threw out Cal Abrams’s potential winning run
in the bottom of the ninth inning to preserve the tie game between the two pennant contenders,
Philadelphia and Brooklyn. In extra innings, Dick Sisler’s home run won the pennant for the
Phillies. (Not so incidentally, the climax of dramatizations like The Natural, Damn Yankees, and
Major League is a game that decides the pennant, not the World Series.)

5 Data from The 1993 Elias Baseball Analyst provides some evidence substantiating this conjecture.
In the American League in 1992, with two outs, a walk was almost twice as likely to occur in a plate
appearance with runners in scoring position than with a runner on first base only.

6 Some with more pleasure than others. One of us told his son (also a Phillies fan) that he should be
prepared to see this event in replay for the rest of his life. Coincidentally, he was the same age (14)



his father was when the Phillies collapsed in the 1964 National League pennant race.
7 See the Retrosheet Web Page at www.retrosheet.org for advances on this front.

8 This is an underestimate of the actual value because of baseball’s ruling that all runs that score on a
game-winning home run are counted. There is a chance of scoring 3, 4, or 5 more runs when trailing
by 1 run in the bottom of the ninth inning. (Carter’s HR, which resulted in 3 runs scored, is an
example of this.) However, since these scores can only be achieved with a final HR, they are much
less probable than in normal circumstances. For simplicity (and the lack of data), we use the lower
value here.

9 The expected runs scored with 2 outs and runners on first and second (trailing by 1 run in the
bottom of the ninth inning) was determined in a manner similar to that for the same situation with 1
out. Using probabilities from Table 7-4, the value is calculated as:

0= 7900 +(1 = 1D+ [2= 0061 +.048)] = 318

10 Since PWA is calculated as a ratio of points, it is not necessary to multiply the change in probability
D by 2000 to get the same PWA value. Most likely the Mills brothers only used this conversion to
make the Win and Loss Points easier to read.

11 Mike Epstein of the Washington Senators finished ahead of Robinson with a .641 PWA, but had
only 500 plate appearances. Epstein was the Mills brothers selection as the “Most Winning” player
in the American League in 1969.

12 Despite this perception, their succeeding volume (with Bob Carroll), The Hidden Game of
Football, proposed Win Probability, which utilized basic principles similar to those of PWA. Win
Probability was the probability of a football team winning the game based on field position, score,
and time remaining. Win Probability points were credited to or subtracted from the offense and
defense according to the change in Win Probability for different events. Sadly, Player Win Averages
was not cited in the book.

13 Table 10-14 presents a slight revision of Table 7 in G. R. Lindsey, “The Progress of the Score
During a Baseball Game,” American Statistical Association Journal, September 1961, 703-728.

14 This calculation is actually a slight underestimate of the true value, which is closer to .397. In order
to achieve this more accurate estimate, assumptions about the probability of scoring 3, 4, 5, 6, etc.,
runs must be made to replace the single “3 or more” value given by Lindsey. The calculation then
follows the same pattern outlined here. The calculation of the Carter situation is exact because the
probability of a Toronto win is 1 as long as 2 or more runs score.

15 Before his final home run, Carter actually had a negative net contribution (-12.45/2 = -6.225). A
negative value does not mean that he prevented a victory but rather that his performance was below
average up to that point.

16 In general, given the same score and inning, leadoff outs are more costly than outs in bases-empty
situations with 1 or 2 outs already achieved, but less costly than outs in most situations with
runners on base.
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Chapter 11
Prediction

Jim Albert and Jay Bennett

Part of what makes baseball an exciting sport, at least to us, is its
unpredictability. During the preseason, experienced and knowledgeable
sportswriters make a number of predictions regarding the best and worst
teams, the best and worst hitters and pitchers. But it is pretty common for
the season to play out in a way very different from what is predicted. Teams
often perform much worse or better than expected, and players many times
achieve much more (or less) than expected. Many fans can remember teams
like the Whiz Kids (the 1950 Philadelphia Phillies) and the Miracle Mets
(the 1969 New York team), who had amazingly successful seasons despite
virtually unanimous preseason predictions of mediocrity. Likewise, it is
easy to think of young players who surprised everyone with great seasons.
(Remember Mark Fidrych of the Tigers and, more recently, Sean Casey of
the Reds?) So it is clear that there is a lot of uncertainty in any preseason
prediction. In this chapter, we will describe some statistical methods that
can be used in prediction and make some comments about the accuracy of
these predictions. We will first talk about prediction of individual game
outcomes, then discuss prediction of home-run numbers for two recently
famous and fantastically successful sluggers, Sammy Sosa and Mark
McGwire.

Predicting Game Results

Let’s first focus on the basic problem of predicting game results. Suppose
team A, say Anaheim, plays team B, say Boston, in a single game at team
A’s home park. Can we, with any degree of certainty, answer the question,
“Who will win?”



Guessing

The simplest way of predicting the outcome of a baseball game (or anything
else) is to make a blind guess. Suppose we knew nothing about baseball and
we thought that the teams all had roughly the same ability. Also, since we’re
ignorant about baseball, we are not aware of any advantage (to either team)
of playing in team A’s ball park. So we make our prediction by flipping a
coin. If the coin lands heads, we’ll predict A to win the game; if the coin is
tails, we’ll pick team B.

Suppose that we use this “guess method” in predicting many baseball
games. How good are these predictions? Well, since the result of the coin
flip has nothing at all to do with the outcome of the baseball game, we can
expect to be right about half of the time. In other words, our success rate
using the guess method would be 50 percent.

Picking the Home Team

We can certainly improve on mere guessing, since we do know something
about baseball. For example, we know that there is some advantage for a
team playing in their home ball park. So it would be reasonable to always
predict that the home team would win. How good is this prediction? In
1999, 52.1 percent of all games were won by the home team. So our success
rate if we predict the home team is 52.1 percent.

In other words, our predictions are slightly better if we pick the home
team than if we simply guess, but the improvement is pretty small—only
2.1 percent. The home-field advantage in baseball is much smaller than the
home-court effect in basketball or the home-field advantage in football. (In
recent professional football games, the home team wins approximately 58
percent of the time, and in professional basketball the home team wins 66
percent.)

A “Team Strengths” Prediction Model

We can do better than merely choosing the home team. We know that teams
have different abilities, and we should be able to use this knowledge to
make a more accurate prediction. We will describe one simple statistical
method, similar to the least-squares method of fitting a line to a scatterplot



(as discussed in Chapter 5), and use it to make a prediction based on the
relative strengths of the teams.

First, we will code the game results, with team A as the home team and
team B the visitor. If the home team (A) wins, we will record the result as
+1; if the visitor (B) wins, we’ll record a —1. So all of the game results for
the season are recorded as a sequence of +1s and —1s.

Next, we need to construct a prediction formula that takes into account
the teams’ strengths and the home-field advantage. We’ll denote the
strength of team A as S, and the strength of team B as Sy, and let H denote

the home-field advantage. A simple prediction formula says:
Prediction =Sy —Sp+ H

If we knew the strengths of the two teams and the home-field effect, then
we can compute Prediction. For example, if Anaheim had a strength of .3
and Boston had a strength of .4 and the home field advantage is .2, then our
prediction would be:

Prediction=.3-.4+.2=.1

We can then use the value of Prediction to make our game prediction as
follows:

e [f Prediction is positive, then Team A will win.
o If Prediction is negative, then Team B will win.

In our example, since Prediction is .1 (a positive number), we would predict
Anaheim to win the ball game.

The only problem with this method is that we don’t know either the
team strengths or the home-field advantage.To use this prediction method,
we have to estimate these numbers, using data from the season. We use a
popular estimation method called least-squares to do this.

Suppose we collect the results for a large number of games. For each
game we record the game outcome (+1 if the home team wins, —1 if the
visiting team wins) and the names of the two teams that played.There are 30
teams—we don’t know the strengths of the teams which we represent by
S1s---» S30, and we don’t know the value of the home-field advantage H.

Using the least-squares method, we find values of the team strengths and
the home-field advantage which makes the sum of [Outcome — (S;,me —



Saway T H)12 as small as possible, where Sy, is the strength of the home

team and S,y is the strength of the visitor.

Predicting 1999 Game Results

Let’s illustrate this method for predicting the results of the games in the
1999 regular season. At the beginning of the season, we can’t make any
predictions, since we don’t know the team strengths. We could use the
results from the 1998 season to learn about the team abilities, but there is a
lot of movement of players between teams in the off-season, and it is not
clear how relevant the 1998 game results will be in predicting 1999 results.

So we will initially use the game results for the first two months of the
season in 1999 to estimate the team strengths. From these game results, we
use the least-squares method to obtain values of the team strengths and the
home-field advantage. These least-squares estimates are displayed in Table
11-1.

Table 11-1 Team Strengths and Home-Field Advantage Estimated Using Game Results of First Two
Months of the 1999 Season

Team Hrangth
Anaheim 0 Detroit -0.07 Dakland 0.13
Arizona 0.41 Florida -0.11 Philadelphia 0,19
Atlanta 0.44 Houston 0 Pittshurgh 0.26
Baltimore 017 Kansas City 0.42 Sai Diego 0.03
Boston 0.32 Los Angeles .29 San Francisco 0.29
Chi Gubs 0.36 Milwaukee 0.13 Seattle 0.08
Chi White Sox 0.04 Minnesota -0.16 St Louis 0.25
Cincinnati 0.30 Montreal 0 Tampa Bay -0.02
Cleveland 0.40 NY Mets 0.24 Texas 0.23
Colorado 0.1a NY Yankees 0.24 Toronto -0.02

Home Field Advantage 0.01

Now we can use the least-squares method to predict the results of the
games on June 1. Table 11-2 gives the predictions, the game results, and
whether we were right or wrong in our prediction for this particular day.



Table 11-2 Predictions and Game Results for All Games Played on June 1, 1999

Home feam Visiting Team Fradictian Whe Won Game? fight or Wrang?

Anahaim Minnesota Q.17 Home team Right
Atlanta Colorado 0.29 Home team Right
Boston Detroit 0.40 Home team Right

Chicage Cubs San Diego 0.33 By team Wrong
Flarida St Louis -0.35 Away team Right
Milwaukes Houstan -0.28 Away team Right

Mantreal Arizona 0.40 Home team Wrong
NY Mets Cincinnati 0.05 Away team Right

NY Yankees Cleveland -0.14 Home team Wrong
Oakland Tampa Bay 0.1& Home team Right
Philadelphia San Francisco -0.08 Away team Right

Fittsburgh Los Angeles 0.0z Home team Wrong

Seattle Baltimore 0.26 Bway team Wrong
Taxas Kanszas City 0.25 Home team Right
Toranta Chicaga White Sox -0.04 Away team Right

Let’s illustrate this prediction process for one game, the Atlanta-
Colorado game played on June 1, 1999. We see from Table 11-1 that Atlanta
has a strength of .44 and Colorado has a strength of .16, and the home effect
is estimated to be .01. So for this game, the value of Prediction is calculated
as follows:

Prediction = .44 — .16 + .01 = .29

This means that we predict Atlanta will win. From Table 11-2, we see that
the home team (Atlanta) won this game, so we were right on this prediction.
For the next day (June 2), we repeat the process. Using the 1999 data
for all of the games prior to June 2, we estimate the team strengths and the
home advantage.We use the formula to predict the June 2 games and keep
track of our correct and incorrect predictions. The next day we update our
estimates of the team strengths and H using the new set of results through

June 2, then using these values in the new formula to predict the June 3
results, and so on. How did we do? In predicting 1616 games during the



1999 season, the formula gave correct predictions for 924 games. In other
words:

Success rate using the prediction formula =

How Good Were Our Predictions?

One thing that is a bit surprising is the low value of the success rate. If we
guessed at the winners, we would have a success rate of 50 percent. By
using information about the team strengths and the home effect, we’ve
raised this success rate to only 57.2 percent. People have tried this same
method for predicting games in professional basketball and football and
achieved better results. Using the same least-squares method as the one
described above, one can get a 63 percent success rate for predicting
professional football games and a 69 percent success rate for professional
basketball. This tells us that the results of baseball games are pretty
uncertain relative to football and basketball.

How could we improve our predictions? Is there other information
about the game that one could incorporate, making for a better prediction
formula? One obvious piece of information to add would be the quality of
the starting pitchers of the two teams. Starting pitchers like Randy Johnson,
Greg Maddux, and Pedro Martinez have the potential to dominate a game,
and so it would seem that knowledge of the starters should help our
predictions.

To investigate this conjecture, we look at the ten best pitchers in each of
the National and American Leagues on the basis of ERA, and check the
success of our method in predicting the games started by these star pitchers
during the months June through September. For each pitcher, Table 11-3
displays the number of games correctly predicted. Also, the table divides
the incorrectly predicted games into two groups—the games where the team
was predicted to win but lost, and the games where the team was predicted
to lose but won. Note from the “Totals” row that our method gave correct
predictions in 246 out of 408 games, for a success rate of 60 percent. (This
is a little better than our success rate for all games.) Now if the knowledge
of the pitcher improved our predictions, we would expect to see more errors
where the team won with star pitchers although predicted to lose. Actually,
in Table 11-3 we see just the opposite pattern—in 85 games the teams lost



games they were predicted to win, and in 77 games the teams won games
they were predicted to lose.

Table 11-3 Outcomes of 1999 Predictions in Games Started by the Twenty Best Pitchers

Number of Carrect Fradicted fo FPredicted fo

Piteher Predictions Predictions Win, but Lost Lase, but Wan
P. Martinez 17 12 2 3
D. Cone 19 9 7 3
M. Mussina 18 9 & 3
B. Radke 21 1z 7 2
1. Rosade 20 11 = 4
1. Maoyer 20 1z 3 b
E. Colon 20 12 4 4
M. Sirotka 23 13 4 &
F. Garcia 21 G 6 6
0. Hernandez 21 17 1 3
R. Johnson 23 13 & 4
K. Millwood 21 15 3 3
M. Hampton 21 18 2 1
K. Brown 23 11 8 4
). Smoltz 19 =1 i &
T. Ritchie 13 9 2 8
C. Schilling 13 8 3 2
G. Maddux 22 15 L 3
). Lima 26 15 5 5
0. Daal 22 17 3 2
Totals 408 248 a5 77

Generally, we were unsuccessful in developing a more useful prediction
formula that incorporated the starting pitchers. That doesn’t mean that the
starting pitchers are not important in determining the game results. Instead,
what it most likely means is that the strength of the starting pitchers is
already part of the team strengths used in our earlier prediction formula. For
example, Pedro Martinez is a great pitcher who helps Boston win some



games, but his ability is built into Boston’s team strength, which we used in
our predictions.

Predicting the Number of McGwire and Sosa Home

Runs

Let’s shift gears from predicting game results to predicting individual
player accomplishments. The 1998 baseball season will forever be
remembered as one of the most memorable, largely due to the achievements
of Mark McGwire and Sammy Sosa. Before 1998, there were two notable
achievements in home-run hitting for a single season—Babe Ruth’s 60
home runs in 1927 and Roger Maris’s 61 in 1961. McGwire’s 70 and Sosa’s
66 home runs both shattered Maris’s record. Moreover, the two players
achieved these marks in dramatic fashion, with McGwire hitting 2 home
runs on the final day of the season.

