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“Our community has continued to grow exponentially, thanks to those who inspire the next generation. 
And inspiring the next generation is what the authors of Analyzing Baseball Data with R are doing. They 
are setting the career path for still thousands more. We all need some sort of kickstart to take that first or 
second step. You may be a beginner R coder, but you need access to baseball data. How do you access this 
data, how do you manipulate it, how do you analyze it? This is what this book does for you. But it does 
more, by doing what sabermetrics does best: it asks baseball questions. Throughout the book, baseball 
questions are asked, some straightforward, and others more thought-provoking.”

-From the Foreword by Tom Tango

Analyzing Baseball Data with R Third Edition introduces R to sabermetricians, baseball enthusiasts, and 
students interested in exploring the richness of baseball data. It equips you with the necessary skills and 
software tools to perform all the analysis steps, from importing the data to transforming them into an 
appropriate format to visualizing the data via graphs to performing a statistical analysis.

The authors first present an overview of publicly available baseball datasets and a gentle introduction 
to the type of data structures and exploratory and data management capabilities of R. They also cover 
the ggplot2 graphics functions and employ a tidyverse-friendly workflow throughout. Much of the book 
illustrates the use of R through popular sabermetrics topics, including the Pythagorean formula, runs 
expectancy, catcher framing, career trajectories, simulation of games and seasons, patterns of streaky 
behavior of players, and launch angles and exit velocities. All the datasets and R code used in the text are 
available for download online.

New to the third edition is the revised R code to make use of new functions made available through 
the tidyverse. The third edition introduces three chapters of new material, focusing on communicating 
results via presentations using the Quarto publishing system, web applications using the Shiny package, 
and working with large data files. An online version of this book is hosted at https://beanumber.github.
io/abdwr3e/.  

Jim Albert is a Distinguished University Professor of Statistics at Bowling Green State University. He has 
authored or co-authored several books including Curve Ball and Visualizing Baseball and was the editor 
of the Journal of Quantitative Analysis of Sports. He received the Significant Contributor to Statistics 
in Sports award in 2003 from the Section of Statistics in Sports of the American Statistical Association.

Ben Baumer is a Professor of Statistical and Data Sciences at Smith College. Previously a statistical 
analyst for the New York Mets, he is a co-author of The Sabermetric Revolution and Modern Data Sci-
ence with R. He has received the Waller Education Award from the ASA Section on Statistics and Data 
Science Education, the Significant Contributor Award from the ASA Section on Statistics in Sports, and 
the Contemporary Baseball Analysis Award from the Society for American Baseball Research.

Max Marchi is a Baseball Analytics Analyst for the Cleveland Indians. He was a regular contributor to 
The Hardball Times and Baseball Prospectus websites and previously consulted for other MLB clubs.
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Foreword

Back in the late 1980s, as a college student, I would go to the NHL offices in
downtown Montreal and pick up their official end-of-season statistics package.
This was something that was reserved for the media, but somehow I had the
idea to ask, and they were kind enough to oblige. Since I was learning dBase,
I then had to manually enter every piece of data in that package, probably
some 20,000 discrete data values. Combining sports, numbers, and computers
was a labor of love for me. In the 1980s, Pete Palmer and Bill James inspired
the sabermetric revolution: my career path was set, as was that of thousands
more.

Our community has continued to grow exponentially, thanks to those who
inspire the next generation. And inspiring the next generation is what the
authors of Analyzing Baseball Data with R are doing. They are setting the
career path for still thousands more. We all need some sort of kickstart to take
that first or second step. You may be a beginner R coder, but you need access
to baseball data. How do you access this data, how do you manipulate it, how
do you analyze it? This is what this book does for you. But it does more, by
doing what sabermetrics does best: it asks baseball questions. Throughout
the book, baseball questions are asked, some straightforward and others more
thought-provoking. Either way, the tools are introduced, whether plotting data
or performing calculations in order to answer those questions. And as good
sabermetrics does, each answer will make you ask two more questions.

In addition to being an ideal reference in book form, the authors generously
make the content and data readily accessible online, through GitHub as well
as in blog form. Not only are the references ideal, but they are also welcoming
to new readers. You will find nuggets throughout to get you started. And more
than anything, with Jim, Max, and Ben, you will simply find good people.
Having the next generation being inspired by talented and good folks is all
that we can ask for. And they deliver.

Tom Tango

Senior Data Architect, Major League Baseball
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Preface

What’s New in the Third Edition?

In the ten years since the publication of the first edition of this book, there
have been many new developments in R, including the introduction of many
new packages. (As we are writing this preface, there are currently 20,122
packages available on the CRAN package repository.) In particular, the tidy-
verse collection of packages has streamlined workflows for data visualization
and data manipulation. In this third edition, we have revised the R code
to embrace the new functions and paradigms available through the tidy-
verse. This includes porting the book’s source code from LATEX to Quarto,
enabling us to simultaneously maintain an online web version of the book at:
https://beanumber.github.io/abdwr3e/.

This third edition introduces three chapters with new material. One important
aspect of working as a baseball analyst is communicating one’s findings to other
people in the organization. Chapters 14 and 15 focus on communicating results
via presentations using the Quarto publishing system and web applications
using the Shiny package. Given the availability of large quantities of baseball
data, one challenge is how to efficiently work with these data. Chapter 12
explores methods for downloading, storing, retrieving, and analyzing large
Statcast datasets. The “Batted Ball Data from Statcast” chapter from the
previous revision of the book has been rewritten in Chapter 13 to focus on the
interesting pattern of home run hitting during the Statcast era. Appendices A,
B, and C have been revised to reflect new realities, most notably including new
functionality in the baseballr package and the disappearance of the PITCHf/x
data source.

Preface from the First Edition

Baseball has always had a fascination with statistics. Schwarz (2004) doc-
uments the quantitative measurements of teams and players since the be-
ginning of professional baseball history in the 19th century. Since the
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foundation of the Society for American Baseball Research (SABR) in 1971,
an explosion of new measures have been developed for understanding offen-
sive and defensive contributions of players. One can learn much about the
current developments in sabermetrics by viewing articles at websites such as
https://www.baseballprospectus.com, https://www.hardballtimes.com, and
https://www.fangraphs.com.

The quantity and granularity of baseball data have exhibited remarkable growth
since the birth of the Internet. The first data were collected for players and
teams for individual seasons—these data were what would be displayed on
the back side of a Topps baseball card. The volunteer-run Project Scoresheet
organized the collection of play-by-play game data, and these data are currently
freely available at the Retrosheet organization at https://www.retrosheet.org.
Since 2006, PITCHf/x data has measured the speed and trajectory of every
pitched ball, and since 2015, Statcast has collected the speeds and locations of
batted balls and the locations and movements of baserunners and fielders at
fractions of a second.

The ready availability of these large baseball datasets has led to challenges
for baseball enthusiasts interested in answering baseball questions with these
data. It can be problematic to download and organize the data. Standard
statistical software packages may be well-suited for working with small datasets
of a specific format, but they are less helpful in merging datasets of different
types or performing particular types of analyses, say contour graphs of pitch
locations, that are helpful for PITCHf/x data.

Fortunately, a new open-source statistical computing environment, R, has
experienced increasing popularity within the statistics, data science, and
computer science communities. R is a system for statistical computation and
graphics, and it is a computer language designed for typical and possibly
specialized statistical and graphical applications. The software is available for
Linux, Windows, and Macintosh platforms from http://www.r-project.org.

The public availability of baseball data and the open-source R software is an
attractive marriage. R provides a large range of tools for importing, arranging,
and organizing large datasets. Through the use of built-in functions and
collections of packages from the R user-community, one can perform various
data and graphical analyses, and communicate this work easily to other baseball
enthusiasts over the Internet. In 2014, one of us asked a number of MLB team
analytics groups about their use of R and here are some responses:

• “We use: R, MySQL / Oracle, Perl, PHP”.
• “We do use R extensively, and it is our primary statistical package. The
only other major tool we use is probably Excel”.

• “We do use R here. It is our primary statistical package for projects that
need something more than the statistical functions in Excel”.

https://www.baseballprospectus.com
https://www.hardballtimes.com
https://www.fangraphs.com
https://www.retrosheet.org
http://www.r-project.org


xvi Preface

foundation of the Society for American Baseball Research (SABR) in 1971,
an explosion of new measures have been developed for understanding offen-
sive and defensive contributions of players. One can learn much about the
current developments in sabermetrics by viewing articles at websites such as
https://www.baseballprospectus.com, https://www.hardballtimes.com, and
https://www.fangraphs.com.

The quantity and granularity of baseball data have exhibited remarkable growth
since the birth of the Internet. The first data were collected for players and
teams for individual seasons—these data were what would be displayed on
the back side of a Topps baseball card. The volunteer-run Project Scoresheet
organized the collection of play-by-play game data, and these data are currently
freely available at the Retrosheet organization at https://www.retrosheet.org.
Since 2006, PITCHf/x data has measured the speed and trajectory of every
pitched ball, and since 2015, Statcast has collected the speeds and locations of
batted balls and the locations and movements of baserunners and fielders at
fractions of a second.

The ready availability of these large baseball datasets has led to challenges
for baseball enthusiasts interested in answering baseball questions with these
data. It can be problematic to download and organize the data. Standard
statistical software packages may be well-suited for working with small datasets
of a specific format, but they are less helpful in merging datasets of different
types or performing particular types of analyses, say contour graphs of pitch
locations, that are helpful for PITCHf/x data.

Fortunately, a new open-source statistical computing environment, R, has
experienced increasing popularity within the statistics, data science, and
computer science communities. R is a system for statistical computation and
graphics, and it is a computer language designed for typical and possibly
specialized statistical and graphical applications. The software is available for
Linux, Windows, and Macintosh platforms from http://www.r-project.org.

The public availability of baseball data and the open-source R software is an
attractive marriage. R provides a large range of tools for importing, arranging,
and organizing large datasets. Through the use of built-in functions and
collections of packages from the R user-community, one can perform various
data and graphical analyses, and communicate this work easily to other baseball
enthusiasts over the Internet. In 2014, one of us asked a number of MLB team
analytics groups about their use of R and here are some responses:

• “We use: R, MySQL / Oracle, Perl, PHP”.
• “We do use R extensively, and it is our primary statistical package. The
only other major tool we use is probably Excel”.

• “We do use R here. It is our primary statistical package for projects that
need something more than the statistical functions in Excel”.

Preface xvii

• “With the occasional exception of Python+NumPy, R is the only statistical
programming language or package we use”.

• “We do use R. It’s used in conjunction with Excel for analysis”.

It is clear that R is a major tool for the analytical work of MLB teams.

The purpose of this book is to introduce R to sabermetricians, baseball enthu-
siasts, and students interested in exploring baseball data.

Overview of Chapters

The contents of this book can be divided into three themes: chapters devoted
to popular topics within sabermetrics, chapters focusing on particular datasets,
and chapters that illustrate R tools.

Sabermetrics

• Chapter 4: The Relation Between Runs and Wins
• Chapter 5: Value of Plays Using Run Expectancy
• Chapter 6: Balls and Strikes Effects
• Chapter 7: Catcher Framing
• Chapter 8: Career Trajectories
• Chapter 9: Simulation
• Chapter 10: Exploring Streaky Performances

Baseball Data Sets

• Chapter 1: The Baseball Datasets
• Chapter 13: Home Run Hitting
• Appendix A: Retrosheet Files Reference
• Appendix B: Historical notes on PITCHf/x
• Appendix C: Statcast Data Reference

R tools

• Chapter 2: Introduction to R
• Chapter 3: Graphics
• Chapter 11: Using a Database to Compute Park Factors
• Chapter 12: Working with Large Data
• Chapter 14: Making a Scientific Presentation Using Quarto
• Chapter 15: Using Shiny for Baseball Applications

Two fundamental ideas in sabermetrics are the relationship between runs and
wins, and the measurement of the value of baseball events by runs. Chapter 4
explores the famous Pythagorean formula derived by Bill James, and Chapters 5
and 6 describe the value of plays and pitch sequences using run expectancy.
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It is fascinating to explore career performance trajectories of ballplayers, and
Chapter 8 illustrates the use of R to fit quadratic models to player trajectories.
Chapter 9 illustrates the use of R simulation functions to simulate a game of
baseball by a Markov chain model and simulate a season of baseball competition.
Baseball fans are interested in streaky patterns of performance of teams and
players and Chapter 10 explores methods of describing and understanding the
significance of streaky patterns of hitting.

Chapter 1 provides an overview of the publicly available baseball datasets and
Chapter 13 describes many of the new variables available in the Statcast system.
The datafiles available through Retrosheet (Appendix A), MLBAM Gameday
(Appendix B), and Statcast (Appendix C) are relatively sophisticated, so we
provide detailed descriptions for downloading and reading these data into R.

Chapter 2 gives a gentle introduction to the type of data structures and
exploratory and data management capabilities of R. One of the strongest
features of R is its graphics capabilities—Chapter 3 provides an overview of the
ggplot2 graphics package. Given the large size of baseball datasets, it may be
more convenient to work with a relational database and Chapter 11 illustrates
the application of several R packages to interface with a MySQL database.
This material motivates a discussion about issues working with large datasets
and additional technologies in Chapter 12. The book concludes in Chapters 14
and 15 by describing tools for communicating results of baseball work.

How to Use this Book

We encourage the reader to work on the book datasets and try out the
presented R code as the chapters are read. All of the small data files and R
code used in the book are available at the GitHub repository for the associated
R package abdwr3edata (http://github.com/beanumber/abdwr3edata).
In addition, at the “Exploring Baseball Data with R” book blog at https:
//baseballwithr.wordpress.com, these authors and others provide advice
on using R in sabermetrics research and keep the reader informed of new
developments in R software and baseball datasets.

There is an active academic research community in baseball as demonstrated by
published referred articles in journals, particularly The Journal of Quantitative
Analysis in Sports (JQAS) and the Journal of Sports Analytics. The recently
published articles Brill, Deshpande, and Wyner (2023), Gerber and Craig
(2021), Bouzarth et al. (2021), Hirotsu and Bickel (2019), and Healey (2019)
in JQAS describe work on pitcher fatigue, prediction of future performance,
proper defensive positioning, measuring the value of the sacrifice bunt, and
measuring the value of a pitch. Reading these articles and attending sports

http://github.com
https://baseballwithr.wordpress.com
https://baseballwithr.wordpress.com
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analytics conferences (e.g., the New England Symposium on Statistics in Sports
or the Carnegie Mellon Sports Analytics Conference) are great ways to deepen
your knowledge. Recent work in sports analytics more broadly includes a new
CRAN Task View for Sports Analytics that includes many of the R packages
used in this book, a systematic review of these packages and their properties
(Casals et al. 2023), and an attempt to connect big ideas (many of which
originated in baseball and are described in this book) across various sports
(Benjamin S. Baumer, Matthews, and Nguyen 2023).

We imagine this book as a first step toward a professional career in baseball
analytics. Other stops along the path to professionalization might include the
SABR Analytics Certification courses. Three levels are offered, with the highest
level presenting R programming material consistent with what appears in this
book.
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Many of the data graphics in this book use a specific shade of blue used by
CRC Press and denoted by the variable crcblue in our R code. To make your
graphs match ours, you will need to define crcblue.

crcblue <- "#2905a1"

In this full–color version of the book, we also use a pre-defined color-blind-safe
diverging color palette.

crc_fc

[1] "#2905a1" "#e41a1c" "#4daf4a" "#984ea3"

Our working directory is set using the here() function from the here package.
In that directory are three subdirectories that are referenced in our code:
data, data_large, and scripts. The data directory contains small data files
that are available on our GitHub repository, as are the R scripts in scripts.
However, while the data in data_large is necessary to compile the book, it is
too big to host in the GitHub repository. Instructions for creating these data
files locally appear in relevant places in the book, most notably Chapter 12
and Appendix A.
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1

The Baseball Datasets

1.1 Introduction

Baseball’s marriage with numbers goes back to the origins of the sport.
When the first box scores and the first stats appeared in newspapers in
the 1840s, the pioneers of the game had not yet decided the ultimate distance
between the pitcher’s rubber and home plate, nor the number of balls needed
to be awarded a base.

This chapter introduces four rich sources of freely available baseball data: the
Lahman database, Retrosheet, PITCHf/x, and Statcast via Baseball Savant.
Baseball records from these sources have a growing level of detail, from seasonal
stats available since the 1871 season, to box score data for individual games, to
play-by-play accounts covering most games since 1913, to extremely detailed
pitch-by-pitch data recorded for nearly all the pitches thrown in Major League
Baseball parks since 2008, to player tracking data recorded every fifteenth of
a second since 2015. Examples throughout this book will predominately use
subsets of data coming from these four sources.

1.2 The Lahman Database: Season-by-Season Data

1.2.1 Bonds, Aaron, Ruth, and Rodriguez home run trajectories

In the 2007 baseball season, Barry Bonds became the new home run king,
surpassing Hank Aaron’s record of 755 career home runs. Aaron had held the
throne since 1974 when he had moved past the legendary Babe Ruth with
his 715th home run. In recent years, Alex Rodriguez was believed to have a
great chance of breaking Bonds’ record. Figure 1.1 plots the cumulative home
runs of Bonds, Aaron, Ruth, and Rodriguez as a function of their age. It is
clear from the graph that the home run trajectories of the four sluggers have
followed different paths. Rodriguez was the clear home run leader—followed by
Aaron—through age 35. Aaron and Ruth had similar career home run paths
until retirement. Bonds was far behind Aaron and Ruth in career home runs
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FIGURE 1.1
Career home runs by age for the top four home run hitters in baseball history.

in his 30s, but narrowed the gap and overtook the other sluggers in his 40s.
Rodriguez’ home run production slowed down in the final years of his career.

Babe Ruth began his career as a teenage pitcher for the Boston Red Sox in the
so-called Deadball Era when home runs were rare. Ruth’s home run impact
was not felt until his sixth season, when he began sending the ball out of the
park with regularity and outslugged nearly every other American League team
with 29 home runs. Given his late start, his career line is S-shaped due to his
slow start and inevitable decline at the end of his career.

Hank Aaron also made his MLB debut at a very young age and shows a nearly
straight line in the graph for the best part of his career. His pattern of hitting
home runs was marked by consistency as he hit between 30 and 50 home runs
for most seasons of his career. Similar to the Babe, Aaron also declined in the
final years of his career, hitting 20, 12, and 10 home runs from 1974 to 1976.

Barry Bonds had a relatively late major league debut as he did not come to an
agreement with the team that first drafted him and was not in the career home
run race until after his 35th birthday. Toward the end of his career, Bonds put
together impressive season home run counts of 49, 73, 46, 45, and 45 home
runs, closing in on Ruth’s 714 mark. Then, after missing most of the 2005
season because of injuries, he completed the chase to the record with two solid
seasons (26 and 28 homers) when he was 42 and 43 years old.

Alex Rodriguez debuted as a shortstop for the Seattle Mariners when he was
18 years old. He was a prolific home run hitter in the early part of his career,
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hitting over 400 home runs before the age of 30. His home run production
slowed down in his mid-30s due to injuries and his suspension during the 2014
season for his role in the Biogenesis scandal.

To compare sluggers, a researcher needs season-to-season batting data including
age and home run counts for Bonds, Aaron, Ruth, and Rodriguez. One needs
these data for a wide range of seasons, as Ruth’s career began in 1914 and
Rodriguez’ career ended in 2016.

For many years database journalist and author Sean Lahman has been making
available at his website1 a database containing pitching, hitting, and fielding
statistics for the entire history of professional baseball from 1871 to the current
season (Lahman 2018). The data are available in several formats, including a
set of comma-separated-value (CSV) files that we used in the first edition of this
book. The Lahman package now provides these data to R directly, obviating
the need to download the CSVs. There is a one-to-one relationship between
the CSV files and the data frames available through the Lahman package. We
will focus our discussion on the tables available through the Lahman package.

1.2.2 Obtaining the database

To install the Lahman package, simply execute the following command.

install.packages("Lahman")

In addition, several vignettes that explain more about how to use the package
are included, and the original sources can be found at https://github.com/cda
lzell/Lahman. One is encouraged to read the documentation provided in the
vignettes to learn about the contents of these files. For example, the following
code will pull up the introductory vignette in RStudio.

vignette("vignette-intro", package = "Lahman")

Here we give a general description of the variables in the data tables most
relevant for the studies described in this book.

1.2.3 The People table

The People table is a registry of baseball people. It contains bibliographic
information on every player and manager who have appeared at the Major
League Baseball level and of all people who have been inducted into the

1http://seanlahman.com/

https://github.com
http://seanlahman.com
https://github.com
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TABLE 1.1
Tables in the Lahman database.

File Description
AllStarFull Players’ appearances in All-Star Games
Appearances Seasonal players’ appearances by position
AwardsManagers Recipients of the Manager of the Year

Award
AwardsPlayers Players recipients of the various Awards
AwardsShareManagers Voting results for the Manager of the Year

Award
AwardsSharePlayers Voting results for the various Awards for

players
Batting Seasonal batting statistics
BattingPost Seasonal batting statistics for post-season
Fielding Seasonal fielding statistics
FieldingOF Seasonal appearances at the three outfield

positions
FieldingPost Seasonal fielding data for post-season
HallOfFame Voting results for the Hall of Fame
Managers Seasonal data for managers
ManagersHalf Seasonal split data for managers
People Biographical information for individuals

appearing in the database
Pitching Seasonal pitching statistics
PitchingPost Seasonal pitching statistics for post-season
Salaries Seasonal salaries for players
Schools List of college teams
SchoolsPlayers Information on schools attended by players
SeriesPost Outcomes of post-season series
Teams Seasonal stats for teams
TeamsFranchises Timelines of Franchises
TeamsHalf Seasonal split stats for teams

Baseball Hall of Fame.2 Each row of the People table constitutes a short
biography of a person, reporting on dates and places of birth and death, height
and weight, throwing hand and batting side, and the dates of the first and last
game played.

2Examples of people who never played Major League Baseball but have been inducted
into the Hall of Fame (therefore having an entry in the People table) are baseball pioneer
Henry Chadwick and career Negro Leaguer Josh Gibson.
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TABLE 1.2
First row of the People.csv file.

field name Value
playerID aardsda01
birthYear 1981
birthMonth 12
birthDay 27
birthCountry USA
birthState CO
birthCity Denver
deathYear NA
deathMonth NA
deathDay NA
deathCountry NA
deathState NA
deathCity NA
nameFirst David
nameLast Aardsma
nameGiven David Allan
weight 215
height 75
bats R
throws R
debut 2004-04-06
finalGame 2015-08-23
retroID aardd001
bbrefID aardsda01
deathDate NA
birthDate 1981-12-27

Players are identified throughout the pitching, batting, and fielding tables
in the Lahman’s database by an id code, and the People table is useful for
retrieving the name of the player associated with a particular identifier. The
table also reports player identification codes of other databases, in particular
the ones used by Retrosheet, so one can link players from the Lahman and
Retrosheet databases.

For illustration purposes, we display below the header and first row of the
People table which gives information about the first player in the database:
David Aardsma. For clarity, we place Aardsma’s information in a table format
in Table 1.2.

From this information, we learn some details about Aardsma’s life. David
Aardsma was born on December 27, 1981 in Denver, Colorado. Aardsma
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weighed 215 pounds and was 75 inches tall. He threw and batted right-handed,
and he played in the big leagues from April 6, 2004 to August 23, 2015. There
are a series of blank columns corresponding to death information, which is
obviously unavailable for a living person. Finally, there are various identifying
codes for the player. The value of playerID, aardsda01, is the identifying
code for David Aardsma in every table in the Lahman’s database. The value
of the variable retroID, aardd001, is the player id specific to the Retrosheet
files to be described in Section 1.3.

1.2.4 The Batting table

The Batting table contains all players’ batting statistics by season and team
from 1871 to the present season. Players in this table are identified with their
playerID; for example, the season batting statistics of Hank Aaron appear in
this table with the identification playerID = aaronha01. Each row of the table
contains the statistics compiled by a player, during a single season (variable
yearID), for a particular team (variable teamID).

Players who changed teams during a particular season have multiple rows for
the season. The stint variable indicates the order in which the player moved
between teams. For example, Lou Brock, who moved during the 1964 season
from the Chicago Cubs to the St. Louis Cardinals, has the following batting
rows for the 1964 season.

# A tibble: 2 x 22

playerID yearID stint teamID lgID G AB R H

<chr> <int> <int> <fct> <fct> <int> <int> <int> <int>

1 brocklo01 1964 1 CHN NL 52 215 30 54

2 brocklo01 1964 2 SLN NL 103 419 81 146

# i 13 more variables: X2B <int>, X3B <int>, HR <int>,

# RBI <int>, SB <int>, CS <int>, BB <int>, SO <int>,

# IBB <int>, HBP <int>, SH <int>, SF <int>, GIDP <int>

Batting statistics variables are identified by their traditional abbreviations
such as AB, R, H, 2B, etc., so the column names of the batting tables should
be easily understood by those familiar with baseball box scores. Note that R
does not allow object names that start with numbers, so the “2B” column in
Batting is called X2B in the Batting data frame. If one has questions about
the meaning of one particular column name, the documentation with the
package gives the variable descriptions.

An excerpt of the Batting table for Babe Ruth is conveniently formatted in
Table 1.3. This table shows his batting statistics for his early seasons as a
Boston Red Sox pitcher, his years for the Yankees when he became a great
home run slugger, and his seasons at the twilight of his career with the Boston
Braves.
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TABLE 1.3
Batting statistics for Babe Ruth, taken from the Batting table.

yearID teamID AB H HR
1914 BOS 10 2 0
1915 BOS 92 29 4
1916 BOS 136 37 3
1917 BOS 123 40 2
1918 BOS 317 95 11
1919 BOS 432 139 29
1920 NYA 457 172 54
1921 NYA 540 204 59
1922 NYA 406 128 35
1923 NYA 522 205 41
1924 NYA 529 200 46
1925 NYA 359 104 25
1926 NYA 495 184 47
1927 NYA 540 192 60
1928 NYA 536 173 54
1929 NYA 499 172 46
1930 NYA 518 186 49
1931 NYA 534 199 46
1932 NYA 457 156 41
1933 NYA 459 138 34
1934 NYA 365 105 22
1935 BSN 72 13 6

Only count statistics such as the count of at-bats and count of hits are reported
in the batting table. Derived statistics such as a batting average need to be
computed from these count statistics. For example, a researcher who wants to
know Ruth’s batting average for the 1919 season has to calculate it following
paragraph 10.21(b) of the Official Baseball Rules (Official Playing Rules
Committee 2018) that instructs to “divide the number of safe hits by the total
times at bat”. The relevant columns are H and AB, and the desired result is 139
/ 432 = .322. Some statistics are not visible for Babe Ruth as they were not
recorded in the 1920s. For example, the counts of intentional walks (IBB) are
blank for Ruth’s seasons, indicating that they were not recorded.

1.2.5 The Pitching table

The Pitching table contains season-by-season pitching data for players. This
table contains the traditional count data for pitching such as W (number of
wins), L (number of losses), G (games played), BB (number of walks), and
SO (number of strikeouts). In addition, this dataset contains several derived
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TABLE 1.4
Pitching statistics for Babe Ruth, taken from the Pitching table.

yearID teamID G GS CG W L
1914 BOS 4 3 1 2 1
1915 BOS 32 28 16 18 8
1916 BOS 44 41 23 23 12
1917 BOS 41 38 35 24 13
1918 BOS 20 19 18 13 7
1919 BOS 17 15 12 9 5
1920 NYA 1 1 0 1 0
1921 NYA 2 1 0 2 0
1930 NYA 1 1 1 1 0
1933 NYA 1 1 1 1 0

statistics such as ERA (earned run average) and BAOpp (opponent’s batting
average).

Babe Ruth also provides a good illustration of the pitching statistics tables of
Lahman’s database since he had a great pitching record before becoming one
of the greatest home run hitters in history. Table 1.4 displays statistics from
the data table Pitching for the seasons in which Ruth was a pitcher. We see
from the table that Ruth pitched in more than 40 games in 1916 and 1917 (by
viewing column G), mostly as a starter (see GS), then appeared on the mound
for half that many in the final two seasons for the Red Sox. When he moved
to New York, he was only an occasional pitcher. Note that Ruth always was
a winning pitcher as his wins (W) outnumbered his losses (L) for all pitching
seasons, even when he returned to the pitching mound at the end of his career.
He pitched one game both in 1930 and in 1933 (over ten years after he was a
dominant pitcher for the Red Sox) and went the full nine innings (see variable
CG) on each occasion.

1.2.6 The Fielding table

The Fielding table contains season-to-season fielding statistics for all players
in major league history. For a given player, there will be a separate row for each
fielding position. Outfielders positions are grouped together and labeled as OF
for the older seasons, whereas for the more recent ones, they are conveniently
distinguished as LF, CF, RF, for left fielders, center fielders, and right fielders,
respectively. For a player in a position, the data tables give the count of
games played (G), the count of games started (GS), the time played in the field
expressed in terms of outs (InnOuts), the count of putouts (PO), assists (A),
and errors (E).

To illustrate fielding data, Table 1.5 displays Babe Ruth’s fielding statistics
for his career. Only one row appears for each of the seasons between 1914 and
1917, as The Babe was exclusively employed as a pitcher. Later, as the Boston
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TABLE 1.5
Fielding statistics for Babe Ruth, taken from the Fielding table. Columns
featuring statistics relevant only to catchers are not reported.

playerID yearID stint teamID lgID POS G GS InnOuts PO A E DP

ruthba01 1914 1 BOS AL P 4 NA NA 0 7 0 0
ruthba01 1915 1 BOS AL P 32 NA NA 17 63 2 3
ruthba01 1916 1 BOS AL P 44 NA NA 24 83 3 6
ruthba01 1917 1 BOS AL P 41 NA NA 19 101 2 4
ruthba01 1918 1 BOS AL 1B 13 NA NA 130 6 5 8
ruthba01 1918 1 BOS AL OF 59 NA NA 121 8 7 3
ruthba01 1918 1 BOS AL P 20 NA NA 19 58 6 5
ruthba01 1919 1 BOS AL 1B 5 NA NA 35 4 1 4
ruthba01 1919 1 BOS AL OF 111 NA NA 222 14 1 6
ruthba01 1919 1 BOS AL P 17 NA NA 13 35 2 1
ruthba01 1920 1 NYA AL 1B 2 NA NA 10 0 1 1
ruthba01 1920 1 NYA AL OF 141 NA NA 259 21 19 3
ruthba01 1920 1 NYA AL P 1 NA NA 1 0 0 0
ruthba01 1921 1 NYA AL 1B 2 NA NA 8 0 0 0
ruthba01 1921 1 NYA AL OF 152 NA NA 348 17 13 6
ruthba01 1921 1 NYA AL P 2 NA NA 1 2 0 0
ruthba01 1922 1 NYA AL 1B 1 NA NA 0 0 0 0
ruthba01 1922 1 NYA AL OF 110 NA NA 226 14 9 3
ruthba01 1923 1 NYA AL 1B 4 NA NA 41 1 1 2
ruthba01 1923 1 NYA AL OF 148 NA NA 378 20 11 2
ruthba01 1924 1 NYA AL OF 152 NA NA 340 18 14 4
ruthba01 1925 1 NYA AL OF 98 NA NA 207 15 6 3
ruthba01 1926 1 NYA AL 1B 2 NA NA 10 0 0 2
ruthba01 1926 1 NYA AL OF 149 NA NA 308 11 7 5
ruthba01 1927 1 NYA AL OF 151 NA NA 328 14 13 4
ruthba01 1928 1 NYA AL OF 154 NA NA 304 9 8 0
ruthba01 1929 1 NYA AL OF 133 NA NA 240 5 4 2
ruthba01 1930 1 NYA AL OF 144 NA NA 266 10 10 0
ruthba01 1930 1 NYA AL P 1 NA NA 0 4 0 2
ruthba01 1931 1 NYA AL 1B 1 NA NA 5 0 0 0
ruthba01 1931 1 NYA AL OF 142 NA NA 237 5 7 2
ruthba01 1932 1 NYA AL 1B 1 NA NA 3 0 0 0
ruthba01 1932 1 NYA AL OF 128 NA NA 209 10 9 1
ruthba01 1933 1 NYA AL 1B 1 NA NA 6 0 1 0
ruthba01 1933 1 NYA AL OF 132 NA NA 215 9 7 4
ruthba01 1933 1 NYA AL P 1 NA NA 1 1 0 0
ruthba01 1934 1 NYA AL OF 111 NA NA 197 3 8 0
ruthba01 1935 1 BSN NL OF 26 NA NA 39 1 2 0
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Red Sox took advantage of his powerful bat, there are three rows for 1918, one
for each defensive position played by Ruth during this season.

Suppose one focuses on Ruth’s fielding as an outfielder. One raw way of
measuring his fielding range, proposed by Bill James in 1977 in his first
Baseball Abstract (James 1980), is to sum his putouts (variable PO) and assists
(variable A) and divide the sum by the games played (G). The values of this
range factor’ statistic for the seasons 1918 through 1935 were

[1] 2.19 2.13 1.99 2.40 2.18 2.69 2.36 2.27 2.14 2.26 2.03 1.84

[13] 1.92 1.70 1.71 1.70 1.80 1.54

Clearly, Ruth’s range as an outfielder deteriorated toward the end of his career.

1.2.7 The Teams table

The Teams table contains seasonal data at the team level going back to 1871.
A single row in this table includes the team’s abbreviation (teamID), its final
position in the standings (rank), its number of wins and losses (W and L),
and whether the team won the World Series (WSWin), the League (LgWin), the
Division (DivWin), or reached the post-season via the Wild Card (WCWin).

In addition, this table includes cumulative team offensive statistics such as
counts of runs scored (R), hits (H), doubles (2B), walks (BB), strikeouts (SO),
stolen bases (SB), and sacrifice flies (SF). Team defensive statistics include
opponents runs scored (RA), earned runs allowed (ER), complete games (CG),
shutouts (SHO), saves (SV), hits allowed (HA), home runs allowed (HRA), strike-
outs by pitchers (SOA), and walks by pitchers (BBA). Team fielding statistics are
included such as counts of errors (E), double plays (DP), and fielding percentage
(FP). Last, this table includes the total home attendance (attendance) and
the three-year park factors3 for batters (BPF) and pitchers (PPF). Teams are
identified, in this and other tables in the database, by a three-character code
(teamID). The column name in the Teams table helps in recognizing clubs by
their full name.

To illustrate the teams dataset, we extract the data for one of the greatest
teams in baseball history, the 1927 New York Yankees.

yearID lgID teamID franchID divID Rank G Ghome W L

1 1927 AL NYA NYY <NA> 1 155 77 110 44

DivWin WCWin LgWin WSWin R AB H X2B X3B HR BB SO SB

1 <NA> <NA> Y Y 975 5347 1644 291 103 158 635 605 90

CS HBP SF RA ER ERA CG SHO SV IPouts HA HRA BBA SOA E

1 64 NA NA 599 494 3.2 82 11 20 4167 1403 42 409 431 196

DP FP name park attendance BPF

3See Chapter 11 for an introduction to park factors.
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1 123 0.969 New York Yankees Yankee Stadium I 1164015 98

PPF teamIDBR teamIDlahman45 teamIDretro

1 94 NYY NYA NYA

We see the 1927 Yankees finished the season with a 110-44 record and won the
World Series. The “Bronx Bombers” hit 158 home runs, stole 90 bases, and
had a total home attendance of 1,164,015.

1.2.8 Baseball questions

The following questions can be answered with the Lahman database.

• [Q] What is the average number of home runs per game recorded in each
decade? Does the rate of strikeouts show any correlation with the rate of
home runs?

• [A] The number of home runs per game soared from 0.3 in baseball’s first
two decades to 0.8 in the 1920s. After the 1920s, the home run rate showed
a steady increase up to 2.2 per game at the turn of the millennium. The
first years of the current decade seem to reflect a decline in home run
hitting as the rate has decreased to 1.9 HR per game. Strikeouts have
steadily increased over the history of baseball—the number of strikeouts
per game was 1 in the 1870s to 5.6 in the 1920s to 14.2 of the 2010s.

– Relevant data to obtain this answer is found in the Teams table.

• [Q] What effect has the introduction of the Designated Hitter (DH) in
the American League had in the difference in run scoring between the
American and National Leagues?

• [A] The DH rule was instituted in 1973 only for the American League.
Twice in the previous three years the National League teams had scored
half a run more per game than the American League teams. From 1973
till the end of the decade run scoring was roughly equal. Since then, the
American League has maintained an edge of about half a run per game.

– Relevant data to obtain this answer is found in the Teams table.

• [Q] How does the percentage of games completed by the starting pitcher
from 2000 to 2010 compare to the percentage of games 100 years before?

• [A] From 1900 to 1909 pitchers completed 79% of the games they started;
from 2000 to 2010 it had dropped to 3.5%.

– Data for this answer can be found in the Pitching table.
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FIGURE 1.2
Home runs for Mark McGwire and Sammy Sosa during the 1998 race. The
horizontal line corresponds to a new season record of 62 home runs.

1.3 Retrosheet Game-by-Game Data

1.3.1 The 1998 McGwire and Sosa home run race

Another sacred Babe Ruth record was the 60 home runs recorded in the 1927
season. This record was eventually broken in 1961 by Roger Maris, after a
thrilling race with his teammate Mickey Mantle: the “M&M Brothers”, as they
were often dubbed, ended the season with 61 and 54 home runs, respectively.
The new home run record lasted another 37 years. In 1998 two other players,
Mark McGwire of the St. Louis Cardinals and Sammy Sosa of the Chicago
Cubs, gave life to a new home run race, which is displayed in Figure 1.2. This
graph shows the cumulative home run count of each player as a function of
the day of the 1998 season.

From the figure, we see that for much of the season, McGwire was the only
man in the chase. Then Sosa caught fire and the two were very close in home
runs starting from mid-August. “Big Mac” first broke the record, hitting his
62nd home run on September 8. Then, on September 25, the two were tied at
66 apiece. Finally, McGwire managed to hit four more in the final days of the
season, while “Slammin’ Sammy” remained at 66.

To produce the graph in Figure 1.2 and relive the 1998 season, one needs data
at a game-by-game level.
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1.3.2 Retrosheet

Retrosheet is a volunteer organization, founded in 1989 by University of
Delaware professor David Smith, that aims to collect play-by-play accounts
of every game played in Major League Baseball history. Through the labor of
love of many volunteers who have unearthed old newspaper accounts, scanned
microfilms, and manually entered data into computers, the Retrosheet website4

contains game-by-game summaries going back to the dawn of Major League
Baseball in the 19th century. The Retrosheet site also has play-by-play data of
most of the games played since the 1913 season and continues to add games
for previous seasons. These data are introduced in Section 1.4.

1.3.3 Game logs

Retrosheet provides individual game data going back to 1871. A game log has
details regarding when the game was played, how many spectators attended,
the teams and the ballpark, and the score (both the final score and the inning
by inning runs scored). In addition, the game log file includes teams’ offensive
and defensive statistics, starting players, managers, and umpire crews. There
are missing observations for some game log variables for earlier baseball seasons.

Retrosheet provides a comprehensive Guide to Retrosheet Game Logs5 docu-
ment that gives details of all 161 fields compiled for each game. Readers are
encouraged to peruse the guide to fully understand the contents of the files.
Details on the relevant data fields will be described when they are used in later
chapters.

1.3.4 Obtaining the game logs from Retrosheet

Game log files can be found at https://www.retrosheet.org/gamelogs/index.
html. A zip file is provided for each season, starting from 1871, and can be
downloaded in a folder of choice by clicking on the relevant year. When one
extracts the zip file, one obtains a plain text file (.txt extension) where fields
are separated by commas. Section 11.4 provides an R function for downloading
and parsing game log files.

1.3.5 Game log example

On September 9, 1995, Cal Ripken, Jr. of the Baltimore Orioles surpassed
the seemingly unbeatable consecutive games record of 2130 belonging to the
late Lou Gehrig. One can learn more about this historic game by exploring
the game log files for the 1995 season. Table 1.6 contains a subset of the
copious information available for this particular game between Baltimore and

4https://www.retrosheet.org
5https://www.retrosheet.org/gamelogs/glfields.txt

https://www.retrosheet.org
https://www.retrosheet.org
https://www.retrosheet.org
https://www.retrosheet.org
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TABLE 1.6
Excerpt of data available in the Retrosheet game logs. Sample from the Cal
Ripken’s Iron Man game (Sept. 6, 1995).

Variable Value
date 19950906
dayofweek Wed
visitorteam CAL
hometeam BAL
visitorrunsscored 2
homerunsscore 4
daynight N
parkid BAL12
attendance 46272
duration 215
visitorlinescore 100000010
homelinescore 10020010x
homeab 34
homeh 9
homehr 4
homerbi 4
homebb 1
homek 8
homegdp 0
homelob 7
homepo 27
homea 8
homee 0
umpirehname Larry Barnett
umpire1bname Greg Kosc
umpire2bname Dan Morrison
umpire3bname Al Clark
visitormanagername Marcel Lacheman
homemanagername Phil Regan
homestartingpitchername Mike Mussina
homebatting1name Brady Anderson
homebatting1position 8
homebatting2name Manny Alexander
homebatting2position 4
homebatting3name Rafael Palmeiro
homebatting3position 3
homebatting4name Bobby Bonilla
homebatting4position 9
homebatting5name Cal Ripken
homebatting5position 6

(Continued on next page)
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(Continued on next page)
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TABLE 1.6
(Continued).

Variable Value
homebatting6name Harold Baines
homebatting6position 10
homebatting7name Chris Hoiles
homebatting7position 2
homebatting8name Jeff Huson
homebatting8position 5
homebatting9name Mark Smith
homebatting9position 7

California. These data are taken from a single line in the gl1995.txt file
available at https://www.retrosheet.org/gamelogs/index.html. This table
displays team statistics6 as well as the players’ identities and fielding positions
for the home team; similar statistics and player information are available for
the visiting team.