It’s no surprise that in the summer of 1998, McGwire and Sosa were the
center of media attention, and that every home run hit by either player,
especially during August and September, added to the excitement. During
the season, everyone wondered: would Mac or Sosa break Maris’s home
run record, which had stood for 37 years? And if the record was broken,
how many home runs would these two sluggers eventually hit?

As we write the first version of this chapter in September 1999, with the
1998 season a fond memory, it’s not that interesting to talk about predicting
1998 results. So we’ll focus instead on one current prediction problem,
where the outcome is still not known. It is September 8, 1999, and Sammy
Sosa has hit 58 home runs in 535 at-bats. He has 23 games left with 90 at-
bats (approximately). Will Sammy break 60? Will he break 70? Will
Sammy hit more than McGwire, who currently has hit 54 home runs, with
roughly 60 remaining 1999 at-bats?

A Simple Prediction Method

First, let’s discuss one simple way of predicting the number of Sosa home
runs. This method is probably used by most of the sports sites in the World
Wide Web—usatoday.com, espn.com, sportsline.com, and cnnsi.com.

First we compute Sosa’s rate of hitting home runs in 1999. He has
already hit 58 home runs in 535 at-bats, so his 1999 rate is:


http://usatoday.com/
http://espn.com/
http://sportsline.com/
http://cnnsi.com/

1999 Home-run rate = 58/535 = .108, or 10.8%

Suppose he keeps hitting home runs at the same 10.8 percent rate. So if he
has 90 more at-bats, we expect him to hit:

90 (.108) = 9.7, or approximately 10

additional home runs. Since Sosa has already hit 58 home runs, we then
predict that his 1999 total will be

1999 Home-run rate = 58 + 10 = 68

So we predict that Sosa will hit a couple of home runs short of the record
number 70.

What’s Wrong with This Prediction?

There are some problems with this method of prediction. First, although we
predict that Sosa will hit 68 home runs, we really have little idea how likely
it is that he will hit 68 home runs. People who see a prediction that says,
“Sosa will hit 68 home runs,” will expect that this will happen, and be
surprised if Sosa actually hits 66 or 67 or 70 home runs. What we’ll learn in
this chapter is that there is a lot of uncertainty in prediction. Although a
prediction like “68 home runs” may be the most likely possibility based on
our knowledge, there is a greater probability that Sosa will not hit 68 home
runs.

Another problem with this prediction is that it is based on a particular
set of assumptions, and often fans forget about these assumptions when they
see the answer. Here the prediction that Sosa will hit 68 home runs makes
the important assumption that Sosa will continue to hit home runs at the
same rate as he did in the months April through August. Is this reasonable?
Is Sosa really a hitter who hits home runs at a 10-percent rate throughout
the season? Or maybe Sosa had an unusually good streak of home-run
hitting that stretched through the 1998 season and into the first five months
of 1999, and really he isn’t as good as this 1998 and 1999 data would
indicate.

The point here is that if you gather a group of baseball fans in
September 1999, each fan will have his own opinion about the home-run
prowess of McGwire and Sosa during the remainder of the 1999 season.
One fan might believe that Sosa is really in a groove (with respect to home-



run hitting) this year and will continue to stay in this groove for the
remainder of the season. Another fan might think that Sosa has been hitting
over his head this season and will cool down. And another fan’s opinion
about Sosa’s home-run hitting might be based on the teams and pitchers and
ball parks where he will play the 23 remaining 1999 games. Fans will have
divergent opinions about the abilities of McGwire and Sosa, and these
opinions will result in different predictions about the 1999 home-run totals
of these two players.

Can we do anything to reduce some of this uncertainty? In the next
section of this chapter, we narrow our focus and describe a simple statistical
method for predicting results—for example, the number of home runs by
one player in a season, the number of strikeouts by a pitcher, the number of
RBIs for a team, and so on. First, we take a look at one player’s true home-
run rate by means of a probability table. Second, we develop a probability
table for the result we are interested in. The probabilities in this table tell us
which result is most likely to happen, and reveal that many results besides
the most likely one are possible. At the end, we derive a range of possible
values, so instead of having to say, “Sosa will hit 68 home runs,” we can
make a statement like “there is a 90-percent chance that Sosa will hit
between 64 and 72 home runs.”

A Spinner Model for Home-Run Hitting

Let’s first describe a simple probability model for Sosa’s home-run hitting
for the remainder of the 1999 season.When Sammy comes to bat, we can
put the results into three categories:

1. He gets a walk, gets hit by a pitch, or gets a sacrifice—none of which is
counted as an official at-bat.

2. He has an official at-bat (a hit or an out) but doesn’t hit a home run.

3. He hits a home run.

If we ignore the plate appearances that don’t result in an official at-bat, then
there are two outcomes—home run or not a home run. Suppose that every
time Sammy has an at-bat, he spins a spinner. The spinner has two areas
labeled Home Run and Not a Home Run, and the area of the home run



region is p. He spins the spinner to bat, and a home run is the result if the
spinner lands in the Home Run region.

Note that the chance that Sammy hits a home run on an official at-bat is
p for each at-bat. We’re assuming that the home-run probability is the same
in Wrigley Field, away from Wrigley Field, against Randy Johnson, and
against Chad Ogea. Actually, we don’t believe that this is true: Sammy’s got
to have a higher probability of hitting a home run against Ogea than
Johnson. Still, this model works pretty well in representing the variation of
home run-data that we see.

So this model assumes that Sammy’s chances of hitting a home run are
the same regardless of the pitcher he is facing. And there is a second big
assumption here: the chance of Sammy hitting a home run in, say, the
twentieth at-bat is not affected at all by his performance in the previous 19
at-bats. We’re assuming that he can’t have true hot or cold streaks in his
hitting. (For a more extensive discussion of this point, see Chapter 5.)

How Many At-Bats?

We don’t know for sure how many at-bats Sammy will have in the final 23
games, but we note that he has played in every single Cubs game this
season. So it is reasonable to assume that he will play in each one of the
remaining 23. Also, in his first 138 games, Sammy averaged 3.9 at-bats. If
he continues to get at-bats at this rate, we would expect him to have:

23 (3.9) = 89.7, or about 90 at-bats

So, in our spinner model, we will assume that Sammy will get 90
opportunities to spin the spinner and get home runs.

What If We Knew Sosa’s True Home-Run Rate?

To complete our spinner model, we have to know the chance that Sammy
will hit a home run on a single at-bat—this is the size of the Home Run area
in the spinner.

Let’s first assume, hypothetically, that Sammy is a true 10-percent
home-run hitter. That is, the chance that he hits a home run on an official at-
bat is .1. In our spinner model, the area of the Home Run region would be
.1, and Sammy could play the remainder of the 1999 season by spinning



this particular spinner 90 times (corresponding to the 90 at-bats). How
many home runs would Sammy hit?

Well, a reasonable guess would be 9. Since the chance of hitting a home
run is 10 percent, one would expect him to hit 90 (.10) = 9 home runs in the
remainder of the season. But the actual number of home runs he will hit is
random or uncertain, and although 9 home runs is pretty likely, there is a
good chance that he will hit fewer or more than 9.

There is a well-known formula called the binomial that is used for
computing such a probability. We will take a close look at it to see if we can
determine the probability that Sammy will hit a specific number of home
runs for our spinner model with 90 at-bats (spins) and a home-run
probability (spinner area) of .1.

Binomial Probabilities

Suppose you have a random experiment that consists of a sequence of trials.
On each trial, only one of two things can happen, which we call a success
(labeled S) or a failure (F). Assume that the chance of an S on a single trial
is p, and that the chance of getting a getting a S or F on a particular trial is
not affected by what happens on previous trials. If there are N trials, then
the probability of seeing exactly x successes in the experiment is given by
the following formula:

. r . T ]
Pr(x successes in N trials) = (1: ),UIH pIV -

In this formula, the symbol

N

X
called “N over x,” is the number of ways of choosing x items from a larger
group of N items. In the example above, the number of trials is N = 90, a
success is “hitting a home run,” the probability p = .1, and we are interested

in the probability of hitting a particular number of home runs. Table 11-4
displays some of these binomial probabilities.

Table 11-4 Binomial Probabilities for Number of Home Runs Hit in 90 At-Bats with a Home-Run
Probability of .1



Home Runs Frobability

0 0 1 0.101
1 0.001 12 0.074
2 0.004 13 0.04%
3 0.012 14 0.030
4 0.030 15 0.017
5 0.057 16 0.00%
6 0.08% 17 0.004
7 0.119 18 0.002
B 0.137 19 0.001
9 0,139 20 0
10 0.125

Looking at Table 11-4, we see that the most likely number of home runs
Sammy will hit in the final part of the 1999 season is 9. But the probability
that Sammy will hit exactly this number is only about 14 percent. That’s a
small probability. Looking further at the table, we see that the probabilities
that Sammy hits 7, 8, 9, 10, and 11 home runs are all above 10 percent. The
message here is that even if we know Sammy’s hitting probability, we
aren’t too sure about what can happen in Sammy’s next 90 at-bats.

What If We Don’t Know Sosa’s True Home-Run
Rate?

But we can’t use the results of Table 11-4 to predict the number of home
runs Sosa will hit. Why? Well, we don’t know for sure the value of
Sammy’s hitting probability, and it is not reasonable to assume that it is
exactly equal to .1.

To get some idea what Sosa’s home-run probability in 1999 might be,
Table 11-5 shows Sosa’s at-bat and home-run data for the previous ten years
in the Major Leagues. (For this discussion, we are basing our judgments on
Sosa’s accomplishments prior to 1999. Later we’ll talk about how to change
this judgment after seeing the home-run data for the 1999 partial season.)
For each year, we have computed Sosa’s home-run rate and put those
numbers in the last column.



Table 11-5 Number of At-Bats and Home Runs for Sosa in His Major League Seasons Prior to 1999

Vear Team AB HE HE Rate
1989 Texas-ChiW 183 4 0.022
1990 Chiw 532 15 0.028
14991 Chiw 318 1a 0.032
1992 ChiC 262 8 0.031
1993 ChiC 548 33 0.055
1994 ChiC 426 25 0.059
1995 ChiC B 1] 0,064
14994 ChiC 4498 40 0,080
1897 ChiC 642 36 0.056
1998 ChiC 643 (a1 0.103

Let’s focus on Sosa’s home run rates:
022, .028, .052, .031, .055, .059, .064, .080, .056, .103

Figure 11-1 plots these values as a function of the season. We see an
interesting pattern here. For Sosa’s first four years, he hit home runs at
roughly a 3-percent clip. Over the next five years, he hit home runs at rates
between 6 and 8 percent. And in 1998, his rate was over 10 percent!
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Figure 11-1 Sosa’s home run rates for the first ten years in the Major Leagues.

Based on Sosa’s career home-run statistics, we have to make some
judgment about the value of his home-run probability for the 1999 season.
From his stats, it appears that Sammy has matured considerably as a home-
run hitter, and the statistics for the last few years are probably the ones that
are most representative of his current ability. But we also have to realize
that the home run rates in Figure 11-1 are really not hitting probabilities, but
observed home run rates. Maybe Sammy was not a real 10 percent home-
run hitter in 1998, but was lucky and had a good year.

After some reflection, we realize that we’re pretty uncertain about
Sammy’s home-run probability for 1999. Based on his 1998 season, we
believe that he has the potential to be a “great” home-run hitter where his
home-run probability is 10 percent or higher. (We consider 10 percent a
useful reference point, since it corresponds to the observed home-run
percentage of Babe Ruth in his prime.) In addition, based on the pattern of
home-run hitting shown in Figure 11-1, he appears to be fully matured, or at
least close to fully mature, as a home-run hitter. However, we can’t forget
the relatively small home-run rates that he achieved just a few years ago.
Based on these beliefs, we constructed the bar chart in Figure 11-2 to
graphically represent his 1999 home-run probability. Remember again that



these beliefs are based only on Sammy’s accomplishments for the ten-year
period 1989-1998; for the moment, we’re ignoring the 1999 data.
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Figure 11-2 Graph of probabilities for Sosa’s true home-run rate.

Looking at the probability graph, we see that the values of .09 and .10
are each assigned the largest probabilities. This means we think it’s most
likely that Sosa will have a 9 or 10 percent home-run probability in 1999.
However, as the figure indicates, we’re not sure that his home-run
probability is 9 to 10 percent, and we think it is possible that his probability
can be as small as 5 percent or as large as 13 percent. Actually, our beliefs
about Sosa’s chance of hitting a home run are pretty vague. Before the 1999
season begins, we’re not sure if he will continue to hit home runs at his
1998 rate, or revert back to his pattern of hitting home runs in the earlier

seasons.!

Revising Our Beliefs about Sosa’s Home-Run
Probability

We’ve discussed how to construct a probability table that reflects our
beliefs about Sosa’s home-run probability in 1999. Now we watch Sosa’s
batting performance in the first five months of the season, and we observe
58 home runs in 535 at-bats. This is a pretty impressive performance, and
we’re more confident that Sammy’s home-run probability in 1999 is high.



So we want to revise the probabilities we displayed in Figure 11-2 in light
of this new batting data. Fortunately, there is a simple formula, called
Bayes’ Rule, that tells one how to change one’s probabilities when given
new data.

We’ll use Bayes’ Rule to update the probabilities. We are interested in
learning about a batter’s home-run probability p, and our initial beliefs
about p are represented by means of a prior probability distribution. After
we observe some data, then our new, or posterior, probability distribution
for p is given by this formula:

Pr(p given Data) = Pr(p) Pr(Data given p)/c¢

where c is the probability of observing Data based on our initial opinion.
The value of c ensures that the probabilities add up to 1.

In our setting, our Data is “58 HR in 535 AB.” To find the new
probability that Sosa’s hitting probability is 10 percent, we compute the
product:

=(.2353) (.0451)

=.01062

In the formula, Pr(p = .1) is our initial probability that Sosa is a 10 percent
hitter and Pr(58 HR in 535 AB given p = .1) is the binomial probability that
Sosa gets 58 home runs in 535 if he really is a 10-percent home-run hitter.

In Table 11-6, the product [Pr(p) Pr(Data given p)] is found for each of
the possible home-run probabilities for Sosa. In this table, each of the
entries in the Product column is divided by c, the sum of the products, to get
the new (posterior) probabilities in the last column.

Table 11-6 Bayes’ Rule Computations to Obtain Updated Beliefs about Sosa’s New Home-Run
Probabilities p



P Frip} Prilata given pJ Froduct Prip given Data)

0.05 0.0450 Q0 0 0
0.08 0.0450 0 0 0
0.07 0.0450 0.0003 0.00001 0.0005
0.08 0.0980 0.0039 0.00038 0.0136
0.09 0.2353 0.0195 0.00458 0.1a47
Q.10 0.2353 0.0451 0.010e2 0.3816
.11 0.1373 0.0550 0.00755 0.2714
.12 0.0980 0.0390 0.00383 0.1375
0.13 0.0450 Q.0174 Q.00085 0.0306

1 0.02782 1
The probabilities in the last column of Table 11-6, Pr(p given Data),
reflect our beliefs about Sosa’s home-run probabilities after seeing his 1999

data. Remember that, before seeing Sosa perform in 1999, we thought he
was a 9- or 10-percent home-run hitter—with a small chance of being either
a 5- to 6-percent or an (unimaginably great) 13-percent home-run hitter.
After seeing Sammy’s performance in the first five months of 1999, we see
that the values of p in the set {.09, .10, .11, .12} have most of the
probability, which means we’re pretty confident that Sammy’s home-run
probability is in the 9- to 12-percent range.