What does one learn from this game log information displayed in Table 1.6?
This game took place on a Wednesday night in front of 46,272 people in
Baltimore (the hometeam = BAL indicates the Orioles were the home team).
The game lasted over three and a half hours (duration = 215 minutes), thanks
in part to the standing ovation Ripken got at the end of the fifth inning, when
the game became official. (The standing ovation information is not available in
this file.) Baltimore defeated California 4-2; since we observe homehr = 4, we
observe that all of Baltimore’s runs this game were due to four home runs with
the bases empty. The Orioles infield in this game included Rafael Palmeiro
at first base, Manny Alexander at second base, Ripken at shortstop, and Jeff
Huson at third base.

1.3.6 Baseball questions

Here are some typical questions one can answer with the Retrosheet game logs
files.

• [Q] In which months are home runs more likely to occur? What about
ballparks?

• [A] Since 1980, July has been the month with the most home runs per
game (1.97), while September has had the lowest frequency (1.84). In the
same time frame, 2.71 home runs per game have been hit in Coors Field

6Some other team statistics omitted in Table 1.6—such as Stolen Bases and Caught
Stealing—are reported in game log files.

https://www.retrosheet.org
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(home of the Colorado Rockies, and 1.14 in the Astrodome (the former
home of the Houston Astros.

• [Q] Do runs happen more frequently when some umpires are behind the
plate? What is the difference between the most pitcher-friendly and the
most hitter-friendly umpires?

• [A] Among umpires with more than 400 games called since 1980, teams
scored the highest number of runs (10.0 per game combined) when Chuck
Meriwether was behind the plate and the lowest (7.8) when Doug Harvey
was in charge.

• [Q] How many extra people attend ballgames during the weekend? What’s
the average attendance by day of the week?

• [A] Close to 33,000 people attend games played on Saturdays (data from
1980 to 2011) and 31,000 on Sundays. The average goes down to 29,000 on
Fridays, 25,000 on Thursdays and Mondays, and 24,000 on Tuesdays and
Wednesdays.

1.4 Retrosheet Play-by-Play Data

1.4.1 Event files

Retrosheet has collected data to an even finer detail for most games played
since 1913. For those seasons, play-by-play accounts are available at https:
//www.retrosheet.org/game.htm. These “event files” (as these play-by-play files
are named) contain information on every single event happening on the field
during a game. For each play, information is reported on the situation (inning,
team batting, number of outs, presence of runners on base), the players on
the field, the sequence of pitches thrown, and details on the play itself. For
example, the file indicates whether a hit occurred, and if a ball in play is a
ground ball, the file gives the defender that fielded the ball.

Event files come in a format expressly devised for them. Retrosheet gives
detailed instruction on how to use the files7 and a step-by-step guide8, plus
the software to parse the files.9 However, the process of rendering the files in a
format suitable for use in R (or other statistical programs) is not straightforward
without use of additional tools. Thus, in Appendix A, we present R code that
implements the full process of downloading, extracting, and parsing these data.
We also provide sample code to create the datasets used in this book.

7How to use Our Event Files: https://www.retrosheet.org/datause.txt
8Step-by-Step Example: https://www.retrosheet.org/stepex.txt
9Software Tools: https://www.retrosheet.org/tools.htm

https://www.retrosheet.org
https://www.retrosheet.org
https://www.retrosheet.org
https://www.retrosheet.org
https://www.retrosheet.org


16 The Baseball Datasets

(home of the Colorado Rockies, and 1.14 in the Astrodome (the former
home of the Houston Astros.

• [Q] Do runs happen more frequently when some umpires are behind the
plate? What is the difference between the most pitcher-friendly and the
most hitter-friendly umpires?

• [A] Among umpires with more than 400 games called since 1980, teams
scored the highest number of runs (10.0 per game combined) when Chuck
Meriwether was behind the plate and the lowest (7.8) when Doug Harvey
was in charge.

• [Q] How many extra people attend ballgames during the weekend? What’s
the average attendance by day of the week?

• [A] Close to 33,000 people attend games played on Saturdays (data from
1980 to 2011) and 31,000 on Sundays. The average goes down to 29,000 on
Fridays, 25,000 on Thursdays and Mondays, and 24,000 on Tuesdays and
Wednesdays.

1.4 Retrosheet Play-by-Play Data

1.4.1 Event files

Retrosheet has collected data to an even finer detail for most games played
since 1913. For those seasons, play-by-play accounts are available at https:
//www.retrosheet.org/game.htm. These “event files” (as these play-by-play files
are named) contain information on every single event happening on the field
during a game. For each play, information is reported on the situation (inning,
team batting, number of outs, presence of runners on base), the players on
the field, the sequence of pitches thrown, and details on the play itself. For
example, the file indicates whether a hit occurred, and if a ball in play is a
ground ball, the file gives the defender that fielded the ball.

Event files come in a format expressly devised for them. Retrosheet gives
detailed instruction on how to use the files7 and a step-by-step guide8, plus
the software to parse the files.9 However, the process of rendering the files in a
format suitable for use in R (or other statistical programs) is not straightforward
without use of additional tools. Thus, in Appendix A, we present R code that
implements the full process of downloading, extracting, and parsing these data.
We also provide sample code to create the datasets used in this book.

7How to use Our Event Files: https://www.retrosheet.org/datause.txt
8Step-by-Step Example: https://www.retrosheet.org/stepex.txt
9Software Tools: https://www.retrosheet.org/tools.htm

Retrosheet Play-by-Play Data 17

TABLE 1.7
Excerpt of information available in Retrosheet event files. Sample from Jeter’s
“Flip Play” (Oct. 13, 2001).

Variable Value
GAME ID OAK200110130
YEAR ID 2001
AWAY TEAM ID NYA
INN CT 7
BAT HOME ID 1
OUTS CT 2
BALLS CT 2
STRIKES CT 2
PITCH SEQ TX CSBBFX
AWAY SCORE CT 1
HOME SCORE CT 0
BAT ID longt002
BAT HAND CD L
PIT ID mussm001
PIT HAND CD R
POS2 FLD ID posaj001
POS3 FLD ID martt002
POS4 FLD ID soria001
POS5 FLD ID bross001
POS6 FLD ID jeted001
POS7 FLD ID knobc001
POS8 FLD ID willb002
POS9 FLD ID spens001
BASE1 RUN ID giamj002
BASE2 RUN ID NA
BASE3 RUN ID NA
EVENT TX D9/9S.1XH(962)
BAT FLD CD 7
BAT LINEUP ID 7

1.4.2 Event example

Just as we use a historical game for the purpose of showing the contents of
Retrosheet game logs, we use a famous fielding play to illustrate the Retrosheet
event files. This play is represented as a single line in an event file shown in
Table 1.7.

The play took place in a game played in Oakland on October 13, 2001, as can
be inferred from the value of the GAME_ID variable. This game was Game 3 of
the American League Division Series featuring the hometown Athletics against
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the New York Yankees (AWAY_TEAM_ID = NYA). The play occurred in the
seventh inning with the home team batting (variables INN_CT and BAT_ID_ID).
There were two outs (variable OUTS_CT) and the A’s were leading 1-0 (variables
AWAY_SCORE_CT and HOME_SCORE_CT). Right-handed Mike Mussina (variables
PIT_ID and PIT_HAND_CD) was on the mound for the Yankees, facing left-
handed batter Terrence Long (variables BAT_ID and BAT_HAND_CD) with Jeremy
Giambi standing on first base (variable BASE1_RUN_ID). The BAT_FLD_CD =

7 and BAT_LINEUP_ID = 7 fields inform us that Giambi’s defensive position
was left field (position 7 corresponding to left field) and he was batting 7th in
the lineup. The variables POS2_FLD_ID through POS9_FLD_ID report the full
defensive lineup for the Yankees.

The seemingly inscrutable characters appearing in the PITCH_SEQ_TX and
EVENT_TX variables depict what happened during that particular at bat. From
looking at the pitch sequence variable PITCH_SEQ_TX, one sees that Mussina
quickly went ahead in the count as Long let a strike go by and swung and
missed at another pitch (CS). Then Mussina followed with consecutive balls
(BB) and Long battled with a foul ball (F) before putting the ball in play (X).
The variable EVENT_TX gives the results of the play. Long’s hit resulted in a
double, collected by the Yankees right fielder (D9 in EVENT_TX) in short right
(9S). The runner on first was thrown out on his way to home (1XH) by a throw
from right fielder Shane Spencer, relayed by shortstop Derek Jeter to catcher
Jorge Posada (962).

Once the event files are properly processed, many more fields are available than
the ones presented in Table 1.7. However these additional fields are, for the
most part, derived from what is in the table. For example, one additional field
indicates whether the at-bat resulted in a base hit, one field will identify the
fielder who collected the ball, and four fields will indicate where each runner
(and the batter) stood at the end of the play—all of this can be inferred by
the EVENT_TX field.

This play-by-play information is available for most games going back to 1913;
thus it is possible to recreate what happened on the field in the past century.
For this particular play, the Retrosheet event files cannot tell us all of the
interesting details. Derek Jeter came out of nowhere to cut off Spencer’s throw
and flipped it backhand to Posada in time to nail Giambi at home, on what
has become known as “The Flip Play”.10

1.4.3 Baseball questions

Below are some questions that can be explored with the Retrosheet event files.
These specific questions are about how batters perform in particular situations
in the pitch count and with runners on base.

10In 2002, Baseball Weekly recognized “The Flip Play” as one of the ten most amazing
fielding plays of all time.
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• [Q] During the McGwire/Sosa home run race, which player was more
successful at hitting homers with men on base?

• [A] Mark McGwire hit 37 home runs in 313 plate appearances with runners
on base, while Sammy Sosa hit 29 in 367. Once walks (both intentional and
unintentional) and hit by pitches are removed, the number of opportunities
become 223 for McGwire and 317 for Sosa.

• [Q] How many intentional walks in unusual situations (e.g., empty bases
or bases loaded) was Barry Bonds issued in his 73 HR campaign?

• [A] During his record 2001 season, Barry Bonds was passed intentionally
only 35 times. Of those free passes, one came with a runner on first and two
with runners on first and second. When he was awarded 120 intentional
walks in 2004, 19 came with nobody on, 11 with a runner on first, and 3
with runners on first and third. He was once walked intentionally with the
bases loaded in 1998.

• [Q] What is the Major league batting average when the ball/strike count
is 0-2? What about on 2-0?

• [A] In 2011, hitters compiled a .253 batting average on plate appearances
where they fell behind 0-2. Conversely they hit .479 after going ahead 2-0.

1.5 Pitch-by-Pitch Data

1.5.1 MLBAM Gameday and PITCHf/x

Erstwhile Miami Marlins rightfielder Giancarlo Stanton emerged in 2017 as an
elite slugger by blasting a league leading 59 balls out of the park. Figure 1.3
shows the location and the type of the 59 pitches Stanton sent into the stands.

Since 2005, baseball fans have had the opportunity to follow, pitch-by-pitch, the
games played by their favorite team on the Web thanks to the Major League
Baseball Advanced Media (MLBAM) Gameday application featured on the
MLB.com website. For a couple of years, fans would only know the outcome of
each pitch (whether it was a ball, a called strike, a swinging strike, and so on).
Starting from an October 2006 game played at the Metrodome in Minneapolis,
a wealth of detail began to appear for each pitch tracked on Gameday. Data
on the release point, the pitch speed, and its full trajectory, were available for
about one-third of the games played in 2007. Starting from the 2008 season,
nearly every MLB pitch flight has been recorded by the PITCHf/x system.
However, since the second edition of this book, PITCHf/x has been superseded
by Statcast, a data source which is detailed in Section 1.6.1. What we provide
here serves two purposes: first, it provides historical continuity; and second,

http://www.MLB.com
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FIGURE 1.3
Pitch type and location for Giancarlo Stanton’s 59 home runs of the 2017
season.

most of the information recorded by PITCHf/x appears in a similar format in
the Statcast data, so the content is still relevant. Unfortunately, we are not
aware of a currently usable method for obtaining pitch-by-pitch data for the
pre-Statcast period. Please see Appendix B for a fuller discussion of the rise
and fall of PITCHf/x.

1.5.2 PITCHf/x Example

On April 21, 2012, Phil Humber became the 21st pitcher in Major League
Baseball history to throw a perfect game by retiring all the 27 batters he faced.
PITCHf/x captured his final pitch (like it did for nearly every other pitch
thrown in MLB ballparks from 2008 to 2015), providing the data shown in
Table 1.8. The outcome of the pitch (variable des) is recorded by a stringer (a
human being), while most of the remaining information is either captured by
the Sportvision camera system or calculated from the captured data.

Each pitch is assigned an identifier (sv_id), that is actually a time stamp:
Humber’s final pitch was recorded on April 21, 2012, at 15:25:37. The key
information Sportvision obtains through its camera system is recorded in lines
11 through 19 of the table. Those nine parameters give the position (variables
x0, y0, z0), velocity (variables vx0, vy0, vz0), and acceleration (variables ax,
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TABLE 1.8
Excerpt of information available from PITCHf/x. Sample from the final pitch
of Phil Humber’s perfect game (Apr. 21, 2012).

Variable Value
des Swinging Strike (Blocked)
sv id 120421 152537
start speed 85.3
end speed 79.1
sz top 3.73
sz bot 1.74
pfx x 0.31
pfx z 1.81
px 2.211
pz 1.17
x0 –1.58
y0 50.0
z0 5.746
vx0 9.228
vy0 –124.71
vz0 –5.311
ax 0.483
ay 25.576
az –29.254
break y 23.8
break angle –4.1
break length 7.8
pitch type SL
spin dir 170.609
spin rate 344.307

ay, az) components of the pitch at release point. With these nine parameters
the full trajectory of the pitch from release to home plate can be estimated. (In
fact, Sportvision actually estimates the parameters somewhere in the middle
of the ball’s flight, then derives the parameters at release point.)

While the nine parameters just mentioned are sufficient for learning about
the trajectory of the pitch, they are difficult to understand by casual fans
who follow the game on MLBAM Gameday. Other more descriptive quantities
are calculated starting from those nine parameters. The one measure familiar
to baseball fans is the pitch speed at release, which for Humber’s final pitch
is calculated at 85.3 mph (variable start_speed). PITCHf/x also provides
the speed of the ball as it crosses the plate, 79.1 mph in this case (variable
end_speed). Another two important values are the variables px and pz; they
represent the horizontal and vertical location of the pitches, respectively, and
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can be combined with the batter’s strike zone upper and lower limits (sz_top
and sz_bot) to infer whether the pitch crossed the strike zone.

Let’s focus on the location of this particular pitch. The horizontal reference
point is the middle of the plate, with positive values indicating pitches passing
on the right side of it from the umpire’s viewpoint. In this case the ball crossed
the plate 2.21 feet on the right of its midpoint. Since the plate is 17 inches
wide, it was way out of the strike zone. The pitch was also too low to be a
strike, as the vertical point at which it crossed the plate is listed at 1.17 feet,
while the hitter’s lower limit of the strike zone is 1.74.11 Luckily for Humber
(since otherwise a walk would have ruined the perfect game), the home plate
umpire controversially declared that Brendan Ryan had swung the bat for
strike three.

Other interesting quantities about a pitch are available with PITCHf/x, in-
cluding the horizontal and vertical movement (variables pfx_x and pfx_z) of
the pitch trajectory, the spin direction, and its spin rate (variables spin_dir
and spin_rate). MLBAM has devised a complex algorithm that processes the
information captured by Sportvision and marks the pitch with a label familiar
to baseball fans. In this case the algorithm recognizes the pitch as a slider
(variable pitch_type).

1.5.3 Baseball questions

Below are questions you can answer with PITCHf/x data. The data can be
used to address specific questions about pitch type, speed of the pitch, and
play outcomes on specific pitches.

• [Q] Who are the hitters who see the lowest and the highest percentage of
fastballs?

• [A] From 2008 to 2011, pitchers have thrown fastballs 35% of the time
when Ryan Howard was at the plate, 56% of the time when facing David
Eckstein.

• [Q] Who is the fastest pitcher in baseball currently?

• [A] Nine of the fastest ten pitches recorded by PITCHf/x from 2008 to
2011 have been thrown by Aroldis Chapman, the highest figure being a
105.1 mph pitch thrown on September 24, 2010 in San Diego. Neftali Feliz
is the other pitcher making the top ten list with a 103.4 fastball delivered
in Kansas City on September 1, 2010.

• [Q] What are the chances of a successful steal when the pitcher throws a
fastball compared to when a curve is delivered?

11The batter’s strike zone boundaries are recorded by the human stringer at the beginning
of the at-bat, and thus are less precise than the pitch location coordinates recorded by the
advanced system.



22 The Baseball Datasets

can be combined with the batter’s strike zone upper and lower limits (sz_top
and sz_bot) to infer whether the pitch crossed the strike zone.

Let’s focus on the location of this particular pitch. The horizontal reference
point is the middle of the plate, with positive values indicating pitches passing
on the right side of it from the umpire’s viewpoint. In this case the ball crossed
the plate 2.21 feet on the right of its midpoint. Since the plate is 17 inches
wide, it was way out of the strike zone. The pitch was also too low to be a
strike, as the vertical point at which it crossed the plate is listed at 1.17 feet,
while the hitter’s lower limit of the strike zone is 1.74.11 Luckily for Humber
(since otherwise a walk would have ruined the perfect game), the home plate
umpire controversially declared that Brendan Ryan had swung the bat for
strike three.

Other interesting quantities about a pitch are available with PITCHf/x, in-
cluding the horizontal and vertical movement (variables pfx_x and pfx_z) of
the pitch trajectory, the spin direction, and its spin rate (variables spin_dir
and spin_rate). MLBAM has devised a complex algorithm that processes the
information captured by Sportvision and marks the pitch with a label familiar
to baseball fans. In this case the algorithm recognizes the pitch as a slider
(variable pitch_type).

1.5.3 Baseball questions

Below are questions you can answer with PITCHf/x data. The data can be
used to address specific questions about pitch type, speed of the pitch, and
play outcomes on specific pitches.

• [Q] Who are the hitters who see the lowest and the highest percentage of
fastballs?

• [A] From 2008 to 2011, pitchers have thrown fastballs 35% of the time
when Ryan Howard was at the plate, 56% of the time when facing David
Eckstein.

• [Q] Who is the fastest pitcher in baseball currently?

• [A] Nine of the fastest ten pitches recorded by PITCHf/x from 2008 to
2011 have been thrown by Aroldis Chapman, the highest figure being a
105.1 mph pitch thrown on September 24, 2010 in San Diego. Neftali Feliz
is the other pitcher making the top ten list with a 103.4 fastball delivered
in Kansas City on September 1, 2010.

• [Q] What are the chances of a successful steal when the pitcher throws a
fastball compared to when a curve is delivered?

11The batter’s strike zone boundaries are recorded by the human stringer at the beginning
of the at-bat, and thus are less precise than the pitch location coordinates recorded by the
advanced system.

Player Movement and Off-the-Bat Data 23

• [A] From 2008 to 2010, baserunners were successful 73% of the times at
stealing second base on a fastball. The success rate increases to 85% when
the pitch is a curveball.

1.6 Player Movement and Off-the-Bat Data

1.6.1 Statcast

Statcast is a new technology that tracks movements of all baseball players and
the baseball during a game. It was introduced to all MLB stadiums in 2015,
and all teams have access to the large amount of data collected. Some of the
Statcast data for pitchers and hitters is currently publicly available via the
Baseball Savant website. Also, these data are used during a baseball broadcast
for entertainment purposes. For example, a baseball announcer will provide
the launch angle, exit velocity, and distance traveled for a home run. The
broadcast will give the distance that an outfielder moves toward a batted ball
and the speed of a baserunner from home to first base.

1.6.2 Baseball Savant data

To illustrate the new information available from Statcast, consider data on
one of the hardest hit home runs during the 2018 season. In a game between
the New York Yankees at the Toronto Blue Jays on June 6, 2018, Giancarlo
Stanton of the Yankees hit a home run in the top of the 13th inning. The
baseballr package provides a function to download data on each pitch from
the Baseball Savant website, and Table 1.9 displays a number of variables for
this specific home run.

The batter id and pitcher id are respectively 519317 and 607352 which cor-
respond to Giancarlo Stanton and Joe Biagini. The game situation variables
are inning, inning_topbot, outs_when_up, home_score, away_score, balls,
and strikes. We learn that this home run was hit in the top of the 13th
inning when the Yankees were leading 2-0, there were two outs, and the count
was 1-0.

The variables if_fielding_alignment and of_fielding_alignment relate
to the positioning of the Toronto fielders for this particular pitch. Both variables
are“Standard”, which indicate that there was no special shifting of the infielders
or outfielders for Stanton for this particular at-bat.

Other variables give characteristics of the pitch. The pitch_type and
pitch_name variables indicate that the pitch was a change-up thrown at
a release_speed of 85.4 mph. The plate_x and plate_y variables give the
location of the pitch—these values indicate that the pitch was located in the
middle of the zone.
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TABLE 1.9
Statcast data on home run hit by Giancarlo Stanton on game on June 6, 2018.

Variable Value
pitch type CH
game date 2018-06-06
release speed 85.4
batter 519317
pitcher 607352
events home run
des Giancarlo Stanton homers (14)

on a line drive to left field.
home team TOR
away team NYY
balls 1
strikes 0
game year 2018
plate x –0.2197
plate z 2.4995
outs when up 2
inning 13
inning topbot Top
hc x 20.36
hc y 56.47
hit distance sc 416
launch speed 119.3
launch angle 15.044
pitch name Changeup
home score 0
away score 2
if fielding alignment Standard
of fielding alignment Standard
barrel 1

This dataset also includes characteristics of the batted ball. The launch_speed
and launch_angle variables tell us that the ball came off of the bat at a
speed of 119.3 mph at a launch angle of 15.044 degrees. It is notable that this
particular batted ball was a line drive—it must have been hit hard for a home
run. The hit_distance_sc variable indicates that the ball was hit a distance
of 416 feet. The hc_x and hc_y variables tell us about the direction (more
specifically, the spray angle of this home run.

More details about the Statcast data and how to use it appear in Appendix C.
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1.6.3 Baseball questions

The following questions can be addressed with Statcast data.

• [Q] What is a typical launch speed and launch angle of a home run?

• [A] Using 2017 season data, the median launch speed of a home run was
103 mph and the median launch angle was 27.8 degrees.

• [Q] How frequently do MLB teams employ infield shifts?

• [A] Using data from the first part of the 2018 season, teams employed an
infield shift or some strategic infield defense for 26 percent of the batters.

• [Q] Is an infield shift effective in defensing ground balls?

• [A] Using data from the 2018 season, the batting average on ground balls
with a standard infield defense was 0.281, and with an infield shift the
batting average on ground balls dropped to 0.231.

1.7 Data Used in this Book

We use data from all four of the sources above in various places in this
book. Generally, data that comes from the Lahman database will be accessed
directly from the R package Lahman. Small data sets are available through
the abdwr3edata package, the full source of which is located on GitHub. The
Retrosheet and Statcast data is large enough that it is generally not included
in the GitHub repositories. In order to reproduce the results in this book using
those datasets, you will need to download those data on your own. Instructions
for doing so appear in Section A.1.3 (for Retrosheet) and Section 12.2 (for
Statcast).

1.8 Summary

When choosing among the four main sources of baseball data (Lahman, Ret-
rosheet, PITCHf/x, and Statcast, one always has to consider the trade-off
between the level of detail and the seasons covered by the source. With Lah-
man’s database, for example, one can explore the evolution of the game since
its beginnings back into the 19th century. However, only the basic season count
statistics are available from this source. For example, simple information such
as Babe Ruth’s batting splits by pitcher’s handedness cannot be retrieved from
Lahman’s files.
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Retrosheet is steadily adding past seasons to its play-by-play database, allowing
researchers to perform studies to validate or reject common beliefs about players
of the past decades. During the years, for example, analysis of play-by-play
data has confirmed the huge defensive value of players like Brooks Robinson
and Mark Belanger, and has substantiated the greatness of Roberto Clemente’s
throwing arm.

PITCHf/x was available from 2008–2015 and, unlike with Retrosheet, there is
no way to compile data for games of the past. This means we will never be able
to compare the velocity of Aroldis Chapman’s fastball to that of Nolan Ryan
or Bob Feller. However, studies performed since its inception have provided an
enhanced understanding of the game, enabling researchers to explore issues
like pitch sequencing, batter discipline, pitcher fatigue, catcher framing (see
Chapter 7) and the catcher’s ability to block bad pitches.

Statcast represents the newest wave of baseball data. Since it includes detailed
information on the positioning and movement of players, it has been useful in
evaluating the effectiveness of a fielder in reaching a batted ball and under-
standing the performance of runners on the bases. Also, Statcast has helped
us understand the relationship between the batted ball variables (launch angle,
exit velocity, and spray angle and base hits and outs.

1.9 Further Reading

Schwarz (2004) provides a detailed history of baseball statistics. Adler (2006)
explains how to obtain baseball data from several sources, including Lahman’s
database, Retrosheet, and MLBAM Gameday and how to analyze them using
diverse tools, from Microsoft Excel to R, MySQL, and PERL. Fast (2010)
introduces the PITCHf/x system to the uninitiated. The PITCHf/x, HITf/x,
FIELDf/x section of The Physics of Baseball website (http://baseball.physics
.illinois.edu/) features material on the subject of pitch tracking data.

1.10 Exercises

1. Which Datafile?

This chapter has given an overview of the Lahman database, the Retrosheet
game logs, the Retrosheet play-by-play files, the PITCHf/x database, and the
Statcast database. Describe the relevant data among these four databases that
can be used to answer the following baseball questions.

http://baseball.physics.illinois.edu
http://baseball.physics.illinois.edu
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a. How has the rate of walks (per team for nine innings) changed over the
history of baseball?

b. What fraction of baseball games in 1968 were shutouts? Compare this
fraction with the fraction of shutouts in the 2012 baseball season.

c. What percentage of first pitches are strikes? If the count is 2-0, what
fraction of the pitches are strikes?

d. Which players are most likely to hit groundballs? Of these players, compare
the speeds at which these groundballs are hit.

e. Is it easier to steal second base or third base? (Compare the fraction of
successful steals of second base with the fraction of successful steals of
third base.)

2. Lahman Pitching Data

From the pitching data file from the Lahman database, the following informa-
tion is collected about Bob Gibson’s famous 1968 season.

playerID yearID stint teamID lgID W L G GS CG SHO SV

1 gibsobo01 1968 1 SLN NL 22 9 34 34 28 13 0

IPouts H ER HR BB SO BAOpp ERA IBB WP HBP BK BFP GF R

1 914 198 38 11 62 268 0.18 1.12 6 4 7 0 1161 0 49

SH SF GIDP

1 NA NA NA

a. Gibson started 34 games for the Cardinals in 1968. What fraction of these
games were completed by Gibson?

b. What was Gibson’s ratio of strikeouts to walks this season?
c. One can compute Gibson’s innings pitched by dividing IPouts by three.

How many innings did Gibson pitch this season?
d. A modern measure of pitching effectiveness is WHIP, the average number

of hits and walks allowed per inning. What was Gibson’s WHIP for the
1968 season?

3. Retrosheet Game Log

Jim Bunning pitched a perfect game on Father’s Day on June 21, 1964. Some
details about this particular game can be found from the Retrosheet game
logs.

Date DoubleHeader DayOfWeek VisitingTeam

1 19640621 1 Sun PHI

VisitingTeamLeague VisitingTeamGameNumber HomeTeam

1 NL 60 NYN

HomeTeamLeague HomeTeamGameNumber VisitorRunsScored

1 NL 67 6

HomeRunsScore LengthInOuts DayNight CompletionInfo

1 0 54 D NA

ForfeitInfo ProtestInfo ParkID Attendance Duration
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1 NA NYC17 0 139

VisitorLineScore HomeLineScore VisitorAB VisitorH VisitorD

1 110004000 000000000 32 8 2

VisitorT VisitorHR VisitorRBI VisitorSH VisitorSF VisitorHBP

1 0 1 6 2 0 0

VisitorBB VisitorIBB VisitorK VisitorSB VisitorCS VisitorGDP

1 4 0 6 0 1 0

VisitorCI VisitorLOB

1 0 5

a. What was the time in hours and minutes of this particular game?
b. Why is the attendance value in this record equal to zero?
c. How many extra base hits did the Phillies have in this game? (We know

that the Mets had no extra base hits this game.)
d. What was the Phillies’ on-base percentage in this game?

4. Retrosheet Play-by-Play Record

One of the famous plays in Philadelphia Phillies history is second baseman
Mickey Morandini’s unassisted triple play against the Pirates on September 20,
1992. The following records from the Retrosheet play-by-play database describe
this half-inning. The variables indicate the half-inning (variables INN_CT and
HOME_ID), the current score (variables AWAY_SCORE_CT and HOME_SCORE_CT),
the identities of the pitcher and batter (variables BAT_ID and PIT_ID), the
pitch sequence (variable PITCH_SEQ), the play event description (variable
EVENT_TEX), and the runners on base (variables BASE1_RUN and BASE2_ID).

bat_home_id away_score_ct home_score_ct bat_id pit_id

1 1 1 1 vansa001 schic002

2 1 1 1 bondb001 schic002

3 1 1 1 kingj001 schic002

pitch_seq_tx event_cd event_tx base1_run_id

1 CBBBX 20 S9/L9M

2 C1BX 20 S/G56.1-2 vansa001

3 BLLBBX 2 4(B)4(2)4(1)/LTP/L4M bondb001

base2_run_id

1

2

3 vansa001

Based on the records, write a short paragraph that describes the play-by-play
events of this particular inning.

5. PITCHf/x Record of Several Pitches

R.A. Dickey was one of the few current pitchers in recent years who threw
a knuckleball. The following gives some PITCHf/x variables for the first
knuckleball and the first fastball that Dickey threw for a game against the
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Kansas City Royals on April 13, 2013.

start_speed end_speed pfx_x pfx_z px pz sz_bot sz_top

73 66.3 -0.64 -7.58 -0.047 2.475 1.5 3.35

start_speed end_speed pfx_x pfx_z px pz sz_bot sz_top

81.2 75.4 -4.99 -7.67 -1.99 2.963 1.5 3.43

Describe the differences between the knuckleball and the fastball in terms of
pitch speed, movement (horizontal and vertical directions), and location in the
strike zone. Based on this data, why is a knuckleball so difficult for a batter to
make contact?
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Introduction to R

2.1 Introduction

In this chapter, we provide a general introduction to the R statistical computing
environment. We describe the process of installing R and the program RStudio
that provides an attractive interface to the R system. We use pitching data
from the legendary Warren Spahn to motivate manipulations with vectors,
a basic data structure. We describe different data types such as characters,
factors, and lists, and different “containers” for holding these different data
types. We discuss the process of executing collections of R commands by means
of scripts and functions, and describe methods for importing and exporting
datasets from R. A fundamental data structure in R is a data frame and
we introduce defining a data frame, performing manipulations, merging data
frames, and performing operations on a data frame split by values of a variable.
We conclude the chapter by describing how to install and load R packages
and how one gets help using resources from the R system and the RStudio
interface.

2.2 Installing R and RStudio

The R system is available for download from The Comprehensive R Archive
Network (CRAN) at https://www.r-project.org. R is available for Linux,
Windows, and Macintosh operating systems; all of the commands described in
this book will work in any of these environments.

One can use R through the standard graphical user interface by launching the
R application. Recently, several new integrated developmental environments
have been created for R, and we will demonstrate the RStudio environment
(RStudio Team 2018) available from (https://www.rstudio.com). One must
first install R, then the RStudio application, and then launches the RStudio
application. All interaction with R occurs through RStudio.

DOI: 10.1201/9781032668239-2 30

https://www.r-project.org
https://www.rstudio.com
http://doi.org/10.1201/9781032668239-2
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FIGURE 2.1
The opening screen of the RStudio interface to R.

The RStudio opening screen is displayed in Figure 2.1. The screen is divided
into four windows. One can type commands directly and see output in the
lower-left Console window. Moving clockwise, the top-left window is a blank
file where one can write and execute R scripts or groups of instructions. The
top-right window shows names of objects such as vectors and data frames
created in an R session. By clicking on the History tab, one can see a record
of all commands entered during the current R session. Last, any plots are
displayed in the lower-right window. By clicking on the Files tab, one can see
a list of files stored in the current working directory . (This is the file directory
where R will expect to read files, and where any output, such as data files and
graphs, will be stored.) The Packages tab lists all of the R packages currently
installed in the system and the Help tab will display documentation for R
functions and datasets.

2.3 The Tidyverse

R is a modular system—functionality can be added by installing and loading
packages (see Section 2.9). The R language, along with some of the core packages
(e.g., base, stats, and graphics) are developed by the R Core Development Team.
However, packages can be written by anyone and can provide a wide variety of
functionality. Recently, tremendous coordinated effort by many contributors
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has led to the development of the tidyverse. The tidyverse is a collection
of packages intentionally designed for interoperability, centered around the
philosophy of tidy data, articulated most notably by Posit Chief Scientist
Hadley Wickham (Wickham 2014). The tidyverse package itself does little
more than load a collection of other packages that adhere to this philosophy.

A major undertaking of the second edition of this book was to bring all of the
code into tidyverse-compliance.

library(tidyverse)

The central notion of tidy data is that rows in a data frame should correspond
to the same observational unit, and that columns should represent variables
about those observational units. This means that a tidy data frame would
not contain a row that totals the other rows, labels for the rows stored as
row names instead of variables, or two columns that contain the same type of
information about the same observational unit.

Packages in the tidyverse are data.frame-centric (see Section 2.4): their func-
tions mostly take a data.frame as the first input, do something to it, and
then return (a modified version of) it. Other data structures like matrices,
vectors, and lists are less commonly used in the tidyverse. A tibble is like a
data.frame, but may include some additional functionality. In this book, we
prefer tibbles to data.frames whenever it is convenient.

There are many packages in the tidyverse, but a few warrant explicit introduc-
tion.

2.3.1 dplyr

The dplyr package provides comprehensive tools for data manipulation (or
data wrangling). The five main “verbs” include:

• select(): choose a subset of the columns
• filter(): choose a subset of the rows based on logical criteria
• arrange(): sort the rows based on the values of columns
• mutate(): add or modify the definition of a column
• summarize(): collapse a data frame down to a single row (per group) by
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2.3.2 The pipe

A major component of the tidyverse design is the use of the pipe operator : |>.
The pipe operator allows one to create pipelines of functions that are easier to
read than their nested counterparts. The pipe takes what comes before it and
injects it into the function that comes after it as the first argument. Thus, the
following lines of code are equivalent.

outer_function(inner_function(x), y)

x |>

inner_function() |>

outer_function(y)

We find that the latter code chunk is easier to read, scales better to many suc-
cessive operations (i.e., pipelines), and keeps arguments closer to the functions
to which they belong. Since many functions in the tidyverse take a tibble as
their first argument and return a tibble, they are (by design) “pipeable”.

Since version 4.1.0, R has included the native pipe operator: |>. This operator
is used extensively in this book, and replaces the legacy pipe operator (%>%)
that was provided by the magrittr package and was used throughout the second
edition of this book.

2.3.3 ggplot2

ggplot2 is the graphics system for the tidyverse. It is an implementation of The
Grammar of Graphics (Wilkinson 2006), and provides a consistent syntax for
building data graphics incrementally in layers. Please note that for historical
and technical reasons, the plus operator + (rather than the pipe operator) is
used to combine elements in ggplot2. We describe ggplot2 in detail in Chapter 3.

2.3.4 Other packages

In addition to the aforementioned dplyr, ggplot2, and tibble packages, loading
the tidyverse package also loads several other packages. These include tidyr
for additional data manipulation operations, readr for data import (see Sec-
tion 2.8), purrr for iteration (see Section 2.10), stringr for working with text
(see Section 2.6.1), lubridate for working with dates, and forcats for working
with factors (see Section 2.6.2). Other packages—like broom—are not loaded
automatically, but are part of the larger tidyverse.

2.3.5 Package for this book

As mentioned earlier, the R package abdwr3edata contains all small datafiles
and R scripts described in this book. One can install this package by use of
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install_github() from the remotes package:

remotes::install_github("beanumber/abdwr3edata")

Then the abdwr3edata package can be loaded into R by use of the library()
function.

library(abdwr3edata)

� Important

Installation of the abdwr3edata package needs to be done only once,
but the package should be loaded in each new R session that uses these
datasets.

2.4 Data Frames

2.4.1 Career of Warren Spahn

One of the authors collected the 1965 Warren Spahn baseball card. The back
of Spahn’s baseball card displays many of the standard pitching statistics for
the seasons preceding Spahn’s final 1965 season. We use data from Spahn’s
season statistics to illustrate some basic components of the R system.

2.4.2 Introduction

A data.frame is a rectangular table of data, where rows of the table correspond
to different individuals or seasons, and columns of the table correspond to
different variables collected on the individuals. Data variables can be numeric
(like a batting average or a winning percentage), integer (like the count of
home runs or number of wins), a factor (a categorical variable such as the
player’s team), or other types.

We can display portions of a data frame using the square bracket notation. For
example, if we wish to display the first five rows and the first four variables
(columns) of a data frame x, we type x[1 : 5, 1 : 4]. Alternatively, the
functions slice() and select() in the dplyr package can be used to select
specific rows and columns. For example, the following code displays the first
three rows and columns 1 though 10 of the spahn data frame.
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library(abdwr3edata)

spahn |>

slice(1:3) |>

select(1:10)

# A tibble: 3 x 10

Year Age Tm Lg W L W.L ERA G GS

<dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1942 21 BSN NL 0 0 NA 5.74 4 2

2 1946 25 BSN NL 8 5 0.615 2.94 24 16

3 1947 26 BSN NL 21 10 0.677 2.33 40 35

The header labels Year, Age, Tm, W, L, W.L, ERA, G, GS are some variable names
of the data frame; the numbers 1, 2, 3 displayed on the left give the row
numbers.

The variables Age, W, L, ERA for the first 10 seasons can be displayed by use of
slice() with arguments 1:10 and select() with arguments Age, W, L, ERA.

spahn |>

slice(1:10) |>

select(Age, W, L, ERA)

# A tibble: 10 x 4

Age W L ERA

<dbl> <dbl> <dbl> <dbl>

1 21 0 0 5.74

2 25 8 5 2.94

3 26 21 10 2.33

4 27 15 12 3.71

5 28 21 14 3.07

6 29 21 17 3.16

7 30 22 14 2.98

8 31 14 19 2.98

9 32 23 7 2.1

10 33 21 12 3.14

Descriptive statistics of individual variables of a data frame can be obtained
by use of the summarize() function in the dplyr package. To illustrate, we use
this function to obtain some summary statistics such as the median, lower and
upper quartiles, and low and high values for the ERA measure.

spahn |>

summarize(

LO = min(ERA),
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QL = quantile(ERA, .25),

QU = quantile(ERA, .75),

M = median(ERA),

HI = max(ERA)

)

# A tibble: 1 x 5

LO QL QU M HI

<dbl> <dbl> <dbl> <dbl> <dbl>

1 2.1 2.94 3.26 3.04 5.74

From this display, we see that 50% of Spahn’s season ERAs fell between the
lower quartile (QL) 2.94 and the upper quartile (QU) 3.26. Using the filter()
and select() functions, we can find the age when Spahn had his lowest ERA
by use of the following expression.

spahn |>

filter(ERA == min(ERA)) |>

select(Age)

# A tibble: 1 x 1

Age

<dbl>

1 32

Using the ERA measure, Spahn had his best pitching season at the age of 32.

2.4.3 Manipulations with data frames

The pitching variables in the spahn data frame are the traditional or standard
pitching statistics. One can add new “sabermetric” variables to the data frame
by use of the mutate() function in the dplyr package. Suppose that one wishes
to measure pitching by the FIP (fielding independent pitching) statistic1 defined
by

FIP = 13HR + 3BB − 2K

IP
.

We add a new variable to a current data frame using the mutate() function.

spahn <- spahn |>

mutate(FIP = (13 * HR + 3 * BB - 2 * SO) / IP)

1FIP is a measure of pitching performance dependent only on plays that do not involve
fielders.
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Suppose we are interested in finding the seasons where Spahn performed
the best using the FIP measure. We perform this task by three functions in
the dplyr package. The arrange() function sorts the data frame by the FIP
measure, the select() function selects a group of variables, and slice()

displays the first six rows of the data frame.

spahn |>

arrange(FIP) |>

select(Year, Age, W, L, ERA, FIP) |>

slice(1:6)

# A tibble: 6 x 6

Year Age W L ERA FIP

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1952 31 14 19 2.98 0.345

2 1953 32 23 7 2.1 0.362

3 1946 25 8 5 2.94 0.415

4 1959 38 21 15 2.96 0.675

5 1947 26 21 10 2.33 0.695

6 1956 35 20 11 2.78 0.800

It is interesting that Spahn’s best FIP seasons occurred during the middle of
his career. Also, note that Spahn had a smaller (better) FIP in 1952 compared
to 1953, although his ERA was significantly larger in 1952.