One Prediction

We are finally ready to predict the number of home runs Sosa will hit in the
remainder of the 1999 season. Recall that if we really knew Sosa’s 1999
homerun probability p, then we could compute the probability that he
would hit a particular number of home runs using a binomial formula. We
don’t know the value of the home-run probability p, but our beliefs about
this probability are described by the probabilities shown in Table 11-6.

The probability that Sosa hits a given number of home runs, say 10, is
given by the formula:

Pr(10 HR) = sum of [Pr(HR prob. is p) x Pr(10 HR if the HR prob. is p)]

for all possible values.



We use Table 11-7 to illustrate how we compute the probability that
Sosa hits 10 additional home runs in the 1999 season. The first column lists
the possible values of the hitting probability, the second column lists the
corresponding probabilities from Table 11-6. The third column lists the
probability that Sosa gets 10 home runs for each probability value. To get
the probability of 10 home runs, we multiply, for each row, the values in the
second and third columns— and the products are placed in the fourth
column. The sum of the products is the probability of interest.

Table 11-7 TIllustration of the Computation of the Probability that Sosa Hits Ten Additional Home
Runs

Prild HR if the Product
1] PriHR prob is p) HR prob is o)

0.05 o 0.0092 a
0.06 o 0.0245 0
0.07 0.0005 0.0486 0
o.08 0.0136 0.0779 0.0o11
0.09 0.1647 0.1055 00174
0.10 0.3816 0.1250 0.0477
011 0.2714 01326 00360
0.1z 0.1375 0.1282 0.017&
0.13 0.0306 0.1144 0.0035
r=0.1233

Suppose that we repeat this calculation for all possible home-run
numbers. Table 11-8 displays the following probability table for the number
of additional home runs Sammy will hit in 1999.

Table 11-8 Probability Table for the Number of Home Runs Sosa Will Hit in the Remainder of 1999



Home Rung Prabability

0 0 11 0.105
1 0.001 12 0.082
2 0.004 13 0.0&0
3 0.011 14 0.040
4 0.027 15 0.025
5 0.080 16 0.014
G 0.080 17 0.008
7 0.106 18 0.004
8 0.125 19 0.002
9 0.131 20 0.001
10 0.123 21 0]

From this probability table, we can make the following predictions.
Remember, Sosa has already hit 58 home runs, and this table tells us how
many additional home runs he will hit in his future 90 at-bats. On
September 8, 1999:

e [t is most likely that Sosa will hit 9 more HRs (for a total of 67), but
the chance of this happening is only about 13 percent.

e There is a high probability (.9025) that Sosa will hit between 5 and 14
additional home runs (for 1999 totals between 63 and 72). It would be
a bit surprising if Sammy hit fewer than 5 or more than 14 home runs
in the remainder of the season.

e The chance, at this point in the season, that Sammy will break the
record is the chance that he will hit 13 or more home runs, which is:

Pr(Sosa hits 71 or more) = .154

Many Predictions

We have focused on predicting Sosa’s home-run totals at a particular point
of time during the 1999 season. But there is nothing special about
September 8—this prediction procedure can be used at any point in time
during the season. Our beliefs about Sammy’s hitting probability are based



on our knowledge about Sammy prior to 1999 and any home-run data
we’ve observed in 1999 up to that particular point in time.

Figure 11-3 shows our predictions for Sosa’s 1999 home-run total. After
each game that Sosa played in that season, a vertical line shows the limits of
a 90-percent prediction interval for the 1999 home-run total. Before the
season began (at Game 0), our prediction interval is seen from the graph to
be (33, 81). This interval seems pretty wide, but we had little clue in early
April how many home runs Sosa would hit. We were not sure what Sosa’s
true home-run rate (the value of p) would be in the 1999 season, and he
hadn’t yet hit any home runs in 1999. As the season proceeds and Sammy is
hitting home runs, we see from the graph that the length of the prediction
interval shortens considerably—and eventually, near the end of the season,
we are pretty sure about the final total. (Obviously, when Sosa finishes the
season, we know exactly how many home runs he hits in 1999.)
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Figure 11-3 90-percent prediction intervals for Sosa’s 1999 home-run total after each game played
in the 1999 season.



In this season, many fans were wondering if Sosa would break the
season home-run record of 70. In Figure 11-3, a horizontal line has been
drawn at 71 home runs, which represents a new record. Note that for much
of the season, our 90 percent prediction interval covers 71, which indicates
that Sosa had a significant probability of breaking the record. This point is
reinforced in Figure 11-4, which graphs the predictive probability that Sosa
will break the home-run record after each game of the 1999 season. (The
dots at the bottom of the graph show when Sosa hit his home runs.) Note
that whenever Sosa hit one or more home runs during a game, the
probability that he breaks the record jumps up. This increase in the
probability has two explanations. First, since he has hit home runs, he is
closer to the record of 71. Also, the fact that he has hit home runs increases

the likelihood that his home-run hitting probability (p) is large.
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Figure 11-4 Graph of predictive probability that Sosa will break the home-run record of 70 for each

game of the 1999 season. The dots along the horizontal axis show the games in which Sosa hit his
home runs.



Finally note that the number of home runs that Sosa actually hit in the
1999 season, 63, is included in most all of the prediction intervals that we
constructed that season. Although Sosa slumped a little at the end of the
season, his final total of 63 was consistent with the predictions that we
made using our model.

Let’s compare Sosa with Mark McGwire. The same method we applied
above can also be used to predict McGwire’s 1999 home-run total. One
difference in the analysis of McGwire is that our initial beliefs (before the
season started) about Mark’s 1999 true home-run probability, p, are notably
different from our beliefs about Sosa’s. Figure 11-5 shows the probabilities
we used. There is a lot more evidence from past seasons that McGwire hits
home runs at a high rate, so we place a high probability on the likelihood
that he will hit home runs at a 10- to 13-percent clip. Another difference in
our predictions is that we assume that McGwire averages only 3.2 official
at-bats per game. (McGwire generally walks more than Sosa, resulting in
fewer official at-bats.)
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Figure 11-5 Graph of probabilities for McGwire’s true home-run rate.

Figure 11-6 shows our 90-percent prediction intervals for Mark
McGwire. The pattern in these predictions is very different from the pattern
in Sosa’s graph (Figure 11-3). Before the season started, we predicted that
McGwire would hit 60 home runs with a prediction interval of (41, 81).



McGwire started the season slowly, so the predictions dropped off
substantially. In fact, for most of the season, we predicted that Mark’s 1999
home-run total would be in the mid 50s, and he had essentially no chance of
breaking his 1998 record of 70. But McGwire’s home-run hitting picked up
toward the end of the season, with a final flurry that gave him the 1999
crown. Nonetheless, during most of the season, it was Sosa who had the
greater chance of setting a new record.
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Figure 11-6 90-percent prediction intervals for McGwire’s 1999 home-run total after each game
played in the 1999 season.

Predicting Career Statistics

The previous discussion focused on predicting the number of home runs at
some time during a season. But Sammy Sosa is currently only 34 years old,
and he will likely play in the major leagues for a good number of years.
How many home runs will he hit in his career? Will he break the 600 and



700 career home-run marks? And what’s the chance he will eventually
break Bonds’s season home-run record of 73?

This is a more difficult prediction problem, since there are more
unknowns. Earlier we concentrated on learning about Sosa’s home-run
probability p only during the 1999 season. Now we have to think about
Sosa’s home-run probabilities for each of the remaining seasons of his
career. We don’t know how many years Sosa has left in his baseball career.
And, even if we knew that he would play for, say, eight additional seasons,
we don’t know exactly how many at-bats he will have.

Nonetheless, in this section we will describe one statistical model for
predicting Sosa’s career home runs. We will first talk about a model for
Sosa’s home-run probabilities. Next, we’ll discuss the number of
opportunities (years and at-bats) that Sosa may have to hit home runs, then
use this model to make our predictions.

Sosa’s Home-Run Probabilities

In our earlier discussion, we estimated Sosa’s 1999 home-run probability p
using two types of information: our beliefs about his home-run probability
prior to 1999, and his hitting data during the 1999 season. How can we
learn about Sosa’s home-run probabilities in the years 2003 and beyond,
when we haven’t yet observed any data for these years?

Obviously we can’t look into the future, but it is reasonable to believe
that Sosa’s pattern of hitting home runs over his career will be similar to the
hitting pattern of other sluggers in history. Figure 11-7 plots the home-run
hitting rates (HR divided by AB) against the player’s age for the nine
greatest career home-run hitters in baseball history. Smooth curves are
drawn over each of the graphs to show the basic patterns in the rates.
Looking at the graphs, we note that there are significant differences
between these ten great players in terms of their home run rates. But we
notice a general pattern, as shown in Figure 11-8.



L]
| Aaron e || Ruib * * . L Mays L
0.1 . . .
™ ol - . *
. - 2 - - * . ™
— ™ g * . _— — ot " -
0.05 . . * J . L . )
L] - L] L ]
0 [ | [ *
| Robinson | Killebrew | Jockson L
0.1 ™ ¥, - -
L ] L ] - - .
- LR . L]
w ¥ s - : LI b . - ] LI =
pos | °* o N e T o (Mg
0 | T |
| Sefumide | Muantle . . |
0.1 e .
w  0.05 ] S . || A ¥ i
e . .
[ =
o
I - -
':l T T T T T T T
20 a0 40 20 30 40 20 30 40
AGE

Figure 11-7 Observed home-run rates and smooth fitted curves for the career performances for nine

great home-run hitters.

Figure 11-8 Pattern of home-run rates for great home-run hitters.

Generally, the curve shows us, a home-run hitter improves (matures) in
his first few years, reaching a peak near the age of 30. After that peak, the
home-run hitter tends to decline. Although this pattern seems to hold for
most players, there are differences in the peak age and the degree of
maturation and decline between players. For example, Hank Aaron peaked
relatively late, then declined relatively slowly. In contrast, Mickey Mantle
peaked at an earlier age but showed dramatic declines later in his career.

Using Sosa’s home-run data through the 2002 season and the career
statistics of the 50 greatest home-run hitters, we can learn about Sosa’s



home-run probabilities for the remainder of his career. We assume that
Sosa’s home-run probabilities for his career will follow the basic shape, and
assume that his career pattern of home-run probabilities will be similar to
the pattern of the other 50 home-run hitters.

We don’t know exactly what Sosa’s “true” home-run rates will be, but
we can generate sets of home-run rates, as shown in Figure 11-9, that we
think are reasonable based on our model. The dark solid line represents our
best guess at what Sosa’s home-run probabilities will look like over the
years. We think that he will peak at age 34 (in the year 2003) at a value
close to .1, then the probability will decrease to a value of .08 when Sosa is
40 years old. But this figure shows that, even though we have a best guess
at his home-run probabilities, it is possible that they will deviate a bit from
this best guess. Specifically, it is possible that Sosa will peak at a later age
and show faster or slower rates of decline.
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Figure 11-9 Plausible graphs of Sosa’s home-run hitting probabilities based on the model.



How Long and How Many At-Bats?

Now that we have a handle on Sosa’s home-run probabilities, we have to
next decide how many years Sosa has in his career. We really don’t know
much about this. Sosa appears to be a well-conditioned athlete and likely
has many productive years ahead of him. But many things, like injuries,
could have an impact on the length of his career. We will first assume that
Sosa could play until the ripe old age of 40, but since this is an important
assumption, we will present predictions assuming that Sosa does retire at an
earlier age.

Given his past playing performance, it is reasonable to think that Sosa
will continue to play regularly and have a large number of at-bats for a
number of years. However, for most players, the number of batting
opportunities (at-bats) does decrease by 5 to 10 percent as the player
approaches the twilight of his career. So we assume that Sosa’s at-bats in
the coming years will look something like this:

Sosa’s Age (Years) Expected At-Bats
34, 35, 36 560
37, 38, 39 530
40, 41, 42 500

Of course, a lot could happen in Sosa’s career that will cause him to have
fewer at-bats during particular years, but these values seem consistent with
the pattern of at-bats for other home-run sluggers in history.

Making the Predictions

Now we’re ready to make our predictions. What we do is perform a large
number of simulations for the remainder of Sosa’s career using the
probability model we have constructed. We first simulate a set of home run
probabilities from the model described earlier. Each of these probabilities
defines a random spinner where the area of the Home Run region of the
spinner corresponds to the probability. In the particular simulation
illustrated in Figure 11-10, Sosa’s home-run probability at age 34 is 10
percent, his home-run probability at ages 35-36 is 9 percent, his probability
at age 37 is 8 percent, and so on. Then we use the random spinners to
simulate home-run results using the at-bat numbers given above.
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Figure 11-10 Set of random spinners corresponding to a particular simulation of Sosa’s home-run
probabilities.

Table 11-9 summarizes the results of doing our simulation for a total of
1000 Sosa careers. Since the results depend heavily on how long Sosa
remains active in the major leagues, we give results assuming that Sosa
plays until particular ages. In each case, the table gives a “best guess” at
Sosa’s number of career home runs, and the chances that he will break the
home-run milestones of 600, 700, and 755. Finally, we give the chance that
Sosa will sometime break the single-season home-run record of 73.

Table 11-9 Results of Simulation of Sosa’s Career Using Our Probability Model

Plays Until Age 34 3e 38 40

Best Guess at Career HR 554 662 757 840
Pri600+) 0,00 0.99 1.00 1.00

Fri700+) 0.00 0.07 0.80 0.99

Pr{755+} 0.00 0.00 .49 0.89
Pr{74+seazon) 0.0z 0.11 0.18 0.27

Several interesting things can be learned from Table 11-9. First, the
number of career home runs depends basically on how long Sosa will
remain an active player. Hank Aaron, with 755, currently owns the career
home-run total. Sosa has an excellent chance of breaking 700 career home
runs only if he stays active until at least 40. Also, note that Sosa’s chance of



breaking Bonds’s season home-run mark is relatively small. Why? Well, we
are assuming that Sosa is currently at or near his peak, and his home-run
ability will start decreasing-meaning it will be less likely that he will break
the mark later in his career.

Then again, Sammy is looking good, looking healthy, looking over
pitches with that sparkle in his eye, so we would not bet against him.
Nobody’s going to make tons of money following the prediction rules
described in this chapter. But hopefully we are now more aware of the great
amount of uncertainty in prediction. Predictions like “Sosa will hit 60 home
runs this year” have a lot of vagueness connected with them, and anyone
who tells you that he or she can make more accurate predictions than the
ones described here is misinformed, or lying.

1 As this book is going to press, at the beginning of the 2003 season, we have seen Sosa’s home run
statistics for the 2002 season, and we are more certain that he is a hitter with a 8- to 12-percent
home-run probability.
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Chapter 12
Did the Best Team Win?