Since Spahn pitched primarily for two cities, Boston and Milwaukee, suppose
we are interested in comparing his pitching for the two cities. We first use the
filter() function with a logical condition indicating that we want the Tm

variable to be either BSN or MLN. (We introduce the logical OR operator |.) To
compare various pitching statistics for the two teams, we use the summarize()
function. By using the group_by() argument, the spahn data frame is grouped
by Tm, and the mean values of the variables W.L, ERA, WHIP, and FIP) are
computed for each group. The output gives the summary statistics for the
Boston seasons and the Milwaukee seasons.

spahn |>

filter(Tm == "BSN" | Tm == "MLN") |>

group_by(Tm) |>

summarize(

mean_W.L = mean(W.L, na.rm = TRUE),

mean_ERA = mean(ERA),

mean_WHIP = mean(WHIP),

mean_FIP = mean(FIP)

)

# A tibble: 2 x 5
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Tm mean_W.L mean_ERA mean_WHIP mean_FIP

<chr> <dbl> <dbl> <dbl> <dbl>

1 BSN 0.577 3.36 1.33 0.792

2 MLN 0.620 3.12 1.19 0.984

It is interesting that Spahn’s ERAs were typically higher in Boston (a mean
ERA of 3.36 in Boston compared to a mean ERA of 3.12 in Milwaukee), but
Spahn’s FIPs were generally lower in Boston. This indicates that Spahn may
have had a weaker defense or was unlucky with hits in balls in play in Boston.

2.4.4 Merging and selecting from data frames

In baseball research, it is common to have several data frames containing
batting and pitching data for teams. Here we describe several ways of merging
data frames and extracting a portion of a data frame that satisfies a given
condition.

Suppose we read into R data frames NLbatting and ALbatting containing
batting statistics for all National League and American League teams in
the 2011 season. Suppose we wish to combine these data frames into a new
data frame batting. To append two data frames vertically, we can use the
bind_rows() function in the dplyr package.

batting <- bind_rows(NLbatting, ALbatting)

Suppose instead that we have read in the batting data NLbatting and the
pitching data NLpitching for the NL teams in the 2011 season and we wish
to match rows from one data frame to rows of the other using a particular
variable as a key . In this case, a row of the merged data frame would contain
the batting and pitching statistics for a particular team. In this case, we use
the function inner_join() from the dplyr package where we specify the two
data frames and the by argument indicates the common variable (Tm) to merge
by.

NL <- inner_join(NLbatting, NLpitching, by = "Tm")

The new data frame NL contains 16 (the number of NL teams) rows and all of
the variables from both the NLbatting and NLpitching data frames.

A third useful operation is choosing a subset of a data frame that satisfies
a particular condition. Suppose one has the data frame NLbatting and one
wishes to focus on the batting statistics for only the teams who hit over 150
home runs this season. We use the filter() function—the argument is the
logical condition that describes how teams are selected.
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NL_150 <- NLbatting |>

filter(HR > 150)

The new data frame NL_150 contains the batting statistics for the eight teams
who hit over 150 home runs.

2.5 Vectors

2.5.1 Defining and computing with vectors

A fundamental structure in R is a vector : a sequence of values of a given
type, such as numeric or character. A basic way of creating a vector is by
means of the c() (combine) function. To illustrate, suppose we are interested
in exploring the games won and lost by Spahn for the seasons after the war
when he played for the Boston Braves. We create two vectors by use of the
c() function; the games won are stored in the vector W and the games lost are
stored in the vector L. The symbol <- is the assignment character in R. (the
= symbol can also be used for assignment.) These lines can be directly typed
into the Console window. R is case sensitive, so R will distinguish the vector L
from the vector l.

W <- c(8, 21, 15, 21, 21, 22, 14)

L <- c(5, 10, 12, 14, 17, 14, 19)

l

Error in eval(expr, envir, enclos): object 'l' not found

One fundamental design principle of R is its ability to do element-by-element
calculations with vectors. Suppose we wish to compute the winning percentage
for Spahn for these seven seasons. We want to compute the fraction of winning
games and multiply this fraction by 100 to convert it to a percentage. We
create a new vector named win_pct by use of the basic multiplication (*) and
division (/) operators:

win_pct <- 100 * W / (W + L)

We can display these winning percentages by simply typing the variable name:

win_pct

[1] 61.5 67.7 55.6 60.0 55.3 61.1 42.4
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FIGURE 2.2
Scatterplot of the winning percentage against age for Warren Spahn’s seasons
playing for the Boston Braves.

A convenient way of creating patterned data is by use of the function seq().
We use this function to generate the season years from 1946 to 1952 and store
the output to the variable Year.2

Year <- seq(from = 1946, to = 1952)

Year

[1] 1946 1947 1948 1949 1950 1951 1952

For a sequence of consecutive integer values, the colon notation will also work:

Year <- 1946 : 1952

Suppose we wish to calculate Spahn’s age for these seasons. Spahn was born in
April 1921 and we can compute his age by subtracting 1921 from each season
value—the resulting vector is stored in the variable Age.

Age <- Year - 1921

We construct a simple scatterplot of Spahn’s winning percentages (vertical)
against his age (horizontal) by use of the plot() function (see Figure 2.2).

plot(Age, win_pct)

2The function seq(a, b, s) will generate a vector of values from a to b in steps of s.
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We see that Spahn was pretty successful for most of his Boston seasons—his
winning percentage exceeded 55% for six of his seven seasons.

2.5.2 Vector functions

There are many built-in R functions for vectors including mean() (arithmetic
average), sd() (standard deviation), length() (number of vector entries),
sum() (sum of values), max() (maximum value), and sort(). For example,
one can use the mean() function to find the average winning percentage of
Spahn during this seven-season period.

mean(win_pct)

[1] 57.7

It is actually more common to compute a pitcher’s career winning percentage
by dividing his cumulative win total by the total number of wins and losses.
One can compute this career winning percentage by means of the following R
expression.

100 * sum(W) / (sum(W) + sum(L))

[1] 57.3

One can sort the win numbers from low to high with the sort() function:

sort(W)

[1] 8 14 15 21 21 21 22

The cumsum() function is useful for displaying cumulative totals of a vector

cumsum(W)

[1] 8 29 44 65 86 108 122

We see from the output that Spahn won 8 games in the first season, 29 games
in the first two seasons, and so on. The summary() function applied on the
winning percentages displays several summary statistics of the vector values
such as the extremes (low and high values), the quartiles (first and third), the
median, and the mean.

summary(win_pct)

Min. 1st Qu. Median Mean 3rd Qu. Max.

42.4 55.4 60.0 57.7 61.3 67.7
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This output tells us that his median winning percentage was 60, his mean
percentage was 57.66, and the entire group of winning percentages ranged
from 42.42 to 67.74. Note that some of these vector functions (e.g., sort(),
cumsum()) return a vector of the same length as the input vector, while others
(sometimes called summary functions, e.g., mean(), sd(), max()) return a
single value.

2.5.3 Vector index and logical variables

To extract portions of vectors, a square bracket is often used. For example, the
expression

W[c(1, 2, 5)]

[1] 8 21 21

will extract the first, second, and fifth entries of the vector W. The first four
values of the vector can be extracted by typing

W[1 : 4]

[1] 8 21 15 21

By use of a minus index, we remove entries from a vector. For example, if we
wish to remove the first and sixth entries of W, we would type

W[-c(1, 6)]

[1] 21 15 21 21 14

A logical variable is created in R by the use of a vector together with the
operations >, <, == (logical equals), and != (logical not equals). For example,
suppose we are interested in the values in the winning percentage vector
Win.Pct that exceed 60%.

win_pct > 60

[1] TRUE TRUE FALSE FALSE FALSE TRUE FALSE

The result of this calculation is a logical vector; the output indicates that
Spahn had a winning percentage exceeding 60% for the first, second, and sixth
seasons (TRUE), and not exceeding 60% for the remaining seasons (FALSE).
Were there any seasons where Spahn won more than 20 games and his winning
percentage exceeded 60%? We use the logical & (AND) operator to find the
years where W > 20 and Win.Pct > 60.
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(W > 20) & (win_pct > 60)

[1] FALSE TRUE FALSE FALSE FALSE TRUE FALSE

The output indicates that both conditions were true for the second and sixth
seasons.

By using logical variables and the square bracket notation, we can find subsets
of vectors satisfying different conditions. During this period, when did Spahn
have his highest winning percentage? We use

win_pct == max(win_pct)

[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE

to create a logical vector which is true when this condition is satisfied. (Note
the use of the double equal sign notion to indicate logical equality.) Then we
select the corresponding year by indexing Year by this logical vector.

Year[win_pct == max(win_pct)]

[1] 1947

We see that the highest winning percentage occurred in 1947 during this period.

What seasons did the number of decisions (wins plus losses) exceed 30? We
first create a logical vector based on W + L > 30, and then choose the seasons
using this logical vector.

Year[W + L > 30]

[1] 1947 1949 1950 1951 1952

We see that the number of decisions exceeded 30 for the five seasons 1947,
1949, 1950, 1951, and 1952.

2.6 Objects and Containers in R

The things you create using R are called objects. These objects can be of
different types such as numeric, logical, character, and integer. We have already
worked with objects of types numeric and logical in the previous section. We
store a number of objects into a container . A vector is a simple type of container
where we place a number of objects of the same type, say objects that are all
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numeric or all logical. Here we illustrate some of the different object types and
containers that we find useful in working with baseball data.

2.6.1 Character data and data frames

String variables such as the names of teams and players are stored as characters
that are represented by letters and numbers enclosed by double quotes. As
a simple example, suppose we wish to explore information about the World
Series in the years 2008 through 2017. We create three character vectors NL,
AL, and Winner containing abbreviations for the National League winner, the
American League winner, and the league of the team that won the World Series.
Note that we represent each character value by a string of letters enclosed
by double quotes. We also define two numeric vectors: N_Games contains the
number of games of each series, and Year gives the corresponding seasons.

Year <- 2008 : 2017

NL <- c("PHI", "PHI", "SFN", "SLN", "SFN",

"SLN", "SFN", "NYN", "CHN", "LAN")

AL <- c("TBA", "NYA", "TEX", "TEX", "DET",

"BOS", "KCA", "KCA", "CLE", "HOU")

Winner <- c("NL", "AL", "NL", "NL", "NL",

"AL", "NL", "AL", "NL", "AL")

N_Games <- c(5, 6, 5, 7, 4, 7, 7, 5, 7, 7)

There are other ways to store objects besides vectors. For example, suppose we
wish to display the World Series} contestants in a tabular format. A data frame
is a rectangular grid of objects where objects within a column are the same
type. More technically, a data.frame is a list (see Section 2.6.3) of vectors
of the same length (but not necessarily of the same type). A data frame can
be created by the data.frame() and tibble() functions, where the inputs
are different vectors with associated names. Suppose we want to create a data
frame containing the seasons, the National League contestants, the American
League contestants, the number of games played, and the names of the World
Series winners. The above vectors are used to populate the data frame, and
we indicate that the names of the data frame variables are respectively Year,
NL_Team, AL_Team, N_Games, and Winner. Note that the data frame is a more
readable format and keeps the data organized.

WS_results <- tibble(

Year = Year, NL_Team = NL, AL_Team = AL,

N_Games = N_Games, Winner = Winner)

WS_results

# A tibble: 10 x 5

Year NL_Team AL_Team N_Games Winner
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<int> <chr> <chr> <dbl> <chr>

1 2008 PHI TBA 5 NL

2 2009 PHI NYA 6 AL

3 2010 SFN TEX 5 NL

4 2011 SLN TEX 7 NL

5 2012 SFN DET 4 NL

6 2013 SLN BOS 7 AL

7 2014 SFN KCA 7 NL

8 2015 NYN KCA 5 AL

9 2016 CHN CLE 7 NL

10 2017 LAN HOU 7 AL

There are a number of R functions available for exploring character data.
str_length(), str_which(), and str_detect() are just a few of these func-
tions. The stringr packages contains many more. For example, to find the
teams from New York that played in these World Series, we use grep() to
match patterns in the text.

grep("NY", c(AL, NL), value = TRUE)

[1] "NYA" "NYN"

The summarize() function in the dplyr package together with the group_by()
argument will summarize the data frame for each World Series league winner
(variable Winner). To learn about the number of wins by each league in the 10
World Series, we count the rows by use of the n() function.

WS <- WS_results |>

group_by(Winner) |>

summarize(N = n())

WS

# A tibble: 2 x 2

Winner N

<chr> <int>

1 AL 4

2 NL 6

Note that the National League won 6 of these 10 World Series. One can
construct a bar graph of these frequencies by use of the ggplot2 graphics
package. The ggplot() function indicates that we are using the data frame
WS with variables Winner and N, and the geom_col() function says to graph
each frequency value with a column (see Figure 2.3).

ggplot(WS, aes(x = Winner, y = N)) +

geom_col()
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FIGURE 2.3
Bar graph of the number of wins of the American League and National League
teams in the World Series between 2003 and 2012.

Equivalently, we could let ggplot2 do the summarizing for us by using the
geom_bar() function.

ggplot(WS_results, aes(x = Winner)) +

geom_bar()

2.6.2 Factors

A factor is a special way of representing character data. To motivate the
consideration of factors, suppose we construct a frequency table of the National
League representatives to the World Series in the character vector NL_Team.

WS_results |>

group_by(NL_Team) |>

summarize(N = n())

# A tibble: 6 x 2

NL_Team N

<chr> <int>

1 CHN 1

2 LAN 1

3 NYN 1

4 PHI 2
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5 SFN 3

6 SLN 2

Note that R will organize the teams alphabetically (from CHN to STL) in the
frequency table. It may be preferable to organize the teams by the division
(East, Central, and West). We can change the organization of the team labels
by converting this character type to a factor.

We redefine the NL_Team variable by means of the mutate() function (in the
dplyr package) and the factor() function. The basic arguments to factor()

are the vector of data to be converted and a vector levels that gives the
ordered values of the variable. Here we list the values ordered by the East,
Central, and West divisions.

WS_results <- WS_results |>

mutate(

NL_Team = factor(

NL_Team,

levels = c("NYN", "PHI", "CHN", "SLN", "LAN", "SFN")

)

)

One can understand how factor variables are stored by using the str() function
to examine the structure of the variable NL_Team.

str(WS_results$NL_Team)

Factor w/ 6 levels "NYN","PHI","CHN",..: 2 2 6 4 6 4 6 1 3 5

We see that a factor variable is actually encoded by integers (2, 2, 6, . . . )
where the levels are the team names. If we reconstruct the table by use of the
summarize() function, grouping by the variable NL_Team, we obtain the same
frequencies as before, but the teams are now listed in the order specified in
the factor() function.

WS_results |>

group_by(NL_Team) |>

summarize(N = n())

# A tibble: 6 x 2

NL_Team N

<fct> <int>

1 NYN 1

2 PHI 2

3 CHN 1

4 SLN 2
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5 LAN 1

6 SFN 3

Many R functions require the use of factors, and the use of factors gives one
finer control on how character labels are displayed in output and graphs.

2.6.3 Lists

A container such as a vector requires that data values have the same type. For
example, vectors contain all numeric data or all character data; one cannot
mix numeric and character data in a single vector. A data frame is an example
of a container that contain vectors of different types and a list is a general
way of storing “mixed” data. As noted previously, a data.frame is a special
case of a list in which every element is a vector, and all of those vectors have
the same length. In general, the elements of a list can be any R object. To
illustrate, suppose we wish to collect the league that won the World Series (a
character type), the number of games played (a numeric type), and a short
description (a character type) into a single variable. Using the list() function,
we create a new list world_series with components Winner, Number.Games,
and Seasons.

world_series <- list(

Winner = Winner,

Number_Games = N_Games,

Seasons = "2008 to 2017"

)

Once a list such as world_series is defined, there are different ways of accessing
the different components. If we wish to display the number of games played
Number.Games, we can use the list variable name together with the $ symbol
and the component name.

world_series$Number_Games

[1] 5 6 5 7 4 7 7 5 7 7

Or we can use the double square brackets to display the second component of
the list.

world_series[[2]]

[1] 5 6 5 7 4 7 7 5 7 7

The pluck() function from the purrr package also extracts elements from a
list.
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pluck(world_series, "Number_Games")

[1] 5 6 5 7 4 7 7 5 7 7

As an alternative, we can use the single square brackets with the name of the
component in quotes.

world_series["Number_Games"]

$Number_Games

[1] 5 6 5 7 4 7 7 5 7 7

Note that the first three options return vectors and the fourth option returns
a list with the single component Number_Games.

Since a data.frame is a list, the dollar sign operator can be used to extract a
vector from a data.frame as well. The pull() function from the dplyr package
achieves the same effect.

WS_results$NL_Team

[1] PHI PHI SFN SLN SFN SLN SFN NYN CHN LAN

Levels: NYN PHI CHN SLN LAN SFN

pull(WS_results, NL_Team)

[1] PHI PHI SFN SLN SFN SLN SFN NYN CHN LAN

Levels: NYN PHI CHN SLN LAN SFN

Many R functions return lists of data of different types, so it is important
to know how to access the components of a list. Also we will see that lists
provide a convenient way of collecting information of different types (character,
numeric, logical, factors) about teams and players.

2.7 Collection of R Commands

2.7.1 R scripts

The R expressions described in the previous sections can be typed directly in
the Console window and any output will be directly displayed in that window.
Alternatively, R expressions can be stored in a text file called an R script and
executed as a group.
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FIGURE 2.4
Bar graph of the number of games played in best of seven World Series since
1903.

Suppose we wish to run the following R commands. The data frame SeriesPost
in the Lahman package contains information about all MLB playoff games—two
of the variables are wins and losses, the number of games won and lost by
the winning team in the series. First, we create a new data frame ws containing
data from all of the World Series with fewer than 8 games played. Using the
ggplot2 package, we construct the bar graph of the number of games played in
all “best of seven”World Series shown in Figure 2.4.

library(Lahman)

ws <- SeriesPost |>

filter(yearID >= 1903, round == "WS", wins + losses < 8)

ggplot(ws, aes(x = wins + losses)) +

geom_bar(fill = crcblue) +

labs(x = "Number of games", y = "Frequency")

A convenient way to run R scripts is through the text window in the upper-left
window of the RStudio environment. The R commands above are typed in
this window and the script is executed by selecting these lines and pressing
Control-Enter (in a Linux or Windows operating system) or Command-Enter
(in a Macintosh operating system). The screenshot in Figure 2.5 shows the
result of executing this R script. The R output is displayed in the lower-left
Command window. In the Workspace window (upper-right), we see that the
data frame ws has been created. In the Plots window (lower-right), we see the
bar graph as a result of the graphics functions.

Another way of running an R script is by saving the commands in a file, and
then using the source() function to load this file into R. Suppose that a file
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FIGURE 2.5
Snapshot of the RStudio interface after executing commands from an R script.

with the above commands has been saved in the file WorldSeriesLength.R in
the scripts subdirectory of the current working directory. (See Section 2.8.1
for information about changing the working directory.) Then one can execute
this file by typing in the Console window:

source(here::here("scripts/WorldSeriesLength.R"), echo = TRUE)

The echo = TRUE argument is used so that the R output is displayed in the
Console window.

2.7.2 R functions

We have illustrated the use of a number of R built-in packages. One attractive
feature of R is the capability to create one’s own functions to implement specific
computations and graphs of interest.

As a simple example, suppose you are interested in writing a function to
compute a player’s home run rates for a collection of seasons. One inputs a
vector age of player ages, a vector hr of home run counts, and a vector ab of
at-bats. You want the function to compute the player’s home run rates (as a
percentage, rounded to the nearest tenth), and output the ages and rates in a
form amenable to graphing.

The following function hr_rates() will perform the desired calcu-
lations. All functions start with the syntax name_of_function <-

function(arguments), where arguments is a list of input variables.
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All of the work in the function goes inside the curly brackets that follow. The
result of the last line of the function is returned as the output. In our example,
the name of the function is hr_rates and there are three vector inputs age,
hr, and ab. The round() function is used to compute the home run rates.3

The output of this function is a list with two components: x is the vector of
ages, and y is the vector of home run rates.

hr_rates <- function(age, hr, ab) {

rates <- round(100 * hr / ab, 1)

list(x = age, y = rates)

}

To use this function, first it needs to be read into R. This can be done by
entering it directly into the Console window, or by saving the function in a
file, say hr_rates.R, and reading it into R by the source() function. (This
function is also available in the abdwr3edata package.)

source(here::here("scripts/hr_rates.R"))

We illustrate using this function on some home run data for Mickey Mantle for
the seasons 1951 to 1961. We enter Mantle’s home run counts in the vector HR,
the corresponding at-bats in AB, and the ages in Age. We apply the function
hr_rates() with inputs Age, HR, AB, and the output is a list with Mantle’s
ages and corresponding home run rates.

HR <- c(13, 23, 21, 27, 37, 52, 34, 42, 31, 40, 54)

AB <- c(341, 549, 461, 543, 517, 533, 474, 519, 541, 527, 514)

Age <- 19 : 29

hr_rates(Age, HR, AB)

$x

[1] 19 20 21 22 23 24 25 26 27 28 29

$y

[1] 3.8 4.2 4.6 5.0 7.2 9.8 7.2 8.1 5.7 7.6 10.5

One can easily construct a scatterplot (not shown here) of Mantle’s rates
against age by the plot() function on the output of the function.

plot(hr_rates(Age, HR, AB))

Verify that Mantle’s home run rates rose steadily in the first six seasons of his
career.

3The expression round(x, n) rounds x to n decimal places.
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2.8 Reading and Writing Data in R

2.8.1 Importing data from a file

Generally it is tedious to input data manually into R. For the large data files
that we will be working with in this book, it will be necessary to import these
files directly into R. We illustrate this importing process using the complete
pitching profile of Spahn.

We created the file spahn.csv containing Spahn’s pitching statistics and placed
the file in the current working directory. One can check the location of the
current working directory in R by means of typing getwd() in the Console
window:

getwd()

[1] "/home/bbaumer/Dropbox/git/abdwr3e/book"

In RStudio, one can change the working directory by selecting the “Change
Working Directory”option on the Tools menu or by use of the setwd() function.
One can easily import this dataset in RStudio by pressing the “Import Dataset”
button in the top right window. You select the “From Text File” option and find
the dataset of interest. After you select the file, Figure 2.6 shows a snapshot of
the Import Dataset window. One sees the input file and also the format of the

FIGURE 2.6
Snapshot of the Import Dataset window in the RStudio interface.
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data that will be saved into R. It is important to check the button that the
file contains a heading, which means the first line of the input file contains the
variable names.

An alternative method of importing data from a file uses the read_csv()

function from the readr package. This function assumes the file is stored in
a “comma separated value” format, where different values on a single row are
separated by commas. For our example, the following R expression reads the
comma separated value file spahn.csv stored in the data directory in the
current working directory and saves the data into a data frame with name
spahn.

spahn <- read_csv(here::here("data/spahn.csv"))

2.8.2 Saving datasets

We have seen that it is straightforward to read comma-delimited data files
(csv format) into R by use of the read_csv() function. Similarly, we can use
the write_csv() function from the readr package to save datasets in R in the
CSV format.

We return to the Mickey Mantle example where we have vectors of home run
counts, at-bats, and ages, and we use the user-defined function hr_rates()

to compute home run rates. We create a data frame Mantle combining the
vectors Age, HR, AB, and the y component of the list hr_rates using the
tibble() function.

mantle_hr_rates <- hr_rates(Age, HR, AB)

Mantle <- tibble(

Age, HR, AB, Rates = mantle_hr_rates$y

)

We use the write_csv() function to save the data to the current working
directory. This function has two arguments: the R object Mantle that we wish
to save, and the output file path data/mantle.csv.

write_csv(Mantle, here::here("data/mantle.csv"))

It is good to confirm (using list.files()) that a new file mantle.csv exists
in the current working directory.

list.files(here::here("data"), pattern = "mantle")

[1] "mantle.csv"
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2.9 Packages

Many useful functions are available through the base R system. However, one
attractive feature of R is the availability of collections of functions and datasets
in R packages. Currently, there are over 20,000 packages contributed by R
users available on the R website (https://cran.r-project.org/), and these
packages expand the capabilities of the R system. In this book, we focus on a
few contributed packages that we find useful in our baseball work.

To illustrate installing and loading an R package, the Lahman package contains
the data files from the Lahman database described in Section 1.2. Assuming
one is connected to the Internet, one can install the current version of this
package into R by means of the command

install.packages("Lahman")

Alternately, one can install packages by use of the Install Packages button on
the Package tab in RStudio.

After a package has been installed, then one needs to load the package into
R to have access to the functions and datasets. For example, to load the new
package Lahman, one types

library(Lahman)

To confirm that the package has been loaded correctly, we use the help()

function to learn about the dataset Batting in the Lahman package. (A general
discussion of the help() function is given in Section 2.11.)

?Batting

When one launches R, one needs to load the packages that are not automatically
loaded in the system.

2.10 Splitting, Applying, and Combining Data

In many situations, one is interested in splitting a data frame into parts,
applying some operation on each part, and then combining the results in a new
data frame. This type of “split, apply, combine” operation is facilitated using
the group_by() and summarize() functions in the dplyr package. Here we

https://cran.r-project.org
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illustrate this process on the Lahman batting database. In this work, we review
some other handy data frame manipulation functions previously discussed.

Suppose we are interested in looking at the great home run hitters in baseball
history. Specifically, we want to answer the question “Who hit the most home
runs in the 1960s?”

We begin by loading in the Lahman package.

library(Lahman)

Remember that the data frame Batting contains the season batting statistics
for all players in baseball history. Since we are focusing on the 1960s, the
filter() function is used to select batting data only for the seasons between
1960 and 1969, creating the new data frame Batting_60.

Batting_60 <- Batting |>

filter(yearID >= 1960, yearID <= 1969)

Suppose we would like to compute the total number of home runs for each player
in the data frame Batting_60. The key variables are the player identification
code playerID and the home run count HR. We want to split the data frame
by each player id, and then compute the sum of home runs for each player.
In the code below, the splitting is accomplished by the group_by() argument,
and the sum of home runs is computed using the summarize() function.

hr_60 <- Batting_60 |>

group_by(playerID) |>

summarize(HR = sum(HR))

The output is a data frame hr_60 containing two variables, playerID and the
home run count HR.

Using the arrange() function with the desc() argument, we sort this data
frame in descending order so that the best home run hitters are on the top,
and display the first four lines of this data frame.

hr_60 |>

arrange(desc(HR)) |>

slice(1:4)

# A tibble: 4 x 2

playerID HR

<chr> <int>

1 killeha01 393

2 aaronha01 375
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3 mayswi01 350

4 robinfr02 316

The most prolific home run hitters in the 1960s were Harmon Killebrew, Hank
Aaron, Willie Mays, and Frank Robinson.

We could also perform this sequence of operations in a single pipeline. This has
the advantage of not cluttering the workspace with unnecessary intermediate
data sets.

Batting |>

filter(yearID >= 1960, yearID <= 1969) |>

group_by(playerID) |>

summarize(HR = sum(HR)) |>

arrange(desc(HR)) |>

slice(1:4)

2.10.1 Iterating using map()

A key competency in data science is the ability to iterate an analytic operation
over a sequences of inputs. Pursuant to the discussion above, suppose now that
we want to identify the player who hit the most home runs in each decade
across baseball history.

First, we write a simple function that will take a data frame of batting statistics
and return one row corresponding to the player with the most home runs in
that set. This requires only a slight modification of the previous code.

hr_leader <- function(data) {

data |>

group_by(playerID) |>

summarize(HR = sum(HR)) |>

arrange(desc(HR)) |>

slice(1)

}

Next, we need to split the Batting data frame into pieces based on the decade.
This information is not stored in Batting, so we use mutate() to create a new
variable called decade that computes the first year of the decade for every
value of yearID. Then, we use the group_by() function to organize Batting
into pieces that share common values of decade. This results in a grouped
data frame, with each group corresponding to a single decade.

Batting_decade <- Batting |>

mutate(decade = 10 * floor(yearID / 10)) |>

group_by(decade)
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Next, we use the group_keys() function to retrieve a vector of the first year
in each decade. We’ll need these later.

decades <- Batting_decade |>

group_keys() |>

pull("decade")

decades

[1] 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980

[13] 1990 2000 2010 2020

Finally, we use the group_split() function to break Batting_decade

into pieces, and the map() function from the purrr package to apply our
hr_leader() function to each of those data frames. The set_names() func-
tion and the .id argument to bind_rows() ensure that the variable displaying
the first year of the decade gets the right name.

Batting_decade |>

group_split() |>

map(hr_leader) |>

set_names(decades) |>

bind_rows(.id = "decade")

# A tibble: 16 x 3

decade playerID HR

<chr> <chr> <int>

1 1870 pikeli01 21

2 1880 stoveha01 89

3 1890 duffyhu01 83

4 1900 davisha01 67

5 1910 cravaga01 116

6 1920 ruthba01 467

7 1930 foxxji01 415

8 1940 willite01 234

9 1950 snidedu01 326

10 1960 killeha01 393

11 1970 stargwi01 296

12 1980 schmimi01 313

13 1990 mcgwima01 405

14 2000 rodrial01 435

15 2010 cruzne02 346

16 2020 judgeaa01 110

Note that this confirms our previous finding that Harmon Killebrew hit the
most home runs in the 1960s, but also informs us that Babe Ruth holds the
record for most home runs hit in a single decade (467 in the 1920s), followed
by Alex Rodriguez (who hit 435 home runs in the 2000s).
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2.10.2 Another example

Using the same Batting data frame of season batting statistics, suppose we
are interested in collecting the career at-bats, career home runs, and career
strikeouts for all players in baseball history with at least 5000 career at-bats.
Both home runs and strikeouts are of interest since we suspect there may be
some association between a player’s strikeout rate (defined by SO/AB) and
his home run rate HR/AB.

This operation is done in two steps. First, we create a new data frame consisting
of the career AB, HR, and SO for all batters. Second, by use of the filter()

function, the batting seasons are selected from the data frame for the players
with 5000 AB.

The function summarize() in the dplyr package is useful for the first operation.
We want to compute the sum of AB over the seasons of a player’s career. The
group_by() function indicates we wish to split the Batting data frame by the
playerID variable, and tAB = sum(AB, na.rm = TRUE) indicates we wish to
summarize each data frame “part” by computing the sum of the AB. (Some
of the AB values will be missing and coded as NA, and the na.rm = TRUE will
remove these missing values before taking the sum.) The new data frame
long_careers contains the career AB for all players.

long_careers <- Batting |>

group_by(playerID) |>

summarize(

tAB = sum(AB, na.rm = TRUE),

tHR = sum(HR, na.rm = TRUE),

tSO = sum(SO, na.rm = TRUE)

)

Now that we have this new variable tAB, one can now use the filter()

function to choose only the season batting statistics for the players with 5000
AB.

Batting_5000 <- long_careers |>

filter(tAB >= 5000)

The resulting data frame Batting_5000 contains the career AB, HR, and SO
for all batters with at least 5000 career AB. To confirm, the first six lines of
the data frame are displayed by the slice() function.

Batting_5000 |>

slice(1:6)
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# A tibble: 6 x 4

playerID tAB tHR tSO

<chr> <int> <int> <int>

1 aaronha01 12364 755 1383

2 abreubo01 8480 288 1840

3 adamssp01 5557 9 223

4 adcocjo01 6606 336 1059

5 alfoned01 5385 146 617

6 allendi01 6332 351 1556

Is there an association between a player’s home run rate and his strikeout
rate? Using the geom_point() function, we construct a scatterplot of HR/AB
and SO/AB. Using the geom_smooth() function, we add a smoothing curve (see
Figure 2.7).

ggplot(Batting_5000, aes(x = tHR / tAB, y = tSO / tAB)) +

geom_point() + geom_smooth(color = crcblue)

It is clear from the graph that batters with higher home run rates tend to have
higher strikeout rates.

FIGURE 2.7
Scatterplot of the homerun rates and strikeout rates of all players with at least
5000 career at-bats. A smoothing curve is added to the plot to show that home
run rates and strikeout rates have a positive association.
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2.11 Getting Help

The Help menu in RStudio provides general documentation about the R system
(see the R Help option). From the Help menu, we also find general information
about the RStudio system such as keyboard shortcuts. In addition, R contains
an online help system providing documentation on R functions and datasets.
For example, suppose you wish to learn about the geom_point() function that
constructs a scatterplot, a statistical graphical display discussed in Chapter 3.
By typing in the Console window a question mark followed by the function
name,

?geom_point

you see a long description of this function including all of the possible function
arguments. To find out about related functions, one can preface geom_point
by two question marks to find all objects that contain this character string:

??geom_point

RStudio provides an additional online help system that is especially helpful
when one does not know the exact spelling of an R function. For example,
suppose I want to construct a dot chart, but all I know is that the function
contains the string “geom”. In the Console window, I type “geom” followed with
a Tab. RStudio will complete the code, forming geom_point() and showing
an abbreviated description of the function. In the case where the character
string does not uniquely define the function, RStudio will display all of the
functions with that string.

2.12 Further Reading

R is an increasingly popular system for performing data analysis and graphics,
and a large number of books are available which introduce the system. The
manual “An Introduction to R” (Venables, Smith, and R Development Core
Team 2011), available through the R and RStudio systems, provides a broad
overview of the R language, and the manual “R Data Import/Export” provides
an extended description of R capabilities to import and export datasets.
Kabacoff (2010) and the accompanying website https://www.statmethods.net
provide helpful advice on specific R functions on data input, data management,
and graphics. Albert and Rizzo (2012) provide an example-based introduction

https://www.statmethods.net
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to R, where different chapters are devoted to specific statistics topics such as
exploratory fitting, modeling, graphics, and simulation.

Several introductory data science textbooks use R extensively. Wickham,
Çetinkaya-Rundel, and Grolemund (2023) is a free, online book that illustrates
how the tidyverse tools can be used for data science. Benjamin S. Baumer,
Kaplan, and Horton (2021b) is a data science textbook that employs tidyverse-
compliant code. Ismay and Kim (2019) is another free, online textbook that
uses the tidyverse to explicate statistical and data science concepts.

2.13 Exercises

1. Top Base Stealers in the Hall of Fame

The following table gives the number of stolen bases (SB), the number of times
caught stealing (CS), and the number of games played (G) for nine players
currently inducted in the Hall of Fame.

Player SB CS G

Rickey Henderson 1406 335 3081
Lou Brock 938 307 2616
Ty Cobb 896 178 3035
Tim Raines 808 146 2502
Eddie Collins 741 173 2826
Max Carey 738 92 2476
Joe Morgan 689 162 2649
Ozzie Smith 580 148 2573
Barry Bonds 514 141 2986
Ichiro Suzuki 509 117 2653
Luis Aparicio 506 136 2601
Paul Molitor 504 131 2683
Roberto Alomar 474 114 2379

a. In R, place the stolen base, caught stealing, and game counts in the vectors
SB, CS, and G.

b. For all players, compute the number of stolen base attempts SB + CS and
store in the vector SB.Attempt.

c. For all players, compute the success rate Success.Rate = SB /

SB.Attempt.
d. Compute the number of stolen bases per game SB.Game = SB / Game.
e. Construct a scatterplot of the stolen bases per game against the success

rates. Are there particular players with unusually high or low stolen base
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success rates? Which player had the greatest number of stolen bases per
game?

2. Character, Factor, and Logical Variables in R

Suppose one records the outcomes of a batter in ten plate appearances:

Single, Out, Out, Single, Out, Double, Out, Walk, Out, Single

a. Use the c() function to collect these outcomes in a character vector
outcomes.

b. Use the table() function to construct a frequency table of outcomes.
c. In tabulating these results, suppose one prefers the results to be ordered

from least-successful to most-successful. Use the following code to convert
the character vector outcomes to a factor variable f.outcomes.

f.outcomes <- factor(

outcomes,

levels = c("Out", "Walk", "Single", "Double")

)

Use the table() function to tabulate the values in f.outcomes. How does the
output differ from what you saw in part (b)?

d. Suppose you want to focus only on the walks in the plate appearances.
Describe what is done in each of the following statements.

outcomes == "Walk"

sum(outcomes == "Walk")

3. Pitchers in the 350-Wins Club

The following table lists all nine pitchers who have won at least 350 career
wins.

Player W L SO BB

Pete Alexander 373 208 2198 951
Roger Clemens 354 184 4672 1580
Pud Galvin 365 310 1807 745
Walter Johnson 417 279 3509 1363
Greg Maddux 355 227 3371 999
Christy Mathewson 373 188 2507 848
Kid Nichols 362 208 1881 1272
Warren Spahn 363 245 2583 1434
Cy Young 511 315 2803 1217

a. In R, place the wins and losses in the vectors W and L, respectively. Also,
create a character vector Name containing the last names of these pitchers.
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b. Compute the winning percentage for all pitchers defined by 100×W/(W +L)
and put these winning percentages in the vector win_pCT.

c. By use of the command

wins_350 <- tibble(Name, W, L, win_pCT)

create a data frame wins_350 containing the names, wins, losses, and winning
percentages. d. By use of the arrange() function, sort the data frame wins_350
by winning percentage. Among these pitchers, who had the largest and smallest
winning percentages?

4. Pitchers in the 350-Wins Club, Continued

a. In R, place the strikeout and walk totals from the 350 win pitchers in
the vectors SO and BB, respectively. Also, create a character vector Name
containing the last names of these pitchers.

b. Compute the strikeout-walk ratio by SO/BB and put these ratios in the
vector SO.BB.Ratio.

c. By use of the command

SO.BB <- tibble(Name, SO, BB, SO.BB.Ratio)

create a data frame SO.BB containing the names, strikeouts, walks, and
strikeout-walk ratios. d. By use of the filter() function, find the pitch-
ers who had a strikeout-walk ratio exceeding 2.8. e. By use of the arrange()
function, sort the data frame by the number of walks. Did the pitcher with
the largest number of walks have a high or low strikeout-walk ratio?

5. Pitcher Strikeout/Walk Ratios

a. Read the Lahman Pitching data into R.
b. The following script computes the cumulative strikeouts, cumulative walks,

mid career year, and the total innings pitched (measured in terms of outs)
for all pitchers in the data file.

career_pitching <- Pitching |>

group_by(playerID) |>

summarize(

SO = sum(SO, na.rm = TRUE),

BB = sum(BB, na.rm = TRUE),

IPouts = sum(IPouts, na.rm = TRUE),

midYear = median(yearID, na.rm = TRUE)

)

This new data frame is named career_pitching. Run this code and use the
inner_join() function to merge the Pitching and career_pitching data
frames.
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c. Use the filter() function to construct a new data frame career_10000
consisting of data for only those pitchers with at least 10,000 career IPouts.

d. For the pitchers with at least 10,000 career IPouts, construct a scatterplot
of mid career year and ratio of strikeouts to walks. Comment on the general
pattern in this scatterplot.
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Graphics

3.1 Introduction

To illustrate methods for creating graphs in R in the ggplot2 package (Wickham
2016b), consider all the career batting statistics for the current members of
the Hall of Fame. The data frame hof_batting in the abdwr3edata package
contains the career batting statistics for this group. We copy these data into a
data frame named hof.

library(tidyverse)

library(abdwr3edata)

hof <- hof_batting

If we remove the pitchers’ batting statistics from the dataset, one has statistics
for 167 non-pitchers. The type of graph we use depends on the measurement
scale of the variable. There are two fundamental data types—measurement and
categorical—which are represented in R as numeric and character variables.
We initially describe graphs for a single character variable and a single numeric
variable, and then describe graphical displays helpful for understanding rela-
tionships between the variables. Using the ggplot2 system, it is easy to modify
the attributes of a graph by adding labels and changing the style of plotting
symbols and lines. After describing the graphical methods, we describe the
process of creating graphs for two home run stories. In Section 3.7, we compare
the home run career progress of four great sluggers in baseball history, while
Section 3.8 we illustrate the famous home run race of Mark McGwire and
Sammy Sosa during the 1998 season.

3.2 Character Variable

3.2.1 A bar graph

The Hall-of-Famers played during different eras of baseball; one common
classification of eras is “19th Century” (up to the 1900 season), “Dead Ball”
(1901 through 1919), “Lively Ball” (1920 though 1941), “Integration” (1942

DOI: 10.1201/9781032668239-3 66
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through 1960), “Expansion” (1961 through 1976), “Free Agency” (1977 through
1993), and “Long Ball” (after 1993). We want to create a new character variable
Era giving the era for each player. First, we define a player’s mid career
(variable MidCareer) as the average of his first and last seasons in baseball. We
then use the mutate() and cut() functions to create the new factor variable
Era—the arguments to the function are the numeric variable to be discretized,
the vector of cut points, and the vector of labels for the categories of the factor
variable.

hof <- hof |>

mutate(

MidCareer = (From + To) / 2,

Era = cut(

MidCareer,

breaks = c(1800, 1900, 1919, 1941, 1960, 1976, 1993, 2050),

labels = c(

"19th Century", "Dead Ball", "Lively Ball", "Integration",

"Expansion", "Free Agency", "Long Ball"

)

)

)

A frequency table of the variable Era can be constructed using the summarize()
function with the n() function. Below, we store that output in the data frame
hof_eras.

hof_eras <- hof |>

group_by(Era) |>

summarize(N = n())

hof_eras

# A tibble: 7 x 2

Era N

<fct> <int>

1 19th Century 18

2 Dead Ball 19

3 Lively Ball 46

4 Integration 24

5 Expansion 23

6 Free Agency 22

7 Long Ball 15

We construct a bar graph from those data using the geom_bar() function in
ggplot2.

The aes() function defines aesthetics. There are mappings between visual
elements on the plot and variables in the data frame. Here we map the character
vector Era to the x aesthetic, which defines horizontal positioning. Figure 3.1
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FIGURE 3.1
Bar graph of the era of the Hall of Fame non-pitchers.

shows the resulting graph. We see that a large number of these Hall of Fame
players played during the Lively Ball era.

ggplot(hof, aes(x = Era)) + geom_bar()

3.2.2 Add axes labels and a title

As good practice, graphs should have descriptive axes labels and a title for
describing the main message of the display. In the ggplot2 package, the functions
xlab() and ylab() add horizontal and vertical axis labels and the ggtitle()
function adds a title. In the following code to construct a bar graph, we add the
labels “Baseball Era”and“Frequency”and add the title “Era of the Nonpitching
Hall of Famers”. The enhanced plot is shown in Figure 3.2.

ggplot(hof, aes(Era)) +

geom_bar() +

xlab("Baseball Era") +

ylab("Frequency") +

ggtitle("Era of the Nonpitching Hall of Famers")

3.2.3 Other graphs of a character variable

There are alternative graphical displays for a table of frequencies of a char-
acter variable. For the data frame of era frequencies, we use the function
geom_point() to construct a Cleveland-style (Cleveland 1985) dot plot shown
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FIGURE 3.2
Era of the non-pitching Hall of Famers.

FIGURE 3.3
Dot plot of era of the Hall of Fame non-pitchers.

in Figure 3.3. A dot plot is helpful when there are a large number of cate-
gories of the character vector. The dots are colored red by the color = "red"

argument in geom_plot().
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ggplot(hof_eras, aes(Era, N)) +

geom_point(color = "red") +

xlab("Baseball Era") +

ylab("Frequency") +

ggtitle("Era of the Nonpitching Hall of Famers") +

coord_flip()

3.3 Saving Graphs

After a graph is produced in R, it is straightforward to export it to one of the
usual graphics formats so that it can be used in a document, blog, or website.
We outline the steps for saving graphs in the RStudio interface.

If a graph appears in the Plots window of RStudio, then the Export menu
allows one to “Save Plot as Image”, “Save Plot as PDF”, or “Copy Plot to the
Clipboard”. If one chooses the “Save Plot as Image” option, then by choosing
an option from a drop-down menu, one can save the graph in PNG, JPEG,
TIFF, BMP, metafile, clipboard, SVG, or EPS formats. The PNG format is
convenient for uploading to a web page, and the EPS and PDF formats are
well-suited for use in a LATEX document. The metafile and clipboard options
are useful for insertion of the graph into a Microsoft Word document.

Alternately, plots can be saved by use of R functions typed in the Console
window. For example, suppose we wish to save the bar graph shown in Figure 3.2
in a graphics file of PNG format. We first type the R commands to produce
the graph. Then we use the special ggsave() function where the argument
is the name of the saved graphics file. Since the extension of the filename is
png, the graph will be saved in PNG format.

ggplot(hof, aes(Era)) +

geom_bar() +

xlab("Baseball Era") +

ylab("Frequency") +

ggtitle("Era of the Nonpitching Hall of Famers")

ggsave("bargraph.png")

If we look at the current directory, we will see a new file bargraph.png

containing the image in PNG format. The graph can be saved in alternative
graphics formats by use of different extensions. For example the argument to
ggsave() would be pdf if we wished to save the graph in PDF format or jpeg
if we wanted save in the JPEG format.
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Other methods of saving graphs are useful if one wishes to save a number
of graphs in a single file. For example, one can use the patchwork library to
combine more than one ggplot into a single ggplot object. This composite
plot can then be saved using the aforementioned ggsave() command. For
example, if one types:

library(patchwork)

p1 <- ggplot(hof, aes(Era)) + geom_bar()

p2 <- ggplot(hof_eras, aes(Era, N)) + geom_point()

p1 + p2

ggsave("graphs.pdf")

then the bar graph and the dot plot graph will be saved together in the PDF
file graphs.pdf.

3.4 Numeric Variable: One-Dimensional Scatterplot and
Histogram

When one collects a numeric variable such as a batting average, an on-base
percentage, or an OPS from a group of players, one typically wants to learn
about its distribution. For example, if we examine OPS values for the nonpitcher
Hall of Fame inductees, we are interested in learning about the general shape
of the OPS values. For example, is the distribution of OPS values symmetric,
or is it right or left skewed? Also we are interested in learning about the
typical or representative Hall of Fame OPS value, and how the OPS values
are spread out. Graphical displays provide a quick visual way of studying
distributions of baseball statistics.

For a single numeric variable, two useful displays for visualizing a distribution
are the one-dimensional scatterplot and the histogram. A one-dimensional
scatterplot is basically a number line graph, where the values of the statistics
are plotted over a number line ranging over all possible values of the variable.
We construct a graph of the OPS values for the Hall of Fame inductees in
ggplot2 by the geom_jitter() function. In the data frame hof, the OPS is
mapped to the x aesthetic and the dummy variable y is set to a constant value.
The theme elements are chosen to remove the tick marks, text, and title from
the y-axis.

ggplot(hof, aes(x = OPS, y = 1)) +

geom_jitter(height = 0.2) +

ylim(0, 2) +

theme(
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FIGURE 3.4
One-dimensional scatterplot of the OPS values of the Hall of Fame players.

axis.title.y = element_blank(),

axis.text.y = element_blank(),

axis.ticks.y = element_blank()

) +

coord_fixed(ratio = 0.03)

The resulting graph is shown in Figure 3.4. One sees that most of the OPS
values fall between 0.700 and 1.000, but there are a few unusually high values
that could merit further exploration.

A second graphical display for a numeric variable is a histogram where the values
are grouped into bins of equal width and the bin frequencies are displayed
as non-overlapping bars over the bins. A histogram of the OPS values is
constructed in the ggplot2 system by use of the function geom_histogram().
The only aesthetic mapping is to the variable OPS (see Figure 3.5).

ggplot(hof, aes(x = OPS)) +

geom_histogram()

One issue in constructing a histogram is the choice of bins, and the function
geom_histogram() will typically make reasonable choices for the bins to
produce a good display of the data distribution. One can select one’s own
bins in geom_histogram() by use of the argument breaks. For example, if
one wanted to choose the alternative bin endpoints 0.4, 0.5, . . . , 1.2, then one
could construct the histogram by the following code (see Figure 3.6). By use
of the color and fill arguments, the lines of the bars are colored white and
the bars are filled in orange.

ggplot(hof, aes(x = OPS)) +

geom_histogram(

breaks = seq(0.4, 1.2, by = 0.1),

color = "white", fill = "orange"

)
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FIGURE 3.5
Histogram of the OPS values of the Hall of Fame players.

FIGURE 3.6
Histogram of the OPS values of the Hall of Fame players using different bins
and different color and fill options.
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3.5 Two Numeric Variables

3.5.1 Scatterplot

When one collects two numeric variables for many players, one is interested in
exploring their relationship. A scatterplot is a standard method for graphing
two numeric variables, and one can produce a scatterplot in the ggplot2 system
by using the x and y aesthetics and the geom_point() function.

In the previous section we explored the distribution of the OPS statistic. Is
there any relationship between a player’s OPS and the baseball era? Were
there particular seasons where the Hall of Fame OPS values were unusually
high or low?

We can answer these questions by constructing a scatterplot using
geom_point() where the variables MidCareer and OPS are respectively mapped
to the x and y aesthetics. As it can be difficult to visually detect scatterplot
patterns, it is helpful to add a smoothing curve by use of the geom_smooth()
function to show the general association. This function by default implements
the popular LOESS smoothing method (Cleveland 1979).

ggplot(hof, aes(MidCareer, OPS)) +

geom_point() +

geom_smooth()

In viewing the scatterplot in Figure 3.7, we notice three unusually large career
OPS values, and we’d like to identify the players with these extreme values.

FIGURE 3.7
Scatterplot of the OPS and Midcareer values of the Hall of Fame players.
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FIGURE 3.8
Scatterplot of the OPS and Midcareer values of the Hall of Fame players with
points identified.

Figure 3.8 shows the scatterplot with points identified. We achieve this by
adding text labels to the plot using the geom_text_repel() function form the
ggrepel package. Note that we use filter() to only send a small subset of
the data to this function. Also the labels are colored red by use of the color
= "red" argument to geom_text_repel().

library(ggrepel)

ggplot(hof, aes(MidCareer, OPS)) +

geom_point() +

geom_smooth() +

geom_text_repel(

data = filter(hof, OPS > 1.05 | OPS < .5),

aes(MidCareer, OPS, label = Player), color = "red"

)

What do we learn from Figures 3.7 and 3.8? The typical OPS of a Hall of
Famer has stayed pretty constant through the years. But there was an increase
in the OPS during the 1930s when Babe Ruth and Lou Gehrig were in their
primes. It is interesting to note that the variability of the OPS values among
these players seems smaller in recent seasons.

3.5.2 Building a graph, step-by-step

Generally, constructing a graph is an iterative process. One begins by choosing
variables of interest and a particular graphical method (such as a scatterplot.
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FIGURE 3.9
Scatterplot of the OPS and SLG values of the Hall of Fame players.

By inspecting the resulting display, one will typically find ways for the graph
to be improved. By using several of the optional arguments, one can make
changes to the graph that result in a clearer and more informative display.
We illustrate this graph construction process in the situation where one is
exploring the relationship between two variables.

There are two dimensions of hitting, the ability to get on base, measured by
on-base percentage (OBP), and the ability to advance runners already on base,
measured by slugging percentage (SLG). One can better understand the hitting
performances of players by constructing a scatterplot of these two measures.
We use the geom_plot() function to construct a scatterplot of OBP and SLG
(see Figure 3.9).

(p <- ggplot(hof, aes(OBP, SLG)) + geom_point())

Looking at Figure 3.9, we see several problems with this display. Notably,
the graph would be easier to read if more descriptive labels were used for
the two axes. We plot a new figure to incorporate these new ideas. We use
the xlab() and ylab() functions to replace OBP and SLG respectively with
“On-Base Percentage”and“Slugging Percentage”. The updated display is shown
in Figure 3.10.

(p <- p +

xlab("On Base Percentage") +



76 Graphics

FIGURE 3.9
Scatterplot of the OPS and SLG values of the Hall of Fame players.

By inspecting the resulting display, one will typically find ways for the graph
to be improved. By using several of the optional arguments, one can make
changes to the graph that result in a clearer and more informative display.
We illustrate this graph construction process in the situation where one is
exploring the relationship between two variables.

There are two dimensions of hitting, the ability to get on base, measured by
on-base percentage (OBP), and the ability to advance runners already on base,
measured by slugging percentage (SLG). One can better understand the hitting
performances of players by constructing a scatterplot of these two measures.
We use the geom_plot() function to construct a scatterplot of OBP and SLG
(see Figure 3.9).

(p <- ggplot(hof, aes(OBP, SLG)) + geom_point())

Looking at Figure 3.9, we see several problems with this display. Notably,
the graph would be easier to read if more descriptive labels were used for
the two axes. We plot a new figure to incorporate these new ideas. We use
the xlab() and ylab() functions to replace OBP and SLG respectively with
“On-Base Percentage”and“Slugging Percentage”. The updated display is shown
in Figure 3.10.

(p <- p +

xlab("On Base Percentage") +

Two Numeric Variables 77

FIGURE 3.10
Scatterplot of the OPS and SLG values of the Hall of Fame players with
descriptive labels for the two axes.

ylab("Slugging Percentage"))

Equivalently, we could change the limits and the labels by appealing directly
to the scale_x_continuous() and scale_y_continuous() functions.

A good measure of batting performance is the OPS statistic defined by OPS =
OBP + SLG. To evaluate hitters in our graph on the basis of OPS, it would
be helpful to draw constant values of OPS on the graph. If we represent OBP
and SLG by x and y, suppose we wish to draw a line where OPS = 0.7 or
where x + y = 0.7. Equivalently, we want to draw the function y = 0.7 − x on
the graph; this is accomplished in the ggplot2 system by the geom_abline()
function where the arguments to the function are given by slope = −1 and
intercept = 0.7. Similarly, we apply the geom_abline() function three more
times to draw lines on the graph where OPS takes on the values 0.8, 0.9, and
1.0. The resulting display is shown in Figure 3.11.

(p <- p +

geom_abline(

slope = -1,

intercept = seq(0.7, 1, by = 0.1),

color = "red"

)

)

In our final iteration, we add labels to the lines showing the constant values of
OPS, and we label the points corresponding to players having a lifetime OPS
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FIGURE 3.11
Scatterplot of the OPS and SLG values of the Hall of Fame players with
reference lines.

exceeding one. Each of the line labels is accomplished using the annotate()
function—the three arguments are the x location and y location where the
text is to be drawn, and label is the vector of strings of text to be displayed
(see Figure 3.12).

p +

annotate(

"text", angle = -13,

x = rep(0.31, 4) ,

y = seq(0.4, 0.7, by = 0.1) + 0.02,

label = paste("OPS = ", seq(0.7, 1, by = 0.1)),

color = "red"

)

Rather than input these labels manually, we could create a data frame with
the coordinates and labels, and then use the geom_text() function to add the
labels to the plot.

ops_labels <- tibble(

OBP = rep(0.3, 4),

SLG = seq(0.4, 0.7, by = 0.1) + 0.02,

label = paste("OPS =", OBP + SLG),

angle = -13

)
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FIGURE 3.12
Scatterplot of the OPS and SLG values of the Hall of Fame players with
reference lines and labels.

p +

geom_text(

data = ops_labels,

hjust = "left",

aes(label = label, angle = angle),

color = "red"

)

This final graph is very informative about the batting performance of these Hall
of Famers. We see that a large group of these batters have career OPS values
between 0.8 and 0.9, and only six players (Hank Greenberg, Rogers Hornsby,
Jimmie Foxx, Ted Williams, Lou Gehrig, and Babe Ruth) had career OPS
values exceeding 1.0. Points to the right of the major point cloud correspond to
players with strong skills in getting on-base, but relatively weak in advancing
runners home. In contrast the points to the left of the major point cloud
correspond to hitters who are better in slugging than in reaching base.

3.6 A Numeric Variable and a Factor Variable

When one collects a numeric variable such as OPS and a factor such as era, one
is typically interested in comparing the distributions of the numeric variable
across different values of the factor. In the ggplot2 system, the geom_jitter()
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FIGURE 3.13
One-dimensional scatterplots of HR Rates by era.

function can be used to construct parallel stripcharts or number line graphs
for values of the factor, and the geom_boxplot() function constructs parallel
boxplots (graphs of summaries of the numeric variable) across the factor.

Home run hitting has gone through dramatic changes in the history of baseball,
and suppose we are interested in exploring these changes over baseball eras.
Suppose one focuses on the home run rate defined by HR/AB for our Hall of
Fame players. We add a new variable hr_rate to the data frame hof:

hof <- hof |>

mutate(hr_rate = HR / AB)

3.6.1 Parallel stripcharts

One constructs parallel stripcharts of hr_rate by Era by using the
geom_jitter() function; the x and y aesthetics are mapped to hr_rate and
Era, respectively. We use the height = 0.1 argument to reduce the amount
of the vertical jitter of the points.

ggplot(hof, aes(hr_rate, Era)) +

geom_jitter(height = 0.1)

Figure 3.13 shows how the rate of hitting home runs has changed over eras.
Home runs were rare in the 19th Century and Dead Ball eras. In the Lively
Ball era, home run hitting was still relatively low, but there were some
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FIGURE 3.14
Parallel boxplots of HR Rates by era.

unusually good home run hitters such as Babe Ruth. The home run rates in
the Integration, Expansion, and Free Agency eras were pretty similar.

3.6.2 Parallel boxplots

An alternative display for comparing distributions uses the geom_boxplot()
function. Here the x and y aesthetics are mapped to Era and hr_rate, respec-
tively. The function coord_flip() will flip the axes and display the boxplots
horizontally. By use of the color and fill arguments, we display orange
boxplots with brown edges.

ggplot(hof, aes(Era, hr_rate)) +

geom_boxplot(color = "brown", fill = "orange") +

coord_flip()

The parallel boxplot display is shown in Figure 3.14. Each rectangle in the
display shows the location of the lower quartile, the median, and the upper
quartile, and lines are drawn to the extreme values. Unusual points (outliers)
that fall far from the rest of the distribution are indicated by points outside
the boxes. This graph confirms the observations we made when we viewed the
stripchart display. Home run hitting was low in the first two eras and started
to increase in the Lively Ball era. It is interesting that the only outlier among
these Hall of Famers was Babe Ruth’s career home run rate of 0.085.
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3.7 Comparing Ruth, Aaron, Bonds, and A-Rod

In Chapter 1, we constructed a graph comparing the career home run trajecto-
ries of four great sluggers in baseball history. In this section, we describe how
we used R to create this graph. First, we need to load in the relevant data into
R. Next, we need to construct data frames containing the home run and age
data for the sluggers. Last, we use R functions to construct the graph.

3.7.1 Getting the data

To obtain the graph, we need to collect the number of home runs, at-bats, and
the age for each season of each slugger’s career. From the Lahman package, the
relevant data frames are People and Batting. From the data frame People,
we obtain the player ids and birth years for the four players. The Batting

data frame is used to extract the home run and at-bats information.

We begin by reading in the Lahman package.

library(Lahman)

From the People data frame, we wish to extract the player id and the birth
year for a particular player.

• The filter() function is used to extract the rows in the People data
frame matching each player’s id.

• In Major League Baseball, a player’s age for a season is defined to be
his age on June 30. So we make a slight adjustment to a player’s birth
year depending if his birthday falls in the first six months or not. The ad-
justed birth year is stored in the variable mlb_birthyear. (The if_else()
function is useful for assignments based on a condition; if birthMonth >=

7 is TRUE, then birthyear <- birthYear + 1, otherwise birthyear <-

birthyear.)

PlayerInfo <- People |>

filter(

playerID %in% c(

"ruthba01", "aaronha01", "bondsba01", "rodrial01"

)

) |>

mutate(

mlb_birthyear = if_else(

birthMonth >= 7, birthYear + 1, birthYear

),
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the age for each season of each slugger’s career. From the Lahman package, the
relevant data frames are People and Batting. From the data frame People,
we obtain the player ids and birth years for the four players. The Batting

data frame is used to extract the home run and at-bats information.

We begin by reading in the Lahman package.

library(Lahman)

From the People data frame, we wish to extract the player id and the birth
year for a particular player.

• The filter() function is used to extract the rows in the People data
frame matching each player’s id.

• In Major League Baseball, a player’s age for a season is defined to be
his age on June 30. So we make a slight adjustment to a player’s birth
year depending if his birthday falls in the first six months or not. The ad-
justed birth year is stored in the variable mlb_birthyear. (The if_else()
function is useful for assignments based on a condition; if birthMonth >=

7 is TRUE, then birthyear <- birthYear + 1, otherwise birthyear <-

birthyear.)

PlayerInfo <- People |>

filter(

playerID %in% c(

"ruthba01", "aaronha01", "bondsba01", "rodrial01"

)

) |>

mutate(

mlb_birthyear = if_else(

birthMonth >= 7, birthYear + 1, birthYear

),
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Player = paste(nameFirst, nameLast)

) |>

select(playerID, Player, mlb_birthyear)

The PlayerInfo data frame contains information for the sluggers Babe Ruth,
Hank Aaron, Barry Bonds, and Alex Rodriguez.

3.7.2 Creating the player data frames

Now that we have the player id codes and birth years, we use this informa-
tion together with the Lahman batting data frame Batting to create data
frames for each of these four players. One of the variables in the batting data
frame is playerID. To get the batting and age data for Babe Ruth, we use
the inner_join() function to match the rows of the batting data to those
corresponding in the PlayerInfo data frame where playerID is equal. We
create a new variable Age defined to be the season year minus the player’s birth
year. (Recall that we made a slight modification to the birthyear variable so
that one obtains a player’s correct age for a season.) Last, for each player, we
use the cumsum() function on the grouped data to create a new variable cHR
containing the cumulative count of home runs for each player each season.

HR_data <- Batting |>

inner_join(PlayerInfo, by = "playerID") |>

mutate(Age = yearID - mlb_birthyear) |>

select(Player, Age, HR) |>

group_by(Player) |>

mutate(cHR = cumsum(HR))

3.7.3 Constructing the graph

We want to plot the cumulative home run counts for each of the four players
against age. In the data frame HR_data the relevant variables are cHR, Age, and
Player. We use the geom_line() function to graph the cumulative home run
counts against age. By mapping the color aesthetic to the Player variable,
distinct cumulative home run lines are drawn for each player. Note that different
colors are used for the four players and a legend is automatically constructed
that matches up the line type with the player’s name. The scale color manual
function allows us to specify the set of colors to use in the plot. In this case,
the vector crc_fc contains an ordered set of pre-defined colors.

ggplot(HR_data, aes(x = Age, y = cHR, color = Player)) +

geom_line() +

scale_color_manual(values = crc_fc)

Figure 3.15 displays the completed graph.
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FIGURE 3.15
Cumulative home run counts against age for four ballplayers.

3.8 The 1998 Home Run Race

The Retrosheet play-by-play files are helpful for learning about patterns of
player performance during a particular baseball season. We illustrate the use
of R to read in the files for the 1998 season and graphically view the famous
home run duel between Mark McGwire and Sammy Sosa.

3.8.1 Getting the data

We begin by reading in the 1998 play-by-play data and storing it in the data
frame retro1998. See Section A.1.3 for information about how to create this
file.

retro1998 <- read_rds(here::here("data/retro1998.rds"))

In the play-by-play data, the variable bat_id gives the identification code
for the player who is batting. To extract the batting data for McGwire and
Sosa, we need to find the codes for these two players available in the Lahman
People data frame. By use of the filter() function, we find the id code
where nameFirst = "Sammy" and nameLast = "Sosa". Likewise, we find the
id code corresponding to Mark McGwire; these codes are stored in the variables
sosa_id and mac_id.
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sosa_id <- People |>

filter(nameFirst == "Sammy", nameLast == "Sosa") |>

pull(retroID)

mac_id <- People |>

filter(nameFirst == "Mark", nameLast == "McGwire") |>

pull(retroID)

Now that we have the player id codes, we extract McGwire’s and Sosa’s plate
appearance data from the play-by-play data frame retro1998. These data are
stored in the data frame hr_race.

hr_race <- retro1998 |>

filter(bat_id %in% c(sosa_id, mac_id))

3.8.2 Extracting the variables

For each player, we are interested in collecting the current number of home
runs hit for each plate appearance and graphing the date against the home
run count. For each player, the two important variables are the date and the
home run count. We write a new function cum_hr() that will extract these
two variables given a player’s play-by-play batting data.

In the play-by-play data frame, the variable game_id identifies the game
location and date. For example, the value game_id of ARI199805110 indicates
that this particular play occurred at the game played in Arizona on May 11,
1998. (The variable is displayed in the “location, year, month, day” format.)
Using the str_sub() function, we select the 4th through 11th characters of
this string variable and assign this date to the variable Date. (The ymd()

function converts the date to the more readable “year-month-day” format, and
forces R to recognize it as a Date.) Using the arrange() function, we sort the
play-by-play data from the beginning to the end of the season. The variable
event_cd contains the outcome of the batting play; a value event_cd of 23
indicates that a home run has been hit. We define a new variable HR to be either
1 or 0 depending if a home run occurred, and the new variable cumHR records
the cumulative number of home runs hit in the season using the cumsum()

function. The output of the function is a new data frame containing each date
and the cumulative number of home runs to date for all plate appearances
during the season.

cum_hr <- function(data) {

data |>

mutate(Date = ymd(str_sub(game_id, 4, 11))) |>

arrange(Date) |>

mutate(
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HR = if_else(event_cd == 23, 1, 0),

cumHR = cumsum(HR)

) |>

select(Date, cumHR)

}

After grouping the hr_race data frame by player, and collecting the corre-
sponding player ids, we use the group_split() and map() functions to iterate
cum_hr() twice, once on Sosa’s batting data and once on McGwire’s batting
data, obtaining the new data frame hr_ytd.

hr_grouped <- hr_race |>

group_by(bat_id)

keys <- hr_grouped |>

group_keys() |>

pull(bat_id)

hr_ytd <- hr_grouped |>

group_split() |>

map(cum_hr) |>

set_names(keys) |>

bind_rows(.id = "bat_id") |>

inner_join(People, by = c("bat_id" = "retroID"))

3.8.3 Constructing the graph

Once this new data frame is created, it is straightforward to produce the graph
of interest. The geom_line() function constructs a graph of the cumulative
home run count against the date. By mapping nameLast to the color aesthetic,
the lines corresponding to the two players are drawn using different colors.
We use the geom_hline() function to add a horizontal line at the home run
value of 62 and the annotate() function is applied to place the text string “62”
above this plotted line (see Figure 3.16).

ggplot(hr_ytd, aes(Date, cumHR, color = nameLast)) +

geom_line() +

geom_hline(yintercept = 62, color = crcblue) +

annotate(

"text", ymd("1998-04-15"), 65,

label = "62", color = crcblue

) +

ylab("Home Runs in the Season")
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FIGURE 3.16
Graph of the 1998 home run race between Sammy Sosa and Mark McGwire.

3.9 Further Reading

A good reference to the traditional graphics system in R is Murrell (2006).
Kabacoff (2010) together with the Quick-R website at https://www.statmeth
ods.net provide a useful reference for specific graphics functions. Chapter 4 of
Albert and Rizzo (2012) provides a number of examples of modifying traditional
graphics in R such as changing the plot type and symbol, using color, and
overlying curves and mathematical expressions. Wickham, Çetinkaya-Rundel,
and Grolemund (2023), Benjamin S. Baumer, Kaplan, and Horton (2021b) and
Ismay and Kim (2019) all discuss the use of ggplot2 for creating data graphics.

3.10 Exercises

1. Hall of Fame Pitching Dataset

The hof_pitching data frame in the abdwr3edata package contains the career
pitching statistics for all of the pitchers inducted in the Hall of Fame. The
variable BF is the number of batters faced by a pitcher in his career. Suppose
we group the pitchers by this variable using the intervals (0, 10,000), (10,000,
15,000), (15,000, 20,000), (20,000, 30,000). One can reexpress the variable BF
to the grouped variable BF_group by use of the cut() function.

https://www.statmethods.net
https://www.statmethods.net
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hofpitching <- hofpitching |>

mutate(

BF_group = cut(

BF,

c(0, 10000, 15000, 20000, 30000),

labels = c("Less than 10000", "(10000, 15000)",

"(15000, 20000)", "more than 20000")

)

)

a. Construct a frequency table of BF.group using the summarize() function.
b. Construct a bar graph of the output from summarize(). How many HOF

pitchers faced more than 20,000 pitchers in their career?
c. Construct an alternative graph of the BF.group variable. Compare the ef-

fectiveness of the bar graph and the new graph in comparing the frequencies
in the four intervals.

2. Hall of Fame Pitching Dataset (Continued)

The variable WAR is the total wins above replacement of the pitcher during his
career.

a. Using the geom_histogram() function, construct a histogram of WAR for
the pitchers in the Hall of Fame dataset.

b. There are two pitchers who stand out among all of the Hall of Famers on
the total WAR variable. Identify these two pitchers.

3. Hall of Fame Pitching Dataset (Continued)

To understand a pitcher’s season contribution, suppose we define the new
variable WAR_Season defined by

hofpitching <- hofpitching |>

mutate(WAR_Season = WAR / Yrs)

a. Use the geom_point() function to construct parallel one-dimensional scat-
terplots of WAR.Season for the different levels of BP.group.

b. Use the geom_boxplot() function to construct parallel boxplots of
WAR.Season across BP.group.

c. Based on your graphs, how does the wins above replacement per season
depend on the number of batters faced?

4. Hall of Fame Pitching Dataset (Continued)

Suppose we limit our exploration to pitchers whose mid-career was 1960 or
later. We first define the MidYear variable and then use the filter() function
to construct a data frame consisting of only these 1960+ pitchers.
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hofpitching <- hofpitching |>

mutate(MidYear = (From + To) / 2)

hofpitching.recent <- hofpitching |>

filter(MidYear >= 1960)

a. By use of the arrange() function, order the rows of the data frame by the
value of WAR_Season.

b. Construct a dot plot of the values of WAR_Season where the labels are the
pitcher names.

c. Which two 1960+ pitchers stand out with respect to wins above replacement
per season?

5. Hall of Fame Pitching Dataset (Continued)

The variables MidYear and WAR_Season are defined in the previous exercises.

a. Construct a scatterplot of MidYear (horizontal) against WAR_Season (ver-
tical).

b. Is there a general pattern in this scatterplot? Explain.
c. There are two pitchers whose mid careers were in the 1800s who had

relatively low WAR_Season values. By use of the filter() and geom_text()
functions, add the names of these two pitchers to the scatterplot.

6. Working with the Lahman Batting Dataset

a. Read the Lahman People and Batting data frames into R.
b. Collect in a single data frame the season batting statistics for the great

hitters Ty Cobb, Ted Williams, and Pete Rose.
c. Add the variable Age to each data frame corresponding to the ages of the

three players.
d. Using the geom_line() function, construct a line graph of the cumulative

hit totals against age for Pete Rose.
e. Using the geom_line() function, overlay the cumulative hit totals for Cobb

and Williams.
f. Write a short paragraph summarizing what you have learned about the

hitting pattern of these three players.

7. Working with the Lahman Teams Dataset

The Lahman Teams dataset contains yearly statistics and standing information
for all teams in MLB history.

a. Read the Teams data frame into R.
b. Create a new variable win_pct defined to be the team winning percentage

W / (W + L).
c. For the teams in the 2022 season, construct a scatterplot of the team ERA

and its winning percentage.
d. Use the geom_mlb_scoreboard_logos() function from the mlbplotR pack-

age to put the team logos on the scatterplot as plotting marks.

Use this function to redo the graph in part (c), plotting using the team logos.
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8. Working with the Retrosheet Play-by-Play Dataset

In Section 3.8, we used the Retrosheet play-by-play data to explore the home
run race between Mark McGwire and Sammy Sosa in the 1998 season. Another
way to compare the patterns of home run hitting of the two players is to
compute the spacings, the number of plate appearances between home runs.

a. Following the work in Section 3.8, create the two data frames mac_data
and sosa_data containing the batting data for the two players.

b. Use the following R commands to restrict the two data frames to the plays
where a batting event occurred. (The relevant variable bat_event_fl is
either TRUE or FALSE.)

mac_data <- filter(mac_data, bat_event_fl == TRUE)

sosa_data <- filter(sosa_data, bat_event_fl == TRUE)

c. For each data frame, create a new variable PA that numbers the plate
appearances 1, 2, . . . (The function nrow() gives the number of rows of a
data frame.)

mac_data <- mutate(mac_data, PA = 1:nrow(.))

sosa_data <- mutate(sosa_data, PA = 1:nrow(.))

d. The following commands will return the numbers of the plate appearances
when the players hit home runs.

mac_HRPA <- mac.data |>

filter(event_cd == 23) |>

pull(PA)

sosa_HRPA <- sosa.data |>

filter(event_cd == 23) |>

pull(PA)

e. Using the R function diff(), the following commands compute the spacings
between the occurrences of home runs.

mac_spacings <- diff(c(0, mac_HRPA))

sosa_spacings <- diff(c(0, sosa_HRPA))

Create a new data frame HR_Spacing with two variables, Player, the player
name, and Spacing, the value of the spacing. f. By use of the summarize()

and geom_histogram() functions on the data frame HR_Spacing, compare the
home run spacings of the two players.
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4

The Relation Between Runs and
Wins

4.1 Introduction

The goal of a baseball team is—just like a team in any other sport—to win
games. Similarly, the goal of the baseball analyst is being able to measure what
happens on the field in term of wins. Answering a question such as “Who is
the better player between Dee Gordon and J.D. Martinez?” becomes an easier
task if one succeeds in estimating how much Gordon’s speed and slick fielding
contribute to his team’s victories and how many wins can be attributed to
Martinez’s powerful bat.

Victories are obtained by outscoring opponents, thus the percentage of wins
obtained by a team over the course of a season is strongly correlated with the
number of runs it scores and allows. This chapter explores the relationship
between runs and wins. Understanding this relationship is a critical step
toward answering questions about players’ value. In fact, while it’s impossible
to directly quantify the impact of players in terms of wins, we will show in the
following chapters that it is possible to estimate their contributions in term of
runs.

4.2 The Teams Table in the Lahman Database

The Teams table from the Lahman package contains seasonal stats for major
league teams going back to the first professional season in 1871. We begin by
loading these data into R and exploring their contents by looking at the final
lines of this dataset, using the slice_tail() function.

library(Lahman)

Teams |>
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slice_tail(n = 3)

yearID lgID teamID franchID divID Rank G Ghome W L

1 2022 AL TEX TEX W 4 162 81 68 94

2 2022 AL TOR TOR E 2 162 81 92 70

3 2022 NL WAS WSN E 5 162 81 55 107

DivWin WCWin LgWin WSWin R AB H X2B X3B HR BB SO

1 N N N N 707 5478 1308 224 20 198 456 1446

2 N Y N N 775 5555 1464 307 12 200 500 1242

3 N N N N 603 5434 1351 252 20 136 442 1221

SB CS HBP SF RA ER ERA CG SHO SV IPouts HA HRA BBA SOA

1 128 41 47 38 743 673 4.22 1 10 37 4305 1345 169 581 1314

2 67 35 55 33 679 620 3.87 0 10 46 4324 1356 180 424 1390

3 75 31 60 37 855 785 5.00 2 4 28 4235 1469 244 558 1220

E DP FP name park

1 96 143 0.984 Texas Rangers Globe Life Field

2 82 120 0.986 Toronto Blue Jays Rogers Centre

3 104 126 0.982 Washington Nationals Nationals Park

attendance BPF PPF teamIDBR teamIDlahman45 teamIDretro

1 2011361 100 101 TEX TEX TEX

2 2653830 100 100 TOR TOR TOR

3 2026401 94 96 WSN MON WAS

The description of every column is provided in the help files accompanying the
Lahman package (e.g. help(Teams)).

Suppose that one is interested in relating the proportion of wins with the runs
scored and runs allowed for all of the teams. Toward this goal, the relevant
fields of interest in this table are the number of games played G, the number of
team wins W, the number of losses L, the total number of runs scored R, and
the total number of runs allowed RA. We create a new data frame my_teams

containing only the above five columns plus information on the team (teamID),
the season (yearID), and the league (lgID). We are interested in studying the
relationship between wins and runs for recent seasons, so we use the filter()
function to focus our exploration on seasons since 2001.

my_teams <- Teams |>

filter(yearID > 2000) |>

select(teamID, yearID, lgID, G, W, L, R, RA)

my_teams |>

slice_tail(n = 6)

teamID yearID lgID G W L R RA

1 SFN 2022 NL 162 81 81 716 697

2 SLN 2022 NL 162 93 69 772 637
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3 TBA 2022 AL 162 86 76 666 614

4 TEX 2022 AL 162 68 94 707 743

5 TOR 2022 AL 162 92 70 775 679

6 WAS 2022 NL 162 55 107 603 855

The run differential is defined as the difference between the runs scored and the
runs allowed by a team. The winning proportion is the fraction of games won by
a team. In baseball (and generally in sports) winning percentage is commonly
used instead of the more appropriate winning proportion. In the remainder of
this chapter we have chosen to adopt the most widely used term. We calculate
two new variables RD (run differential) and Wpct (winning percentage) with
the following lines of code.

my_teams <- my_teams |>

mutate(RD = R - RA, Wpct = W / (W + L))

A scatterplot of the run differential and the winning percentage gives a first
indication of the association between the two variables. Here we create the
plot and store it as run_diff. We delay its appearance as we will subsequently
add to it.

run_diff <- ggplot(my_teams, aes(x = RD, y = Wpct)) +

geom_point() +

scale_x_continuous("Run differential") +

scale_y_continuous("Winning percentage")

4.3 Linear Regression

One simple way to predict a team’s winning percentage using runs scored and
allowed is with linear regression. A simple linear model is

Wpct = a + b × RD + ϵ,

where a and b are unknown constants and ϵ is the error term that captures all
other factors influencing the response variable (Wpct). This is a special case of
a linear model fit using the lm() function from the stats package (which is in-
stalled and loaded in R by default). The most basic call to the function requires
a formula, specified as response ~ predictor1 + predictor2 + ..., data

= dataset, in which the variable to be modeled (a.k.a. the dependent variable)
is indicated on the left side of the tilde character (~) and the variables used to
predict the response are specified on the right side. In the following illustration
of the lm() function, we use the data argument to specify which data frame
to use.
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FIGURE 4.1
Scatterplot of team run differential against team winning percentage for major
league teams from 2001 to 2022. A best-fitting line is overlaid on top of the
scatterplot.

linfit <- lm(Wpct ~ RD, data = my_teams)

linfit

Call:

lm(formula = Wpct ~ RD, data = my_teams)

Coefficients:

(Intercept) RD

0.499985 0.000624

When executing the code run_diff, a scatterplot is displayed in Figure 4.1
that shows a strong positive relationship—teams with large run differentials
are more likely to be winning. The fitted line in the plot of Figure 4.1 is drawn
with the geom_smooth() command, which matches the output of lm() when
the method argument is set to "lm".

run_diff +

geom_smooth(method = "lm", se = FALSE, color = crcblue)

From the above output, a team’s expected winning percentage can be estimated
from its run differential RD by the equation:
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Ŵpct = 0.499985 + 0.000624 × RD (4.1)

This formula tells us that a team with a run differential of zero (RD = 0)
should win half of its games (estimated intercept ≈ .500)—a desired property.
In addition, a one-unit increase in run differential corresponds to an increase of
0.000624 in winning percentage. To give further insight into this relationship,
a team scoring 750 runs and allowing 750 runs is predicted to win half of its
games corresponding to 81 games in a typical MLB season of 162 games. In
contrast, a team scoring 760 runs and allowing 750 has a run differential of +10
and is predicted to have a winning percentage of 0.500 + 10 · 0.000624 ≈ 0.506.
A winning percentage of 0.506 in a 162-game schedule corresponds to 82 wins.
Thus an increase of 10 runs in the run differential of a team corresponds—
according to the straight-line model—to an additional expected win in the
standings.

One concern about this model is that predictions from this fitted line can fall
outside the range [0, 1]. For example, a hypothetical team that outscores its
opponent by a total of 805 runs would be predicted to win more than 100
percent of its games—which is impossible. However, since over 99 percent of
teams throughout major league baseball history have run differentials between
–350 and +350, the straight-line model is reasonable.

Once we have a fitted model, we use the function augment() from the broom
package to calculate the predicted values from the model, as well as the
residuals, which measure the difference between the response values and the
fitted values (i.e., between the actual and the estimated winning percentages).

library(broom)

my_teams_aug <- augment(linfit, data = my_teams)

Figure 4.2 displays a plot of the residuals against the run differential. Note
that the .resid variable was created by augment() and stores the residuals.
We use the ggrepel package to label a few teams with the largest residuals.

base_plot <- ggplot(my_teams_aug, aes(x = RD, y = .resid)) +

geom_point(alpha = 0.3) +

geom_hline(yintercept = 0, linetype = 3) +

xlab("Run differential") + ylab("Residual")

highlight_teams <- my_teams_aug |>

arrange(desc(abs(.resid))) |>

slice_head(n = 4)

library(ggrepel)

base_plot +
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FIGURE 4.2
Residuals versus run differential for the fitted linear model. Four teams with
large residuals are labeled.

geom_point(data = highlight_teams, color = crcblue) +

geom_text_repel(

data = highlight_teams, color = crcblue,

aes(label = paste(teamID, yearID))

)

Residuals can be interpreted as the error of the linear model in predicting
the actual winning percentage. Thus the points in Figure 4.2 farthest from
the zero line correspond to the teams where the linear model fared worst in
predicting the winning percentage.

One of the extreme values at the top of the residual graph in Figure 4.2
corresponds to the 2008 Los Angeles Angels: given their +68 run differential,
they were supposed to have a 0.542 winning percentage according to the linear
equation (Equation 4.1). However, they ended the season at 0.617. The residual
value for this team is 0.617 − 0.542 = 0.075, or 0.075 · 162 = 12.2 games. At
the other end of the spectrum, the 2006 Cleveland Indians, with a +88 run
differential, are seen as a 0.555 team by the linear model, but they actually
finished at a mere 0.481, corresponding to the residual 0.481 − 0.555 = −0.073,
or −11.8 games.

The average value of the residuals for any least squares linear model is equal to
zero, which means that the model predictions are equally likely to overestimate
and underestimate the winning percentage. Statistically, we say that the method
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for fitting the model is unbiased. In order to estimate the average magnitude
of the errors, we first square the residuals so that each error has a positive
value, calculate the mean of the squared residuals, and take the square root of
each mean value to get back to the original scale. The value so calculated is
the root mean square error , abbreviated as RMSE. (Note the use of the square
root function sqrt().)

resid_summary <- my_teams_aug |>

summarize(

N = n(),

avg = mean(.resid),

RMSE = sqrt(mean(.resid^2))

)

resid_summary

# A tibble: 1 x 3

N avg RMSE

<int> <dbl> <dbl>

1 660 4.21e-16 0.0280

rmse <- resid_summary |>

pull(RMSE)

If the errors are normally distributed, approximately two thirds of the residuals
fall between −RMSE and +RMSE, while 95% of the residuals are between
−2 · RMSE and 2 · RMSE.1 These statements can be confirmed with the
following lines of code. (The function abs() computes the absolute value.)

my_teams_aug |>

summarize(

N = n(),

within_one = sum(abs(.resid) < rmse),

within_two = sum(abs(.resid) < 2 * rmse)

) |>

mutate(

within_one_pct = within_one / N,

within_two_pct = within_two / N

)

# A tibble: 1 x 5

N within_one within_two within_one_pct within_two_pct

<int> <int> <int> <dbl> <dbl>

1Equivalently, over a 162-game season the number of wins predicted by the linear model
comes within four wins of the actual number of wins in two-thirds of the cases, while for 19
out of 20 teams the difference is not higher than 8 wins.}
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1 660 476 629 0.721 0.953

We use the function n() in conjunction with summarize() above to obtain
the number of rows of a data frame. In the numerators of the expressions, we
obtain the number of residuals (computed using the abs() function) that are
smaller than one and two RMSE. The computed fractions are close to the
theoretical 68% and 95% values stated above.