Jim Albert and Jay Bennett

Major League Baseball is currently a competition between 30 teams, 16 in
the National League and 14 in the American. Each league is divided into
three divisions—East, Central, and West. Each team plays a 162-game
schedule during the regular season, playing most of its games against teams
in its own league. We say “most” because beginning with the 1997 season,
MLB has experimented with inter-league play, where each team from the
National League plays approximately 15 games against selected opponents
from the American League.

At the end of the regular 162-game season, the four best teams from
each league continue playing games in a “post-season,” with the goal to win
the championship. The teams with the highest winning percentage in each
of the three divisions compete together with a “wild-card” team, which has
the best winning percentage among all teams who are not division winners.
The eight teams go through a three-tier playoff system to decide the
championship of baseball. First, the four teams in each league compete in
two playoffs—each pair of teams plays a “best of 5” competition to decide
the final two teams of each league. Next, each pair of teams in each league
play a “best of 7” competition to decide the winner of each league. Last, the
winners of the American and National Leagues pennants play a “best of 7”
competition called the World Series to decide the champion.

The Big Question

The winner of the World Series is declared the “best team in baseball” and
is immortalized as one of the premier teams in the history of the game. Each
of the players on the championship team receives a special World Series
ring, and there are substantial bonuses paid to each player, the manager, and



the coaches for their achievement. However, after all of the games have
been played and the winner declared, a natural question to ask is: “Did the
best team actually win the championship?” In 1997, the Florida Marlins
defeated the Cleveland Indians to win the World Series. This particular
contest was very close—the series was not decided until the last extra
inning of the seventh game. Many Cleveland Indians fans thought the
Indians should have won the series, focusing on several pivotal plays during
the series that greatly influenced the outcome. If a pitcher had not made one
particular poor pitch, the Cleveland fans felt, or if a player had executed
cleanly instead of misplayed in one particular defensive mishap, the Indians
would have won the championship. These fans may feel that the Indians
were indeed the better team, but, due to some unfortunate circumstances or
bad luck, their team lost the series.

Ability and Performance

What does it mean to be the “best team” in baseball? Since the Marlins won
the World Series, most people would refer to the Marlins as the best team in
1997. After all, they did win the championship. They were “best” in the
sense that they performed the best in the series of playoffs following the
regular season. But that’s not what we’re talking about. What we mean is,
“Did the team with the greatest ability win the World Series?” Did the team
with the best players, that is, the most talented players, win the
championship? Here we are again making the important distinction between
ability and performance. The Indians may have had a more talented team in
1997, but they may not have performed to the best of their abilities.
Alternatively, the Marlins may have had less overall ability than the
Indians, but they could have performed particularly well during the 7-game
series to win the championship. In other words, chance could have played a
major role in the World Series.

Looking over the recent history of Major League Baseball, we see
teams that performed in a relatively average fashion during the regular
season but somehow won the World Series. A good recent illustration of
this phenomenon is the Minnesota Twins in 1987. The Twins that year
finished with a season record of 85 wins and 77 losses, winning just 52
percent of their games. The team scored 786 runs during the season and
allowed 806, so it is surprising that they even had a winning season. Their



team batting average was a lackluster .261, which was lower than the
American League average of .265, and their slugging average of .430 was
only slightly higher than the league average of .425. You may be thinking
that they must have had good pitching. Well, their team ERA was a weak
4.63, which was higher (worse) than the league ERA of 4.46.

This array of less-than-stellar stats may lead you to ask, “Did they do
anything well?” The answer is yes, the Twins had the fewest number of
fielding errors in the major leagues. More importantly, they played well in
their home ball park. Their record during the regular season was 56-25 (a
winning percentage of .691) at the Metrodome and 29-52 (a winning
percentage of .358) on the road. The Twins continued this pattern of
winning during the post season—they won all six games played at the
Metrodome during the American League Championship and World Series.
Nonetheless, although the Twins won the World Series in 1987, it would be
difficult to argue, on the basis of their team statistics, that they were the best
team in baseball that particular year.

Similarly, if one looks at team statistics, one can question if the Florida
Marlins, the winner of the 1997 World Series, was the best team ten years
later. Let’s compare the Marlins with the Atlanta Braves, a team that played
in the same National League division. Table 12-1 lists a number of statistics
for the two teams that year. We see that Atlanta had a higher winning
percentage, scored more runs, allowed fewer runs (“OR” stands for
Opponents’ Runs), had a higher team batting average and slugging
percentage, and had a lower earned-run average. When Florida defeated
Atlanta in the National League Championship that season, a number of
explanations were offered, and some argued seriously that Florida was the
better team. But based on the regular season statistics, it should be pretty
clear that Atlanta was the superior team and was more deserving than
Florida of a World Series championship.

Table 12-1 Team Statistics for Atlanta and Florida for the 1997 Baseball Season

Wins Losses Win % K oR AVG SiG ERA
Florida Marlins 92 0 0.568 740 B6ed 0.259 0.395 3.83
Atlanta Braves 101 Bl 0623 79l 581 0.270 0426 3.18

Note that we observe a baseball team’s performance throughout a
season, but we never know for sure, even after the last game of the year,



exactly how talented the team is. The Marlins were better than the Indians
in the sense that they performed better during the World Series. An Indians’
fan may argue that the Indians were a better team than the Marlins—he’s
saying that the Indians had more ability. This statement can’t be refuted by
a Marlins fan, since he or she really doesn’t know which team had more
talent.

Describing a Team’s Ability

Since a team’s ability or talent is an abstract quantity that is unknown, it is
helpful to use a number to describe it. We will denote the talent of a team by
the letter t. If t is equal to 0, then we can think of the team as having
average talent. A negative value, say t = —.4, will correspond to a team with
below-average ability, and a positive value (like ¢ = +1.2) will correspond to
a team whose talent is in the upper half of all major-league teams (see
Figure 12-1). If a team’s talent is a positive number, then we expect the
team to win more than half of its games, although we will see that the team
may not win more than half of its games during a 162-game season.

MEGATIVE vALUE OF t FOSITIVE VALUE OF ¢

BEELOW-AVERAGE TALENT ABOVE-AVERAGE TALENT

Figure 12-1 Interpreting the talent (t) of a team.

Each team in the major leagues can be assigned a number t that
corresponds to its talent. Since there are currently 30 major-league teams,
there exist 30 numbers ¢, ..., t3y that correspond to their abilities. The

problem is that we never know exactly the values of these talents; in fact,
we could know them to a reasonable degree of certainty only if the teams
were able to play millions of games during the season. Clearly that’s
impossible, since a baseball season is scheduled over a six-month period, so
we view these abilities as unknown hypothetical quantities.

Describing a Team’s Performance



So are we stuck? Since we will never know the abilities of these major-
league teams, can we go no further? No. We get information about the
teams’ abilities by observing their performances during a 162-game season.
Each team gets an opportunity to play all the teams in its respective league,
and they win and lose games. At the end of the 162-game season, we
observe winning fractions for all the teams. We’ll use the letter p to denote a
team’s proportion of wins for the season. So, for example, if the Baltimore
Orioles win 90 and lose 72 games during the season, the value of p for
Baltimore is 90/(90+72) = .56. We observe these winning fractions for all
30 major-league teams and denote them p1, ..., p3g. These numbers are

simply the winning percentages reported in the team standings after the last
day of the regular season. (We should apologize for the change in notation
—p represented an ability in earlier chapters.)

The primary goal of this chapter is to show how the baseball teams’
abilities, as measured by the talent numbers, are linked to their season
performances, which are described by the observed winning fractions. We’ll
first look at baseball teams’ winning percentages since the beginning of
professional baseball (1871). This investigation will show that baseball
teams appear to be similar in their performances over time. Then we’ll look
at a few simple models which relate the teams’ abilities to their season
performances. Once we have found a simple model which seems to
describe baseball competition reasonably well, we’ll use the model to relate
teams’ abilities with their season performances. To whet your appetite, we’ll
address the following questions (among others):

1. How does baseball competition in 1997 relate to competition during the
1920s? Were teams more similar in ability back then?

2. How does a team with average ability perform during the regular
season? Can this average team ever win the World Series? On the other
hand, can this average team finish last in their division?

3. Suppose a team like the Marlins wins the World Series and is declared
the best team in baseball. What’s the chance that the Marlins were
indeed a team with great ability? What’s the chance that the Marlins
were an average team? What’s the chance that there was a team in the
major leagues that year with greater ability than the Marlins?



Team Performance: 1871 to the Present

How have baseball teams performed in the past? From the first days of
professional baseball in 1871, records have been kept of the winning
percentages for all teams. Figure 12-2 plots all of the team winning
percentages against the season year. There are a number of interesting
features that one can see from this graph.
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Figure 12-2 Scatterplot of team winning percentages and season year.

e There was a large spread in the winning fractions in the early years of
baseball—from 1871 to the late 1800s. Some teams won 10 percent or
fewer of their games, and other teams won over 80 percent of theirs.

» Generally, as we look from left to right in the graph (earlier to later

years), we see that the spread in the winning fractions appears to get

smaller. One way to notice this change is to focus on the teams

winning between 60 and 70 percent of their games. There have always

been teams that have performed this well, from 1871 to the present.
However, it seems that the number of teams in this category is



decreasing relative to the number of average teams, which by our
definition win between 40 and 60 percent of their games. This same
comment is true for weak teams that win only 30 to 40 percent of their
games. The fraction of teams that perform this poorly has appeared to
decrease over time.

e Reinforcing the previous comment, note that the winning percentages
in the early years, say 1880—1900, appear to be uniformly spread out
from 30 to 70 percent. In contrast, practically all of the winning
percentages in the last few years have been located in the 40- to 60-
percent range. Sure, occasionally there are poor or weak teams that
win 30 percent and 70 percent of the time, respectively, in recent years.
But such occurrences are pretty rare, and the trend seems to be toward
more “average” performance.

Explanations for the Winning Percentages

What are possible explanations for the patterns we note in Figure 12-27
Have there been some changes to the structure of baseball competition that
might account for them?

Let’s first look at the number of games played in a season for all of
these teams. Figure 12-3 plots the number of games played for all teams as
a function of year. From this graph, we see that in the early years of
baseball, seasons were relatively short. In the beginning, seasons were only
20 games long, but by 1900 there were 154 games in a season. From the
turn of the last century to 1960, the number of games played averaged about
150. In 1961 (the historic year when Roger Maris hit 61 home runs), the
number of games increased to 162, which is the length of the current
season.
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Figure 12-3 Number of games played by professional teams plotted against year.

This graph partially helps to explain the spreads in winning percentages
that we saw in Figure 12-2. In the early years, the large spread in winning
percentages is partly due to the fact that the seasons were short. Because of
the varying season lengths in the pre-1900 years, it is harder to compare the
winning percentages in these early years with the present day. A team with a
winning percentage of 80 percent in 1880 wasn’t necessarily better than the
great teams of the 1990s. This 120-year-old winning rate of 80 percent may
reflect the basic truth (from statistics) that it is easier to win 80 percent of
only 60 games than 80 percent of 162 games. Because of the varying season
lengths in these early years of baseball, we will focus our analysis on the
teams in recent years, where the seasons were generally from 150 to 162
games long.

So one change in baseball competition over the years is in the length of
the season. What about the number of professional teams in baseball?
Figure 12-4 plots the number of teams against the year. We see that in the
early years there were many changes in the basic competitive structure of
the sport. In some years there were fewer than 10 teams in the major
leagues, and in one year there were over 30 professional teams. But starting



with 1900, the number of teams stabilized. In fact, in the 60 years from
1901-1960, there were generally 16 teams—38 in the National League and 8

in the American.! Then, starting in 1961, professional baseball embarked on
its modern expansion. Two new teams were added in 1961, two in 1962,
four in 1969, two in 1977, and two in 1993. This expansion may have had
an impact on the winning percentages observed in Figure 12-2. As one adds
new teams to baseball, one can speculate that the pool of available
ballplayers is spread out over all of the teams, which might make the teams
more similar in ability. This similarity in ability is reflected in the small
spread in the winning percentages in the last 20 years.
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Figure 12-4 Plot of number of professional baseball teams and year.

A Normal Curve Model

Let’s focus on the group of winning percentages during the 12 years 1986—
1997, excluding the years 1994 and 1995. (A baseball strike in 1994 and
1995 resulted in canceled games and significantly shortened seasons.) For



the remaining 10 seasons, the number of games for all teams was pretty
constant (from 160 to 162).

Figure 12-5 displays a histogram of all of the teams’ winning
percentages for this modern ten-year period. We see that that the curve of
winning percentages is bell-shaped, with most teams winning between 45
and 55 percent of their games. The distribution is symmetric about the value
of .5, which corresponds to an average team that is winning half of its
games. It seems pretty uncommon during these years to have percentages
smaller than 40 or larger than 60. Since winning over 60 percent of the
games is a relatively rare event, the few that reach or exceed that number
can be viewed as outstanding.
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Figure 12-5 Histogram of winning percentages for ten recent years.

Since the distribution of winning percentages is mound-shaped, one can
model this distribution by using a smooth curve—the so-called normal
curve frequently used in statistics. As discussed in an earlier chapter, a
normal curve is bell-shaped and is described by two numbers, a mean M
and a standard deviation S. For a normal curve, the mean M is the middle or
most common value of the curve. Here a good choice for the mean is M =
.5, which corresponds to the winning fraction for an average team. The
standard deviation S is a positive number that reflects the spread of this
curve. One can choose a value of S by computing the standard deviation of



the winning fractions of the modern teams. Here the standard deviation
turns out to be .0626. So a normal curve with mean M = .5 and standard
deviation S = .0626 appears to be a reasonable match to this set of winning
percentages. To check this out, Figure 12-6 shows the histogram of winning
percentages with the normal curve drawn on top. It seems to be a good fit.
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Figure 12-6 Histogram of winning percentages for ten recent years with a normal curve placed on
top.

This normal curve provides a convenient description of the
performances of modern baseball teams during a 162-game season. If the
data follow a bell-shaped curve, then roughly 68 percent of the winning
fractions will fall within 1 standard deviation of the mean, and 95 percent
will fall within 2 standard deviations of the mean. If we apply these rules in
this setting, we find the following:

e 68 percent of the winning fractions will fall between [.5 — .0626] and
[.5 +.0626], or .44 and .56.

e 95 percent of the winning fractions will fall between [.5 — 2(.0626)]
and [.5 + 2(.0626)], or .37 and .63.

These statements help us to understand the season performances of
teams. For a team to win only 35 percent of their games during a season is a
bit unusual, since only 5 percent of all winning percentages are smaller than
37 or larger than 64. Also, these statements reinforce the parity of baseball.



About two-thirds of all teams have winning percentages between 44 and 56.
One can interpret this statement as saying that most teams have season
performances that are close to average.