4.4 The Pythagorean Formula for Winning Percentage

Bill James, regarded as the godfather of sabermetrics, empirically derived
the following non-linear formula to estimate winning percentage, called the
Pythagorean expectation.

Ŵpct = R2

R2 + RA2 (4.2)

One can use this formula to predict winning percentages by use of the following
R code.

my_teams <- my_teams |>

mutate(Wpct_pyt = R ^ 2 / (R ^ 2 + RA ^ 2))

Here the residuals need to be calculated explicitly, but that’s not a hard task.
We define a new variable residuals_pyt that is the difference between the
actual and predicted winning percentages. We also compare the RMSE for
these new predictions.

my_teams <- my_teams |>

mutate(residuals_pyt = Wpct - Wpct_pyt)

my_teams |>

summarize(rmse = sqrt(mean(residuals_pyt^2)))

rmse

1 0.0265

The RMSE calculated on the Pythagorean predictions is similar in value to
the one calculated with the linear predictions (it’s actually slightly lower for
the 2000–2022 data we have been using here). Thus, if the complex non-linear
model is not more accurate, why should we use it? In fact, the Pythagorean
expectation model has several desirable properties missing in the linear model.
Both of these advantages can be illustrated with simple examples.
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Suppose there exists a powerhouse team that scores an average of ten runs
per game, while allowing an average of close to five runs per game. In a 162-
game schedule, this team would score 1620 runs, while allowing 810, for a run
differential of 810. Replacing RD with 810 in the linear equation, one obtains a
winning percentage of over 1, which is impossible. On the other hand, replacing
R and RA with 1620 and 810 respectively in the Pythagorean expectation,
the resulting winning percentage is equal to 0.8, a more reasonable prediction.
Suppose a second hypothetical team has pitchers who never allow runs, while
the hitters always manage to score the only run they need. Such a team will
score 162 runs in a season and win all of its games, but the linear equation
would predict it to be merely a .601 team. The Pythagorean model instead
correctly predicts that this team will win all of its games.

While neither of the above examples is realistic, there are some extreme
situations in modern baseball history that push the utility of the linear model.
For example, the 2001 Seattle Mariners had 116 wins and 46 losses for a +300
run differential and the 2003 Detroit Tigers had a 43-119 record with a –337
run differential. In these unlikely scenarios, the Pythagorean model will give
more sensible winning percentage estimates.

Finally, recall our statement at the end of the introductory section that the
runs-to-wins relationship is crucial in assessing the contribution of players to
their team’s wins. Once we estimate the number of runs players contribute
to their teams (as it will be shown in the following chapters), runs-to-wins
formulas can be used to convert these run values to wins. One can now answer
questions like “How many wins would a lineup of nine Mike Trouts accumulate
in a season?” For these kinds of investigations, the scenarios in which the linear
formula break down are more likely to occur, thus highlighting the need for a
formula such as the Pythagorean expectation that gives reasonable predictions
in all cases.

4.4.1 The Exponent in the Pythagorean model

Subsequent refinements to the Pythagorean model by Bill James and other
analysts have aimed at finding an exponent that would give a better fit relative
to the originally proposed exponent value of 2. In this section, we describe how
one finds the value of the Pythagorean exponent leading to predictions closest
to the actual winning percentages.

Replacing the value 2 in the Equation 4.2 with an unknown variable k, we
write the formula as:

W

W + L
= Wpct ≈ Ŵpct = Rk

Rk + RAk
. (4.3)

With some algebra, this equation can be rewritten as follows:

W

L
≈ Rk

RAk
. (4.4)
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Taking the logarithm on both sides of the equation, we obtain the linear
relationship

log

(
W

L

)
≈ k · log

(
R

RA

)
. (4.5)

The value of k can now be estimated using linear regression, where the response
variable is log(W/L) and the predictor is log(R/RA). In the following R code,
we compute the logarithm of the ratio of wins to losses, the logarithm of
the ratio of runs to runs allowed, and fit a simple linear model with these
transformed variables. (In the call to the lm() function, we specify a model
with a zero intercept by adding a zero term on the right side of the formula.)

my_teams <- my_teams |>

mutate(

logWratio = log(W / L),

logRratio = log(R / RA)

)

pytFit <- lm(logWratio ~ 0 + logRratio, data = my_teams)

pytFit

Call:

lm(formula = logWratio ~ 0 + logRratio, data = my_teams)

Coefficients:

logRratio

1.83

The R output suggests a best-fit Pythagorean exponent of 1.83, which is
notably smaller than the value 2.

4.4.2 Good and bad predictions by the Pythagorean model

The 2011 Boston Red Sox scored 875 runs, while allowing 737. According
to the Pythagorean model with exponent 2, they were expected to win 95
games—we obtain this number by plugging 875 and 737 into the Pythagorean
formula and multiplying by the number of games in a season:

162 × 8752

8752 + 7372 ≈ 95 .

The Red Sox actually won 90 games. The five game difference was quite costly
to the Red Sox, as they missed clinching the Wild Card (which went to the
Tampa Bay Rays in the final game (actually in the final minute) of the regular
season. The Pythagorean model is more on target with the Rays of the same
season, as the prediction of 92 (coming from their 707 runs scored versus 614
runs allowed) is just a bit higher than the actual 91.
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Why does the Pythagorean formula miss so poorly on the Red Sox? In other
words, why did they win five fewer games than expected from their run
differential? Let’s have a look at their season game by game.

The data frame retro_gl_2011 (a game log file downloaded from Retrosheet,
see Section 1.3.3) contains detailed information on every game played in the
2011 season. The following commands load the file into R, select the lines
pertaining to the Red Sox games, and keep only the columns related to runs.

library(abdwr3edata)

gl2011 <- retro_gl_2011

BOS2011 <- gl2011 |>

filter(HomeTeam == "BOS" | VisitingTeam == "BOS") |>

select(

VisitingTeam, HomeTeam,

VisitorRunsScored, HomeRunsScore

)

slice_head(BOS2011, n = 6)

# A tibble: 6 x 4

VisitingTeam HomeTeam VisitorRunsScored HomeRunsScore

<chr> <chr> <dbl> <dbl>

1 BOS TEX 5 9

2 BOS TEX 5 12

3 BOS TEX 1 5

4 BOS CLE 1 3

5 BOS CLE 4 8

6 BOS CLE 0 1

Using the results of every game featuring the Boston team, we calculate run
differentials (ScoreDiff) both for games won and lost and add a column W

indicating whether the Red Sox won the game.

BOS2011 <- BOS2011 |>

mutate(

ScoreDiff = ifelse(

HomeTeam == "BOS",

HomeRunsScore - VisitorRunsScored,

VisitorRunsScored - HomeRunsScore

),

W = ScoreDiff > 0

)

We compute summary statistics on the run differentials for games won and for
games lost using the skim() function from the skimr package, in conjunction
with group_by(). To group_by(), we specify a grouping factor (i.e., whether
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the game resulted in a win for Boston). The skim() function takes a variable
name and computes a host of relevant summary statistics, including the mean,
standard deviation, and number of cases.

library(skimr)

BOS2011 |>

group_by(W) |>

skim(ScoreDiff) |>

print(include_summary = FALSE)

-- Variable type: numeric --------------------------------------

skim_variable W n_missing complete_rate mean sd p0 p25

1 ScoreDiff FALSE 0 1 -3.46 2.56 -11 -4

2 ScoreDiff TRUE 0 1 4.3 3.28 1 2

p50 p75 p100 hist

1 -3 -1 -1

2 4 6 14

The 2011 Red Sox had their victories decided by a larger margin than their
losses (4.3 vs –3.5 runs on average), leading to their underperformance of the
Pythagorean prediction by five games. A team overperforming (or underper-
forming) its Pythagorean winning percentage is often seen, in sabermetrics
circles, as being lucky (or unlucky), and consequently is expected to get closer
to its expected line as the season progresses.

A team can overperform its Pythagorean winning percentage by winning a
disproportionate number of close games. This claim can be confirmed by a brief
data exploration. With the following code, we create a data frame (results)
from the previously loaded 2011 game logs that contain the names of the
teams and the runs scored. Two new columns are created: the variable winner
contains the abbreviation of the winning team and a second variable diff

contains the margin of victory.

results <- gl2011 |>

select(

VisitingTeam, HomeTeam,

VisitorRunsScored, HomeRunsScore

) |>

mutate(

winner = ifelse(

HomeRunsScore > VisitorRunsScored,

HomeTeam, VisitingTeam

),

diff = abs(VisitorRunsScored - HomeRunsScore)

)
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Suppose we focus on the games won by only one run. We create a data frame
one_run_wins containing only the games decided by one run, and use the n()
function to count the number of wins in such contests for each team.

one_run_wins <- results |>

filter(diff == 1) |>

group_by(winner) |>

summarize(one_run_w = n())

Using the my_teams data frame previously created, we look at the relation
between the Pythagorean residuals and the number of one-run victories. Note
that the team abbreviation for the Angels needs to be changed because it is
coded as LAA in the Lahman database and as ANA in the Retrosheet game logs.

teams2011 <- my_teams |>

filter(yearID == 2011) |>

mutate(

teamID = if_else(teamID == "LAA", "ANA", as.character(teamID)

)

) |>

inner_join(one_run_wins, by = c("teamID" = "winner"))

The final bit of code produces the plot in Figure 4.3 which shows a positive
relationship between the number of one-run games won and the Pythagorean
residuals.

ggplot(data = teams2011, aes(x = one_run_w, y = residuals_pyt)) +

geom_point() +

geom_text_repel(aes(label = teamID)) +

xlab("One run wins") + ylab("Pythagorean residuals")

Figure 4.3 shows that San Francisco had a large number of one-run victories
and a large positive Pythagorean residual. In contrast, San Diego had few
one-run victories and a negative residual.

Winning a disproportionate number of close games is sometimes attributed
to plain luck. However, teams with certain attributes may be more likely to
systematically win contests decided by a narrow margin. For example, teams
with top quality closers will tend to preserve small leads, and will be able to
overperform their Pythagorean expected winning percentage. To check this
conjecture, we look at the data.

The Pitching table in the Lahman package contains individual seasonal
pitching stats. We use the filter() function to select the pitcher-seasons
where more than 50 games were finished by a pitcher with an ERA lower than
2.50. The data frame top_closers contains only the columns identifying the
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FIGURE 4.3
Scatterplot of number of one-run games won and Pythagorean residuals for
major league teams in 2011.

pitcher, the season, and the team.

top_closers <- Pitching |>

filter(GF > 50 & ERA < 2.5) |>

select(playerID, yearID, teamID)

We merge the top_closers data frame with our my_teams dataset, creating a
data frame that contains the teams featuring a top closer. We obtain summary
statistics on the Pythagorean residuals using the summary() function.

my_teams |>

inner_join(top_closers) |>

pull(residuals_pyt) |>

summary()

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.0487 -0.0109 0.0025 0.0054 0.0215 0.0812

The mean of the residuals is only slightly above zero (0.005), but when one
multiplies it by the number of games in a season (162), one finds that teams
with a top closer win, on average, 0.88 games more than would be predicted
by the Pythagorean model.
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major league teams in 2011.
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4.5 How Many Runs for a Win?

Readers familiar with websites like http://www.insidethebook.com, http:
//www.hardballtimes.com, and http://www.baseballprospectus.com are surely
familiar with the “ten-runs-equal-one-win” rule of thumb. Over the course of
a season, a team scoring ten more runs is likely to have one more win in the
standings. The number comes directly from the Pythagorean model with an
exponent of two. Suppose a team scores an average of five runs per game, while
allowing the same number of runs. In a 162-game season, the team would score
(and allow) 810 runs. Inserting 810 in the Pythagorean formula one gets (as
expected) a perfect .500 expected winning percentage with 81 wins. If one
substitutes 810 with 820 for the number of runs scored in the formula, one
obtains a .506 winning percentage that translates to 82 wins in 162 games.
The same result is obtained for a team scoring 810 runs and allowing 800.

Ralph Caola derived the number of extra runs needed to get an extra win in a
more rigorous way using calculus (Caola 2003). He starts from the equivalent
representation of the Pythagorean formula.

W = G · R2

R2 + RA2

If one takes a partial derivative of the right side of the above equation with
respect to R, holding RA constant, the result is the incremental number of
wins per run scored. Taking the reciprocal of this result, one can derive the
number of runs needed for an extra win.

R is capable of calculating partial derivatives, and thus we can retrace Ralph’s
steps in R by using the functions D() and expression() to take the partial
derivative of R2/(R2 + RA2) with respect to R.

D(expression(G * R ^ 2 / (R ^ 2 + RA ^ 2)), "R")

G * (2 * R)/(R^2 + RA^2) - G * R^2 * (2 * R)/(R^2 + RA^2)^2

Unfortunately R does not do the simplifying. The reader has the choice of either
doing the algebraic work herself or believing the final equation for incremental
runs per win (IR/W) is the following2:

IR/W =
(
R2 + RA2)2

2 · G · R · RA2

2The formula is the result of algebraic simplification and taking the reciprocal.

http://www.insidethebook.com
http://www.hardballtimes.com
http://www.baseballprospectus.com
http://www.hardballtimes.com
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If R and RA are expressed in runs per game, we can remove G from the above
formula.

Using this formula, one can compute the incremental runs needed per one win
for various runs scored/runs allowed scenarios. As a first step, we create a func-
tion IR() to calculate the incremental runs, according to Caola’s formula; this
function takes runs scored per game and runs allowed per game as arguments.

IR <- function(RS = 5, RA = 5) {

(RS ^ 2 + RA ^ 2)^2 / (2 * RS * RA ^ 2)

}

We use this function to create a table for various runs scored/runs allowed combi-
nations. We perform this step by using the functions seq() and expand_grid().
The seq() function is used create a vector containing a regular sequence spec-
ifying, as arguments, the start value, the end value, and the increment value.
Here seq() creates a vector of values from 3 to 6 in increments of 0.5. Then
the expand_grid() function is used to obtain a data frame containing all
the combinations of the elements of the supplied vectors. The following code
displays the first and the final few lines of the new data frame ir_table.

ir_table <- expand_grid(

RS = seq(3, 6, .5),

RA = seq(3, 6, .5)

)

slice_head(ir_table, n = 4)

# A tibble: 4 x 2

RS RA

<dbl> <dbl>

1 3 3

2 3 3.5

3 3 4

4 3 4.5

slice_tail(ir_table, n = 4)

# A tibble: 4 x 2

RS RA

<dbl> <dbl>

1 6 4.5

2 6 5

3 6 5.5

4 6 6
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Finally, we calculate the incremental runs for the various scenarios. The
pivot_wider() function in the third line of the following code is used to show
the results in a tabular form.

ir_table |>

mutate(IRW = IR(RS, RA)) |>

pivot_wider(

names_from = RA, values_from = IRW, names_prefix = "RA="

) |>

round(1)

# A tibble: 7 x 8

RS `RA=3` `RA=3.5` `RA=4` `RA=4.5` `RA=5` `RA=5.5` `RA=6`
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 3 6 6.1 6.5 7 7.7 8.5 9.4

2 3.5 7.2 7 7.1 7.5 7.9 8.5 9.2

3 4 8.7 8.1 8 8.1 8.4 8.8 9.4

4 4.5 10.6 9.6 9.1 9 9.1 9.4 9.8

5 5 12.8 11.3 10.5 10.1 10 10.1 10.3

6 5.5 15.6 13.4 12.2 11.4 11.1 11 11.1

7 6 18.8 15.8 14.1 13 12.4 12.1 12

Looking at the results, we notice that the rule of ten is appropriate in typical
run scoring environments (4 to 5 runs per game). However, in very low scoring
environments (the upper-left corner of the table), a lower number of runs is
needed to gain an extra win; on the other hand, in high scoring environments
(lower-right corner), one needs a larger number of runs for an added win.

4.6 Further Reading

Bill James first mentioned his Pythagorean model in (James 1980) which, like
other early works by James, was self-published and is currently hard to find.
Reference to the model is present in James (1982), the first edition published by
Ballantine Books. Davenport and Woolner (1999) and Heipp (2003) revisited
Bill James’ model, deriving exponents that vary according to the total runs
scored per game. Caola (2003) algebraically derived the relation between run
scored and allowed and winning percentage. Star (2011) recounts the final
moments of the 2011 regular season, when in the span of a few minutes the
Rays and the Red Sox fates turned dramatically; the page also features a
twelve-minute video chronicling the events of the wild September 28, 2011
night.
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4.7 Exercises

1. Relationship Between Winning Percentage and Run Differential Across
Decades

Section 4.3 used a simple linear model to predict a team’s winning percentage
based on its run differential. This model was fit using team data since the 2001
season.

• Refit this linear model using data from the seasons 1961–1970, the seasons
1971–1980, the seasons 1981–1990, and the seasons 1991–2000.

• Compare across the five decades the predicted winning percentage for a
team with a run differential of 10 runs.

2. Pythagorean Residuals for Poor and Great Teams in the 19th Century

As baseball was evolving into its modern form, 19th century leagues often
featured abysmal teams that did not even succeed in finishing their season, as
well as some dominant clubs.

• Fit a Pythagorean formula model to the run differential, win-loss data for
teams who played in the 19th century.

• By inspecting the residual plot of your fitted model from (a), did the great
and poor teams in the 19th century do better or worse than one would
expect on the basis of their run differentials?

3. Exploring the Manager Effect in Baseball

Retrosheet game logs report, for every game played, the managers of both
teams.

• Select a period of your choice (encompassing at least ten years) and fit the
Pythagorean formula model to the run-differential, win-loss data.

• On the basis of your fit in part (a) and the list of managers, compile a
list of the managers who most overperformed their Pythagorean winning
percentage and the managers who most underperformed it.

4. Pythagorean Relationship for Other Sports

Bill James’ Pythagorean model has been used for predicting winning percentage
in other sports. Since the pattern of scoring is very different among sports
(compare for example points in basketball and goals in soccer), the model
needs to be adapted to the scoring environment. Find the necessary data for a
sport of your choice and compute the optimal exponent to the Pythagorean
formula.
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5

Value of Plays Using Run
Expectancy

5.1 The Run Expectancy Matrix

An important concept in sabermetrics research is the run expectancy matrix.
As each base (first, second, and third) can be either empty or occupied by a
runner, there are 2 × 2 × 2 = 8 possible arrangements of runners on the three
bases. The number of outs can be 0, 1, or 2 (three possibilities), and so there
are a total of 8 × 3 = 24 possible arrangements of runners and outs. For each
combination of runners on base and outs, we are interested in computing the
average number of runs scored in the remainder of the inning. When these
average runs are arranged as a table classified by runners and outs, the display
is often called the run expectancy matrix.

We use R to compute this matrix from play-by-play data for the 2016 season.
This matrix is used to define the change in expected run value (often simply
“run value”) of a batter’s plate appearance. We then explore the distribution
of average run values for all batters in the 2016 season. The run values for
José Altuve are used to help contextualize their meaning across players. We
continue by exploring how players in different positions in the batting lineup
perform with respect to this criterion. The notion of expected run value is
helpful for understanding the relative benefit of different batting plays and
we explore the value of a home run and a single. We conclude the chapter by
using the run expectancy matrix and run values to understand the benefit of
stealing a base and the cost of being caught stealing.

5.2 Runs Scored in the Remainder of the Inning

We begin by reading into R the play-by-play data we downloaded from Ret-
rosheet for the 2016 season as retro2016. See Section A.1.3 for instructions for
how to create the file retro2016.rds. (The retro2016 dataset is also available
in the abdwr3edata package.)

DOI: 10.1201/9781032668239-5 109
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retro2016 <- read_rds(here::here("data/retro2016.rds"))

At a given plate appearance, there is potential to score runs. Clearly, this
potential is greater with runners on base, specifically runners in scoring position
(second or third base), and when there are few outs. This potential for runs is
estimated by computing the average number of runs scored in the remainder
of the inning for each combination of runners on base and number of outs
over some period of time. Certainly, the average runs scored depends on many
variables such as home versus away, the current score, the pitching, and the
defense. But this runs potential represents the opportunity to create runs in
a typical situation during an inning and is a useful baseline against which to
measure the contributions of players.

To compute the number of runs scored in the remainder of the inning, we need
to know the total runs scored by both teams during the plate appearance and
also the total runs scored by the teams at the end of the specific half-inning.
The runs scored in the remainder of the inning (denoted by runs_roi) is the
difference

runsroi = runsTotal in Inning − runsSo far in Inning.

We create several new variables using the mutate() function: runs_before is
equal to the sum of the visitor’s score (away_score_ct) and the home team’s
score home_score_ct at each plate appearance, and half_inning uses the
paste() function to combine the game id, the inning, and the team at bat,
creating a unique identification for each half-inning of every game. Also, we
create a new variable runs_scored that gives the number of runs scored for
each play. (The variables bat_dest_id, run1_dest_id, run2_dest_id, and
run3_dest_id give the destination bases for the batter and each runner, and
runs are scored for each destination base that exceeds 3.)

retro2016 <- retro2016 |>

mutate(

runs_before = away_score_ct + home_score_ct,

half_inning = paste(game_id, inn_ct, bat_home_id),

runs_scored =

(bat_dest_id > 3) + (run1_dest_id > 3) +

(run2_dest_id > 3) + (run3_dest_id > 3)

)

We wish to compute the maximum total score for each half-inning, combining
home and visitor scores. We accomplish this by using the summarize() function,
after grouping by half_inning. In the summarize() function, outs_inning is
the number of outs for each half-inning, runs_inning is the total runs scored
in each half-inning, runs_start is the score at the beginning of the half-inning,
and max_runs is the maximum total score in a half-inning, which is the sum
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of the initial total runs and the runs scored. These summary data are stored
in the new data frame half_innings.

half_innings <- retro2016 |>

group_by(half_inning) |>

summarize(

outs_inning = sum(event_outs_ct),

runs_inning = sum(runs_scored),

runs_start = first(runs_before),

max_runs = runs_inning + runs_start

)

We use the inner_join() function to merge the data frames data2016 and
half_innings. Then the runs scored in the remainder of the inning (new
variable runs_roi) can be computed by taking the difference of max_runs and
runs.

retro2016 <- retro2016 |>

inner_join(half_innings, by = "half_inning") |>

mutate(runs_roi = max_runs - runs_before)

5.3 Creating the Matrix

Now that the runs scored in the remainder of the inning variable has been
computed for each plate appearance, it is straightforward to compute the run
expectancy matrix.

Currently, there are three variables base1_run_id, base2_run_id, and
base3_run_id containing the player codes of the baserunners (if any) who are
respectively on first, second, or third base. We create a new three-digit variable
bases where each digit is either 1 or 0 if the corresponding base is respectively
occupied or empty. The state variable adds the number of outs to the bases
variable. One particular value of state would be “011 2”, which indicates that
there are currently runners on second and third base with two outs. A second
state value “100 0” indicates there is a runner at first with no outs.

retro2016 <- retro2016 |>

mutate(

bases = paste0(

if_else(base1_run_id == "", 0, 1),

if_else(base2_run_id == "", 0, 1),

if_else(base3_run_id == "", 0, 1)
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),

state = paste(bases, outs_ct)

)

We want to only consider plays in our data frame where there is a change
in the runners on base, number of outs, or runs scored. We create three new
variables is_runner1, is_runner2, is_runner3, which indicate, respectively,
if first base, second base, and third base are occupied after the play. (The
function as.numeric() converts a logical variable to a numeric variable.) The
variable new_outs is the number of outs after the play, new_bases indicates
bases occupied, and new_state provides the runners on each base and the
number of outs after the play.1

retro2016 <- retro2016 |>

mutate(

is_runner1 = as.numeric(

run1_dest_id == 1 | bat_dest_id == 1

),

is_runner2 = as.numeric(

run1_dest_id == 2 | run2_dest_id == 2 |

bat_dest_id == 2

),

is_runner3 = as.numeric(

run1_dest_id == 3 | run2_dest_id == 3 |

run3_dest_id == 3 | bat_dest_id == 3

),

new_outs = outs_ct + event_outs_ct,

new_bases = paste0(is_runner1, is_runner2, is_runner3),

new_state = paste(new_bases, new_outs)

)

We use the filter() function to restrict our attention to plays where either
there is a change between state and new_state (indicated by the not equal
logical operator != or there are runs scored on the play.

changes2016 <- retro2016 |>

filter(state != new_state | runs_scored > 0)

Before the run expectancies are computed, one final adjustment is necessary.
The play-by-play database includes scoring information for all half-innings
during the 2016 season, including partial half-innings at the end of the game
where the winning run is scored with less than three outs. In our computation

1The logic for computing the present and future state is encoded in the ret-

rosheet_add_states() function in the abdwr3edata package. See the run_expectancy_code()
function from the baseballr package for similar functionality.
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of run expectancies, we want to work only with complete half-innings where
three outs are recorded. We use the filter() function to extract the data
from the half-innings in changes2016 with exactly three outs—the new data
frame is named changes2016_complete. (By removing the incomplete innings,
we are introducing a small bias since these innings are not complete due to
the scoring of at least one run.)

changes2016_complete <- changes2016 |>

filter(outs_inning == 3)

We compute the expected number of runs scored in the remainder of the inning
(the run expectancy) for each of the 24 bases/outs situations by use of the
summarize() function, grouping by bases and outs_ct and employing the
mean() function. We define store the resulting data frame as erm_2016.

erm_2016 <- changes2016_complete |>

group_by(bases, outs_ct) |>

summarize(mean_run_value = mean(runs_roi))

To display these run values as an 8 × 3 matrix, we use the pivot_wider()

function.

erm_2016 |>

pivot_wider(

names_from = outs_ct,

values_from = mean_run_value,

names_prefix = "Outs="

)

# A tibble: 8 x 4

# Groups: bases [8]

bases `Outs=0` `Outs=1` `Outs=2`
<chr> <dbl> <dbl> <dbl>

1 000 0.498 0.268 0.106

2 001 1.35 0.937 0.372

3 010 1.13 0.673 0.312

4 011 1.93 1.36 0.548

5 100 0.858 0.512 0.220

6 101 1.72 1.20 0.478

7 110 1.44 0.921 0.414

8 111 2.11 1.54 0.695

To see how the run expectancy values have changed over time, we input the
2002 season values as reported in Albert and Bennett (2003) in the matrix
erm_2002. We display the 2016 and 2002 expectancies side-by-side for purposes
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TABLE 5.1
Comparison of expected run values between 2016 (three columns labeled
“NEW”) and 2002 (three columns labeled “OLD”).

2016 2002

bases NEW=0 NEW=1 NEW=2 OLD=0 OLD=1 OLD=2
000 0.50 0.27 0.11 0.51 0.27 0.10
001 1.35 0.94 0.37 1.40 0.94 0.36
010 1.13 0.67 0.31 1.14 0.68 0.32
011 1.93 1.36 0.55 1.96 1.36 0.63
100 0.86 0.51 0.22 0.90 0.54 0.23
101 1.72 1.20 0.48 1.84 1.18 0.52
110 1.44 0.92 0.41 1.51 0.94 0.45
111 2.11 1.54 0.70 2.33 1.51 0.78

of comparison using bind_cols() in Table 5.1.

erm_2002 <- tibble(

"OLD=0" = c(.51, 1.40, 1.14, 1.96, .90, 1.84, 1.51, 2.33),

"OLD=1" = c(.27, .94, .68, 1.36, .54, 1.18, .94, 1.51),

"OLD=2" = c(.10, .36, .32, .63, .23, .52, .45, .78)

)

out <- erm_2016 |>

pivot_wider(

names_from = outs_ct,

values_from = mean_run_value,

names_prefix = "NEW="

) |>

bind_cols(erm_2002)

It is somewhat remarkable that these run expectancy values have not changed
much over the recent history of baseball. This indicates there have been few
changes in the average run scoring tendencies of MLB teams between 2002
and 2016.

5.4 Measuring Success of a Batting Play

When a player comes to bat with a particular runner and out situation, the run
expectancy matrix tells us the average number of runs a team will score in the
remainder of the half-inning. Based on the outcome of the plate appearance,
the state (runners on base and outs) will change and there will be a updated
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TABLE 5.1
Comparison of expected run values between 2016 (three columns labeled
“NEW”) and 2002 (three columns labeled “OLD”).
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000 0.50 0.27 0.11 0.51 0.27 0.10
001 1.35 0.94 0.37 1.40 0.94 0.36
010 1.13 0.67 0.31 1.14 0.68 0.32
011 1.93 1.36 0.55 1.96 1.36 0.63
100 0.86 0.51 0.22 0.90 0.54 0.23
101 1.72 1.20 0.48 1.84 1.18 0.52
110 1.44 0.92 0.41 1.51 0.94 0.45
111 2.11 1.54 0.70 2.33 1.51 0.78
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José Altuve 115

run expectancy value. We estimate the value of the plate appearance, called
the run value, by computing the difference in run expectancies of the old and
new states plus the number of runs scored on the particular play.

RUN VALUE = RUNSNew state − RUNSOld state + RUNSScored on Play

We compute the run values for all plays in the original data frame retro2016
using the following R code. First, we use the left_join() function to match
the expected run values for the beginning of each plate appearance. Note that
we do this by matching the bases and outs_ct variables in retro2016 to
those in the run expectancy matrix erm_2016. This creates a new variable
mean_run_value, which we promptly rename rv_start. Next, we do this
again; this time matching the new_bases and new_outs variables to the run
expectancy matrix to create the variable rv_end. It is important to use a
left_join() (rather than an inner_join()) here, since the three out states
are not present in erm_2016. The run expectancy of a situation with three
outs is obviously zero, so we use the replace_na() function to set these run
values to zero.

Thus, in the dataset retro2016, the variable rv_start is defined to be the
run expectancy of the current state, and the variable rv_end is defined to be
the run expectancy of the new state. The new variable run_value is set equal
to the difference in rv_end and rv_start plus runs_scored.

retro2016 <- retro2016 |>

left_join(erm_2016, join_by("bases", "outs_ct")) |>

rename(rv_start = mean_run_value) |>

left_join(

erm_2016,

join_by(new_bases == bases, new_outs == outs_ct)

) |>

rename(rv_end = mean_run_value) |>

replace_na(list(rv_end = 0)) |>

mutate(run_value = rv_end - rv_start + runs_scored)

5.5 José Altuve

To better understand run values, let’s focus on the plate appearances for the
great hitter José Altuve for the 2016 season. To find Altuve’s player id, we
use the People data frame from the Lahman package and use the filter()

function to extract the retroID. The pull() function extracts the vector
retroID from the data frame.
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library(Lahman)

altuve_id <- People |>

filter(nameFirst == "Jose", nameLast == "Altuve") |>

pull(retroID)

We then use the filter() function to isolate a data frame altuve of Altuve’s
plate appearances, where the batter id (variable bat_id) is equal to altuve_id.
We wish to consider only the batting plays where Altuve was the hitter, so we
also select the rows where the batting flag (variable bat_event_fl) is true.2

altuve <- retro2016 |>

filter(

bat_id == altuve_id,

bat_event_fl == TRUE

)

How did Altuve do in his first three plate appearances this season? To answer
this, we display the first three rows of the data frame altuve, showing the
original state, new state, and run value variables:

altuve |>

select(state, new_state, run_value) |>

slice_head(n = 3)

# A tibble: 3 x 3

state new_state run_value

<chr> <chr> <dbl>

1 000 1 000 2 -0.162

2 000 1 100 1 0.244

3 000 1 000 2 -0.162

On his first plate appearance, there were no runners on base with one out. The
outcome of this plate appearance was no runners on with two outs, indicating
that Altuve got out, and the run value for this play was −0.162 runs. In his
second plate appearance, the bases were again empty with one out. Here Altuve
got on base, and the run value in the transition from “000 1” to “100 1” was
0.244 runs. In the third plate appearance, Altuve again got out in a bases
empty, one-out situation, and the run value was −0.162 runs.

When one evaluates the run values for any player, there are two primary
questions. First, we need to understand the player’s opportunities for producing
runs. What were the runner/outs situations for the player’s plate appearances?
Second, what did the batter do with these opportunities to score runs? The

2The variable bat_event_fl distinguishes batting events from non-batting events such as
steals and wild pitches.
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batter’s success or lack of success on these opportunities can be measured in
relation to these run values.

Let’s focus on the runner states to understand Altuve’s opportunities. Since a
few of the counts of the runners/outs states over the 32 outcomes are close
to zero, we focus on the runners on base variable bases. We apply the n()

function within summarize() to tabulate the runners state for all of Altuve’s
plate appearances.

altuve |>

group_by(bases) |>

summarize(N = n())

# A tibble: 8 x 2

bases N

<chr> <int>

1 000 417

2 001 24

3 010 60

4 011 18

5 100 128

6 101 22

7 110 40

8 111 8

We see that Altuve generally was batting with the bases empty (000) or with
only a runner on first (100). Most of the time, Altuve was batting with no
runners in scoring position.

How did Altuve perform with these opportunities? Using the geom_jitter()
geometric object, we construct a jittered scatterplot that shows the run values
for all plate appearances organized by the runners state (see Figure 5.1). Jit-
tering the points in the horizontal direction is helpful in showing the density of
run values. We also add a horizontal line at the value zero to the graph—points
above the line (below the line) correspond to positive (negative) contributions.

ggplot(altuve, aes(bases, run_value)) +

geom_jitter(width = 0.25, alpha = 0.5) +

geom_hline(yintercept = 0, color = "red") +

xlab("Runners on base")

When the bases were empty (000), the range of possible run values was
relatively small. For this state, the large cluster of points at a negative run
value corresponds to the many occurrences when Altuve got an out with the
bases empty. The cluster of points at (000) at the value 1 corresponds to
Altuve’s home runs with the bases empty. (A home run with runners empty
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FIGURE 5.1
Stripchart of run values of José Altuve for all 2016 plate appearances as a
function of the runners state. The points have been jittered since there are
many plate appearances with identical run values.

will not change the bases/outs state and the value of this play is exactly one
run.) For other situations, say the bases-loaded situation (111), there is much
more variation in the run values. For one plate appearance, the state moved
from 111 1 to 111 2, indicating that Altuve got out with the bases loaded
with a run value of −0.84. In contrast, Altuve did hit a double with the bases
loaded with one out, and the run value of this outcome was 1.82.

To understand Altuve’s total run production for the 2016 season, we use the
summarize() function together with the sum() and n() functions to compute
the number of opportunities and sum of run values for each of the runners
situations.

runs_altuve <- altuve |>

group_by(bases) |>

summarize(

PA = n(),

total_run_values = sum(run_value)

)

runs_altuve

# A tibble: 8 x 3

bases PA total_run_values

<chr> <int> <dbl>
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1 000 417 10.1

2 001 24 4.06

3 010 60 0.0695

4 011 18 3.43

5 100 128 10.2

6 101 22 1.34

7 110 40 5.62

8 111 8 -0.0968

We see, for example, that Altuve came to bat with the runners empty 417
times, and his total run value contribution to these 417 PAs was 10.10 runs.
Altuve didn’t appear to do particularly well with runners in scoring position.
For example, there were 60 PAs where he came to bat with a runner on second
base, and his net contribution in runs for this situation was 0.07 runs. Altuve’s
total runs contribution for the 2016 season can be computed by summing the
last column of this data frame. This measure of batting performance is known
as RE24, since it represents the change in run expectancy over the 24 base/out
states (Appelman 2008).

runs_altuve |>

summarize(RE24 = sum(total_run_values))

# A tibble: 1 x 1

RE24

<dbl>

1 34.7

It is not surprising that Altuve has a positive total contribution in his PAs in
2016, but it is difficult to understand the size of 34.7 runs unless this value is
compared with the contribution of other players. In the next section, we will
see how Altuve compares to all hitters in the 2016 season.

5.6 Opportunity and Success for All Hitters

The run value estimates can be used to compare the batting effectiveness
of players. We focus on batting plays, so we construct a new data frame
retro2016_bat that is the subset of the main data frame retro2016 where
the bat_event_fl variable is equal to TRUE:

retro2016_bat <- retro2016 |>

filter(bat_event_fl == TRUE)

It is difficult to compare the RE24 of two players at face value, since they have
different opportunities to create runs for their teams. One player in the middle
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of the batting order may come to bat many times when there are runners in
scoring position and good opportunities to create runs. Other players toward
the bottom of the batting order may not get the same opportunities to bat
with runners on base. One can measure a player’s opportunity to create runs
by the sum of the runs potential state (variable rv_start) over all of his plate
appearances. We can summarize a player’s batting performance in a season by
the total number of plate appearances, the sum of the runs potentials, and the
sum of the run values.

The R function summarize() is helpful in obtaining these summaries. We
initially group the data frame retro2016_bat by the batter id variable bat_id,
and for each batter, compute the total run value RE24, the total starting runs
potential runs_start, and the number of plate appearances PA.

run_exp <- retro2016_bat |>

group_by(bat_id) |>

summarize(

RE24 = sum(run_value),

PA = length(run_value),

runs_start = sum(rv_start)

)

The data frame run_exp contains batting data for both pitchers and non-
pitchers. It seems reasonable to restrict attention to non-pitchers, since pitchers
and non-pitchers have very different batting abilities. Also we limit our focus on
the players who are primarily starters on their teams. One can remove pitchers
and non-starters by focusing on batters with at least 400 plate appearances.
We create a new data frame run_exp_400 by an application of the filter()
function. We display the first few rows by use of the slice_head() function.

run_exp_400 <- run_exp |>

filter(PA >= 400)

run_exp_400 |>

slice_head(n = 6)

# A tibble: 6 x 4

bat_id RE24 PA runs_start

<chr> <dbl> <int> <dbl>

1 abrej003 13.6 695 336.

2 alony001 -5.28 532 249.

3 altuj001 34.7 717 346.

4 andet001 -11.5 431 205.

5 andre001 17.7 568 257.

6 aokin001 -1.91 467 229.

Is there a relationship between batters’ opportunities and their success in
converting these opportunities to runs? To answer this question, we construct
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FIGURE 5.2
Scatterplot of total run value against the runs potential for all players in the
2016 season with at least 400 plate appearances. A smoothing curve is added
to the scatterplot—this shows that players who had more run potential tend
to have large run values.

a scatterplot of run opportunity (runs_start) against run value (RE24) for
these hitters with at least 400 at bats (see Figure 5.2) using the geom_point()
function. To help see the pattern in this scatterplot, we use the geom_smooth()
function to add a LOESS smoother to the scatterplot. To interpret this graph,
it is helpful to add a horizontal line (using the geom_hline() function) at
0—points above this line correspond to hitters who had a total positive run
value contribution in the 2016 season.

plot1 <- ggplot(run_exp_400, aes(runs_start, RE24)) +

geom_point() +

geom_smooth() +

geom_hline(yintercept = 0, color = "red")

plot1

From viewing Figure 5.2, we see that batters with larger values of runs_start
tend to have larger runs contributions. But there is a wide spread in the
run values for these players. In the group of players who have runs_start

values between 300 and 350, four of these players actually have negative runs
contributions and other players created over 60 runs in the 2016 season.

From the graph, we see that only a limited number of players created more
than 40 runs for their teams. Who are these players? For labeling purposes, we
extract the nameLast and retroID variables from the Lahman People data
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FIGURE 5.3
Scatterplot of RE24 against the runs potential for all players in the 2016 season
with unusual players identified.

frame and merge this information with the run_exp_400 data frame. Using the
geom_text_repel() function, we add point labels to the previous scatterplot
for these outstanding hitters. This function from the ggrepel package plots the
labels so there is no overlap. (See Figure 5.3.)

run_exp_400 <- run_exp_400 |>

inner_join(People, by = c("bat_id" = "retroID"))

library(ggrepel)

plot1 +

geom_text_repel(

data = filter(run_exp_400, RE24 >= 40),

aes(label = nameLast)

)

From Figure 5.3, we learn that the best hitters in terms of RE24 are Mike Trout
(66.43), David Ortiz (60.82), Freddie Freeman (47.19), Joey Votto (46.95), Josh
Donaldson (46.22), and Nolan Arenado (46.0).

5.7 Position in the Batting Lineup

Managers like to put their best hitters in the middle of the batting lineup.
Traditionally, a team’s “best hitter” bats third and the cleanup hitter in the
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fourth position is the best batter for advancing runners on base. What are the
batting positions of the hitters in our sample? Specifically, are the best hitters
using the run value criterion the ones who bat in the middle of the lineup?

A player may bat in several positions in the lineup during the season. We
define a player’s batting position as the position that he bats most frequently.
We first merge the retro2016 and run_exp_400 data frames into the data
frame regulars. Then by grouping regulars by the variables bat_id and
bat_lineup_id, we find the frequency of each batting position for each player.
Then by applications of the arrange() and mutate() functions, we define
position to be the most frequent batting position. We add this new variable
to the run_exp_400 data frame.

regulars <- retro2016 |>

inner_join(run_exp_400, by = "bat_id")

positions <- regulars |>

group_by(bat_id, bat_lineup_id) |>

summarize(N = n()) |>

arrange(desc(N)) |>

mutate(position = first(bat_lineup_id))

run_exp_400 <- run_exp_400 |>

inner_join(positions, by = "bat_id")

In the following R code, the players’ run opportunities are plotted against
their RE24 values using geom_text() with position as the label variable.
(See Figure 5.4.)

ggplot(run_exp_400, aes(runs_start, RE24, label = position)) +

geom_text() +

geom_hline(yintercept = 0, color = "red") +

geom_point(

data = filter(run_exp_400, bat_id == altuve_id),

size = 4, shape = 16, color = crcblue

)

From Figure 5.4, we better understand the relationship between batting posi-
tion, run opportunities, and run values. The best hitters—the ones who create
a large number of runs—generally bat third, fourth, and fifth in the batting
order. The number of runs created by the leadoff (first) and second batters in
the lineup are much smaller than the runs created by the best hitters in the
middle (third and fourth positions) of the lineup. There are some surprises from
this general pattern of batting positions. For example, there are some cleanup
hitters (position 4) displayed who have mediocre values of runs created.
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FIGURE 5.4
Scatterplot of total run value against the runs potential for all players in the
2016 season with at least 400 plate appearances. The points are labeled by the
position in the batting lineup and the large point corresponds to José Altuve.

How does José Altuve and his total run value of 34.7 compare among the
group of hitters with at least 400 plate appearances? We had saved Altuve’s
batter id in the value altuve_id. Figure 5.4 uses another application of the
geom_point() function to display Altuve’s (runs_start, RE24) value by a
large solid dot. In this particular season (2016), Altuve was one of the better
hitters in terms of creating runs for his team.

5.8 Run Values of Different Base Hits

There are many applications of run values in studying baseball. Here we look
at the value of a home run and a single from the perspective of creating runs.

One criticism of batting average is that it gives equal value to the four possible
base hits (single, double, triple, and home run). One way of distinguishing the
values of the base hits is to assign the number of bases reached: 1 for a single,
2 for a double, 3 for a triple, and 4 for a home run. Alternatively, slugging
percentage is the total number of bases divided by the number of at-bats. But
it is not clear that the values 1, 2, 3, and 4 represent a reasonable measure of
the value of the four possible base hits. We can get a better measure of the
importance of these base hits by the use of run values.
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5.8.1 Value of a home run

Let’s focus on the value of a home run from a runs perspective. We extract
the home run plays from the data frame retro2016 using the event_cd play
event variable. An event_cd value of 23 corresponds to a home run. Using the
filter() function with the event_cd == 23 condition, we create a new data
frame home_runs with the home run plays.

home_runs <- retro2016 |>

filter(event_cd == 23)

What are the runners/outs states for the home runs hit during the 2016 season?
We answer this question using the table() function.

home_runs |>

select(state) |>

table()

state

000 0 000 1 000 2 001 0 001 1 001 2 010 0 010 1 010 2 011 0

1530 957 845 12 39 61 98 150 158 24

011 1 011 2 100 0 100 1 100 2 101 0 101 1 101 2 110 0 110 1

37 39 319 357 340 28 74 63 82 131

110 2 111 0 111 1 111 2

156 18 44 48

We compute the relative frequencies using the prop.table() function, and
use the round() function to round the values to three decimal spaces.

home_runs |>

select(state) |>

table() |>

prop.table() |>

round(3)

state

000 0 000 1 000 2 001 0 001 1 001 2 010 0 010 1 010 2 011 0

0.273 0.171 0.151 0.002 0.007 0.011 0.017 0.027 0.028 0.004

011 1 011 2 100 0 100 1 100 2 101 0 101 1 101 2 110 0 110 1

0.007 0.007 0.057 0.064 0.061 0.005 0.013 0.011 0.015 0.023

110 2 111 0 111 1 111 2

0.028 0.003 0.008 0.009

We see from this table that the fraction of home runs hit with the bases empty
is 0.273 + 0.171 + 0.151 = 0.595. So over half of the home runs are hit with no
runners on base.
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Overall, what is the run value of a home run? We answer this question by
computing the average run value of all the home runs in the data frame
home_runs.

mean_hr <- home_runs |>

summarize(mean_run_value = mean(run_value))

mean_hr

# A tibble: 1 x 1

mean_run_value

<dbl>

1 1.38

What are the run values of these home runs? We already observed in the
analysis of Altuve’s data that the run value of a home run with the bases
empty is one. We construct a histogram of the run values for all home runs
using the geom_histogram() function (see Figure 5.5).

ggplot(home_runs, aes(run_value)) +

geom_histogram() +

geom_vline(

data = mean_hr, aes(xintercept = mean_run_value),

color = "red", linewidth = 1.5

) +

annotate(

"text", 1.7, 2000,

label = "Mean Run\nValue", color = "red"

)

It is obvious from this graph that most home runs (the ones with the bases
empty) have a run value of one. But there is a cluster of home runs with values
between 1.5 and 2.0, and there is a small group of home runs with run values
exceeding three.

Which runner/out situations lead to the most valuable home runs? Using the
arrange() function, we display the row of the data frame corresponding to
the largest run value.

home_runs |>

arrange(desc(run_value)) |>

select(state, new_state, run_value) |>

slice_head(n = 1)

# A tibble: 1 x 3

state new_state run_value

<chr> <chr> <dbl>
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FIGURE 5.5
Histogram of the run values of the home runs hit during the 2016 season. The
vertical line shows the location of the mean run value of a home run.

1 111 2 000 2 3.41

As one might expect, the most valuable home run occurs when there are bases
loaded with two outs. The run value of this home run is 3.41.

Using the geom_vline() function, we draw a vertical line on the graph showing
the mean run value and a label to this line (see Figure 5.5). This average run
value is pretty small in relation to the value of a two-out grand slam, but this
value partially reflects the fact that most home runs are hit with the bases
empty.

5.8.2 Value of a single

Run values can also be used to evaluate the benefit of a single. Unlike a home
run, the run value of a single will depend both on the initial state (runners
and outs) and on the final state. The final state of a home run will always
have the bases empty; in contrast, the final state of a single will depend on
the movement of any runners on base.

We use the filter() function to select the plays where event_cd equals
20 (corresponding to a single); the new data frame is called singles. We
construct a histogram of the run values for all of the singles in the 2016 season
in Figure 5.6. As in the case of the home run, it is straightforward to compute
the mean run value of a single. We display this mean value on the histogram
in Figure 5.6.
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FIGURE 5.6
Histogram of the run values of the singles hit during the 2016 season. The
vertical line shows the location of the mean run value of a single.

singles <- retro2016 |>

filter(event_cd == 20)

mean_singles <- singles |>

summarize(mean_run_value = mean(run_value))

ggplot(singles, aes(run_value)) +

geom_histogram(bins = 40) +

geom_vline(

data = mean_singles, color = "red",

aes(xintercept = mean_run_value), linewidth = 1.5

) +

annotate(

"text", 0.8, 4000,

label = "Mean Run\nValue", color = "red"

)

Looking at the histogram of run values of the single, there are three large
spikes between 0 and 0.5. These large spikes can be explained by constructing
a frequency table of the beginning state.

singles |>

select(state) |>
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table()

state

000 0 000 1 000 2 001 0 001 1 001 2 010 0 010 1 010 2 011 0

6920 4767 3763 71 323 354 516 745 864 90

011 1 011 2 100 0 100 1 100 2 101 0 101 1 101 2 110 0 110 1

224 208 1665 1974 1765 159 321 368 364 697

110 2 111 0 111 1 111 2

729 115 280 257

We see that most of the singles occur with the bases empty, and the three
tall spikes in the histogram, as one moves from left to right in Figure 5.6,
correspond to singles with no runners on and two outs, one out, and no outs.
The small cluster of run values in the interval 0.5 to 2.0 correspond to singles
hit with runners on base.

What is the most valuable single from the run value perspective? We use the
arrange() function to find the beginning and end states for the single that
resulted in the largest run value.

singles |>

arrange(desc(run_value)) |>

select(state, new_state, run_value) |>

slice_head(n = 1)

# A tibble: 1 x 3

state new_state run_value

<chr> <chr> <dbl>

1 111 2 001 2 2.68

In this particular play, the hitter came to bat with the bases loaded and two
outs, and the final state was a runner on third with two outs. How could this
have happened with a single? The data frame does contain a brief description
of the play. But from the data frame we identify the play happening during the
bottom of the 8th inning of a game between the Orioles and Yankees on June 5,
2016. We check with Baseball-Reference to find the following play description:

Single to CF (Ground Ball thru SS-2B); Trumbo Scores; Davis Scores;
Pena Scores/unER/Adv on E8 (throw); to 3B/Adv on throw

So evidently, the center fielder made an error on the fielding of the single that
allowed all three runners to score and the batter to reach third base.

At the other extreme, by another use of the arrange() function, we identify
two plays that achieved the smallest run value.
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singles |>

arrange(run_value) |>

select(state, new_state, run_value) |>

slice(1)

# A tibble: 1 x 3

state new_state run_value

<chr> <chr> <dbl>

1 010 0 100 1 -0.621

How could the run value of a single be negative six tenths of a run? With
further investigation, we find that in each case, there was a runner on second
who was hit by the ball in play and was called out.

In this case, we see that the mean value of a single is approximately equal to
the run value when a single is hit with the bases empty with no outs. It is
interesting that the run value of a single can be large (in the 1 to 2 range).
These large run values reflect the fact that the benefit of the single depends
on the advancement of the runners.

5.9 Value of Base Stealing

The run expectancy matrix is also useful in understanding the benefits of
stealing bases. When a runner attempts to steal a base, there are two likely
outcomes—either the runner will be successful in stealing the base or the
runner will be caught stealing. Overall, is there a net benefit to attempting to
steal a base?

The variable event_cd gives the code of the play and codes of 4 and 6 corre-
spond respectively to a stolen base (SB) or caught stealing (CS). Using the
filter() function, we create a new data frame stealing that consists of only
the plays where a stolen base is attempted.

stealing <- retro2016 |>

filter(event_cd %in% c(4, 6))

By use of the summarize() and n() functions, we find the frequencies of the
SB and CS outcomes.

stealing |>

group_by(event_cd) |>

summarize(N = n()) |>
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mutate(pct = N / sum(N))

# A tibble: 2 x 3

event_cd N pct

<int> <int> <dbl>

1 4 2213 0.756

2 6 713 0.244

Among all stolen base attempts, the proportion of stolen bases is equal to 2213
/ (2213 + 713) = 0.756.

What are common runners/outs situations for attempting a stolen base? We
answer this by constructing a frequency table for the state variable.

stealing |>

group_by(state) |>

summarize(N = n())

# A tibble: 16 x 2

state N

<chr> <int>

1 001 1 1

2 001 2 1

3 010 0 37

4 010 1 124

5 010 2 102

6 011 1 1

7 100 0 559

8 100 1 708

9 100 2 870

10 101 0 37

11 101 1 99

12 101 2 219

13 110 0 30

14 110 1 84

15 110 2 53

16 111 1 1

We see that stolen base attempts typically happen with a runner only on first
(state 100). But there are a wide variety of situations where runners attempt
to steal.

Every stolen base attempt has a corresponding run value that is stored in the
variable run_value. This run value reflects the success of the attempt (either
SB or CS) and the situation (runners and outs) where this attempt occurs.
Using the geom_histogram() function, we construct a histogram of all of the
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FIGURE 5.7
Histogram of the run values of all steal attempts during the 2016 season.

runs created for all the stolen base attempts in Figure 5.7. The color of the
bar indicates the success or failure of the attempt.

ggplot(stealing, aes(run_value, fill = factor(event_cd))) +

geom_histogram() +

scale_fill_manual(

name = "event_cd",

values = crc_fc,

labels = c("Stolen Base (SB)", "Caught Stealing (CS)")

)

Generally, all of the successful SBs have positive run value, although most of
the values fall in the interval from 0 to 0.3. In contrast, the unsuccessful CSs
(as expected) have negative run values. In further exploration, one can show
that the three spikes for negative run values correspond to CS when there is
only a runner on first with 0, 1, and 2 outs.

Let’s focus on the benefits of stolen base attempts in a particular situation.
We create a new data frame that gives the attempted stealing data when there
is a runner on first base with one out (state “100 1”).

stealing_1001 <- stealing |>

filter(state == "100 1")

By tabulating the event_cd variable, we see the runner successfully stole 498
times out of 498 + 210 attempts for a success rate of 70.3%.
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stealing_1001 |>

group_by(event_cd) |>

summarize(N = n()) |>

mutate(pct = N / sum(N))

# A tibble: 2 x 3

event_cd N pct

<int> <int> <dbl>

1 4 498 0.703

2 6 210 0.297

Another way to look at the outcome is to look at the frequencies of the
new_state variable.

stealing_1001 |>

group_by(new_state) |>

summarize(N = n()) |>

mutate(pct = N / sum(N))

# A tibble: 4 x 3

new_state N pct

<chr> <int> <dbl>

1 000 1 1 0.00141

2 000 2 211 0.298

3 001 1 39 0.0551

4 010 1 457 0.645

This provides more information than simply recording a stolen base. On 457
occurrences, the runner successfully advanced to second base. On an additional
39 occurrences, the runner advanced to third. Perhaps this extra base was due
to a bad throw from the catcher or a misplay by the infielder. More can be
learned about the details of these plays by further examination of the other
variables.

We are most interested in the value of attempting stolen bases in this situation—
we address this by computing the mean run value of all of the attempts with a
runner on first with one out.

stealing_1001 |>

summarize(Mean = mean(run_value))

# A tibble: 1 x 1

Mean

<dbl>

1 0.00723
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Stolen base attempts are worthwhile, although the value overall is about 0.007
runs per attempt. Of course, the actual benefit of the attempt depends on the
success or failure and on the situation (runners and outs) where the stolen
base is attempted.

5.10 Further Reading and Software

Lindsey (1963) was the first researcher to analyze play-by-play data in the
manner described in this chapter. Using data collected by his father for the 1959–
60 season, Lindsey obtained the run expectancy matrix that gives the average
number of runs in the remainder of the inning for each of the runners/outs
situations. Chapters 7 and 9 of Albert and Bennett (2003) illustrate the use of
the run expectancy matrix to measure the value of different base hits and to
assess the benefits of stealing and sacrifice hits. Tango, Lichtman, and Dolphin
(2007), in their Toolshed chapter, describe the run expectancy table as one of
the fundamental tools used throughout their book. Also, run expectancy plays
a major role in the essays in Keri and Baseball Prospectus (2007).

Benjamin S. Baumer, Jensen, and Matthews (2015) use these run expectancies
in the computation of WAR (wins above replacement) measures for players.
The website http://www.fangraphs.com/library/misc/war/ introduces WAR,
a useful way of summarizing a player’s total contribution to his team.

5.11 Exercises

1. Run Values of Hits

In Section 5.8, we found the average run value of a home run and a single.

(a) Use similar R code as described in Section 5.8 for the 2016 season data to
find the mean run values for a double, and for a triple.

(b) Albert and Bennett (2003) use a regression approach to obtain the weights
0.46, 0.80, 1.02, and 1.40 for a single, double, triple, and home run, respec-
tively. Compare the results from Section 5.8 and part (a) with the weights
of Albert and Bennett.

2. Value of Different Ways of Reaching First Base

There are three different ways for a runner to get on base: a single, walk (BB),
or hit-by-pitch (HBP). But these three outcomes have different run values due
to the different advancement of the runners on base. Use run values based on

http://www.fangraphs.com
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data from the 2016 season to compare the benefit of a walk, a hit-by-pitch,
and a single when there is a single runner on first base.

3. Comparing Two Players with Similar OBPs

Adam Eaton (Retrosheet batter id eatoa002) and Starling Marte (Retrosheet
batter id marts002) both had 0.362 on-base percentages during the 2016 season.
By exploring the run values of these two payers, investigate which player was
really more valuable to his team. Can you explain the difference in run values
in terms of traditional batting statistics such as AVG, SLG, or OBP?

4. Create Probability of Scoring a Run Matrix

In Section 5.3, we illustrate the construction of the run expectancy matrix
from 2016 season data. Suppose instead that one was interested in computing
the proportion of times when at least one run was scored for each of the 24
possible bases/outs situations. Use R to construct this probability of scoring
matrix.

5. Runner Advancement with a Single

Suppose one is interested in studying how runners move with a single.

a. Using the filter() function, select the plays when a single was hit. (The
value of event_cd for a single is 20.) Call the new data frame singles.

b. Use the group_by() and summarize() functions with the data frame
singles to construct a table of frequencies of the variables state (the
beginning runners/outs state) and new_state (the final runners/outs state).

c. Suppose there is a single runner on first base. Using the table from part
(b), explore where runners move with a single. Is it more likely for the lead
runner to move to second, or to third base?

d. Suppose instead there are runners on first and second. Explore where
runners move with a single. Estimate the probability a run is scored on
the play.

6. Hitting Evaluation of Players by Run Values

Choose several players who were good hitters in the 2016 season. For each
player, find the run values and the runners on base for all plate appearances.
As in Figure 5.1, construct a graph of the run values against the runners on
base. Was this particular batter successful when there were runners in scoring
position?
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Balls and Strikes Effects

6.1 Introduction

In this chapter we explore the effect of the ball/strike count on the behavior of
players and umpires and on the final outcome of a plate appearance. We use
Retrosheet data from the 2016 season to estimate how the ball/strike count
affects the run expectancy. We also use Statcast data to explore how one pitcher
modifies his pitch selection, how one batter alters his swing zone, and how
umpires judge pitches based on the count. Along the way, we introduce functions
for string manipulation that are useful for managing the pitch sequences from
the Retrosheet play-by-play files. Level plots and contour plots, created with
the use of the ggplot2 package, will be used for the explorations of batters’
swing tendencies and umpires’ strike zones.

6.2 Hitter’s Counts and Pitcher’s Counts

When watching a broadcast of a baseball game, one often hears an announcer’s
concern for a pitcher who is repeatedly “falling behind” in the count, or his/her
anticipation for a particular pitch because it’s a “hitter’s count” and the batter
has a chance to do some damage. We will see if there is actual evidence that
the so-called hitter’s count really leads to more favorable outcomes for batters,
while “getting ahead” in the count (a pitcher’s count) is beneficial for pitchers.

6.2.1 An example for a single pitcher

The Baseball-Reference1 website provides various splits for every player—
in particular, it gives splits by ball/strike counts for all seasons since 1988.
We find Mike Mussina’s split statistics by entering the player’s profile page
(typing “Mussina” on the search box brings one there), clicking on the “Splits”
tab in the “Standard Pitching” table, and clicking on “Career” (or whatever

1https://baseball-reference.com

DOI: 10.1201/9781032668239-6 136
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season we are interested in) on the pop-up menu that appears. One finds the
“Count Balls/Strikes” table scrolling down on the splits page. Alternatively,
the table can be reached by a direct link: in this case the career splits by
count for Mike Mussina are currently available at http://www.baseball-
reference.com/players/split.fcgi?id=mussimi01&year=Career&t=p#count.

The first series of lines (from “First Pitch” to “Full Count”) shows the statistics
for events happening in that particular count. Thus, for example, a batting
average (BA) of .338 on 1-0 counts indicates batters hit safely 34% of the time
when putting the ball in play on a 1-0 count against Mussina. We are more
interested in the second group of rows, those beginning with the word “After”.
In fact, in these cases the statistics are relative to every plate appearance
that goes through that count. Thus a .337 on-base percentage (OBP) after 1-0
means that, whenever Mike Mussina started a batter with a ball, the batter
successfully got on base 34% of the time, no matter how many pitches it took
to end the plate appearance.

The last column on every table in the splits page is tOPS+. It’s an index for
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2OPS is widely used as a measure of offensive production because—while being very easy
to calculate—it correlates very well with runs scored at the team level.

http://www.baseballreference.com
http://www.baseballreference.com
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FIGURE 6.1
Heat map of tOPS+ for Mike Mussina through each ball/strike count. Data
from Baseball-Reference website.

100, 72, 30, 118, 82, 38,

157, 114, 64, 207, 171, 122

)

)

mussina

# A tibble: 12 x 3

balls strikes value

<int> <int> <dbl>

1 0 0 100

2 0 1 72

3 0 2 30

4 1 0 118

5 1 1 82

6 1 2 38

7 2 0 157

8 2 1 114

9 2 2 64

10 3 0 207

11 3 1 171

12 3 2 122

We create a ggplot2 called count_plot by mapping strikes to the x aesthetic,
balls to the y aesthetic, and fill color to the value. The tiles that we draw
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are colored based on this value. We use the scale_fill_gradient2() function
to set a diverging color palette for the value of tOPS+. Since 100 is a neutral
value, we set that to the midpoint and assign that value to the color white.
For reasons that will become clear later on, we round the labels displayed in
each tile (even though they are integers!).

count_plot <- mussina |>

ggplot(aes(x = strikes, y = balls, fill = value)) +

geom_tile() +

geom_text(aes(label = round(value, 3))) +

scale_fill_gradient2(

"tOPS+", low = "grey10", high = crcblue,

mid = "white", midpoint = 100

)

count_plot

6.2.2 Pitch sequences from Retrosheet

From viewing Figure 6.1, we obtain an initial view of hitter’s counts (darker
shades) and pitcher’s counts (lighter shades) on the basis of offensive production.
However this figure is based on data for a single pitcher—does a similar pattern
emerge when using league-wide data?

Retrosheet provides pitch sequences beginning with the 1988 season. Sequences
are stored in strings such as FBSX. Each character encodes the description of a
pitch. In this example, the pitch sequence is a foul ball (F), followed by a ball
(B), a swinging strike (S), and the ball put into play (X). Table 6.1 provides
the description for every code used in Retrosheet pitch sequences.3

6.2.2.1 Functions for string manipulation

Sequence strings from Retrosheet often require some initial processing before
they can be suitably analyzed. In this section we provide a quick tutorial on
some R functions for the manipulation of strings. Readers not interested in
string manipulation functions may skip to Section 6.2.3.

The function str_length() returns the number of characters in a string. This
function is helpful for obtaining the number of pitches delivered in a Retrosheet
pitch sequence. For example, the number of pitches in the sequence BBSBFFFX
is given by

str_length("BBSBFFFX")

[1] 8

3Source: https://www.retrosheet.org/eventfile.htm.

https://www.retrosheet.org
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TABLE 6.1
Pitch codes used by Retrosheet.

Symbol Description
+ following pickoff throw by the catcher
* indicates the following pitch was blocked by the catcher
. marker for play not involving the batter
1 pickoff throw to first
2 pickoff throw to second
3 pickoff throw to third
> indicates a runner going on the pitch
B ball
C called strike
F foul
H hit batter
I intentional ball
K strike (unknown type)
L foul bunt
M missed bunt attempt
N no pitch (on balks and interference calls)
O foul tip on bunt
P pitchout
Q swinging on pitchout
R foul ball on pitchout
S swinging strike
T foul tip
U unknown or missed pitch
V called ball because pitcher went to his mouth
X ball put into play by batter
Y ball put into play on pitchout

However, as indicated in Table 6.1, there are some characters in the Retrosheet
strings denoting actions that are not pitches, such as pickoff attempts.

The functions str_which() and str_detect() are used to find patterns within
elements of character vectors. The function str_which() returns the indices
of the elements for which a match is found, and the function str_detect()

returns a logical vector, indicating for each element of the vector whether a
match is found. For both functions, the first argument is the vector of strings
where matches are sought and the second argument is the string pattern to
search for. For example, we apply the two functions to the vector of pitch
sequences sequences to search for pickoff attempts to first base denoted by
the code 1.
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sequences <- c("BBX", "C11BBC1S", "1X")

str_which(sequences, "1")

[1] 2 3

str_detect(sequences, "1")

[1] FALSE TRUE TRUE

The function str_which() tells us that “1” is contained in the second (2) and
third (3) components of the character vector sequences, and str_detect()

outputs this same information by means of a logical vector.

The pattern to search for does not have to be a single character. In fact, it can
be any regular expression. For example we may want to look for consecutive
pickoff attempts to first, which is the pattern “11”. The output below shows
that “11” is contained in the second component of sequences.

str_detect(sequences, "11")

[1] FALSE TRUE FALSE

The function str_replace_all() allows for the substitution of the pattern
found with a replacement. The replacement can be an empty string, in which
case the pattern is simply removed[ˆstr remove]. In the code below, we use
the function str_remove_all() to removes the pickoff attempts to first from
the pitch sequences.

str_remove_all(sequences, "1")

[1] "BBX" "CBBCS" "X"

6.2.2.2 Finding plate appearances going through a given count

Since we are interested only in pitch counts, we should remove the characters not
corresponding to actual pitches from the pitch sequences. Regular expressions
are the computing tool needed for this particular task. While it’s beyond the
scope of this book to fully explain how regular expressions work, we will instead
show a few examples on how to use them.4

We begin by loading the retro2016.rds file containing Retrosheet’s play-by-
play for the 2016 season using the read_rds() function. Please see Section A.1.3

4The website https://www.regular-expressions.info is a comprehensive online resource on
regular expressions, featuring examples, tutorials, references for syntax, and a list of related
books.

https://www.regular-expressions.info


142 Balls and Strikes Effects

for instructions on how to create the file retro2016.rds.

retro2016 <- read_rds(here::here("data/retro2016.rds"))

We use the str_remove_all() function to create the variable pseq of pitch
sequences after removing the symbols from the Retrosheet pitch sequence
variable pitch_seq_tx that don’t correspond to actual pitches.

pbp2016 <- retro2016 |>

mutate(pseq = str_remove_all(pitch_seq_tx, "[.>123N+*]"))

In a regular expression, the square brackets indicate the collection of characters
to search. The above code removes pickoff attempts at any base (1, 2, 3) either
by the pitcher or the catcher (+), balks and interference calls (N), plays not
involving the batter (.), indicators of runners going on the pitch (>), and of
catchers blocking the pitch (*).5

We need another special character to identify the plate appearances that go
through a 1-0 count. In a regular expression, the ^ character means the pattern
has to be matched at the beginning of the string. Looking at Table 6.1 there
are four different ways a ball can be coded (B, I, P, V). A plate appearance
that goes though a 1-0 count must therefore begin with one of these characters.
The following code creates the desired variable c10.

pbp2016 <- pbp2016 |>

mutate(c10 = str_detect(pseq, "^[BIPV]"))

Similarly, plate appearances going through a 0-1 count must start with a strike.
Thus, we create a new variable c01.

pbp2016 <- pbp2016 |>

mutate(c01 = str_detect(pseq, "^[CFKLMOQRST]"))

Let’s check our work by checking the values of pitch_seq_tx, c10, and c01

for the first ten lines of the data frame.

pbp2016 |>

select(pitch_seq_tx, c10, c01) |>

slice_head(n = 10)

# A tibble: 10 x 3

pitch_seq_tx c10 c01

5Note that applying the str_length() function to the newly created variable pseq gives
the number of pitches delivered in each at-bat.
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<chr> <lgl> <lgl>

1 BX TRUE FALSE

2 X FALSE FALSE

3 SFS FALSE TRUE

4 BCX TRUE FALSE

5 BSS*B1S TRUE FALSE

6 BBX TRUE FALSE

7 BCX TRUE FALSE

8 CX FALSE TRUE

9 BCCS TRUE FALSE

10 SBFX FALSE TRUE

Writing regular expressions for every pitch count is a tedious task and we will
refer the reader to Section A.3 for the full code.

6.2.3 Expected run value by count

In order to compute the expected runs values by count, we need to augment
pbp2016 via three steps:

1. We need to compute the base-out state, based on the configuration of
the baserunners and the number of outs, both for the beginning and
end of the play. This process is identical to the one explicated in Sec-
tion 5.3. To avoid duplication of code, in this chapter we use the function
retrosheet_add_states(), which we put in the abdwr3edata package for
this purpose.

2. Using the state computed above, we need to join the expected run matrix
that we created in Section 5.3 for the 2016 season. This provides us with
the expected run values for both the beginning and end states of each play.

3. We need to compute variables analogous to c01 and c10 as described
above, but for each of the 12 possible counts. We have placed that code in
the retrosheet_add_counts() function in the abdwr3edata package. See
Section A.3 for more details on how to compute these new variables.

For step 1, we simply call the retrosheet_add_states() function.

library(abdwr3edata)

pbp2016 <- pbp2016 |>

retrosheet_add_states()

For step 2, we load the 2016 expected run matrix and repeatedly join it onto
our play-by-play data, similar to what we did in Section 5.4.

erm_2016 <- read_rds(here::here("data/erm2016.rds"))

pbp2016 <- pbp2016 |>
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left_join(

erm_2016, join_by(bases, outs_ct)

) |>

rename(rv_start = mean_run_value) |>

left_join(

erm_2016, join_by(new_bases == bases, new_outs == outs_ct)

) |>

rename(rv_end = mean_run_value) |>

replace_na(list(rv_end = 0)) |>

mutate(run_value = rv_end - rv_start + runs_scored)

For step 3, we call retrosheet_add_counts().

pbp2016 <- pbp2016 |>

retrosheet_add_counts()

Now we have a beginning and ending run value associated with each play, and
we know whether the at-bat moved through each of the 12 possible counts.

pbp2016 |>

select(

game_id, event_id, run_value, c00, c10, c20,

c11, c01, c30, c21, c31, c02, c12, c22, c32

) |>

slice_head(n = 5)

# A tibble: 5 x 15

game_id event_id run_value c00 c10 c20 c11 c01 c30

<chr> <int> <dbl> <lgl> <lgl> <lgl> <lgl> <lgl> <lgl>

1 ANA201~ 1 0.635 TRUE TRUE FALSE FALSE FALSE FALSE

2 ANA201~ 2 -0.196 TRUE FALSE FALSE FALSE FALSE FALSE

3 ANA201~ 3 -0.565 TRUE FALSE FALSE FALSE TRUE FALSE

4 ANA201~ 4 0.848 TRUE TRUE FALSE TRUE FALSE FALSE

5 ANA201~ 5 -0.220 TRUE TRUE FALSE TRUE FALSE FALSE

# i 6 more variables: c21 <lgl>, c31 <lgl>, c02 <lgl>,

# c12 <lgl>, c22 <lgl>, c32 <lgl>

For example, the at-bat in the fourth line of the data frame (a two-out RBI
single) started with a 1-0 count (value TRUE in column c10), then moved to
the count 1-1, and finally generated a change in expected runs of 0.848. The
pbp2016 data frame has all the necessary information to calculate the run
values of the various balls/strikes counts, in the same way the value of a home
run and of a single were calculated in Section 5.8.

As an illustration, we can measure the importance of getting ahead on the first
pitch. We calculate the mean change in expected run value for at-bats starting
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with a ball and for the at-bats starting with a strike.

pbp2016 |>

filter(c10 == 1 | c01 == 1) |>

group_by(c10, c01) |>

summarize(

num_ab = n(),

mean_run_value = mean(run_value)

)

# A tibble: 2 x 4

# Groups: c10 [2]

c10 c01 num_ab mean_run_value

<lgl> <lgl> <int> <dbl>

1 FALSE TRUE 94106 -0.0394

2 TRUE FALSE 76165 0.0371

The conclusion is that the difference between a first pitch strike and a first
pitch ball, as estimated with data from the 2016 season, is over 0.07 expected
runs.

We can calculate the run value for each possible ball/strike count. First, we use
the select() function and the starts_with() operator to grab only those
columns that start with the letter c. In this case, this matches the columns
c00, c01, etc. that we defined previously. Additionally, we grab the run_value
column.

pbp_counts <- pbp2016 |>

select(starts_with("c"), run_value)

Now, we want to apply the group_by()-summarize() idiom that we used
previously to calculate the mean run value across all of the 12 possible counts.
One way to do this would be to write a function that will perform that operation
for a given variable name, and then iterate over the 12 variable names, and
indeed, that is the approach taken in the first edition of this book. Here, we
employ an alternative strategy that is more in keeping with the tidyverse
philosophy and involves much less code. However, it may be conceptually less
intuitive.

pbp_counts has n = 190713 rows and p = 13 columns. The variable named
run_value contains a measurement of runs, and the other 12 columns contain
logical indicators as to whether the plate appearance passed through a partic-
ular count. Thus, we really have three different kinds of information in this
data frame: a count, whether the plate appearance passed through that count,
and the run value. To tidy these data (Wickham 2014), we need to create a
long data frame with 12n rows and those three columns. We do this using
the pivot_longer() function. We provide a name to the names_to argument,
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which becomes the name of the new variable that records the count. Similarly,
the values_to argument takes a name for the new variable that records the
data that was in the column that was gathered. We don’t want to gather the
run_value column, since that records a different kind of information.

pbp_counts_tidy <- pbp_counts |>

pivot_longer(

cols = -run_value,

names_to = "count",

values_to = "passed_thru"

)

pbp_counts_tidy |>

sample_n(6)

# A tibble: 6 x 3

run_value count passed_thru

<dbl> <chr> <lgl>

1 -0.220 c00 TRUE

2 0.206 c12 FALSE

3 0.360 c32 FALSE

4 -0.106 c01 TRUE

5 -0.230 c22 TRUE

6 -0.106 c01 FALSE

Note that every plate appearance appears p = 12 times in pbp_counts_tidy:
one row for each count. To compute the average change in expected runs (i.e.,
the mean run value), we have to filter() for only those plate appearances that
actually passed through that count. Then we simply apply our group_by()-
summarize() operation as before. Thus, in the mean() operation, the data is
limited to only those plate appearances that have gone through each particular
ball-strike count.

run_value_by_count <- pbp_counts_tidy |>

filter(passed_thru) |>

group_by(count) |>

summarize(

num_ab = n(),

value = mean(run_value)

)

Finally, we can then update our count_plot to use these new data instead of
the old mussina data. To do this, we have to re-compute the balls and strikes
based on the count variable. We can do this by picking out the values of balls and
strikes using the str_sub() function. We use the scale_fill_gradient2()
function again to reset our diverging palette to colors more appropriate for
these data (i.e., a midpoint at 0).
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FIGURE 6.2
Average change in expected runs for plate appearances passing through each
ball/strike count. Values estimated on data from the 2016 season.

run_value_by_count <- run_value_by_count |>

mutate(

balls = str_sub(count, 2, 2),

strikes = str_sub(count, 3, 3)

)

count_plot %+%

run_value_by_count +

scale_fill_gradient2(

"xRV", low = "grey10", high = crcblue,

mid = "white"

)

By glancing at the values and color shades in Figure 6.2, one can construct
reasonable definitions for the terms “hitter’s count” and “pitcher’s count”. Note
that since all plate appearances pass through the 0-0 count, the average change
in expected run value for this count is approximately 0. Ball/strike counts can
be roughly divided in the following four categories6:

• Pitcher’s counts: 0-2, 1-2, 2-2, 0-1;
• Neutral counts: 0-0, 1-1;

6The proposed categorization, based on observation of Figure 6.2, reflects the one proposed
by analyst Tom Tango (see https://www.insidethebook.com/ee/index.php/site/comments/p
late counts/).

https://www.insidethebook.com
https://www.insidethebook.com
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• Modest hitter’s counts: 3-2, 2-1, 1-0;
• Hitter’s counts: 3-0, 3-1, 2-0.

6.2.4 The importance of the previous count

In the previous section we calculated run values for any ball/strike count. In
performing this calculation we simply looked at whether a plate appearance
went through a particular count, without considering how it got there. In other
words, we considered, for example, all the at-bats going through a 2-2 count
as having the same run expectancy, no matter if the pitcher started ahead
0-2 or fell behind 2-0. The implicit assumption in these calculations is that
the previous counts have no influence on the outcome on a particular count7.
However, a pitcher who got ahead 0-2 is likely to “waste some pitches”. That
is, he would likely throw a few balls out of the strike zone with the sole intent
of inducing the batter (who cannot afford another strike) to swing at them
and possibly miss or make poor contact. On the other hand, with a plate
appearance starting with two balls, the batter has the luxury of not swinging
at strikes in undesirable locations and waiting for the pitcher to deliver a pitch
of his liking.

Given the above discussion, it would seem that the run expectancy on a 2-2
count would be higher if the plate appearance started with two balls than if
the pitcher started with a 0-2 count. Let’s investigate if there is numerical
evidence to actually support this conjecture.

We begin by taking the subset of plays from the 2016 season that went through
a 2-2 count and calculating their mean change in expected run value.

count22 <- pbp2016 |>

filter(c22 == 1)

count22 |>

summarize(

num_ab = n(),

mean_run_value = mean(run_value)

)

# A tibble: 1 x 2

num_ab mean_run_value

<int> <dbl>

1 44254 -0.0368

Using the case_when() function, we create a new variable after2 denoting
the ball/strike count after two pitches and calculate the mean run value for
each of the three possible levels of after2.

7This is analogous to the memoryless property referred to in Section 9.2.1.
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count22 |>

mutate(

after2 = case_when(

c20 == 1 ~ "2-0",

c02 == 1 ~ "0-2",

c11 == 1 ~ "1-1",

TRUE ~ "other")

) |>

group_by(after2) |>

summarize(

num_ab = n(),

mean_run_value = mean(run_value)

)

# A tibble: 3 x 3

after2 num_ab mean_run_value

<chr> <int> <dbl>

1 0-2 9837 -0.0311

2 1-1 28438 -0.0376

3 2-0 5979 -0.0422

The above results appear to imply that plate appearances going through a 2-2
count after having started with two strikes are more favorable to the batter
than those beginning with two balls.

This result should be considered in light of multiple types of potential selection
bias. Many plate appearances starting with two strikes end without ever
reaching the 2-2 count, in most cases with an unfavorable outcome for the
batter.8 The plate appearances that survive a 0-2 count reaching 2-2 are hardly
a random sample of all the plate appearances. Hard-to-strike-out batters are
likely over-represented in such a sample, as well as pitchers with good fastball
command (to get ahead 0-2), but weak secondary pitches (to finish off batters).

Similarly, comparing the paths leading to 1-1 counts yields results in line with
common sense.

count11 <- pbp2016 |>

filter(c11 == 1)

count11 |>

mutate(

after2 = ifelse(c10 == 1, "1-0", "0-1")

) |>

group_by(after2) |>

summarize(

8In 2016, 85% of plate appearances beginning with two strikes and not reaching the 2-2
count ended with the batter making an out.
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num_ab = n(),

mean_run_value = mean(run_value)

)

# A tibble: 2 x 3

after2 num_ab mean_run_value

<chr> <int> <dbl>

1 0-1 38759 -0.0122

2 1-0 36467 -0.0176

The numbers above suggest that after reaching a 1-1 count, the batter is
expected to perform slightly worse if the first pitch was a ball than if it was a
strike.

6.3 Behaviors by Count

In this section we explore how the roles of three individuals in the pitcher-batter
duel are affected by the ball/strike count. How does a batter alter his swing
when ahead or behind in the count? How does a pitcher vary his mix of pitches
according to the count? Does an umpire (consciously or unconsciously), shrink
or expand his strike zone depending on the pitch count?

We provide an R data file (a file with extension .Rdata) containing all the
datasets used in this section. Once the file is loaded into R, the data frames
cabrera, sanchez, umpires, and verlander are visible by use of the ls()

function.

load(here::here("data/balls_strikes_count.RData"))

These datasets contain pitch-by-pitch data, including the location of pitches as
recorded by Sportvision’s PITCHf/x system. The cabrera data frame contains
four years of batting data for 2012 American League Triple Crown winner
Miguel Cabrera. The data frame umpires has information about every pitch
thrown in 2012 where the home plate umpire had to judge whether it crossed
the strike zone. The verlander data frame has four years of pitching data for
2016 Cy Young Award and MVP recipient Justin Verlander.

6.3.1 Swinging tendencies by count

We saw in Section 6.2 that batters perform worse when falling behind in the
count. For example, when there are two strikes in the count, the batter may
be forced to swing at pitches he would normally let pass by to avoid being
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FIGURE 6.3
Scatterplot of Miguel Cabrera’s swinging tendency by location. Sample of 500
pitches. View from the catcher’s perspective.

called out on strikes. Using PITCHf/x data, we explore how a very good batter
like Miguel Cabrera alters his swinging tendencies according to the ball/strike
count.

6.3.1.1 Propensity to swing by location

In this section we focus on the relationships between the variables balls and
strikes indicating the count on the batter, the variables px and pz identifying
the pitch location as it crosses the front of the plate, and the swung binary
variable, denoting whether or not the batter attempted a swing on the pitch.

We show a scatterplot of Miguel Cabrera’s swinging tendency in Figure 6.3.

k_zone_plot <- cabrera |>

sample_n(500) |>

ggplot(aes(x = px, y = pz)) +

geom_rect(
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xmin = -0.947, xmax = 0.947, ymin = 1.5,

ymax = 3.6, fill = "lightgray", alpha = 0.01

) +

coord_equal() +

scale_x_continuous(

"Horizontal location (ft.)",

limits = c(-2, 2)

) +

scale_y_continuous(

"Vertical location (ft.)",

limits = c(0, 5)

)

k_zone_plot +

geom_point(aes(color = factor(swung))) +

scale_color_manual(

"Swung", values = crc_fc,

labels = c("No", "Yes")

)

Rather than plot all 6265 pitches, we use the sample_n() function to simplify
matters by taking a random sample of 500 pitches. This reduces overlapping
in the scatterplot without introducing bias. From Figure 6.3, one can see that
Cabrera is less likely to swing at pitches delivered farther away from the strike
zone (the black box). However, it is difficult to determine Cabrera’s preferred
pitch location from this figure.

A contour plot is an effective alternative method to visualize batters’ swinging
preferences. This type of plot is used to visualize three-dimensional data in
two dimensions. Widely used in cartography and meteorology, the contour plot
usually features spatial coordinates as the first two variables, while the third
variable (which can be, for example, elevation in cartography or barometric
pressure in meteorology) is plotted as a contour line, also called an isopleth.
The contour line is a curve joining points sharing equal values of the third
variable.