Team Performances over Time (Revisited)

Season performances of all baseball teams are generally bell-shaped, as
illustrated in Table 12-6, and the standard deviation gives a useful measure
of the similarity of the teams. Let’s return to Figure 12-2, which plotted all
of the winning fractions against the season year. We now have a measure,
the standard deviation, that can be used to describe the spread of
performances for each year. Figure 12-7 graphs the standard deviations of
the season winning fractions against the season number. We focus only on
the seasons since 1900, since that is the point from which the lengths of the
seasons are pretty constant. There is a lot of scatter in the graph shown in
Figure 12-7. The standard deviation can be influenced heavily by a few
extreme values, which would correspond to teams with unusually good or
poor seasons. But there is also a clear pattern in this graph, which is visible
in the smooth curve through the points as shown in Figure 12-7. This
smooth curve is found for a given year, say 1980, by computing the average
of the ten years that are close to that year (1975-1984).
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Figure 12-7 Plot of standard deviations of season winning fractions for different years. A smooth
moving-average curve is placed on top.

Remember, the standard deviation measures the disparity of the group
of winning fractions. In the early 1900s, teams had a greater disparity in
performances (winning percentages), which is reflected in large standard
deviations. The team performances became more similar until about 1920,
when they seemed to get more divergent. From the 1950s to the present day,
the standard deviations of the winning fractions have been decreasing again,
which means that the teams are becoming more alike in their season
performances. To reinforce this point, Figure 12-8 shows boxplots of the
winning fractions for teams from different time periods. The leftmost
boxplot displays the fractions for the teams from 1900-1920, the next
boxplot shows the fractions for the 1921-1940 teams, and so on. The
associated standard deviation for each group of winning fractions is shown
at the top of the figure. We see that the boxplot with the smallest spread
corresponds to the 1981-1997 values, which results in the smallest standard
deviation value.
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One important finding in this analysis is that the current major-league
teams appear to be more similar in ability than teams in any time in baseball
history. This conclusion will have a significant effect on our exploration
into the relationship between teams’ abilities and their season performances.

A mediocrity model for Abilities

Let’s return to our basic question. What is the relationship between the
abilities of the current major-league teams and the performances of these
teams during the 162-game season? We looked at the season performances,
that is the winning percentages, of baseball teams and noted that modern
teams appear to be relatively similar in their abilities.

In general, a model relates parameters or characteristics to observations.
Here, the model is a description of the relationship between teams’ abilities
and their performances. Remember that we describe teams’ abilities in
terms of their talent numbers t;, ..., t3; and their performances using the

season winning fractions py, ..., p3g. A model describes how the ts are linked
to the ps.



Given the current parity of baseball teams and the movement of a large
number of free-agents between teams, it might be reasonable to think that
all baseball teams have roughly the same talent. If that is true, then all
teams would have an average ability, and the talent number for each team
would be 0. If this “mediocrity model” is true, then the observed differences
in season winning percentages are solely due to good and bad luck. If you
believe this model, then any team in 1997 had the same chance of winning
the baseball championship. The Marlins just had the best luck, and that’s
why they won.

If this model is correct, then it would be easy to simulate a baseball
season. Suppose any two teams play, say the Phillies and the Marlins. Since
they are of equal abilities, then the probability the Phillies win the game is
.5—this would be true for any other pair of teams. A complete season could
be simulated by a sequence of coin flips, where each coin flip corresponds
to the outcome of a single game.

Suppose that we do this simulation many times and keep track of the
season winning fractions p for all teams. One team playing a season is
analogous to flipping a fair coin 162 times and keeping track of the fraction
of heads. Since we expect each team to win 50 percent of its games, a
standard formula in statistics tells us that the season winning fractions for
many teams will be normal shaped with mean .5 and standard deviation
calculated as follows:

J5(.5)/162 = .0393

To see if this is a reasonable model, we compared the above distribution
of winning fractions to the actual winning fractions that we observed for the
recent ten-year period. Recall that the standard deviation of this distribution
of actual team performances was estimated to be .0626. This standard
deviation (.0626) is much larger than the standard deviation that would be
predicted if the mediocrity model was true (.0393). Since this model doesn’t
explain the variation in winning percentages between teams, we reject it.
Modern baseball teams do appear to have different abilities. This might
seem to be a pretty obvious statement, but it illustrates how we state a
model and how we can check if the model is a reasonable description of
baseball competition. Even when a conclusion seems intuitively obvious, it
is important to validate it with data before proceeding.



A Normal Model for Abilities

So baseball teams have different abilities. Remember, we describe a team’s
ability by a number t which we call the team’s talent. There are 30 talent
numbers that we write as the symbols t;, ..., t35. We saw in the previous

section that it is inappropriate to assume that all of these talents are equal to
0. A model will tell us how these 30 team abilities can be different.

Recall that the performances of teams across different seasons are well
described by a normal curve. Most teams have a winning fraction p that is
in the neighborhood of .5, and a relatively small number of teams have poor
or great winning fractions. It is reasonable to think that teams’ abilities are
also described by a normal bell-shaped curve. If a fan thinks about the
quality of the current group of 30 baseball teams, then he or she will likely
view most teams as “close to average” and think that there are only a few
teams that are blessed with superior players and only a small number of
teams that are rebuilding with young players. So we suppose that the team
talents t;, ..., t3p have a normal pattern. We center this normal curve about

the value 0, since we are assuming that an “average” team has a talent ¢t = 0.
Figure 12-9 displays this normal curve model for team abilities.
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Figure 12-9 Normal curve model for team abilities.

This normal model for the talents is centered about the mean value 0,
which corresponds to an average team. The standard deviation of this curve
tells us about the spread of team abilities. We know teams have different
abilities, but can we figure out how different? In other words, how can we
find the standard deviation of this normal curve? We choose a standard
deviation so that the winning season percentages predicted from this normal
ability model match the pattern of baseball winning season percentages that
we saw in Figure 12-5. (We will shortly describe how the talent numbers
determine who wins and loses individual baseball games.) How we actually
find this standard deviation is a bit complicated. But it turns out that if we
let the ability distribution have a standard deviation of .19, then the season
performances (the p) that are predicted from this model match very well the
observed season performances in Figure 12-5.

Recall that the standard deviation of the season proportions from recent
years was .066. This variation in the teams’ winning proportions is due to
two factors. First, teams have different abilities, and the variation in these
abilities is measured by the standard deviation of the normal curve of the
team talents. But this variation in team abilities doesn’t explain all of the
variation in season winning proportions. The second factor is chance
variability, which is analogous to the variation that we see in the number of
heads when we toss 20 coins repeatedly. Teams perform well or poorly
during a season due to different abilities, but also due to luck.

Weak, Average, and Strong Teams

Now that we have a good model for describing team abilities, we can use
the model to group teams into meaningful categories. How does one define
an “excellent” team? There are many ways to think of excellent teams, but
we’ll define them in a simple and somewhat arbitrary way. These are the
teams that are in the top 10 percent with respect to team ability. Likewise a
“bad” team is one that is in the bottom 10 percent of all the team talents.
We’ll define an “average” team that is in the middle 30 percent of the
distribution. That leaves two final categories, “poor” and “good.” Figure
12-9 shows where the different types of teams fall in the distribution of
team abilities. Table 12-2 gives the cutoffs for the different type of teams.

Table 12-2 Five Categories of Ability of Baseball Teams



Category Percentiles of Ability Distribution Team Talent
Bad 0-10 less than —.24
Poor 10-35 —.24 t0 —.07
Average 35-65 —-.07 to .07
Good 65-90 .07 to .24
Excellent 90-100 larger than .24

So an “excellent” team, one that is among the top 10 percent, has a
talent number larger than +.24. A “good” team is one that has an ability
between .07 and .24. “Average,” “poor,” and “bad” teams are defined in a
similar way.

A Model for Playing a Season

We’re discussing how to model baseball competition, and we have focused
on how to model team abilities. But the model isn’t complete. Given the
team talents, we have to model the actual competition between teams in a
162-game regular season.

Bradley and Terry thought of a simple way of modeling a competition
between a set of players or teams. For simplicity, suppose that there are four
teams in the competition, which we’ll call A, B, C, and D. We assign talents
to the teams as given in Table 12-3. Under our normal model for talents,
teams A and D have average ability, team B has below-average ability, and
team C has the most talent.

Table 12-3 Talent Numbers Assigned to Four Teams

Percentiles of

Categary Ability Disfribution Tean Talent
Bad 0-10 less than —. 24
Poor 10-35 -.24 ta -.07
Average 35-65 07 to 07
Good 65-90 OF to 24
Excallent Q0-100 larger than .24

We convert these talents to positive numbers, called strengths, by taking
the exponential of each value. For example, we convert the talent number ¢
= 0 to the strength number as follows:




gs=el=1

Then we convert the talent value t = —.1 to

s=e-1=.9
(Note that e is a special mathematical number that is approximately equal to

2.78. So when we write e ! we are taking the number 2.78 to the —.1
power.) If we do this exponential operation to all the talent numbers, we get
the strengths as shown in Table 12-4.,

Table 12-4 Strength Numbers for Four Teams

Team A B [ D

Strength (s) 1 0.9 1.6 1

We use the strength values to compute the probability that one team will
defeat another team in a single game. Suppose two teams, say A and B, play
one game. The chance that team A defeats team B is given by the following
formula:

strength of team A

Priteam A defeats team B) = , ,
e efe ‘ strength of team A + strength of team B

Here, team A has strength 1, B has strength .9, so the probability that A wins
the game is as follows:

: 1
M 3 1] ] — —
Priteam A defeats team B) = 179

We can use the strength numbers to find the probability that any team
defeats any other team. So the probability that team C (with strength 1.5)
defeats D (with strength 1) is:

1.5
1.5+1

What if two teams have equal strengths? Note that teams A and D both
have strengths of 1. The chance that A defeats D is:

] -
1+1° 7

which makes sense.

=.6




Simulating a Season

We now have a complete description of a model for modern baseball
competition. Teams have different abilities, and we describe these abilities
by means of a normal curve. Once we know the talent numbers for all of the
teams, we can compute strength numbers for the teams, and these strength
numbers are used, in the Bradley-Terry model, to compute the probability
that one team will defeat another team in a single game.

Using this competition model, we can use random numbers to simulate
a baseball season. We first choose abilities for the teams at random from the
normal curve ability distribution. We then can play all of the games of the
baseball season using probabilities given by the Bradley-Terry formula and
a random spinner. To show how this simulation works, we’ll step through a
single simulation of the American League baseball season.

Simulating an American League Season

Let’s focus on a hypothetical American League baseball season. The
American League currently consists of 14 teams, arranged in the East,
Central, and West divisions.

The first step in this simulation is to assign random abilities to these
teams. Our model for the team talents is a normal curve with a mean 0 and
standard deviation .19. We randomly select 14 numbers from this normal
distribution and assign them to the teams. Table 12-5 lists the teams and
their randomly assigned abilities.

Table 12-5 Randomly Assigned Talent Numbers for the American League Teams

EAST DIVISION CENTRAL DIVISION WEST DIVISION

Team falent Team Tatent feam Talent
Tampa Bay 0.288 Dietroit 0.128 Anaheim 0.140
Toronta ).223 Kansas City 0.010 Texas 0.010
EBaltimore 0,020 Cleveland -0.073 Oakland 0,095
Boston 0.086 Chicago 0.077 Seaftle -0.054

Mew York 0.03% Minnesata -0.139



The particular assignment of abilities to teams might look strange to the
baseball fan, since they don’t correspond to the current strengths of the
teams. For example, Kansas City has a higher talent then Cleveland, which
would seem very surprising to the 1999 fan. We could have assigned
abilities based on our knowledge of the strengths and weaknesses of the
individual teams. But what is important here is the spread of the talent
numbers assigned. The spread of assigned team talents mimics the spread of
abilities in modern-day baseball competition.

Also note that, since the talent numbers are given, we now know who
should win each division title. Boston, Chicago and Anaheim have the
largest abilities in their respective divisions, so they should win their
divisions. Also, since Anaheim has the largest assigned talent, this team
should be the American League representative in the World Series.

Given these ability numbers, we compute strength numbers for all of the
teams. For example, see from the Table 12-5 that Tampa Bay and Toronto
had respective talent numbers of —.288 and —.223. So their respective
strength numbers are:

g = E—.EH-H = .Tﬁ: 8= E_.—.‘_.;':E."ln - .SD
These numbers are listed in Table 12-6.

Table 12-6 Randomly Assigned Strength Numbers for the American League Teams

EAST DIVISION CENTRAL DIVISION WEST DIVISION

Team Strength Team Strength Team Strength
Tampa Bay 0,75 Datroit 0,88 Anahaim 1.15
Taronto 0,80 Kanzas City 0.99 Texas Q.99
Baltirnore 1.03 Cleveland 0.93 Dakland 1.10
Boston 1 09 Chicago 1.08 Seattle 0.51
Mew York 1.04 Minnesota .87

Now we can proceed with the simulation of the baseball season. We’ll
use a baseball schedule close to the actual schedule used in Major League
Baseball. In this schedule, each team will play each of the other teams in its
division 14 times and play each team in the other two divisions 12 times. A



slight adjustment is made to the schedule so that every team plays a total of
162 games.

It’s now opening day in our simulated season, and New York is playing
Toronto. The strength numbers for these two teams are respectively 1.04
and .80, and so the probability that New York wins this game is 1.04/(1.04 +
.80) = .565. The probability that Toronto wins this game is 1 — .565 = .435.
We can play this game using a random spinner. In Figure 12-10, we have
drawn a circle where the areas of the two regions correspond to the
probabilities that New York and Toronto win. Imagine spinning an arrow
which is equally likely to land anywhere around the circle. If the arrow
lands in the New York region, New York wins the game; otherwise, Toronto
wins. Note from the figure that the spinner lands in the Toronto region, so
Toronto wins this particular game.

New York
wins

5%

Toramnin
Wins

4.3%

Figure 12-10 Spinner for simulating the result of a single baseball game.

Other games are simulated in this same manner. Figure 12-11 shows the
simulation for four other opening-day games. For each game, we construct
a spinner divided into two regions, where the areas of the regions
correspond to the probabilities that each team wins the game. (We compute
the probabilities from the two teams’ strength numbers.) Then we spin the
spinner, and the location of the arrow tells us who won the game.We see
that the winners of these games on this day were Boston, Minnesota,
Chicago and Anaheim.
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Figure 12-11 Random spinners for playing four games on opening day.

We continue this process until we have played a complete 162-game
season for these fourteen American League teams. All of the games are
played using win probabilities based on the team abilities that were
assigned at the beginning of the season. How did our teams do this season?
The final standings of the teams are shown in Table 12-7.

Table 12-7 Results of One Simulated Baseball Season



EAST DIVISION CENTRAL DIVISION

Team W i [ Team W { il

Boston B8 74 0.543 Detroit a0 72 0.556
New York 24 78 0.518 Chicago 84 78 0518
Baltimore 77 a5 0.476 Cleveland g2 &0 0.506
Toronto 12 og 407 Kansas City 78 84 0.482
Tampa Bay B3 55 0.3849 Minnesota 74 88 0,457

WEST DIVISION

Team W [ g

Anaheim 101 &l D.o24
Texas 94 (%33 0.580
Dakland &0 B 0.494
Seattle 73 29 0,451

The results of the simulated season may surprise you. Let’s focus on the
American League West. Looking at the abilities of the four teams, Anaheim
and Oakland had above-average abilities (with positive talent values), Texas
had average ability (talent close to 0), and Seattle had an ability in the
below-average range (negative talent). Although Anaheim and Oakland had
similar abilities, Anaheim won the division title very easily—they finished
with a 7-game lead over second-place Texas. Anaheim and Texas played
much better than their abilities, while Oakland and Seattle played worse
then their abilities. So we see significant differences between the teams’
abilities and performances for this particular season.