As a first step in producing a contour plot, we fit a smooth polynomial surface
to the response variable swung as a function of the horizontal and vertical
locations px and pz using the loess() function. The output of this fit is stored
in the object miggy_loess.

miggy_loess <- loess(

swung ~ px + pz,

data = cabrera,

control = loess.control(surface = "direct")

)
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After the surface has been fit, we are interested in predicting the likelihood of a
swing by Cabrera at various pitch locations. Using the expand_grid() function,
we build a data frame consisting of combinations of horizontal locations from
−2 (two feet to the left of the middle of home plate) to +2 (two feet to the right
of the middle of the plate) and vertical locations from the ground (value of
zero) to six feet of height, using subintervals of 0.1 feet. Using the predict()
function, we obtain the likelihood of Miguel’s swinging at every location in
the data frame. Note that because predict() returns a matrix, we use the
as.numeric() function to convert the fitted values into a numeric vector.

pred_area <- expand_grid(

px = seq(-2, 2, by = 0.1),

pz = seq(0, 6, by = 0.1)

)

pred_fits <- miggy_loess |>

predict(newdata = pred_area) |>

as.numeric()

pred_area_fit <- pred_area |>

mutate(fit = pred_fits)

To spot check, we examine in the data frame pred_area_fit the likelihood
that Cabrera will swing for three different hand-picked locations—a pitch down
the middle and two and a half feet from the ground (“down Broadway”, a ball
that hits the ground in the middle of the plate (“ball in the dirt”), and another
one delivered at mid-height (2.5 feet from the ground) but way outside (two
feet from the middle of the plate). In each case, we use the filter() function
to take a subset of the prediction data frame pred_area_fit with specific
values of the horizontal and vertical locations px and pz.

pred_area_fit |>

filter(px == 0 & pz == 2.5) # down Broadway

# A tibble: 1 x 3

px pz fit

<dbl> <dbl> <dbl>

1 0 2.5 0.844

pred_area_fit |>

filter(px == 0 & pz == 0) # ball in the dirt

# A tibble: 1 x 3

px pz fit

<dbl> <dbl> <dbl>

1 0 0 0.154
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pred_area_fit |>

filter(px == 2 & pz == 2.5) # way outside

# A tibble: 1 x 3

px pz fit

<dbl> <dbl> <dbl>

1 2 2.5 0.0783

The results are quite consistent with what one would expect: the pitch right in
the heart of the strike zone induces Cabrera to swing more than 80 percent of
the time, while the ball in the dirt and the ball outside generate a swing at 15
percent and 8 percent rates, respectively.

We construct a contour plot of the likelihood of the swing as a function of
the horizontal and vertical locations of the pitch using the geom_contour2()
function in the metR package. For logical consistency, we filter() for only
those contours corresponding to swing probabilities between 0 and 1. Figure 6.4
shows the resulting contour plot.

cabrera_plot <- k_zone_plot %+%

filter(pred_area_fit, fit >= 0, fit <= 1) +

metR::geom_contour2(

aes(

z = fit, color = after_stat(level),

label = after_stat(level)

),

binwidth = 0.2, skip = 0

) +

scale_color_gradient(low = "white", high = crcblue)

cabrera_plot

As expected, the likelihood of a swing decreases the further the ball is delivered
from the middle of the strike zone. The plot also shows that Cabrera has a
tendency to swing at pitches on the inside part of the plate.

6.3.1.2 Effect of the ball/strike count

Figure 6.4 reports Cabrera’s swinging tendency over all pitch counts. Can we
visualize how Cabrera varies his approach according to the ball/strike count?
Specifically, does Cabrera become more selective when he is ahead and can
afford to wait for a pitch of his liking and, conversely, does he “expand his
zone” when there are two strikes and he cannot allow another called strike go
by? We described the process of calculating the swing propensity by location
in Section 6.3.1.1. Here, we generalize that procedure and iterate it over all
counts.
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As expected, the likelihood of a swing decreases the further the ball is delivered
from the middle of the strike zone. The plot also shows that Cabrera has a
tendency to swing at pitches on the inside part of the plate.

6.3.1.2 Effect of the ball/strike count

Figure 6.4 reports Cabrera’s swinging tendency over all pitch counts. Can we
visualize how Cabrera varies his approach according to the ball/strike count?
Specifically, does Cabrera become more selective when he is ahead and can
afford to wait for a pitch of his liking and, conversely, does he “expand his
zone” when there are two strikes and he cannot allow another called strike go
by? We described the process of calculating the swing propensity by location
in Section 6.3.1.1. Here, we generalize that procedure and iterate it over all
counts.
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FIGURE 6.4
Contour plot of Miguel Cabrera’s swinging tendency by location, where the
view is from the catcher’s perspective. The contour lines are labeled by the
probability of swinging at the pitch.

In this case, we restrict our interest to 0-0, 0-2, and 2-0 counts. The vector
counts contains these values. Next, we split the cabrera data frame into a
list with three elements: one data frame for each of the chosen counts. We ac-
complish this by filter()-ing for those counts and using the group_split()
function to do the splitting. Note that the resulting count_dfs object is a
list of three data.frames.

counts <- c("0-0", "0-2", "2-0")

count_dfs <- cabrera |>

mutate(count = paste(balls, strikes, sep = "-")) |>

filter(count %in% counts) |>

group_split(count)

Next, we use the map() function repeatedly to iterate our analysis over the
elements of count_dfs. First, we compute the LOESS fits for a given set
of data specific to the count using loess(). Second, we use predict() to
compute three sets of predictions—one for each of the three counts. Third,
we convert the numeric matrices returned by predict() to numeric vectors
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FIGURE 6.5
Contour plots of Miguel Cabrera’s swinging tendency by selected ball/strike
counts, viewed from the catcher’s perspective. The contour lines are labeled
by the probability of swinging at the pitch.

called fit, and append them to the pred_area data frame. Fourth, we use
set_names() to link the counts with their corresponding data frames. Finally,
we stitch all three data frames together using list_rbind(), and add variables
for the count, number of balls, and number of strikes.

count_fits <- count_dfs |>

map(~loess(

swung ~ px + pz, data = .x,

control = loess.control(surface = "direct")

)) |>

map(predict, newdata = pred_area) |>

map(~tibble(pred_area, fit = as.numeric(.x))) |>

set_names(nm = counts) |>

list_rbind(names_to = "count") |>

mutate(

balls = str_sub(count, 1, 1),

strikes = str_sub(count, 3, 3)

)

This process performs the same tasks that we did before: it fits a LOESS model
to the pitch location data, then uses that model to generate swing probability
predictions across the entire area and returns a tibble with the associated
ball and strike count.

We can then use a facet_wrap() to show the contour plots on separate panels
to compare Cabrera’s swinging tendencies by pitch count (see Figure 6.5). To
improve legibility, we only show the 20%, 40%, and 60% contours.
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cabrera_plot %+%

filter(count_fits, fit > 0.1, fit < 0.7) +

facet_wrap(vars(count))

As expected, Cabrera expands his swing zone when behind 0-2 (his 40% contour
line on 0-2 counts has an area comparable to his 20% contour line on 0-0 counts).
The third panel in Figure 6.5 is comprised of a relatively low sample size and
probably does not tell us much.

6.3.2 Pitch selection by count

We now move to the other side of the pitcher/batter duel in our investigation
of the effect of the count. Pitchers generally possess arsenals of two to five
different pitch types. All pitchers have a fastball at their disposal, which is
generally a pitch that is easy to throw to a desired location. So-called secondary
pitches, such as curve balls or sliders, while often effective (especially when
hitters are not expecting them), are harder to control and rarely used by
pitchers behind in the count. In this section we look at one pitcher (arguably
one of the best in MLB at the time) and explore how he chooses from his pitch
repertoire according to the ball/strike count.

The verlander data frame, consisting of over 15 thousand observations, con-
sists of pitch data for Justin Verlander for four seasons. Using the group_by()
and summarize() commands, we obtain a frequency table of the types of
pitches Verlander threw from 2009–2012. In this case, we compute the pitch
type proportions in addition to their frequencies.

verlander |>

group_by(pitch_type) |>

summarize(N = n()) |>

mutate(pct = N / nrow(verlander)) |>

arrange(desc(pct))

# A tibble: 5 x 3

pitch_type N pct

<fct> <int> <dbl>

1 FF 6756 0.441

2 CU 2716 0.177

3 CH 2550 0.167

4 FT 2021 0.132

5 SL 1264 0.0826

As is the case with most major league pitchers, Verlander throws his fastball
most frequently. He uses two variations of a fastball: a four-seamer (FF) and
a two-seamer (FT). He complements his fastballs with a curve ball (CU), a
change-up (CH), and a slider (SL).
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We see in the table that 44% of Verlander’s pitches during this four-season
period were four-seam fastballs.

Before moving to exploring pitch selection by ball/strike count, we compute
a frequency table to explore the pitch selection by batter handedness. The
pivot_wider() function helps us display the results in a wide rather than
long format.

verlander |>

group_by(batter_hand, pitch_type) |>

summarize(N = n()) |>

pivot_wider(names_from = batter_hand, values_from = N) |>

mutate(L_pct = L / sum(L), R_pct = R / sum(R))

# A tibble: 5 x 5

pitch_type L R L_pct R_pct

<fct> <int> <int> <dbl> <dbl>

1 CH 2024 526 0.228 0.0817

2 CU 1529 1187 0.172 0.184

3 FF 3832 2924 0.432 0.454

4 FT 1303 718 0.147 0.111

5 SL 178 1086 0.0201 0.169

Note that Verlander’s pitch selection is quite different depending on the
handedness of the opposing batter. In particular, the right-handed Verlander
uses his changeup nearly a quarter of the time against left-handed hitters, but
only eight percent of the time against right-handed hitters. Conversely the
slider is nearly absent from his repertoire when he faces lefties, while he uses
it close to one out of six times against righties.

Batter-hand differences in pitch selection are common among major league
pitchers and they exist because the effectiveness of a given pitch depends on the
handedness of the pitcher and the batter. The slider and change-up comparison
is a typical example, a slider is very effective against batters of the same
handedness while a change-up can be successful when facing opposite-handed
batters.

We can also explore Verlander’s pitch selection by pitch count as well as
batter handedness. In the following code, the filter() function is used to
select Verlander’s pitches delivered to right-handed batters. The rest of the
code constructs a table of frequencies by count and pitch type. The across()
function helps to divide each numeric variable by the total number of pitches.

verlander |>

filter(batter_hand == "R") |>

group_by(balls, strikes, pitch_type) |>
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is a typical example, a slider is very effective against batters of the same
handedness while a change-up can be successful when facing opposite-handed
batters.

We can also explore Verlander’s pitch selection by pitch count as well as
batter handedness. In the following code, the filter() function is used to
select Verlander’s pitches delivered to right-handed batters. The rest of the
code constructs a table of frequencies by count and pitch type. The across()
function helps to divide each numeric variable by the total number of pitches.

verlander |>

filter(batter_hand == "R") |>

group_by(balls, strikes, pitch_type) |>
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summarize(N = n()) |>

pivot_wider(

names_from = pitch_type,

values_from = N,

values_fill = 0

) |>

mutate(

num_pitches = CH + CU + FF + FT + SL,

across(where(is.numeric), ~.x / num_pitches)

) |>

select(-num_pitches)

# A tibble: 12 x 7

# Groups: balls, strikes [12]

balls strikes CH CU FF FT SL

<int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>

1 0 0 0.0692 0.115 0.526 0.156 0.134

2 0 1 0.0624 0.242 0.405 0.101 0.189

3 0 2 0.158 0.282 0.274 0.0629 0.223

4 1 0 0.0493 0.107 0.523 0.112 0.209

5 1 1 0.0805 0.238 0.398 0.0960 0.187

6 1 2 0.143 0.327 0.278 0.0617 0.191

7 2 0 0.0174 0.0174 0.703 0.145 0.116

8 2 1 0.0623 0.0796 0.512 0.142 0.204

9 2 2 0.102 0.294 0.357 0.0869 0.161

10 3 0 0.0833 0 0.812 0.104 0

11 3 1 0.0196 0 0.784 0.118 0.0784

12 3 2 0.0429 0.0429 0.693 0.116 0.106

The effect of the ball/strike count on the choice of pitches is apparent when
comparing pitcher’s counts and hitter’s counts. When behind 2-0, Verlander
uses his four-seamer seven times out of ten; the percentage goes up to 78%
when trailing 3-1 and 81% on 3-0 counts. Conversely, when he has the chance
to strike the batter out, the use of the four-seamer diminishes. In fact he
throws it less than 30 percent of the time both on 0-2 and 1-2 counts. On a full
count, Verlander’s propensity to throw his fastball is similar to those of hitters’
counts—this is consistent with the numbers in Figure 6.2 that indicate the
3-2 count being slightly favorable to the hitter. One can explore Verlander’s
choices by count when facing a left-handed hitter by simply changing R to L in
the code above.

6.3.3 Umpires’ behavior by count

Hardball Times author John Walsh wrote a 2010 article titled The Compas-
sionate Umpire in which he showed that home plate umpires tend to modify
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TABLE 6.2
A twenty row sample of the umpires dataset.

Umpire batter hand balls strikes px pz called strike
Bill Miller R 2 1 0.84 1.44 0
Jeff Nelson L 0 0 –1.58 2.64 0
James Hoye R 0 0 0.65 1.36 0
Tim Tschida L 0 1 0.83 1.34 0
Fieldin Culbreth L 1 2 –1.22 2.37 0
Tim McClelland L 1 1 –0.67 2.03 1
Laz Diaz R 0 1 0.43 3.35 1
Paul Nauert L 0 0 –1.42 4.04 0
James Hoye L 0 0 –0.27 2.89 1
Kerwin Danley R 1 1 –0.84 4.86 0
Mike Everitt L 0 0 –0.03 1.62 1
Dan Bellino R 0 0 0.78 0.62 0
Mike Everitt R 0 0 –0.93 1.22 0
Tom Hallion R 1 0 0.39 2.38 1
Jerry Meals L 0 2 –0.84 1.41 0
Tim Welke R 0 0 –1.72 1.34 0
James Hoye L 1 0 –1.97 2.99 0
Brian O’Nora R 0 0 –0.57 3.69 0
Jordan Baker R 0 1 0.00 3.91 0
Gerry Davis R 0 1 –1.02 4.91 0

their ball/strike calling behavior by slightly favoring the player who is behind
in the count (Walsh 2010). In other words, umpires tend to enlarge their strike
zone in hitter’s counts and to shrink it when pitchers are ahead. In this section
we visually explore Walsh’s finding by plotting contour lines for three different
ball/strike counts.

The umpires data frame is similar to those of verlander and cabrera. A
sample of its contents—obtained using the sample_n() function—is shown in
Table 6.2.

sample_n(umpires, 20)

The data consist of every pitch of the 2012 season for which the home plate
umpire had to judge whether it crossed the strike zone. Additional columns
not present in either the verlander or the cabrera data frames identify the
name of the umpire (variable umpire) and whether the pitch was called for a
strike (variable called_strike).

We proceed similarly to the analysis of Section 6.3.1.2, using the loess()

function to estimate the umpires’ likelihood of calling a strike, based on the
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location of the pitch. Here we limit the analysis to plate appearances featuring
right-handed batters, as it has been shown that umpires tend to call pitches
slightly differently depending on the handedness of the batter.

umpires_rhb <- umpires |>

filter(

batter_hand == "R",

balls == 0 & strikes == 0 |

balls == 3 & strikes == 0 |

balls == 0 & strikes == 2

)

By slightly modifying the code above, the reader can easily repeat the process
for other counts. In this section we compare the 0-0 count to the most extreme
batter and pitcher counts, 3-0 and 0-2 counts, respectively.

To do this, we can re-purpose our map() pipeline from above, incorporating
the pred_area data frame. Note that the response variable in the LOESS
model here is called_strike. In addition, the loess() smoother is applied
on a subset of 3000 randomly selected pitches, to reduce computation time.

ump_counts <- umpires_rhb |>

mutate(count = paste(balls, strikes, sep = "-")) |>

group_by(count)

counts <- ump_counts |>

group_keys() |>

pull(count)

ump_count_fits <- ump_counts |>

group_split() |>

map(sample_n, 3000) |>

map(~loess(

called_strike ~ px + pz, data = .x,

control = loess.control(surface = "direct"))

) |>

map(predict, newdata = pred_area) |>

map(~tibble(pred_area, fit = as.numeric(.x))) |>

set_names(nm = counts) |>

list_rbind(names_to = "count") |>

mutate(

balls = str_sub(count, 1, 1),

strikes = str_sub(count, 3, 3)

)

Figure 6.6 shows that the umpire’s strike zone shrinks considerably in a 0-2 pitch
count, and slightly expanded in a 3-0 count. To isolate the 0.5 contour lines, we
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FIGURE 6.6
Umpires’ 50/50 strike calling zone in different balls/strikes counts viewed from
the catcher’s perspective.

filter() the fitted values for those near 0.5, and then use geom_contour()
to set the width of the bins to be small.

k_zone_plot %+% filter(ump_count_fits, fit < 0.6 & fit > 0.4) +

geom_contour(

aes(z = fit, color = count, linetype = count),

binwidth = 0.1

) +

scale_color_manual(values = crc_fc)

6.4 Further Reading

Palmer (1983) is possibly one of the first examinations of the balls/strikes count
effect on the outcome of plate appearances: it is based on data from World
Series games from 1974 to 1977 and features a table resembling Figures 6.1
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and 6.2. Walsh (2008) calculates the run value of a ball and of a strike at
every count and uses the results for ranking baseball’s best fastballs, sliders,
curveballs, and change-ups. Walsh (2010) shows how umpires are (perhaps
unconsciously) affected by the balls/strikes count when judging pitches. In
particular, he presents a scatterplot showing a very high correlation between
the strike zone area and the count run value (see Figure 6.2). Allen (2009a),
Allen (2009b), and Marchi (2010) illustrate so-called platoon splits (i.e. the
different effectiveness against same-handed versus opposite-handed batters) for
various pitch types.

6.5 Exercises

1. Run Value of Individual Pitches

(a) Calculate the run value of a ball and of a strike at any count. For
3-ball and 2-strike counts you need the value of a walk and a strikeout
respectively (you can calculate them as done for other events in
Chapter 5).

(b) Compare your values to the ones proposed by John Walsh in the article
https://tht.fangraphs.com/searching-for-the-games-best-pitch/.

2. Length of Plate Appearances

(a) Calculate the length, in term of pitches, of the average plate appear-
ance by batting position using Retrosheet data for the 2016 season.

(b) Does the eighth batter in the National League behave differently than
his counterpart in the American League?

(c) Repeat the calculations in (a) and (b) for the 1991 and 2016 seasons
and comment on any differences between the seasons that you find.

3. Pickoff Attempts Identify the baserunners who, in the 2016 season, drew
the highest number of pickoff attempts when standing at first base with
second base unoccupied.

4. Umpire’s Strike Zone

By drawing a contour plot, compare the umpire’s strike zone for left-handed
and right-handed batters. Use only the rows of the data frame where the
pitch type is a four-seam fastball.

5. Umpire’s Strike Zone, Continued

By drawing one or more contour plots, compare the umpire’s strike zone
by pitch type. For example, compare the 50/50 contour lines of four-seam
fastballs and curveballs when a right-handed batter is at the plate.

https://tht.fangraphs.com
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Catcher Framing

7.1 Introduction

In this chapter we explore the idea of catcher framing ability using Statcast
data from the 2022 season.

The story of catcher framing ability in sabermetrics is an interesting one.
Historically, scouts and coaches insisted that certain catchers had the ability to
“frame” pitches for umpires. The idea was that by holding the glove relatively
still, you could trick the umpire into calling a pitch a strike even if it was
technically outside of the strike zone (see Lindbergh (2013) for a great visual
explanation). Sabermetricians were generally dubious about both the existence
and the impact of this skill. Most people who had studied the impact of catcher
defense concluded that it was not nearly as valuable as scouts and coaches
believed.

Part of the problem was that until the mid-2000s, pitch-level data was hard
to come by. With the advent of PITCHf/x, more sophisticated modeling
techniques became viable on these more granular data. New studies that
estimated the impact of catcher framing substantiated both the existence of a
persistent ability (i.e., catchers with good framing numbers stayed good over
time) and the magnitude of the effect (i.e., good framers were actually really
valuable) (Turkenkopf 2008; Fast 2011; Brooks and Pavlidis 2014; Brooks,
Pavilidis, and Judge 2015; Deshpande and Wyner 2017; Judge 2018).

These new findings led to changes in the baseball industry—defensive-minded
catchers like José Molina starting getting multi-year contracts that were not
justified by their batting skill. Minor league instruction placed greater emphasis
on improving framing skills. Of course, as soon as MLB decides to let robots
call balls and strikes, then this catcher framing ability will evaporate instantly.

This issue is a nice parable in that it illustrates how sabermetric thinking can
(and does) change based on the availability of data and the sophistication of
modeling techniques, as well as how the game on the field can change due to
sabermetric insights.

DOI: 10.1201/9781032668239-7 164

http://doi.org/10.1201/9781032668239-7
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7.2 Acquiring Pitch-Level Data

We wish to collect Statcast data for only the “taken” pitches where there is
either a ball or a called strike. We illustrate this process using the following
code that is not evaluated here. We start by reading in the Statcast data for
the 2022 season. See Section 12.2 for an explanation of how to acquire a year’s
worth of Statcast data. Using the mutate() and case_match() functions, we
define a variable Outcome that recodes the description variable into three
categories—“ball”, “swinging strike” and “called strike”. We also define a Home

variable which indicates if the home team is batting and a Count variable
which gives the balls and strikes count.

sc2022 <- here::here("data_large/statcast_rds/statcast_2022.rds") |>

read_rds()

sc2022 <- sc2022 |>

mutate(

Outcome = case_match(

description,

c("ball", "blocked_ball", "pitchout",

"hit_by_pitch") ~ "ball",

c("swinging_strike", "swinging_strike_blocked",

"foul", "foul_bunt", "foul_tip",

"hit_into_play", "missed_bunt" ) ~ "swing",

"called_strike" ~ "called_strike"),

Home = ifelse(inning_topbot == "Bot", 1, 0),

Count = paste(balls, strikes, sep = "-")

)

Using the filter() function, the taken data frame consists of those pitches
where there was not a batter swing, so only balls and called strikes are included.
We use the select() function to select the variables of interest in this dataset
and the write_rds() function stores the taken data frame in a compressed
format in the file sc_taken_2022.rds.

taken <- sc2022 |>

filter(Outcome != "swing")

taken_select <- select(

taken, pitch_type, release_speed,

description, stand, p_throws, Outcome,

plate_x, plate_z, fielder_2_1,

pitcher, batter, Count, Home, zone

)

write_rds(

taken_select,
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here::here("data/sc_taken_2022.rds"),

compress = "xz"

)

Once this data is stored, we can read this data into R by use of the read_rds()
function. We focus on using a random sample of 50,000 rows of this dataset
extracted using the sample_n() function.

sc_taken <- read_rds(here::here("data/sc_taken_2022.rds"))

set.seed(12345)

taken <- sample_n(sc_taken, 50000)

7.3 Where Is the Strike Zone?

In order to understand the impact of catcher framing, we need a way to
characterize the probability that any given pitch is called a strike. In the
Statcast data, each pitch has an Outcome variable, which is called_strike
for a called strike and ball for a ball. We plot these outcomes in Figure 7.1.

FIGURE 7.1
Scatterplot of locations of balls and called strikes for 2000 pitches, 2022 season.
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Note that pitches thrown in the strike zone tend to be called a strike. Note also
that many pitches are called strikes even though they are technically outside
of the strike zone.

plate_width <- 17 + 2 * (9/pi)

k_zone_plot <- ggplot(

NULL, aes(x = plate_x, y = plate_z)

) +

geom_rect(

xmin = -(plate_width/2)/12,

xmax = (plate_width/2)/12,

ymin = 1.5,

ymax = 3.6, color = crcblue, alpha = 0

) +

coord_equal() +

scale_x_continuous(

"Horizontal location (ft.)",

limits = c(-2, 2)

) +

scale_y_continuous(

"Vertical location (ft.)",

limits = c(0, 5)

)

How do we know where the strike zone is? By the rulebook, only a part of
the ball need pass over home plate in order for the pitch to be called a strike.
Home plate is 17 inches wide, and the ball is 9 inches in circumference, so the
outside edges of the strike zone from our point-of-view are about ± 0.947 feet.
The top and bottom of the strike vary by batter, but are of comparatively less
interest here. The object k_zone_plot is a blank ggplot2 object on which we
plot a random sample of 2000 rows of the Statcast data from in Figure 7.1.

k_zone_plot %+%

sample_n(taken, size = 2000) +

aes(color = Outcome) +

geom_point(alpha = 0.2) +

scale_color_manual(values = crc_fc)

Another way to think about the strike zone is in terms of zones that are
pre-defined by Statcast. The strike zone itself is divided into a 3 × 3 grid, with
four additional regions defined outside of the strike zone. We first compute the
observed probability of a called strike in each one of those zones, as well as
its boundaries. We use the quantile() function to mitigate the influence of
outliers.
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zones <- taken |>

group_by(zone) |>

summarize(

N = n(),

right_edge = min(1.5, max(plate_x)),

left_edge = max(-1.5, min(plate_x)),

top_edge = min(5, quantile(plate_z, 0.95, na.rm = TRUE)),

bottom_edge = max(0, quantile(plate_z, 0.05, na.rm = TRUE)),

strike_pct = sum(Outcome == "called_strike") / n(),

plate_x = mean(plate_x),

plate_z = mean(plate_z)

)

In Figure 7.2, we plot each zone, along with the probability that a pitch taken
in that zone will be called a strike. Note that these pre-defined zones are
exclusive of those pitches “on the black”.

library(ggrepel)

k_zone_plot %+% zones +

geom_rect(

aes(

xmax = right_edge, xmin = left_edge,

ymax = top_edge, ymin = bottom_edge,

fill = strike_pct, alpha = strike_pct

),

color = "lightgray"

) +

geom_text_repel(

size = 3,

aes(

label = round(strike_pct, 2),

color = strike_pct < 0.5

)

) +

scale_fill_gradient(low = "gray70", high = crcblue) +

scale_color_manual(values = crc_fc) +

guides(color = FALSE, alpha = FALSE)

7.4 Modeling Called Strike Percentage

The zone-based strike probabilities in Figure 7.2 are limited by their discrete
nature. What we really want is a model that will give us the estimated strike
probability for any pitch based on its horizontal and vertical location. To
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FIGURE 7.2
Strike probability for pitches taken in pre-defined areas of the strike zone.

this end, we fit a generalized additive model . This model will fit a smooth
surface over the entire area, while including only the two explanatory variables
for location. The s() function from the mgcv package indicates over which
variables the smoothing is to occur (plate_x and plate_z). We set the family
argument to binomial, to ensure that an appropriate link function (in this
case, the logistic function) is used to model our binary response variable, which
is defined by the Boolean expression Outcome == "called_strike".

library(mgcv)

strike_mod <- gam(

Outcome == "called_strike" ~ s(plate_x, plate_z),

family = binomial,

data = taken

)

7.4.1 Visualizing the estimates

An easy way to visualize the estimates produced by our model is to plot the
fitted values. Here we use the augment() function from the broom package to
compute these fitted values and add them to our data frame. The type.predict
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FIGURE 7.3
Estimated strike probability for taken pitches using a generalized additive
model.

argument tells R to compute the estimates on the probability scale (i.e., of the
response variable).

library(broom)

hats <- strike_mod |>

augment(type.predict = "response")

Next, we can simply update our k_zone_plot object with this new data frame,
add some points (geom_point()), and map the color aesthetic to the fitted
values we just computed (.fitted). Figure 7.3 reveals that on these data, the
GAM effectively mapped the pattern of balls and strikes.

k_zone_plot %+% sample_n(hats, 10000) +

geom_point(aes(color = .fitted), alpha = 0.1) +

scale_color_gradient(low = "gray70", high = crcblue)

7.4.2 Visualizing the estimated surface

Of course the GAM that we built is a continuous surface. One of the benefits
of fitting such a model in the first place is that it allows us to estimate the
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probability of a called strike for any pitch whose location coordinates we
know—not just the ones present in our training data set.

We can visualize our model as a surface by plotting the estimated probability
across a fine grid of horizontal and vertical coordinate pairs. The modelr
package has several functions, including data_grid() and seq_range() that
help us create a grid of values relevant for our data.

library(modelr)

grid <- taken |>

data_grid(

plate_x = seq_range(plate_x, n = 100),

plate_z = seq_range(plate_z, n = 100)

)

Next, use the augment() function just as before, except this time, we specify
the newdata argument to be the data frame of grid points that we just created.
This results in a 10000 row data frame that contains the estimated called strike
probability for each coordinate pair.

grid_hats <- strike_mod |>

augment(type.predict = "response", newdata = grid)

Once again, we update our k_zone_plot with these new data. The
geom_tile() function in Figure 7.4 offers a nice alternative to
geom_contour().

tile_plot <- k_zone_plot %+% grid_hats +

geom_tile(aes(fill = .fitted), alpha = 0.7) +

scale_fill_gradient(low = "gray92", high = crcblue)

tile_plot

7.4.3 Controlling for handedness

Contrary to what the rulebook states, it stands to reason that the effective
strike zone may depend on with which hand the pitcher throws, and on which
side of the plate the batter stands.

The resulting data frame has variables for p_throws and stand in addition to
the location data encoded in plate_x and plate_z. We can now fit another
GAM across these four variables. Note that the binary variables p_throws

and stand are not smoothed, and are thus outside of the s() function in the
model specification formula.
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FIGURE 7.4
Estimated strike probability over a grid for taken pitches using a generalized
additive model.

hand_mod <- gam(

Outcome == "called_strike" ~

p_throws + stand + s(plate_x, plate_z),

family = binomial,

data = taken

)

We must now recompute our grid of values such that they include the two
additional binary variables.

hand_grid <- taken |>

data_grid(

plate_x = seq_range(plate_x, n = 100),

plate_z = seq_range(plate_z, n = 100),

p_throws,

stand

)

hand_grid_hats <- hand_mod |>

augment(type.predict = "response", newdata = hand_grid)
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FIGURE 7.5
Standard deviation of estimated called strike probability across all four pitcher-
batter handedness combinations.

The following code will produce a faceted plot across the four combinations of
batter and pitcher handedness. However, as it is difficult to perceive marked
difference across these four facets, we omit the plot here.

tile_plot %+% hand_grid_hats +

facet_grid(p_throws ~ stand)

Instead, we plot the standard deviation across the four handedness combinations
in Figure 7.5. In the heart of the strike zone, we see no differences due to
handedness. However, the standard deviation of called strike probability is as
large as 2 percentage points in some area around the perimeter of the strike
zone.

diffs <- hand_grid_hats |>

group_by(plate_x, plate_z) |>

summarize(

N = n(),

.fitted = sd(.fitted),

.groups = "drop"

)

tile_plot %+% diffs
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7.5 Modeling Catcher Framing

In order to estimate the framing ability of catchers, we need to know who the
catcher is during every pitch.

To prepare these data for modeling, we will evaluate our GAM for called strike
probability on each pitch. This helps us control for the location of each pitch.

taken <- taken |>

filter(

is.na(plate_x) == FALSE,

is.na(plate_z) == FALSE

) |>

mutate(

strike_prob = predict(

strike_mod,

type = "response"

)

)

Next we follow Brooks, Pavilidis, and Judge (2015) in fitting a generalized
linear mixed model. The response variable is whether the pitch was called a
strike or a ball. Let pj denote the probability that the jth called pitch is a
strike. Our first mixed model writes the logit of the probability of a strike pj

as the sum
log pj

1 − pj
= β0 + β1 · strike probj + αc(j).

In this model, strike_prob_j is the “fixed effect” for the estimated called
strike probability of the jth pitch based on its location computed from the
previous model. So we are essentially controlling for the pitch location in
this model. In addition, αc(j) represents the effect due to the catcher c(j).
We assume that the individual catchers have “random” parameters, called
α1, . . . , αC , with mean 0 and standard deviation of sc.

This model can be fit using the glmer() function in the lme4 package.
The code indicates the response variable is Outcome == "called_strike",
strike_prob is the fixed effect and fielder_2_1 (the catcher id) represents
the random effect.

library(lme4)

mod_a <- glmer(

Outcome == "called_strike" ~

strike_prob + (1|fielder_2_1),

data = taken,

family = binomial

)
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We recover information about the fixed effects using the fixed.effects()

function.

fixed.effects(mod_a)

(Intercept) strike_prob

-4.00 7.67

Certainly different catchers will have different impacts on the probability of
a called strike. The variability in these impacts is measured by the standard
deviation of these random catcher effects sc that we display by the VarCorr()
function.

VarCorr(mod_a)

Groups Name Std.Dev.

fielder_2_1 (Intercept) 0.218

This model also provides estimates of the catcher random effects αk that one
extracts with the ranef() function. We put the estimates together with the
catcher ids in the data frame c_effects.

c_effects <- mod_a |>

ranef() |>

as_tibble() |>

transmute(

id = as.numeric(levels(grp)),

effect = condval

)

The names of the catchers are missing, but we use the chadwick_player_lu()
function from the baseballr package to construct a table for these ids and
names.

master_id <- baseballr::chadwick_player_lu() |>

mutate(

mlb_name = paste(name_first, name_last),

mlb_id = key_mlbam

) |>

select(mlb_id, mlb_name) |>

filter(!is.na(mlb_id))

We merge the name information with the data frame c_effects and display
the names of the catchers with the largest and smallest random effect estimates
below.
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c_effects <- c_effects |>

left_join(

select(master_id, mlb_id, mlb_name),

join_by(id == mlb_id)

) |>

arrange(desc(effect))

c_effects |> slice_head(n = 6)

# A tibble: 6 x 3

id effect mlb_name

<dbl> <dbl> <chr>

1 664848 0.358 Donny Sands

2 669004 0.294 MJ Melendez

3 642020 0.287 Chuckie Robinson

4 672832 0.275 Israel Pineda

5 571912 0.260 Luke Maile

6 575929 0.243 Willson Contreras

c_effects |> slice_tail(n = 6)

# A tibble: 6 x 3

id effect mlb_name

<dbl> <dbl> <chr>

1 664731 -0.293 P. J. Higgins

2 455139 -0.304 Robinson Chirinos

3 661388 -0.336 William Contreras

4 608360 -0.357 Chris Okey

5 435559 -0.357 Kurt Suzuki

6 595956 -0.390 Cam Gallagher

From this output, we see that Donny Sands was most effective in getting a
called strike and Cam Gallagher was least effective.

One criticism of this first model is that no allowances were made for the pitcher
or batter, and it is believed that both people have an impact on the probability
of a called strike. We can extend the above model to include random effects
for both the pitcher and the batter. We write this model as

log pj

1 − pj
= β0 + β1strike probj + αc(j) + γp(j) + δb(j).

Here the individual pitchers are assigned parameters γ1, . . . , γP that are as-
sumed to be random from a distribution with standard deviation sp. In addition,
the individual batters are assigned parameters δ1, . . . , δB that come from a
distribution with standard deviation sb.



176 Catcher Framing

c_effects <- c_effects |>

left_join(

select(master_id, mlb_id, mlb_name),

join_by(id == mlb_id)

) |>

arrange(desc(effect))

c_effects |> slice_head(n = 6)

# A tibble: 6 x 3

id effect mlb_name

<dbl> <dbl> <chr>

1 664848 0.358 Donny Sands

2 669004 0.294 MJ Melendez

3 642020 0.287 Chuckie Robinson

4 672832 0.275 Israel Pineda

5 571912 0.260 Luke Maile

6 575929 0.243 Willson Contreras

c_effects |> slice_tail(n = 6)

# A tibble: 6 x 3

id effect mlb_name

<dbl> <dbl> <chr>

1 664731 -0.293 P. J. Higgins

2 455139 -0.304 Robinson Chirinos

3 661388 -0.336 William Contreras

4 608360 -0.357 Chris Okey

5 435559 -0.357 Kurt Suzuki

6 595956 -0.390 Cam Gallagher

From this output, we see that Donny Sands was most effective in getting a
called strike and Cam Gallagher was least effective.

One criticism of this first model is that no allowances were made for the pitcher
or batter, and it is believed that both people have an impact on the probability
of a called strike. We can extend the above model to include random effects
for both the pitcher and the batter. We write this model as

log pj

1 − pj
= β0 + β1strike probj + αc(j) + γp(j) + δb(j).

Here the individual pitchers are assigned parameters γ1, . . . , γP that are as-
sumed to be random from a distribution with standard deviation sp. In addition,
the individual batters are assigned parameters δ1, . . . , δB that come from a
distribution with standard deviation sb.

Modeling Catcher Framing 177

This larger model is fit with a second application of the glmer() function,
adding batter and pitcher as inputs in the regression expression.

mod_b <- glmer(

Outcome == "called_strike" ~ strike_prob +

(1|fielder_2_1) +

(1|batter) + (1|pitcher),

data = taken,

family = binomial

)

Using the VarCorr() function, we display estimates of the three standard
deviations sc, sp, and sb. Note that the value of sc is slightly different than it
was in the previous model.

VarCorr(mod_b)

Groups Name Std.Dev.

pitcher (Intercept) 0.267

batter (Intercept) 0.251

fielder_2_1 (Intercept) 0.209

This table is helpful in identifying the components that contribute most to
the total variability in called strikes. The largest standard deviations are sp =
0.267 and sb = 0.251 which indicate that called strikes are most influenced by
the identities of the pitcher and batter, followed by the identity the catcher.

As before, we extract the catcher effect estimates by the ranef() function,
create a data frame of ids, names, and estimates for all catchers, and then
display the best and worst catchers with respect to framing. These lists are not
similar to the lists prepared with the simpler random effects model, suggesting
these catchers worked with different pitchers and batters who impacted the
called strikes.

c_effects <- mod_b |>

ranef() |>

as_tibble() |>

filter(grpvar == "fielder_2_1") |>

transmute(

id = as.numeric(as.character(grp)),

effect = condval

)

c_effects <- c_effects |>

left_join(

select(master_id, mlb_id, mlb_name),

join_by(id == mlb_id)
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) |>

arrange(desc(effect))

c_effects |> slice_head(n = 6)

# A tibble: 6 x 3

id effect mlb_name

<dbl> <dbl> <chr>

1 624431 0.313 Jose Trevino

2 669221 0.277 Sean Murphy

3 425877 0.263 Yadier Molina

4 664874 0.253 Seby Zavala

5 543309 0.229 Kyle Higashioka

6 608700 0.221 Kevin Plawecki

c_effects |> slice_tail(n = 6)

# A tibble: 6 x 3

id effect mlb_name

<dbl> <dbl> <chr>

1 596117 -0.277 Garrett Stubbs

2 435559 -0.281 Kurt Suzuki

3 521692 -0.291 Salvador Perez

4 553869 -0.327 Elias Dı́az

5 455139 -0.336 Robinson Chirinos

6 669004 -0.347 MJ Melendez

This is clearly not a thorough analysis since we only used a small dataset and
did not include other effects such as umpires that could impact the called strike
probability. But these mixed models with inclusion of fixed and random effects
are very useful for obtaining estimates of player abilities making adjustments
for other relevant inputs.

7.6 Further Reading

The first study of catcher framing using PITCHf/x was Turkenkopf (2008).
See Fast (2011) for a follow-up piece. Lindbergh (2013) provides a highly-
readable lay overview of the evolution of thinking on catcher framing. More
sophisticated models for catcher framing include Brooks and Pavlidis (2014),
Brooks, Pavilidis, and Judge (2015), Judge (2018), Deshpande and Wyner
(2017).



178 Catcher Framing

) |>

arrange(desc(effect))

c_effects |> slice_head(n = 6)

# A tibble: 6 x 3

id effect mlb_name

<dbl> <dbl> <chr>

1 624431 0.313 Jose Trevino

2 669221 0.277 Sean Murphy

3 425877 0.263 Yadier Molina

4 664874 0.253 Seby Zavala

5 543309 0.229 Kyle Higashioka

6 608700 0.221 Kevin Plawecki

c_effects |> slice_tail(n = 6)

# A tibble: 6 x 3

id effect mlb_name

<dbl> <dbl> <chr>

1 596117 -0.277 Garrett Stubbs

2 435559 -0.281 Kurt Suzuki

3 521692 -0.291 Salvador Perez

4 553869 -0.327 Elias Dı́az

5 455139 -0.336 Robinson Chirinos

6 669004 -0.347 MJ Melendez

This is clearly not a thorough analysis since we only used a small dataset and
did not include other effects such as umpires that could impact the called strike
probability. But these mixed models with inclusion of fixed and random effects
are very useful for obtaining estimates of player abilities making adjustments
for other relevant inputs.

7.6 Further Reading

The first study of catcher framing using PITCHf/x was Turkenkopf (2008).
See Fast (2011) for a follow-up piece. Lindbergh (2013) provides a highly-
readable lay overview of the evolution of thinking on catcher framing. More
sophisticated models for catcher framing include Brooks and Pavlidis (2014),
Brooks, Pavilidis, and Judge (2015), Judge (2018), Deshpande and Wyner
(2017).

Exercises 179

7.7 Exercises

1. Strike Probabilities on a Grid

a. Divide the zone region into bins by use of the following code.

seq_x <- seq(-1.4, 1.4, by = 0.4)

seq_z <- seq(1.1, 3.9, by = 0.4)

taken <- taken |>

mutate(

plate_x = cut(plate_x, seq_x),

plate_z = cut(plate_z, seq_z)

)

b. By use of the group_by() and summarize() functions, find the number of
strikes and balls among called pitches in each bin.

c. Find the percentage of strikes in each bin. Comment on any interesting
patterns in these strike percentages across bins.

2. Strike Probability Batter Effects

In the first exercise, the strike probability percentages were found for different
zones. By tabulating the balls and strikes across bins and for the variable
stand, explore how the strike probabilities vary by the side of the batter.

3. Strike Probability Pitcher Effects

In the first exercise, the strike probability percentages were found for different
zones. By tabulating the balls and strikes across bins and for the variable
p_throws, explore how the strike probabilities vary by the throwing arm of
the pitcher.