To see how the abilities for all 14 teams are related to their season
performances, Figure 12-12 displays a scatterplot of the values of the
talents t and the season win fractions p. We see a positive drift in the plot,
which indicates that there is a moderate positive relationship between
teams’ abilities and performances. We have placed a best fitting line on the
scatterplot. Points above the line correspond to teams that played better in
the season than expected, and points below the line correspond to
“disappointing” team performances. In particular, we have labeled points



corresponding to Anaheim, Texas, and Detroit, who had better-than-
expected years. We have also labeled one point under the line that
corresponds to Tampa Bay, which had a disappointing season. This graph
illustrates that the relative standing of the teams’ abilities will generally be
different from the relative standing of the teams’ performances during a
162-game season. To illustrate this, note from the graph that Texas had the
second-best record during the season, but there were a number of teams that
had greater ability than Texas. But when the entire league as a whole is
examined via the trend line, a reasonable relationship does exist between
ability and performance.
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Figure 12-12 Abilities and simulated season performances for 14 American League teams.

Simulating Many American League Seasons

Above we simulated one baseball season between teams of the American
League and found that the results were a bit surprising. Some teams with
similar abilities had very different season performances, and the winners of
the divisions were not necessarily the ones with the greatest abilities. But
this one simulated season may have been a fluke. Perhaps we’re members
of the army of Yankee-haters and just happened to pull out one particular
simulation where the Yankees had a particularly bad season.

To get a better understanding of the pattern of the relationship between
team abilities and team performances, we can repeat this baseball
simulation a large number of times. Remember, this simulation is a two-step
process: first we generate a set of team talents (ts) from the normal curve



ability model, then we play out a season of games using the Bradley-Terry
model and a set of random spinners.

We repeat the American League season simulation a total of 1000 times.
For each team and for each season, we keep track of two quantities: the
team’s ability given by its talent number t, and the team’s winning
percentage p for the 162-game season. Figure 12-13 displays a scatterplot
of the team abilities against the team performances for all 14 teams playing
1000 seasons. There are several interesting features in this plot. First, there
is a moderate positive relationship between the teams’ abilities and the
teams’ performances. Teams with higher abilities tend to win a higher
proportion of games during a season. But there is also a lot of scatter in this
plot. This means that season performances of teams can be very different
from their abilities.
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Figure 12-13 Scatterplot of abilities and simulated season performances for American League
teams in 1000 seasons.

To illustrate this last point, look at all of the teams with average abilities
— that is, talent numbers close to 0. (This is the vertical line in Figure 12-
13 passing through the value 0 on the team ability scale.) Figure 12-14
shows a boxplot of the season winning fractions of the truly average teams



whose talent number is close to 0. We see from this boxplot that these teams
had season winning fractions falling between .4 and .6. So it’s possible for a
team to have average talent (t = 0) and have very bad (p = .4) or very
successful (p = .6) seasons.
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Figure 12-14 Boxplot of simulated season performances for American League teams of average
ability where the talent number is close to 0.

Performances and Abilities of Different Types of

Teams

Recall our categorization of teams of different abilities. The top 10 percent
of the teams on the talent scale are considered “excellent,” the teams
between the percentiles 10 and 35 in talent are considered “good,” the
teams between the percentiles 35 and 65 are considered “average,” and so
on. Another way of thinking about a team’s ability is how it performs in the
long run. Suppose that the team plays a very long sequence of games
against random opponents that is much longer than the 162 games that a
team plays during a major-league season. Then we define a long-run
winning proportion P as the fraction of games that a team wins. For
example, consider a team with a P = .6. This team will, in the very long run,
win about 60 percent of its games. We’ll see that this team can win fewer
than 60 percent or more than 60 percent of the games during a 162-game
season. But if this team were able to play thousands or even millions of



games, the fraction or proportion of games won would be close to 60
percent. This team has above-average ability since its long-run winning
fraction is over 50 percent.

If one knows the talent number t of a team, one can compute its long-

run winning proportion P. Table 12-8 shows the long-run winning fractions
of teams of different ability levels.

Table 12-8 Five Categories of Ability of Teams with Associated Team Talents and Longrun
Winning Fractions

Fercentiles of Ability Long-run Winning
Category Distribution Team Talent Proportion (P
Bad 0-10 lezs than —. 24 000 - 442
Foor 10-35 —.24 to .07 Ad42 - 483
Average A5 -E5 -.07 ta .07 483 - 517
Good 65 - 90 07 to .24 517 - .658
Excellent 90 - 100 larger than .24 858 - 1.000

Suppose that we use the categorization of Table 12-8 to describe season
performances. So an “excellent” season performance corresponds to a team
that wins at least 55.8 percent of their games, which corresponds to a season
record of 91-71 or better. A “good” performance means that a team wins
between 51.7 percent and 55.8 percent of its games—in a 162-game season,
this type of team will win have a record ranging from 84—78 to 90-72.

Table 12-9 lists the five types of teams and what kind of seasons they will
have.

Table 12-9 Five Categories of Performance of Teams in a 162-Game Season

Category Winning Proportion (p) Number of Games Won
Bad .000-.442 71 or fewer

Poor .442—.483 721078

Average .483-.517 79 to 83

Good .517-.558 84t0 90

Excellent .558-1.000 91 or more

Let’s return to our simulation of 1000 American League seasons. For
each team and each season, we can classify its ability depending on its
talent number t. In addition, after the team has played its season, we can



classify its season based on the proportion of wins p. Since there are 14
teams in the American League, each playing 1000 seasons, there are a total
of 14 x 1000 = 14,000 team seasons. Table 12-10 classifies the
performances and abilities for these teams by means of a two-way table.
The rows of the table correspond to different team abilities, and the
columns correspond to different team performances. Each table entry
represents the number of teams having a specific ability and performance
level. To help understand this table, note that the count in the third row
(Average Ability) and first column (Bad Performance) is 371. So there were
371 teams of average ability that had bad seasons. Looking across the same
row, there were 1146 teams of average ability that had poor seasons, 1112
teams of average ability that had an average season, and so forth.

Table 12-10 Abilities (Rows) and Performance (Columns) of American League Teams in 1000
Simulated Seasons

PERFORMANCE
Ability Bad Poar Average Good Exeelient Total
Bad 1015 259 56 & 0 1376
Foor 1090 1212 706 334 43 2485
Average a7l L1146 1112 1063 350 4042
Good 47 374 716 1431 1064 3622
Excellent o] 1& 8h 336 1038 1475
Total 25623 3147 2675 3170 2485 14000

This two-way table is useful for seeing how teams of different abilities
perform during a 162-game season. Suppose that we convert the table to
row percentages by dividing each count by the total count of the
corresponding row. The resulting table is shown in Table 12-11. Look at the
first row—these numbers represent percentages of the teams with bad
abilities. Of these bad teams, 73.8 percent had bad seasons, 21.7 percent
had poor seasons, and 4.1 percent had average seasons. Also note that there
are zeros in the Good and Excellent columns; these indicate that it was rare
for these bad teams to have either good or excellent seasons (see Table 12-
10). So teams with very weak abilities tend to play badly during a season.
What about the poor teams? The possible performances of these teams is
pretty spread out—31 percent of their performances fall into the category



“bad,” 38 percent “poor,” 20 percent “average,” and 10 percent “good.” So
it is possible (but not probable) that a poor team will have a good season.
The performances of the teams with average abilities are the most spread
out. These teams are equally likely to have poor, average, or good seasons.
Also, these average teams have a plausible (9 percent) chance of having bad
or excellent seasons.

Table 12-11 Performances of Simulated Teams of Different Ability Levels. Each Number
Represents a Percentage of the Row

PERFORMANCE
Ability Bad Foor Average Good Excellent
Bad 73.8 21.7 4.1 0.4 0.0
Poor 31.3 376 20.3 9.6 1.2
Average 9.2 28.4 275 26.3 8.7
Good 1.3 10.3 19.8 39.5 29,1
Excellent 0.0 1.1 5.8 22.8 0.4

The data in Table 12-10 can be used in a different manner. When we
observe the results of a single baseball season, we’re interested in what is
learned about the team’s ability. For example, suppose our team has a
“good” season, that is, they win between 84 and 90 games. What can we
say about the team’s ability? We can answer these type of questions by
converting the table of counts to column percentages—that is, we divide
each count by the total in the corresponding column. Table 12-12 gives us
insight into the abilities of the teams that have different types of seasons. To
illustrate, look at the first column of the table, which corresponds to teams
that had bad seasons. Of these teams, 40 percent were actually teams whose
ability was categorized as “bad,” 43 percent were “poor,” 15 percent were
“average,” and 2 percent were “good.” So it is likely that this team was a
bad or poor team. What if our team has an average season? Does it mean
that this team was average in ability? Looking at the third column of the
table, corresponding to average, we see that there is a 42-percent chance
that this team was actually average, and a 26-percent chance that the team
was poor, the same 26-percent chance that the team was good, and
relatively small chances that the team was bad or excellent in ability.



Table 12-12 Performances of Simulated Teams of Different Performance Levels— Each Number
Represents a Percentage of the Column

PERFORMANCE
Ability Bad Poar Average Goad Excalient
Bad 40.2 8.5 2.1 0.2 0.0
Poor 43.2 41.7 26.4 10.5 1.7
Average 14.7 36.4 416 335 14.1
Good 1.9 11.9 26.8 45.1 42.4
Excellent 0.0 0.5 iz 10.6 41.8

Simulating an Entire Season

Up to this point we’ve focused on what happens in an American League
162-game season with 14 teams, relating the teams’ abilities with their
season performances by use of a simulation experiment. But, as all baseball
fans know, baseball really gets exciting when the regular season ends and
the playoffs begin. At this point, a select group of teams get to continue in a
series of playoffs, with the ultimate goal of winning the World Series.

We can extend the simulation we did earlier in this chapter to include all
playoffs. As in the earlier simulation, we begin by simulating a set of
abilities for all teams in the major leagues, including both the American and
National Leagues. Then each team plays a complete 162-game season. At
the end of the regular season, the division winners and wild card teams are
found. Then the simulation can be used to play all of the post-regular-
season series, concluding with the “best-of-7” World Series.

In investigating the “extended season,” we simulated a total of 1000
complete baseball seasons. For each team and each season, its randomly
generated ability and its season performance (wins and losses) were
recorded. Also we recorded if the team achieved any of the following
distinctions:

e The team won its respective division.
e The team was a wild card team for its league.

e The team won its pennant (was the winner of its league) and appeared
in the World Series.



e The team won the World Series and was champion of baseball.

Table 12-13 summarizes what happened in these 1000 simulated
baseball seasons. This table gives the number of teams of each ability level
that reached various plateaus. L.ooking at the first row of the table, we see
that there were a total of 2976 bad teams in all of the simulations. Of these
2976 teams with bad ability, only 15 teams won a division, and one team
was a wild card team. None of these teams ever won a pennant or a World
Series. So it is virtually impossible for a bad team to win a World Series.
The performance of the teams of average ability is more interesting. Of the
8600 teams of average ability in the simulation, 1140 (13 percent) won their
divisions, 483 (6 percent) were wild card teams, 839 (3 percent) won their
pennants, and 116 (1 percent) won the World Series. So it’s possible, but not
likely, that these average teams will achieve success in a season. What
about the success of the excellent teams that represent the top 10 percent of
all teams? Of the 3031 teams of this type, 1975 (65 percent) won their
division, 453 (15 percent) were wild card teams, 840 (28 percent) won their
pennants, and 470 (16 percent) won the World Series. These top teams will
achieve success, but perhaps not at the high rate that one would expect.
Table 12-14 shows these teams’ chances of reaching these plateaus for
teams of all ability levels. Figure 12-15 displays these probabilities using
line graphs.

Table 12-13 Playoff Performances of Simulated Teams of Different Ability Levels
PLAYOFF PERFORMANCE

Wild Card Wan World
Ability Won Division Team Wan Pennant Saries Won Nothing Total
Bad 15 1 0 o] 29860 2976
Poor 278 110 53 17 7194 7h82
Average 1140 483 268 116 6877 8500
Good 2592 953 839 sy 4266 7811
Excellent 1975 453 840 470 603 3031

Table 12-14 The Probability a Team of Different Ability Levels Reaches Different Playoff Levels



L
=
Z ~+
= 6. Eest Team
i &, Excellent Team
(=]
— 4. Good Team
=
= 3. Avg Team
=
o 2. Poor
o
o 1. Bad
Division or Pennant World Sertes
Wild Card
1
L
=
Z +
= 6. Best Team
E: . Excellent Team
(=]
- 4. Good Team
=
= 3. Avg Team
=z
i 2. Poor
o
a 1. Bad
Division or Pennant Waorld Sertes
Wild Card

Figure 12-15 Graph of probabilities of reaching different plateaus for teams of different ability
levels.

Again let’s turn this logic around. Suppose a team wins the World Series
—is it reasonable to call this team the “best team in baseball”? In our
simulation, there were 1000 World Series winners. Looking at the fourth
column of Table 12-13, we see that 470 (47 percent) of these teams had
excellent ability, 397 (40 percent) were good, 116 (12 percent) were
average, and 17 (2 percent) were poor. So the answer to our question is no.
The chance that a great team, a team of excellent ability, won the World
Series is under 50 percent. It is likely that one or the other of the two (a
good or excellent team) wins this contest, and it is possible (but not likely)



for an average and even a poor team to accomplish this feat. By looking at
the Won Division and Won Pennant columns of Table 12-13, we can check
into the abilities of teams that won the division and won the pennant,
respectively.

Let’s answer one final question. The title we gave this chapter was, “Did
the Best Team Win?” In other words, is it likely that the best team—that is,
the team with the greatest ability among all 30—will win the World Series?
Using the simulation, this question is easy to answer. For each simulated
season, after we simulate the talents (the ts) for all teams, we find the
particular team with the largest talent. We then record if this team won the
World Series that year. The results of the success of the best team in these
1000 seasons is presented in the last row of Table 12-14. For the 1000
seasons, the best team—the team with the highest value of t—won the
World Series 213 times. So the chance that the best team wins the World
Series is about 21 percent. We also find that this best team wins a division
title with a probability of 76 percent, is a wild card team with a probability
of 13 percent, and wins the pennant with a probability of 35 percent. So this
best team will very likely get into the baseball playoffs, but it has a modest
chance of actually winning the World Series. To put it another way: the
cream won’t generally rise to the top.

Chance

The point of this chapter is to relate the abilities of major-league teams with
their performances during a baseball season. We measure a team’s ability by
a talent number t. Teams possess different talents, that is, different abilities,
and we model the distribution of abilities of all teams by a bell-shaped
curve. By choosing a reasonable value for the spread (the standard
deviation) of this curve, the observed season winning fractions (p),
predicted using the model for different teams, will match the actual winning
percentages that we observe for major-league teams over the last 20 years.
Our model for baseball competition consists of this normal curve model for
the teams’ abilities and a simple coin-tossing model (the Bradley-Terry
model) for describing the results of games between teams of different
abilities. It is important to stress that the model seems reasonable in that it
appears to predict well the observed season results for the 30 major-league
teams.



By using the model, we simulated a large number of baseball seasons.
In each simulation, we select at random a set of team talents and then use
these talents to play a 162-game baseball season and the playoffs. We use
the simulation results to connect the team abilities (that we don’t know in
real life) and their season performances. What we learned is that teams with
high abilities tend to perform better than teams of low abilities. But it is
pretty common for good teams to have average or worse seasons—Ilikewise,
mediocre teams can have good seasons. Probably the most surprising result,
from a typical fan’s perspective, is the range of abilities found in teams that
win the World Series. Over half of the World Series winners are in the
“good,” “average,” or “bad” ability categories. So we shouldn’t be too
surprised when a team like the Florida Marlins in 1997 wins the World
Series over a clearly superior team like the Atlanta Braves. Also, this study
should be encouraging to a Philadelphia Phillies fan— even if the team
doesn’t possess great talent (as is usually the case!), the Phillies have a
reasonable chance for a good season, even to the point of winning the fall
classic.

In other words, we’ve shown that chance variability has a lot to do with
teams’ performances during a season. When a team reaches a certain
pinnacle such as the World Series, sportswriters and fans will offer a
thousand explanations why this team performed so well. Any good
performance has to have a cause—perhaps a few ballplayers got “hot” or
performed at a higher level than expected, or perhaps a few players on the
opposing team experienced slumps. Maybe the umpires made a number of
questionable calls which influenced the outcome. Many things can happen
during a game that cannot be explained easily and yet influence the final
result. These “things” include good or bad pitches, the locations of balls hit
in the infield and outfield, good and bad defensive or base-running plays,
the weather conditions, and so on. We can lump all of these events into a
broad category called “chance occurrences.” But lumping them together
and giving them this name does not diminish their importance: Whether we
like it or not, chance events have a big effect on the patterns of wins and
losses that we observe.

L A third major league, the Federal League, with 8 teams, existed briefly in 1914-1915.
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Chapter 13
Postgame Comments (A Brief
Afterword)

Jim Albert and Jay Bennett

Baseball is a fascinating game for the statistical analyst. On the surface, it
appears so simple and limited. But the more closely one studies the game,
the more, it seems, there is to know. For us it is like driving toward the
horizon, then at the top of that last hill finding a valley on the other side,
with more hills and another horizon.

The chapters in this book have examined some aspects of baseball
statistics that we’ve found particularly interesting over the years. We make
no claim that this is the last word on these issues, nor do we make any
claims for completeness. As we write, there are thousands of fans taking
fresh new looks at baseball and the usefulness of its statistical
underpinnings. Undoubtedly, refinements and advances will be made. Our
book is not, for example, a complete guide to sabermetrics. Many issues of
interest to sabermetricians and their disciples are not covered, or are
examined superficially.

This book is best approached as a loosely connected collection of
quantitative essays on baseball statistics. Each essay examines a topic in
baseball in the way a professional statistician might approach the issue in
any other field (health, business, technology) using the data at hand. In
some cases, the work presented was original research performed by us, the
authors, while in other cases the essay described work performed by others
whose efforts we have found particularly enlightening. Hopefully, we have
brought to your notice some older research that has not received the
attention it deserves, and provided a new perspective on work with which
you’re already familiar.



But there is a common thread that runs through the chapters, and it can
be summarized as the role of chance in baseball. A Major League Baseball
season (and indeed a single batter’s swing or the whole history of the sport)
is a process that is at the mercy of chance. Chance affects all baseball
events, from the outcomes of individual at-bats to the awarding of World
Championships. While chance occurrences may seem to defy description
and analysis, to make explanation and prediction impossible, we believe
chance can be mastered—or at least tamed. This is the role of statistics as it
is applied in business and industry. Statistics involves not just enumerating
and summarizing data, but attempting to extract the underlying truth that is
obscured by the fog of chance.

If there is one lesson the reader should take from this book, it is that
baseball data are like observations in experiments. They are the best
measures we have, but they are not exact with respect to the underlying
process. The result of each at-bat is the culmination of many factors, but
even if all are held constant, the difference in the batter’s reflexes or
reactions for one tiny fraction of a second, or one tiny fraction of an inch
one way or the other, may make the difference between a strikeout and a
home run. We cannot (and would not wish to) alter these elements of
chance in the game. But when we analyze baseball data, we should attempt
to take them into account.

Several chapters in this book have presented ways in which we can
gauge the influence of chance on baseball. We always assume that the
winner of the World Series is the best team in baseball, but in Chapter 12
we found that the role of chance in the game gives an inferior team a
significant shot at winning the series. By inferior, we mean that the
championship team’s abilities are not as good as those of some other teams.
It may have had great performances that year, but those performances were
better than expected.

The trick is to find the signal in the noise. At times, this can be difficult.
Chapter 4 examined ways of detecting situational effects in batting data.
Baseball announcers present figures on batting averages in the day, at night,
on turf, on grass, against left-handers, against right-handers, at home or
away, and so forth. These figures are presented as facts. And they are
factual observations of what has occurred. But generally they are not valid
statements about how these situations affect ability. Chapter 4 demonstrated



how certain effects were large enough to be beyond the realm of chance,
while others were indistinguishable from chance.

Similarly, baseball announcers are quick to highlight notable batting
streaks and discuss certain hitters as being hot or cold. But how much of
this is due to chance as opposed to the possibility that a batter really has an
ability which fluctuates depending on recent success? Chapter 5 examined
one player (Todd Zeile) noted for his streakiness. While evidence was found
to support the possibility that Zeile truly had a streaky kind of ability, it was
still difficult to rule out chance as the primary cause. Generally, while some
players may exhibit some streaky batting behavior, one should be pretty
doubtful of labeling someone a streaky hitter. Chance is a very powerful
force in creating streaks.

In Chapters 6 and 7, we examined different ways of measuring player
contributions to run production. The primary metric used to determine how
well these measures worked was Root Mean Squared Error (RMSE) as it
related to team run production. RMSE is a measure of how much chance
remains in a prediction. The RMSEs for standard measures such as Batting
Average were relatively large, leaving chance a major element in the
prediction of runs produced. Newer measures such as Runs Created and
Linear Weights had much lower RMSEs; their predictions greatly reduced
the element of chance in predictions of run production. The capability of a
measure to control or limit chance is a major factor in making the measure a
useful statistical tool.

Simulation models attempt to incorporate the element of chance. In
Chapter 8, we described a very basic simulation model that used the rules of
probability to model the chance elements in games. The model was found to
match closely the variability of runs scored in an inning. The structure and
behavior of the model provided some theoretical support for the Runs
Created model, which was developed totally (almost) from intuition. An
interesting feature of this simulation was its construction from formulas of
probability that made it possible to produce predictions without the need for
great numbers of computer replays.

Chapter 7 developed the notion of average runs per play, and this
concept is applied in two different directions in Chapters 9 and 10. In
Chapter 9, we saw that a manager can learn about good and bad baseball
strategies using the table of average runs for different bases-outs situations.
Chapter 10 found a use for chance as a measure in itself. Where most



measures for player value focus on run production or run prevention, two
related measures of player contributions were described based on how
much a player increases or decreases his team’s chance of winning. These
measures provide the next step in the evolution of baseball metrics, going
beyond counts of individual events to measures of run production and on to
measuring the ultimate goal, winning.

While chance is a major element of baseball (and everything else), it is
not powerful enough to make baseball data arbitrary. We just have to be a
bit more wise in our analysis of the data to understand the degree of
chance’s control and how we may allow for its influence in our
understanding. A direct blunt analytical approach (using simple averages)
will often be satisfactory, but it can also prove to be deceptive.

Or, to put the same bit of advice in baseball terms, look for the fast ball,
but watch out for the curve.
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Appendix
Tabletop Baseball Games

This appendix provides background that is helpful to understanding the
material in Chapter 1 of this book. In particular, this appendix describes the
All-Star Baseball, APBA, Strat-O-Matic, and Sports Illustrated tabletop
baseball games for readers who are unfamiliar with these games.

Tabletop baseball games have a history about as long as professional
baseball itself. Most of the early games were “generic” in nature, with each
batter coming to the plate having the same chance of getting a hit. The
games made no attempt to reflect the different skills of players, much less
replicate the performances of actual professional players. It was not until
well into the twentieth century that the games took on a statistical
perspective.

The first game that attempted to simulate the play of Major League
Baseball was Clifford Van Beek’s National Pastime, produced in 1931.
Since then, tabletop games of ever-increasing sophistication and accuracy
have attempted closer and closer simulations of the “real thing.”

The tabletop baseball games discussed in Chapter 1 have been among
the most widely played. However, the games were selected as much for the
different ways that the batter-pitcher interaction is modeled as for their
popularity. As broad as these games have been in their appeal, tabletop
baseball gamers are notorious for their parochialism in regard to their
favorite games, so some readers may be unfamiliar with and even highly
skeptical of the statistical underpinnings of one or more of these games.
Nonetheless, we feel all of them are interesting from a statistician’s point of
view, so this appendix provides a more lengthy and detailed description of
each.

All-Star Baseball

All-Star Baseball is the oldest game considered in Chapter 1. It was
developed in 1941 by Ethan Allen, a professional ball player, but it is



currently out of print. However, a photograph of an All-Star Baseball disc
(and a discussion of their col-lectibility) can be found at:

www.beckett.com/vintage/news/index.asp?a=2636&s=27

In All-Star Baseball, the manager of each team is provided with a set of
circular player disks that make up the team’s roster. Each disk provides the
player’s name, defensive position, and batting ability. Figure 1-1 in Chapter
1 shows an illustration of a typical All-Star Baseball disk. There, the disk is
like a pie chart, and each slice is identified with a particular play. The sizes
of the various slices represent the batting ability of the player. For example,
in Figure 1-1, the amazing home run ability of Babe Ruth is reflected in the
relatively large home run pie slice (the slice numbered “1”).

When a player comes to bat, his disk is placed on a spinner, and the
manager spins. When the spinner stops, it points to a numerically coded
play result. To find the result, the manager looks the number up on a chart
that indicates the play (e.g. single, walk, or strikeout).

All-Star Baseball is the simplest model of the tabletop games
considered because the pitcher does not influence the outcome.

APBA Baseball

APBA (American Professional Baseball Association) Baseball is the oldest
tabletop simulation baseball game still published today. The game was
introduced in 1951 by its designer J. Richard Seitz. A brief biography of
Seitz can be found at:

www.apbastadium.com/stadium/hall_of_fame/seitz.html

APBA Baseball has undergone several subsequent revisions. The system
described here and analyzed in Chapter 1 is the basic version of the game.
The Master version provides more detail, but is built on the same basic
concepts. Each team has a set of 20 cards that make up the roster. Managers
(players of the game) have the option to preserve the teams historically as
presented in the rosters or to draft players in new fictitious teams. Each card
gives the player’s name, defensive positions, and, if applicable, a letter
rating his pitching ability. The batting ability is represented by a table on
each card. Table A-1 is an example of an APBA player card.


http://www.beckett.com/vintage/news/index.asp?a=2636&s=27
http://www.apbastadium.com/stadium/hall_of_fame/seitz.html

Table A-1 Example of an APBA-Type Player Card
PLAYER NAME POSITIONS

11 Q-1 N 14-2 51 9-1
12 25-6 3z 266 52 27-6
13 14-6 33 /=1 a3 19-6
14 30-& 34 31-6 54 32-6
15 10-1 35 14-2 55 9-1
16 39-6 J6 33-6 56 34-6
21 30-& 41 24-6 B1 24-6
22 8-1 42 13-& 62 13-&
23 31-6 43 209-6 63 32-6
24 13-6 L= 81 64 -6
25 10-1 45 14-6 65 35-6
26 12-6 46 13-6 66 Q-1

When a player comes to bat, the manager rolls two six-sided dice, a
large die and a small die. The large die provides the first play number and
the small die the second number. So, if the small die result is 1 and the large
die result is 5, the result is 51. The manager looks up 51 on the batter’s card
and finds the play number listed immediately to the right of the dice
number. If this play number had been #0 (produced by dice results of 11
and 66 in Table A-1), the manager would roll the two dice again and use the
third column (not the second column) to find the play number. Play results
from #1 to #11 are generally hits while other results (except #14 for walks)
are generally outs. Using the example card in Table A-1, we see that a dice
result of 51 produces a play result of #9. As we shall see shortly, the play
resolution of a #9 result depends on the opposing pitcher’s rating.

Initially, the APBA game seems quite similar to the All-Star Baseball
game, aside from the use of dice instead of a spinner. However, there are
several important differences between the two. First, All-Star Baseball uses
a single chart for interpreting play numbers; APBA Baseball uses eight
different charts, one for each base situation: bases empty, runner on first
base, runner on second base, runners on first and second bases, runner on
third base, runners on first and third bases, runners on second and third
bases, and bases loaded. Second, unlike All-Star Baseball, ABPA play



results are determined, in part, by the skill of the pitcher involved. Each of
the eight ABPA charts is divided into columns which provide possible
variations in the play result depending on the rating of the opposing pitcher.
The six possible ratings of pitchers run from best to worst: A&B, A&C, A,
B, C, and D (as described in greater detail in Chapter 1). In our example, if
the bases are empty, the play result #9 produces a single against pitchers
with a B or D rating and an out against all other pitchers.

Strat-O-Matic Baseball

Strat-O-Matic Baseball, designed by Hal Richman, was introduced in 1962.
An interview with Richman can be read at:
www.sportplanet.com/features/interviews/som/

Strat-O-Matic Baseball was the first tabletop baseball game to capture
pitching performance at the same level of detail as batting performance. Its
basic pitcher/batter model lies at the heart of several subsequent tabletop
baseball games, including Pursue the Pennant and Ball Park Baseball. Strat-
O-Matic Baseball has a devoted following and survives to this day in both
tabletop and computer forms. Like other tabletop baseball games, it has
evolved into Advanced and Super-Advanced versions that are built on the
same operating principles, while providing even more detailed simulations
of baseball. The system described here and analyzed in Chapter 1 is the
basic version of the game.

Each team has a set of 20 cards that make up the roster. Each card
provides the player’s name and defensive positions. If the player is a
pitcher, the card is divided into three columns labeled 4, 5, and 6; each
column presents play results describing the pitcher’s ability in terms of the
frequencies of these play results. Position player cards’ have a similar
layout of three columns that are labeled 1, 2, and 3. Each column presents
play results describing the player’s ability at bat. Tables A-2 and A-3 are
examples of a batter’s card and a pitcher’s card.

Table A-2 Example of a Strat-O-Matic-Type Batter Card

PLAYER NAME POSITIONS
2—foulout 2—Tlineout 2—flyout
3—popout 3—walk 3—groundout



http://www.sportplanet.com/features/interviews/som/

PLAYER NAME POSITIONS

4—Ilineout 4—groundout 4—homerun
5—groundout 5—walk 5—homerun
6—groundout 6—strikeout 6—homerun
7—single 7—flyout 7—single
8—single 8—groundout 8—double
9—groundout 9—flyout 9—single
10—popout 10—groundout 10—single
11—popout 11—groundout 11—groundout
12—popout 12—flyout 12—triple

Table A-3 Example of a Strat-O-Matic-Type Pitcher Card

PLAYER NAME PITCHER

2—home run 2—home run 2—flyout
3—first baseman x 3—shortstop x 3—right fielder x
4—center fielder x 4—single 4—popout
5—popout 5—flyout 5—single
6—lineout 6—flyout 6—single
7—strikeout 7—second baseman x 7—walk
8—flyout 8—shortstop x 8—popout
9—flyout 9—groundout 9—Ilineout
10—third baseman x 10—catcher x 10—double
11—pitcher x 11—strikeout 11—Ileft fielder x
12—groundout 12—walk 12—triple

When a player comes to bat, the manager rolls one white six-sided die
and two red six-sided dice. The white die determines the column used to
find the play result: Column 1, 2, or 3 on the batter’s card or Column 4, 5,
or 6 on the pitcher’s card. The two red dice are summed to produce a
number between 2 and 12 which indicates the row in the appropriate
column. For example, if the white die showed 4, and the two red dice
showed 5 and 1, the result of the play would be a lineout found next to the 6
(=5+1) under column 4 on the pitcher’s card in Table A-3. However, if the
red dice were the same but a 3 was on the white die, the result would be a
home run, found next to the 6 (=5+1) under column 3 on the batter’s card in
Table A-2.

Several results on the pitcher’s card have an x next to the name of a
fielding position. This means that the result of the play depends on the




fielding rating of the defensive player at the position. A number from 1 to
20 is selected randomly by the batter and referenced against a defensive
play chart which has different columns for each fielding rating. The better
the fielding rating, the less of a chance of giving up a hit or an error. Thirty
permutations of the three dice can produce an x result on the pitcher’s card
in Table A-2. Since three six-sided dice can produce 6 x 6 x 6 =216
permutations, fielding influences 30/216 = 14 percent of all batting results.

Sports Illustrated Baseball

Sports Illustrated Baseball was introduced in 1971. The game was designed
by David S. Neft, who was a co-author of The Sports Encyclopedia:
Baseball. 1t is likely that this game was an outgrowth of his work on the
encyclopedia (or vice versa). In the late seventies, the Avalon Hill Game
Company purchased the Sports Illustrated game line and published a
modified version under the title Superstar Baseball.

In this game, each manager is provided with a chart describing his/her
team’s roster of 25 players, both batters and pitchers. A reproduction of a
portion of the all-time all-star Philadelphia Phillies chart can be seen at:

www.innova.net/~randycox/SSBATcht.htm

Each player’s card lists 30 possible dice results numbered from 10 to
39. The dice used for Sports Illustrated Baseball are three six-sided dice,
one black and two white, that are special to the game. When rolled, the
black die is used to find the 10’s digit and the two white dice are summed to
obtain the 1’s digit. In each plate appearance, the pitcher rolls first. The
resulting number is checked against his pitching chart and can result in an
out, a walk, hit batsman, a single, or the Batter Swings.

The first four results listed above end a plate appearance. A team’s
fielding is represented on the pitcher’s chart in the Defense results section.
The play results from 10 to 15 are directly affected by the fielding skills of
the team as a whole. The greater the fielding skill, the more Outs that occur
in the 10-15 range. For example, a team with a fielding rating of 30 would
produce an Out when the pitcher rolls 11 or 12, while a team with a fielding
rating of 50 would produce an Out when the pitcher rolls 11, 12, or 13. If
the Defense result is not an Out based on the team’s fielding rating, the


http://www.innova.net/~randycox/SSBATcht.htm

Batter Swings. The worst defense will produce an Out when 10 is rolled
while the best defense will produce an Out when 11, 12, 14, or 15 is rolled.

Table A-4 shows the chart of a Hall of Fame caliber pitcher. The dice
for the game will produce an Out result for this pitcher 26 percent of the
time and a walk about 6 percent of the time. Depending on the quality of
the team’s defense, an Out will occur an extra 1 percent to 9 percent of the
time. So, a “Batter Swings” play can result from 59 percent to 67 percent of
the dice rolls depending on the fielding rating of the defensive team.

Table A-4 Example of a Sports Illustrated-Type Pitcher Chart

10 Defensa 20 Hatter Swings 30 Batter Swings
11 Defenss 21 Batter Swings i Batter Swings
12 Defensea 22 Batter Swings 32 Batter Swings
13 Defensa 23 Out 33 Eatter Swings
14 Defense 24 Batter Swings 34 Ot

13 Defense 25 Walk 35 Out

16 Qut 26 Batter Swings 36 Batter Swings
17 Qut 27 Batter Swings k¥ Batter Swings
18 Eatter Swings 28 Out 38 Eatter Swings
19 Batter Swings 29 Hatter Swings 39 Batter Swings

When the fifth result, “Batter Swings,” occurs, the batter rolls the dice
and looks up the play result on one of two charts. One chart is used when
facing right-handed pitchers, and the other is used against left-handed
pitchers. Table A-5 provides an example of a batting chart for a Hall of
Fame caliber hitter. In general, dice rolls in the 20 s and 30 s are twice and
three times as likely respectively as dice rolls in the 10 s.

Table A-5 Example of a Sports Illustrated-Type Batting Chart



17
18
19

Dauble
Single
Tripla
Strikeout
Double Play
Dautble
Double
Errar
Strikeout

Dautle

20
21
22
23
24
25
26
27
28
29

Home Run
dingle
Single
Strikeout
Heome Run
Single
Groundout
Groundout
Strikeout

Strikeout

30
K|
32
33
34
35
36
a7
38
39

Flyaut
Flyout
Single
Flyout
Flyout
Flyout
Groundout
Double Play
Double Play

Strikeout

The evolution of tabletop baseball board games is almost as fascinating

as the history of baseball itself. Readers who would like more detail on this
subject can find a brief history of these games in Diamonds in the Rough:
The Untold History of Baseball, by Joel Zoss and John Bowman. A book
dedicated entirely to this subject is Baseball Games: Home Versions of the
National Pastime, 1860s—1960s, by Mark Cooper and Douglas Congdon-
Martin.
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Glossary

Ability (Chapter 3): The intrinsic skill of a player to hit or pitch, or the skill
of a team to win games. Ability values are determined by a player’s or a
team’s performance over a large number of games.

Ability effect (Chapter 4): This is the difference in performance in different
situations (such as home vs. away) that depends directly on a player’s or
team’s ability.

Additive model for hitting (Chapter 8): A measure of hitting performance
created by summing the contributions of different batting play events,
such as singles, doubles, triples, home runs, walks, and outs.

Additive probability model (Chapter 1): A model for probabilities created
by summing the contributions of the batter and the pitcher in the Strat-
O-Matic tabletop baseball game.

Bayes’ Rule (Chapter 11): A mathematical formula useful in updating
probabilities in order to tie in new data or information.

Bias effect (Chapter 4): This is the difference in performance in different
situations (such as home vs. away) that depends solely on the situation.
It is the same for each player and each team.

Biased inference (Chapter 5): Inaccurate conclusions drawn from data that
was not selected randomly. For example, our conclusions about the true
streakiness of Todd Zeile were biased because we selected a player who
had the reputation of being streaky.

Binomial distribution (Chapter 1 and 4): A probability distribution for
trials with only two possible results. The observed number of heads
when a coin is flipped a given number of times is an example of
binomial distribution.

Boxplot (Chapter 2): A graph of the low, lower quartile, median, upper
quartile, and high values of a collection of data.

Bradley-Terry model for team competition (Chapter 12): A probability
model for determining the chance that one team will defeat another
team, given that the teams have different abilities.

Chance variation (Chapter 3): Variation in baseball data that is not
attributable to a “real” cause, but to natural “luck” variation only. It is
similar to the variation in the patterns of coin tossing. Differences



between two players’ batting performances in a week of baseball is
primarily due to luck variation, while differences between two players’
career batting records reflects “real” differences in the players’ abilities.

Coin-toss model (Chapter 3): A probability model that works like the
repeated flipping of a coin. It can be used to explain the pattern of
sequences of successes and failures of players and teams.

Conditional probability (Chapter 12): The probability of a certain outcome
given some knowledge of prior outcomes. We found, for example, the
probability of that a team might truly be the best team given the
knowledge that it won the World Series.

Confidence interval (Chapter 3): An interval of values that we believe
contains the unknown batting ability with a high probability. For
example, if a 90 percent confidence interval for a true batting average is
(.23, .35), the chance that the player’s true batting average falls between
.23 and .35 is 90 percent.

Consistent model (Chapter 5): A probability model used for a player or
team whose probability of a hit (win) is the same for each plate
appearance (game) during a season.

Contingency table (Chapter 12): When a player or a team can be classified
with respect to two categorical variables, this table is used to give the
number of individuals in each combination of levels of the two
variables. Table 12-12, for example, is a contingency table. It classifies
teams by their true ability and their performance in a season.

Correlation coefficient (Chapter 4): A measure of association between two
variables. In Figure 4-27, for example, the correlation value of +.172
indicates there is positive association between the 1998 situational
effect and the previous four-year situational effect.

Cumulative distribution function (Chapter 7): A function that indicates the
probability of a given value and all smaller values.

Dotplot (Chapter 9): A simple graph used to display numerical data, with
each data item represented by a dot on a number line.

Doughnut plot (Chapter 1): A graph used to compare two pie charts.

Error in estimate (Chapter 6): The difference between the actual data value
and the value predicted from a model.

Expected runs (Chapter 7): The average number of runs that are likely to
be scored in an inning of baseball based on a team’s previous
performance.



Expected value (Chapter 7): An average value drawn from a probability
distribution. Table 7-4, for example, gives the expected values of runs
scored in all possible situations of runners on base and the number of
outs.

Five-number summary (Chapter 2): The low, lower quartile, median,
upper quartile, and high values of a collection of data.

Histogram (Chapter 2): A graph of a batch of numerical data, such as the
graph of player OBPs (on-base percentages) in Figure 2-6.

Inference (Chapter 3): Drawing conclusions about abilities of players or
teams on the basis of collected data.

Interaction probability model (Chapter 1): A probability model for
baseball hitting used when the effect of a hitter depends on the pitcher.
The Sports Illustrated Baseball game uses this model.

Least squares (Chapter 6): A method of fitting a “best” line to a
scatterplot.

Margin of error (Chapter 3): The error of an estimate of ability used in
constructing a confidence interval.

Mean (Chapter 2): The arithmetic average of a group of numerical data.

Mean Squared Error, MSE (Chapter 6): A measure of the soundness of a
statistical model to predict data, such as the ability of a model to predict
runs per game in Chapter 6.

Median (Chapter 2): The middle value of a group of numerical data that is
arranged in ascending order.

Moving average (Chapter 5): In a plot of batting averages over time, a
moving average is a batting average for a group of games within a given
window of time. By plotting the moving averages over time, one sees
short-term patterns in batting performance.

Multinomial distribution (Chapter 1): A probability distribution for an
experiment with repeated trials in which there are more than two
possible outcomes for each trial, such as the probability distribution of
the spinner outcome of an All Star Baseball disk in Table 1-2.

Nonlinear relationship (Chapter 8): A pattern in a scatterplot that does not
follow a straight line, such as the pattern in the scatterplot in Figure 8-
10.

Normal curve (Chapter 2): A bell-shaped curve used to represent a
collection of numerical data, such as the presentation of on-base
percentages (OBPs) in Figure 2-7.



Observed effects (Chapter 4): This is the observed difference in
performance in different situations (such as home vs. away). See also
Ability effect and Bias effect.

Observed proportion (Chapter 3): This is a fraction, such as the number of
hits divided by the number of at-bats, based on certain hitting data.

Percentile (Chapter 12): A value that bounds particular percentages of data.
For example, the 90th percentile is the value that is greater than 90
percent of the data.

Pie chart (Chapter 1): A circular graph of a batch of numerical data that
fall in different categories, visually represented as wedges of a pie.

Predictive probability (Chapter 11): The probability that tells us how likely
it is that a particular event will happen in the future.

Prior distribution (Chapter 11): A distribution of probabilities that reflects
one’s predictions about the ability of a player or team before any data is
observed.

Probability of victory, POV (Chapter 10): The probability that a team wins
a game, calculated at a particular instance during a game.

Product model for hitting (Chapter 8): A measure of hitting performance
created by multiplying the contributions of different batting play events,
such as singles, doubles, triples, home runs, walks, and outs.

p-value (Chapter 5):The chance of observing the data result or a more
extreme value given a particular statistical model. Table 5-8, for
example, computes the chance that a consistent hitter has at least as
many long streaks as Todd Zeile.

Quartile (Chapter 2): A value that contains 25 percent of a batch of
numerical data. One quarter of the data falls below the lower quartile,
and one quarter of the data falls above the upper quartile.

Random-effects model (Chapter 4): A probability model for assessing
players that assumes the abilities of the players follow a normal
probability curve, such as the distribution of true batting averages in
Figure 4-7.

Regression to the mean (Chapter 3):A statistical phenomenon where
players with extreme performances in one season tend to perform closer
to the average the following season. This phenomenon was illustrated
by looking at players’ on-base percentages in two consecutive seasons
(see Figure 3-2).



Residual (Chapter 6): When fitting a line to a scatterplot, the residual is the
difference between the actual response and the predicted response, as
illustrated in Figures 6-3 and 6-4.

Rule of total probabilities (Chapter 8): A rule used to calculate the
probability of an event from conditional probabilities.

Run potential table (Chapter 9): A table that computes the average number
of runs scored in the remainder of an inning for each possible situation
of runners on base and the number of outs.

Runs of good and bad games (Chapter 5): Sequences of days with
consistent good or bad performance that are useful in determining if a
player or team has a hot hand.

Scatterplot (Chapter 2): A dot graph of two variables that is used to
determine the relationship between these variables.

Skewness (Chapter 2): Data with nonsymmetrical shape that either trails
off toward large values or toward small values. The distribution of
pitcher-strikeout totals in Figure 2-14, for example, is right-skewed.

Spinner model (Chapter 3): A probability model represented by a spinner
divided into areas that correspond to probabilities of different events.

Standard deviation (Chapter 2): The spread of a data set that represents a
typical distance of the data from the mean.

Statistical significance (Chapter 7): An observed statistic is said to be
statistically significant if the value is larger than one would expect from
chance variation.

Stemplot (Chapter 2): A histogram-style tabulation of data developed by
mathematician John Tukey, such as the graph of on-base percentages in
Figure 2-3.

Streaky model (Chapter 5): A probability model used for a player or team
whose probability of a hit (win) for each plate appearance (game) can
change during a season, and if the player or team has a high hitting
(winning) probability one game, he (or the team) is more likely to have
a high hitting (winning) probability the next game.

Talent of a team (Chapter 12): Number used to represent the ability of a
team to win games.

Tree diagram (Chapter 8): A method of listing all outcomes of a random
experiment. For example, Figure 8-1 is a tree diagram that represents
the possible ways of scoring two runs in an inning.



True proportion (Chapter 3): The probability of a hit that is to be
distinguished from the observed proportion of hits. In a season of
baseball, the batting average is the observed proportion of hits, but the
true batting average or true ability to hit is unknown.
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