4. Count Effects

One way to explore the effect of the count on a strike probability is to fit the
logistic model using the glm() function:

fit <- glm(

Outcome == "called_strike" ~ Count,

data = taken, family = binomial

)

In this expression, Count is a new variable derived from the balls and strikes

variables in the taken data frame. From the output of this fit, interpret how
the strike probability depends on the count.
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5. Home/Away Effects

One way to explore the effect of home field on a strike probability is to fit the
logistic model using the glm() function:

fit <- glm(

Outcome == "called_strike" ~ Home,

data = taken, family = binomial

)

In this expression, Home is a new variable that is equal to one if the batter is
from the home team, and equal to zero otherwise. From the output of this fit,
interpret how the strike varies among home and away batters.
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8

Career Trajectories

8.1 Introduction

The R system is well-suited for fitting statistical models to data. One popular
topic in sabermetrics is the rise and fall of a player’s season batting, fielding, or
pitching statistics from his MLB debut to retirement. Generally, it is believed
that most players peak in their late 20s, although some players tend to peak
at later ages. A simple way of modeling a player’s trajectory is by means of a
quadratic or parabolic curve. Using the lm() (linear model) function in R, it is
straightforward to fit this model using the player’s age and his OPS statistics.

We begin in Section 8.2 by considering a famous career trajectory. Mickey
Mantle made an immediate impact on the New York Yankees at age 19 and
quickly matured into one of the best hitters in baseball. But injuries took a toll
on Mantle’s performance and his hitting declined until his retirement at age
36. We use Mantle to introduce the quadratic model. Using this model, one
can define his peak age, maximum performance, and the rate of improvement
and decline in performance.

To compare career performances of similar players, it is helpful to contrast
their trajectories, and Section 8.3 illustrates the computation of many fitted
trajectories. Using Bill James’ notion of similarity scores, we write a function
that finds players who are most similar to a given hitter. Then we graphically
compare the OPS trajectories of these similar players; by viewing these graphs
we gain a general understanding of the possible trajectory shapes.

A general problem focuses on a player’s peak age. In Section 8.4, we look at the
fitted trajectories of all hitters with at least 2000 career at-bats. The pattern
of peak ages across eras and as a function of the number of career at-bats
is explored. Also, since it is common to compare players who play the same
position, in Section 8.5 we focus on the period 1985–1995 and contrast the
peak ages for players who play different fielding positions.
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8.2 Mickey Mantle’s Batting Trajectory

To start looking at career trajectories, we consider batting data from the great
slugger Mickey Mantle. To obtain his season-by-season hitting statistics, we
load the Lahman package, which includes the data frames People and Batting.
In addition, we load the tidyverse package.

library(tidyverse)

library(Lahman)

We first extract Mantle’s playerID from the People data frame. Using the
filter() function, we find the line in the People data file where nameFirst
equals “Mickey” and nameLast equals “Mantle”. His player id is stored in the
vector mantle_id.

mantle_id <- People |>

filter(nameFirst == "Mickey", nameLast == "Mantle") |>

pull(playerID)

One small complication is that certain statistics such as SF and HBP were not
recorded for older seasons and are currently coded as NA. A convenient way of
recoding these missing values to 0 is by the replace_na() function from the
tidyr package.

batting <- Batting |>

replace_na(list(SF = 0, HBP = 0))

To compute Mantle’s age for each season, we need to know his birth year,
which is available in the People data frame. Major League Baseball defines a
player’s age as his age on June 30 of that particular season.

We obtain Mantle’s batting statistics by means of the user-defined function
get_stats(). The input is the player id and the output is a data frame
containing the player’s hitting statistics. This function computes the player’s
age (variable Age) for all seasons, and also computes the player’s slugging
percentage (SLG), on-base percentage (OBP), and OPS for all seasons.

get_stats <- function(player_id) {

batting |>

filter(playerID == player_id) |>

inner_join(People, by = "playerID") |>

mutate(
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FIGURE 8.1
Scatterplot of OPS against age for Mickey Mantle.

birthyear = if_else(

birthMonth >= 7, birthYear + 1, birthYear

),

Age = yearID - birthyear,

SLG = (H - X2B - X3B - HR + 2 * X2B + 3 * X3B + 4 * HR) / AB,

OBP = (H + BB + HBP) / (AB + BB + HBP + SF),

OPS = SLG + OBP

) |>

select(Age, SLG, OBP, OPS)

}

After reading the function get_stats() into R, we obtain Mantle’s statistics
by applying this function with input mantle_id. The resulting data frame of
hitting statistics is stored in Mantle.

Mantle <- get_stats(mantle_id)

A good measure of batting performance is OPS, the sum of a player’s slugging
percentage and his on-base percentage. How do Mantle’s OPS season values
vary as a function of his age? To address this question, we use ggplot2 to
construct a scatterplot of OPS against age (see Figure 8.1).

ggplot(Mantle, aes(Age, OPS)) + geom_point()
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In Figure 8.1, it is clear that Mantle’s OPS values tend to increase from age 19
to his late 20s, and then generally decrease until his retirement at age 36. One
can model this up-and-down relationship by use of a smooth curve. This curve
will help us understand and summarize Mantle’s career batting trajectory and
will make it easier to compare Mantle’s trajectory with other players with
similar batting performances.

A convenient choice of smooth curve is a quadratic function of the form

A + B(Age − 30) + C(Age − 30)2,

where the constants A, B, and C are chosen so that curve is the “best” match
to the points in the scatterplot. This quadratic curve has the following nice
properties that make it easy to use.

1. The constant A is the predicted value of OPS when the player is 30 years
old.

2. The function reaches its largest value at

PEAK AGE = 30 − B

2C
.

This is the age where the player is estimated to have his peak batting
performance during his career.

3. The maximum value of the curve is

MAX = A − B2

4C
.

This is the estimated largest OPS of the player over his career.

4. The coefficient C, typically a negative value, tells us about the degree of
curvature in the quadratic function. If a player has a “large” value of C,
this indicates that he more rapidly reaches his peak level and more rapidly
decreases in ability until retirement. One simple interpretation is that C
represents the change in OPS from his peak age to one year later.

We write a new function fit_model() to fit this quadratic curve to a player’s
batting data. The input to this function is a data frame d containing the
player’s batting statistics including the variables Age and OPS. The function
lm() is used to fit the quadratic curve. The formula

OPS ∼ I(Age – 30) + I((Age – 30)2)

indicates that OPS is the response and (Age - 30) and (Age - 30)^2 are the
predictors. The estimated coefficients A, B, and C are stored in the vector b
using the coef() function. The peak age and maximum value are stored in
the variables Age_max and Max.
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In Figure 8.1, it is clear that Mantle’s OPS values tend to increase from age 19
to his late 20s, and then generally decrease until his retirement at age 36. One
can model this up-and-down relationship by use of a smooth curve. This curve
will help us understand and summarize Mantle’s career batting trajectory and
will make it easier to compare Mantle’s trajectory with other players with
similar batting performances.

A convenient choice of smooth curve is a quadratic function of the form

A + B(Age − 30) + C(Age − 30)2,

where the constants A, B, and C are chosen so that curve is the “best” match
to the points in the scatterplot. This quadratic curve has the following nice
properties that make it easy to use.

1. The constant A is the predicted value of OPS when the player is 30 years
old.

2. The function reaches its largest value at

PEAK AGE = 30 − B

2C
.
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4C
.
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fit_model <- function(d) {

fit <- lm(OPS ~ I(Age - 30) + I((Age - 30)^2), data = d)

b <- coef(fit)

Age_max <- 30 - b[2] / b[3] / 2

Max <- b[1] - b[2] ^ 2 / b[3] / 4

list(fit = fit, Age_max = Age_max, Max = Max)

}

We then apply the function fit_model() to Mantle’s data frame—the output
of this function F2 includes the object that stores all of the calculations of the
quadratic fit. In addition, this function outputs the peak age and maximum
value displayed in the following code.

F2 <- fit_model(Mantle)

F2 |>

pluck("fit") |>

coef()

(Intercept) I(Age - 30) I((Age - 30)^2)

1.04313 -0.02288 -0.00387

c(F2$Age_max, F2$Max)

I(Age - 30) (Intercept)

27.04 1.08

The best fitting curve is given by

1.04313 − 0.02288(Age − 30) − 0.00387(Age − 30)2 .

Using this model, Mantle peaked at age 27 and his maximum OPS for the
curve is estimated to be 1.08. The estimated value of the curvature parameter
is −0.00387; thus Mantle’s decrease in OPS between his peak age and one year
older is 0.00387.

We place this best quadratic curve on the scatterplot. The geom_smooth()

function is used to estimate Mantle’s OPS from the curve for the sequence of
age values and overlay these values as a line on the current plot. Applications
of geom_vline() and geom_hline() show the locations of the peak age and
the maximum, respectively, and the annotate() function is used to label these
values. The resulting graph is displayed in Figure 8.2.

ggplot(Mantle, aes(Age, OPS)) + geom_point() +

geom_smooth(

method = "lm", se = FALSE, linewidth = 1.5,

formula = y ~ poly(x, 2, raw = TRUE)
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FIGURE 8.2
Career trajectory of OPS measure for Mickey Mantle with the peak age and
maximum OPS identified from the quadratic smoothing curve.

) +

geom_vline(

xintercept = F2$Age_max,

linetype = "dashed", color = "red"

) +

geom_hline(

yintercept = F2$Max,

linetype = "dashed", color = "red"

) +

annotate(

geom = "text", x = c(29, 20), y = c(0.72, 1.1),

label = c("Peak age", "Max"), size = 5,

color = "red"

)

Although the focus was on the best fitting quadratic curve, more details about
the fitting procedure are stored in the output of lm() and in the variable F2.
We display part of the output by finding the summary() of the fit. Here, we
illustrate the use of the pluck() function to retrieve items from a list.

F2 |> pluck("fit") |> summary()

Call:
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lm(formula = OPS ~ I(Age - 30) + I((Age - 30)^2), data = d)

Residuals:

Min 1Q Median 3Q Max

-0.1728 -0.0401 0.0220 0.0451 0.1282

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.043134 0.027901 37.39 3.2e-16 ***

I(Age - 30) -0.022883 0.005638 -4.06 1e-03 **

I((Age - 30)^2) -0.003869 0.000828 -4.67 3e-04 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0842 on 15 degrees of freedom

Multiple R-squared: 0.602, Adjusted R-squared: 0.549

F-statistic: 11.3 on 2 and 15 DF, p-value: 0.001

The value of R2 is 0.602; this means that approximately 60% of the variability
in Mantle’s OPS values can be explained by the quadratic curve. The residual
standard error is equal to 0.084. Approximately 2/3 of the vertical deviations
(the residuals) from the curve fall between plus and minus one residual standard
error. In this case, the interpretation is that approximately 2/3 of the residuals
fall between –0.084 and 0.084.

8.3 Comparing Trajectories

8.3.1 Some preliminary work

When we think about hitting trajectories of players, one relevant variable
seems to be a player’s fielding position. Hitting expectations of a catcher—an
important defensive position—are different from the hitting expectations of
a first baseman. To compare trajectories of players with the same position,
fielding position should be recorded in our database. Recall that the data frame
batting has already been created. The fielding data is stored in the Fielding
data frame from the Lahman package.

Many players in the history of baseball have had short careers and in our study
of trajectories, it seems reasonable to limit our analysis to players who have
had a minimum number of at-bats. We consider only players with 2000 at-bats;
this will remove hitting data of pitchers and other players with short careers.
To take this subset of the batting data frame, we use the group_by() and
summarize() functions in the dplyr package to compute the career at-bats
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for all players; the new variable is called AB_career. Using the inner_join()
function, we add this new variable to the batting data frame. Finally, using
the filter() function, we create a new data frame batting_2000 consisting
only of the “minimum 2000 AB” hitters.

batting_2000 <- batting |>

group_by(playerID) |>

summarize(AB_career = sum(AB, na.rm = TRUE)) |>

inner_join(batting, by = "playerID") |>

filter(AB_career >= 2000)

To add fielding information to our data frame, we need to find the primary
fielding position for a given player. We tally the number of games played at
each possible position, and the data frame Positions returns for each player
the position where he played the most games.1

Positions <- Fielding |>

group_by(playerID, POS) |>

summarize(Games = sum(G)) |>

arrange(playerID, desc(Games)) |>

filter(POS == first(POS))

We then combine this new fielding information with the batting_2000 data
frame using the inner_join() function.

batting_2000 <- batting_2000 |>

inner_join(Positions, by = "playerID")

8.3.2 Computing career statistics

We will find groups of similar hitters on the basis of their career statistics.
Toward this goal, one needs to compute the career games played, at-bats, runs,
hits, etc., for each player in the batting_2000 data frame. This is conveniently
done using the group_by() and summarize() functions. In the R code, we
use the across() function to find the sum of a collection of different batting
statistics, defined in the vector vars, for each hitter. We create a new data
frame C_totals with the player id variable playerID and new career variables.

my_vars <- c("G", "AB", "R", "H", "X2B", "X3B",

"HR", "RBI", "BB", "SO", "SB")

1In the rare case where there are two or more positions with the most games played, the
function first() will take the first position.
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C_totals <- batting |>

group_by(playerID) |>

summarize(across(all_of(my_vars), ~sum(.x, na.rm = TRUE)))

In the new data frame, we compute each player’s career batting average AVG
and his career slugging percentage SLG using mutate().

C_totals <- C_totals |>

mutate(

AVG = H / AB,

SLG = (H - X2B - X3B - HR + 2 * X2B + 3 * X3B + 4 * HR) / AB

)

We then merge the career statistics data frame C_totals with the fielding
data frame Positions. Each fielding position has an associated value, and the
case_when() function is used to define a value Value_POS for each position
POS. These values were introduced by Bill James in James (1994) and displayed
in Baseball-Reference’s Similarity Scores page.

C_totals <- C_totals |>

inner_join(Positions, by = "playerID") |>

mutate(

Value_POS = case_when(

POS == "C" ~ 240,

POS == "SS" ~ 168,

POS == "2B" ~ 132,

POS == "3B" ~ 84,

POS == "OF" ~ 48,

POS == "1B" ~ 12,

TRUE ~ 0

)

)

8.3.3 Computing similarity scores

Bill James introduced the concept of similarity scores to facilitate the com-
parison of players on the basis of career statistics. To compare two hitters,
one starts at 1000 points and subtracts points based on the differences in
different statistical categories. One point is subtracted for each of the following
differences: (1) 20 games played, (2) 75 at-bats, (3) 10 runs scored, (4) 15 hits,
(5) 5 doubles, (6) 4 triples, (7) 2 home runs, (8) 10 runs batted in, (9) 25 walks,
(10) 150 strikeouts, (11) 20 stolen bases, (12) 0.001 in batting average, and
(13) 0.002 in slugging percentage. In addition, one subtracts the absolute value
of the difference between the fielding position values of the two players.
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The function similar() will find the players most similar to a given player
using similarity scores on career statistics and fielding position. One inputs
the id for the particular player and the number of similar players to be found
(including the given player). The output is a data frame of player statistics,
ordered in decreasing order by similarity scores.

similar <- function(p, number = 10) {

P <- C_totals |>

filter(playerID == p)

C_totals |>

mutate(

sim_score = 1000 -

floor(abs(G - P$G) / 20) -

floor(abs(AB - P$AB) / 75) -

floor(abs(R - P$R) / 10) -

floor(abs(H - P$H) / 15) -

floor(abs(X2B - P$X2B) / 5) -

floor(abs(X3B - P$X3B) / 4) -

floor(abs(HR - P$HR) / 2) -

floor(abs(RBI - P$RBI) / 10) -

floor(abs(BB - P$BB) / 25) -

floor(abs(SO - P$SO) / 150) -

floor(abs(SB - P$SB) / 20) -

floor(abs(AVG - P$AVG) / 0.001) -

floor(abs(SLG - P$SLG) / 0.002) -

abs(Value_POS - P$Value_POS)

) |>

arrange(desc(sim_score)) |>

slice_head(n = number)

}

To illustrate the use of this function, suppose one is interested in finding the
five players who are most similar to Mickey Mantle. Recall that the player id
for Mantle is stored in the vector mantle_id. We use the function similar()

with inputs mantle_id and 6.

similar(mantle_id, 6)

# A tibble: 6 x 18

playerID G AB R H X2B X3B HR RBI BB

<chr> <int> <int> <int> <int> <int> <int> <int> <int> <int>

1 mantlmi~ 2401 8102 1677 2415 344 72 536 1509 1733

2 thomafr~ 2322 8199 1494 2468 495 12 521 1704 1667

3 matheed~ 2391 8537 1509 2315 354 72 512 1453 1444

4 schmimi~ 2404 8352 1506 2234 408 59 548 1595 1507

5 sheffga~ 2576 9217 1636 2689 467 27 509 1676 1475
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6 sosasa01 2354 8813 1475 2408 379 45 609 1667 929

# i 8 more variables: SO <int>, SB <int>, AVG <dbl>, SLG <dbl>,

# POS <chr>, Games <int>, Value_POS <dbl>, sim_score <dbl>

From reading the player ids, we see five players who are similar in terms of
career hitting statistics and position: Frank Thomas, Eddie Mathews, Mike
Schmidt, Gary Sheffield, and Sammy Sosa.

8.3.4 Defining age, OBP, SLG, and OPS variables

To fit and graph hitting trajectories for a group of similar hitters, one needs to
have age and OPS statistics for all seasons for each player. One complication
with working with the Lahman Batting table is that separate batting lines are
used for batters who played with multiple teams during a season. There is a
variable stint that gives different values (1, 2, . . . ) in the case of a player with
multiple teams. The following code uses the group_by() and summarize()

functions to combine these multiple lines into a single row for each player in
each year. It also computes the batting measures SLG, OBP, and OPS. (Recall
we had earlier replaced any missing values for HBP and SF with zeros, so there
will be no missing values in the calculation of the OBP and OPS variables.)

batting_2000 <- batting_2000 |>

group_by(playerID, yearID) |>

summarize(

G = sum(G), AB = sum(AB), R = sum(R),

H = sum(H), X2B = sum(X2B), X3B = sum(X3B),

HR = sum(HR), RBI = sum(RBI), SB = sum(SB),

CS = sum(CS), BB = sum(BB), SH = sum(SH),

SF = sum(SF), HBP = sum(HBP),

AB_career = first(AB_career),

POS = first(POS)

) |>

mutate(

SLG = (H - X2B - X3B - HR + 2 * X2B + 3 * X3B + 4 * HR) / AB,

OBP = (H + BB + HBP) / (AB + BB + HBP + SF),

OPS = SLG + OBP

)

Thus, we create a new version of the batting_2000 data frame where the
hitting statistics for a player for a season are recorded on a single line.

The next task is to obtain the ages for all players for all seasons. Recall that
we used a similar technique in Section 3.7 to compute the MLB birth year
for a particular player. Here, we compute the birth year for all players, and
use the inner_join() function to merge this birth year information with the
batting data. Now that we have birth years for all players, we can define the
new variable Age as the difference between the season year and the birth year.
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batting_2000 <- batting_2000 |>

inner_join(People, by = "playerID") |>

mutate(

Birthyear = if_else(

birthMonth >= 7, birthYear + 1, birthYear

),

Age = yearID - Birthyear

)

A small complication is that the birth year is not recorded for a few 19th
century ballplayers, and so the age variable is missing for these variables.
Accordingly, we use the drop_na() function to omit the age records that are
missing, and the updated data frame batting_2000 only contains players for
which the Age variable is available.

batting_2000 |> drop_na(Age) -> batting_2000

8.3.5 Fitting and plotting trajectories

Given a group of similar players, we write a function plot_trajectories()

to fit quadratic curves to each player and graph the trajectories in a way that
facilitates comparisons. This function takes as input the first and last name of
the player, the number of players to compare (including the one of interest),
and the number of columns in the multipanel plot.

The function plot_trajectories() first uses the People data frame to find
the player id for the player. It then uses the similar() function to find a
vector of player ids player_list. The data frame Batting_new consists of the
season batting statistics for only the players in the player list. The graphing
is done by use of the ggplot2 package. The use of geom_smooth() with the
formula argument of y ∼ x + I(x2) constructs trajectory curves of Age and
Fit for all players. The facet_wrap() function with the ncol argument places
these trajectories on separate panels where the number of columns in the
multipanel display is the value specified in the argument of the function.

plot_trajectories <- function(player, n_similar = 5, ncol) {

flnames <- unlist(str_split(player, " "))

player <- People |>

filter(nameFirst == flnames[1], nameLast == flnames[2]) |>

select(playerID)

player_list <- player |>

pull(playerID) |>
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batting_2000 <- batting_2000 |>

inner_join(People, by = "playerID") |>

mutate(

Birthyear = if_else(
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)
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is done by use of the ggplot2 package. The use of geom_smooth() with the
formula argument of y ∼ x + I(x2) constructs trajectory curves of Age and
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plot_trajectories <- function(player, n_similar = 5, ncol) {
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select(playerID)

player_list <- player |>

pull(playerID) |>
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FIGURE 8.3
Estimated career trajectories for Mickey Mantle and five similar hitters.

similar(n_similar) |>

pull(playerID)

Batting_new <- batting_2000 |>

filter(playerID %in% player_list) |>

mutate(Name = paste(nameFirst, nameLast))

ggplot(Batting_new, aes(Age, OPS)) +

geom_smooth(

method = "lm",

formula = y ~ x + I(x^2),

linewidth = 1.5

) +

facet_wrap(vars(Name), ncol = ncol) +

theme_bw()

}

Here are several examples of the use of plot_trajectories(). In Figure 8.3,
we compare Mickey Mantle’s trajectory with those of his five most similar
hitters.

plot_trajectories("Mickey Mantle", 6, 2)

We compare Derek Jeter’s OPS trajectory with eight similar players in Fig-
ure 8.4. In this case note that the ggplot2 object is saved in the variable
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FIGURE 8.4
Estimated career trajectories for Derek Jeter and eight similar hitters.

dj_plot. (It will be seen shortly that one can extract the relevant data from
this object.)

dj_plot <- plot_trajectories("Derek Jeter", 9, 3)

dj_plot

Looking at Figures 8.3 and 8.4, we see notable differences in these trajectories.

• There are players such as Eddie Mathews, Frank Thomas, Mickey Mantle,
and Roberto Alomar who appeared to peak early in their careers.

• In contrast, players such as Mike Schmidt, Craig Biggio, and Julio Franco
peaked in their 30s.

• The players also show differences in the shape of the trajectory. For example,
Paul Molitor had a relatively flat trajectory while Roberto Alomar had a
trajectory with high curvature.

One can summarize these trajectories by the peak age, the maximum value, and
the curvature. To begin, the component dj_plot$data contains the batting
data for Jeter and the group of similar players. We use the group_split()

function to split the data into a list with one element for each player. Then,
we use map() to fit a quadratic model to each player. The tidy() function
from the broom package helps us recover the coefficients in a tidy fashion.

The output data frame regressions contains the regression estimates for each
player.
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One can summarize these trajectories by the peak age, the maximum value, and
the curvature. To begin, the component dj_plot$data contains the batting
data for Jeter and the group of similar players. We use the group_split()

function to split the data into a list with one element for each player. Then,
we use map() to fit a quadratic model to each player. The tidy() function
from the broom package helps us recover the coefficients in a tidy fashion.

The output data frame regressions contains the regression estimates for each
player.
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library(broom)

data_grouped <- dj_plot$data |>

group_by(Name)

player_names <- data_grouped |>

group_keys() |>

pull(Name)

regressions <- data_grouped |>

group_split() |>

map(~lm(OPS ~ I(Age - 30) + I((Age - 30) ^ 2), data = .)) |>

map(tidy) |>

set_names(player_names) |>

bind_rows(.id = "Name")

regressions |>

slice_head(n = 6)

# A tibble: 6 x 6

Name term estimate std.error statistic p.value

<chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Cal Ripken (Inte~ 0.820 0.0436 18.8 2.74e-13

2 Cal Ripken I(Age~ 0.00273 0.00479 0.570 5.76e- 1

3 Cal Ripken I((Ag~ -0.00148 0.000887 -1.67 1.12e- 1

4 Charlie Gehringer (Inte~ 0.932 0.0415 22.4 1.60e-13

5 Charlie Gehringer I(Age~ 0.00507 0.00504 1.00 3.30e- 1

6 Charlie Gehringer I((Ag~ -0.00285 0.00103 -2.76 1.40e- 2

Next, using the summarize() function together with regressions, we find
summary statistics for all players including the peak age, maximum value,
and curvature. Recall this calculation is illustrated for Jeter and eight similar
players.

S <- regressions |>

group_by(Name) |>

summarize(

b1 = estimate[1],

b2 = estimate[2],

Curvature = estimate[3],

Age_max = round(30 - b2 / Curvature / 2, 1),

Max = round(b1 - b2 ^ 2 / Curvature / 4, 3)

)

To help understand the differences between the nine player trajectories, we
use the ggplot()function to construct a scatterplot of the peak ages and the
curvature statistics. The geom_label_repel() function is used to add player
labels.
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FIGURE 8.5
Estimated peak ages and curvature statistics for Derek Jeter and eight players
most similar to him.

library(ggrepel)

ggplot(S, aes(Age_max, Curvature, label = Name)) +

geom_point() + geom_label_repel()

Figure 8.5 clearly indicates that Alomar peaked at an early age, Franco
and Molitor at a late age, and Alomar and Gehringer exhibited the greatest
curvature, indicating they rapidly declined in performance after the peak.

8.4 General Patterns of Peak Ages

8.4.1 Computing all fitted trajectories

We have explored the hitting career trajectories of groups of similar players.
How have career trajectories changed over the history of baseball? We’ll focus
on a player’s peak age and explore how this has changed over time. We will also
explore the relationship between peak age and the number of career at-bats.

We wish to focus on players that are no longer active, so we use the finalgame
variable in the People data frame to restrict our attention to players whose
final game was before November 1, 2021.
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not_current_playerID <- People |>

filter(finalGame < "2021-11-01") |>

pull(playerID)

batting_2000 <- batting_2000 |>

filter(playerID %in% not_current_playerID)

For each player, the variable yearID contains the seasons played. We define a
new variable Midyear to be the average of a player’s first and last seasons. We
use the group_by() and summarize() functions to compute Midyear for all
players and add this new variable to the batting_2000 data frame using the
inner_join() function.

midcareers <- batting_2000 |>

group_by(playerID) |>

summarize(

Midyear = (min(yearID) + max(yearID)) / 2,

AB_total = first(AB_career)

)

batting_2000 <- batting_2000 |>

inner_join(midcareers, by = "playerID")

Quadratic curves to all of the career trajectories are fit by another application
of the map() function from the purrr package. First, we apply group_split(),
where playerID is the grouping variable and the model fit is to be fit to each
player’s data separately. The output models is a data frame containing the
coefficients for all players, where a row corresponds to a particular player.

batting_2000_grouped <- batting_2000 |>

group_by(playerID)

ids <- batting_2000_grouped |>

group_keys() |>

pull(playerID)

models <- batting_2000_grouped |>

group_split() |>

map(~lm(OPS ~ I(Age - 30) + I((Age - 30)^2), data = .)) |>

map(tidy) |>

set_names(ids) |>

bind_rows(.id = "playerID")

We compute the estimated peak ages for all players using the formula
Peak age = 30 − B/(2C). We add the new variable Peak_age to the data
frame beta_coefs.
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FIGURE 8.6
Scatterplot of peak age and midcareer for all players with at least 2000 career
at-bats. A smoothing curve is used to see the general pattern in the scatterplot.

beta_coefs <- models |>

group_by(playerID) |>

summarize(

A = estimate[1],

B = estimate[2],

C = estimate[3]

) |>

mutate(Peak_age = 30 - B / 2 / C) |>

inner_join(midcareers, by = "playerID")

8.4.2 Patterns of peak age over time

To investigate how the peak age varies over the history of baseball, we construct
a scatterplot of Peak_age against Midyear by use of the ggplot() function.
It is difficult to see the general pattern by just looking at the scatterplot, so
we use the geom_smooth() function to fit a smooth curve and add it to the
plot (see Figure 8.6).

age_plot <- ggplot(beta_coefs, aes(Midyear, Peak_age)) +

geom_point(alpha = 0.5) +

geom_smooth(color = "red", method = "loess") +

ylim(20, 40) +
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FIGURE 8.7
Scatterplot of the logarithm of the career at-bats and peak age for all players
with at least 2000 career at-bats. A smoothing curve is used to see the general
pattern in the scatterplot.

xlab("Mid Career") + ylab("Peak Age")

age_plot

In Figure 8.6, we see a gradual increase in peak age over time. The peak age for
an average player was approximately 27 in 1880 and this average has gradually
increased to 28 from 1880 to 2016.

8.4.3 Peak age and career at-bats

Is there any relationship between a player’s peak age and his career at-bats?
Using ggplot2, we construct a graph of Peak_age against the logarithm (base
2) of the career at-bats variable AB_career. We plot the at-bats on a log scale,
so that the points are more evenly spread out over all possible values. Again
we overlay a LOESS smoothing curve to see the pattern in Figure 8.7.

age_plot +

aes(x = log2(AB_total)) +

xlab("Log2 of Career AB")

Here we see a clear relationship. Players with relatively short careers and
2000 career at-bats tend to peak about age 27. In contrast, players with long
careers—say 9000 or more at-bats—tend to peak at ages closer to 30.
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8.5 Trajectories and Fielding Position

In comparing players, we typically want to compare players at the same fielding
position. The primary fielding position POS was already defined and we use
this variable to compare peak ages of players categorized by position.

Suppose we consider the players whose mid-career is between 1985 and 1995.
Using the filter() function, we create a new data frame Batting_2000a

consisting of only these players.

batting_2000a <- batting_2000 |>

filter(Midyear >= 1985, Midyear <= 1995)

Another application of the map() function is used to fit quadratic curves to
the trajectory data for the players in the batting_2000a data frame and the
quadratic fits are stored in the object models. By use of the summarize()

and mutate() functions, we summarize the regression fits. The output is the
estimated coefficients A, B, C, the player’s estimated peak age Peak_age and
his fielding position Position; this information is stored in the data frame
beta_estimates.

batting_2000a_grouped <- batting_2000a |>

group_by(playerID)

ids <- batting_2000a_grouped |>

group_keys() |>

pull(playerID)

models <- batting_2000a_grouped |>

group_split() |>

map(~lm(OPS ~ I(Age - 30) + I((Age - 30)^2), data = .)) |>

map(tidy) |>

set_names(ids) |>

bind_rows(.id = "playerID")

beta_estimates <- models |>

group_by(playerID) |>

summarize(

A = estimate[1],

B = estimate[2],

C = estimate[3]

) |>

mutate(Peak_age = 30 - B / 2 / C) |>

inner_join(midcareers) |>

inner_join(Positions) |>

rename(Position = POS)
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FIGURE 8.8
Scatterplot of peak ages against primary fielding position.

We focus on the primary fielding positions excluding pitcher and designated
hitter. The filter() function removes these other positions. We combine
the trajectory and fielding information with the People info by use of the
inner_join() function and store the combined information in the data frame
beta_fielders.

beta_fielders <- beta_estimates |>

filter(

Position %in% c("1B", "2B", "3B", "SS", "C", "OF")

) |>

inner_join(People)

We use a stripchart to graph the peak ages of the players against the field-
ing position (see Figure 8.8). Since some of the peak age estimates are not
reasonable values, the limits on the horizontal axis are set to 20 and 40.

ggplot(beta_fielders, aes(Position, Peak_age)) +

geom_jitter(width = 0.2) + ylim(20, 40) +

geom_label_repel(

data = filter(beta_fielders, Peak_age > 37),

aes(Position, Peak_age, label = nameLast)

)

Generally, for all fielding positions, the peak ages for these 1990 players tend
to fall between 27 and 32. The variability in the peak age estimates reflects



202 Career Trajectories

the fact that hitters have different career trajectory shapes. There are three
outfielders and no catchers who appear to stand out by having a high peak age
estimate. Six highlighted players who peaked after age 37 are Andrés Galarraga,
Randy Ready, Eric Davis, Tony Phillips, Jim Eisenreich, and Alvaro Espinoza.
The reader is invited to explore the trajectories of these “unusual” players to
see if they do appear to have unique patterns of career performance.

8.6 Further Reading

James (1982) wrote an essay on “Looking for the Prime”. Based on a statistical
study, he came to the conclusion that batters tend to peak at age 27. Berry,
Reese, and Larkey (1999) give a general discussion of career trajectories of
athletes from hockey, baseball, and golf. Chapter 11 of Albert and Bennett
(2003) considers the career trajectories of the home run rates of nine great
historical sluggers. Albert (2002) and Albert (2009) discuss general patterns of
trajectories of hitters and pitchers in baseball history, and Fair (2008) performs
an extensive analysis of baseball career trajectories based on quadratic models.
Albert and Rizzo (2012), Chapter 7, give illustrations of regression modeling
using R.

8.7 Exercises

1. Career Trajectory of Willie Mays

a. Use the gets_stats() function to extract the hitting data for Willie Mays
for all of his seasons in his career.

b. Construct a scatterplot of Mays’ OPS season values against his age.
c. Fit a quadratic function to Mays’ career trajectory. Based on this model,

estimate Mays’ peak age and his estimated largest OPS value based on the
fit.

2. Comparing Trajectories

a. Using James’ similarity score measure (function similar()), find the five
hitters with hitting statistics most similar to Willie Mays.

b. Fit quadratic functions to the (Age, OPS) data for Mays and the five
similar hitters. Display the six fitted trajectories on a single panel.

c. Based on your graph, describe the differences between the six player
trajectories. Which player had the smallest peak age?
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3. Comparing Trajectories of the Career Hits Leaders

a. Find the batters who have had at least 3200 career hits.
b. Fit the quadratic functions to the (Age, AVG) data for this group of hitters,

where AVG is the batting average. Display the fitted trajectories on a single
panel.

c. On the basis of your work, which player was the most consistent hitter on
average? Explain how you measured consistency on the basis of the fitted
trajectory.

4. Comparing Trajectories of Home Run Hitters

a. Find the ten players in baseball history who have had the most career
home runs.

b. Fit the quadratic functions to the home run rates of the ten players, where
HRrate = HR/AB. Display the fitted trajectories on a single panel.

c. On the basis of your work, which player had the highest estimated home
run rate at his peak? Which player among the ten had the smallest peak
home run rate?

d. Do any of the players have unusual career trajectory shapes? Is there any
possible explanation for these unusual shapes?

5. Peak Ages in the History of Baseball

a. Find all the players who entered baseball between 1940 and 1945 with at
least 2000 career at-bats.

b. Find all the players who entered baseball between 1970 and 1975 with at
least 2000 career at-bats.

c. By fitting quadratic functions to the (Age, OPS) data, estimate the peak
ages for all players in parts (a) and (b).

d. By comparing the peak ages of the 1940s players with the peak ages of the
1970s players, can you make any conclusions about how the peak ages have
changed in this 30-year period?
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Simulation

9.1 Introduction

A baseball season consists of a collection of games between teams, where each
game consists of nine innings, and a half-inning consists of a sequence of plate
appearances. Because of this clean structure, the sport can be represented by
relatively simple probability models. Simulations from these models are helpful
in understanding different characteristics of the game.

One attractive aspect of the R system is its ability to simulate from a wide
variety of probability distributions. In this chapter, we illustrate the use of R
functions to simulate a game consisting of a large number of plate appearances.
Also, We use R simulate the game-to-game competition of teams during an
entire season.

Section 9.2 focuses on simulating the events in a baseball half-inning using a
special probability model called a Markov chain. The runners on base and the
number of outs define a state and this probability model describes movements
between states until one reaches three outs. The movement or transition
probabilities are found using actual data from the 2016 season. By simulating
many half-innings using this model, one gets a basic understanding of the
pattern of run scoring.

Section 9.3 describes a simulation of an entire baseball season using the Bradley-
Terry probability model. Teams are assigned talents from a bell-shaped (normal)
distribution and a season of baseball games is played using win probabilities
based on the talents. By simulating many seasons, one learns about the
relationship between a team’s talent and its performance in a 162-game season.
We describe simulating the post-season series and assess the probability that
the “best” team, that is, the team with the best ability actually wins the World
Series.

DOI: 10.1201/9781032668239-9 204
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9.2 Simulating a Half Inning

9.2.1 Markov chains

A Markov chain is a special type of probability model useful for describing
movement between locations, called states. In the baseball context, a state
is viewed as a description of the runners on base and the number of outs in
an inning. Each of the three bases can be occupied by a runner or not, and
so there are 2 × 2 × 2 = 8 possible runner situations. Since there are three
possible numbers of outs (0, 1, or 2), there are 8 × 3 = 24 possible runner
and outs states. If we include the 3 outs state, there are a total of 25 possible
states during a half-inning of baseball (see Section 5.1).

In a Markov chain, a matrix of transition probabilities is used to describe how
one moves between the different states. For example, suppose that there are
currently runners on first and second with one out. Based on the outcome of
the plate appearance, the state can change. For example, the batter may hit a
single; the runner on second scores and the runner on first moves to third. In
this case, the new state is runners on first and third with one out. Or maybe
the batter will strike out, and the new state is runners on first and second with
two outs. By looking at a specific row in the transition probability matrix,
one learns about the probability of moving to first and third with one out, or
moving to first and second with two outs, or any other possible state.

In a Markov chain, there are two types of states: transition states and absorbing
states. Once one moves into an absorbing state, one remains there and can’t
return to other transition states. In a half-inning of baseball, since the inning
is over when there are 3 outs, this 3-outs state acts as an absorbing state.

There are some special assumptions in a Markov chain model. We assume that
the probability of moving to a new state only depends on the current state.
So any baseball events that happened before the current runners and outs
situation are not relevant in finding the probabilities1. In other words, this
model assumes there is not a momentum effect in batting through an inning.
Also we are assuming that the probabilities of these movements are the same
for all teams, against all pitchers, and for all innings during a game. Clearly,
this assumption that all teams are average is not realistic, but we will address
this issue in one of the other sections of this chapter.

There are several attractive aspects of using a Markov chain to model a half-
inning of baseball. First, the construction of the transition probability matrix
is easily done with 2016 season data using computations from Chapter 5.
One can use the model to play many half-innings of baseball, and the run
scoring patterns that are found resemble the actual run scoring of actual MLB

1This is often known as the memoryless property.
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baseball. Last, there are special properties of Markov chains that simplify some
interesting calculations, such as the number of players who come to bat during
an inning.

9.2.2 Review of work in run expectancy

To construct the transition matrix for the Markov chain, one needs to know the
frequencies of transitions from the different runners/outs states to other possible
runners/outs states. One can obtain these frequencies using the Retrosheet
play-by-play data from a particular season. Here we review the work from
Chapter 5.

We begin by reading in play-by-play data for the 2016 season, creating the
data frame retro2016.

library(tidyverse)

retro2016 <- read_rds(here::here("data/retro2016.rds"))

First, we use the retrosheet_add_states() function that we wrote in Chap-
ter 5 and stored in the abdwr3edata package. This function adds a number of
useful new variables to retro2016. Recall that in particular, we now have a
new variable state (which gives the runner locations and the number of outs
at the beginning of each play), and a another new variable new_state (which
contains the same information at the conclusion of the play).

library(abdwr3edata)

retro2016 <- retro2016 |>

retrosheet_add_states()

Next, we create the variable half_inning_id as a unique identifier for each
half-inning in each baseball game. The new variable runs gives the number
of runs scored in each play. The new data frame half_innings contains data
aggregated over each half-inning of baseball played in 2016.

half_innings <- retro2016 |>

mutate(

runs = away_score_ct + home_score_ct,

half_inning_id = paste(game_id, inn_ct, bat_home_id)

) |>

group_by(half_inning_id) |>

summarize(

outs_inning = sum(event_outs_ct),

runs_inning = sum(runs_scored),

runs_start = first(runs),

max_runs = runs_inning + runs_start
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)

By using the filter() function from the dplyr package, we focus on plays
where there is a change in the state or in the number of runs scored. By another
application of filter(), we restrict attention to complete innings where there
are three outs and where there is a batting event; the new dataset is called
retro2016_complete. Here non-batting plays such as steals, caught stealing,
wild pitches, and passed balls are ignored. There is obviously some consequence
of removing these non-batting plays from the viewpoint of run production, and
this issue is discussed later in this chapter.

retro2016_complete <- retro2016 |>

mutate(

half_inning_id = paste(game_id, inn_ct, bat_home_id)

) |>

inner_join(half_innings, join_by(half_inning_id)) |>

filter(state != new_state | runs_scored > 0) |>

filter(outs_inning == 3, bat_event_fl)

In our definition of the new_state variable, we recorded the runner locations
when there were three outs. The runner locations don’t matter, so we recode
new_state to always have the value 3 when the number of outs is equal to
3. The str_replace() function replaces the regular expression [0-1]{3} 3—
which matches any three character binary string followed by a space and a
3—with 3.

retro2016_complete <- retro2016_complete |>

mutate(new_state = str_replace(new_state, "[0-1]{3} 3", "3"))

9.2.3 Computing the transition probabilities

Now that the state and new_state variables are defined, one can compute
the frequencies of all possible transitions between states using the table()

function. The matrix of counts is T_matrix. There are 24 possible values of the
beginning state state, and 25 values of the final state new_state including
the 3-outs state.

T_matrix <- retro2016_complete |>

select(state, new_state) |>

table()

dim(T_matrix)

[1] 24 25
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This matrix can be converted to a probability matrix by use of the
prop.table() function. The resulting matrix is denoted by P_matrix.

P_matrix <- prop.table(T_matrix, 1)

dim(P_matrix)

[1] 24 25

Finally, we add a row to this transition probability matrix corresponding to
transitions from the 3-out state. When the inning reaches 3 outs, then it stays
at 3 outs, so the probability of staying in this state is 1.

P_matrix <- P_matrix |>

rbind("3" = c(rep(0, 24), 1))

The matrix P_matrix now has two important properties that allow it to model
transitions between states in a Markov chain: 1) it is square, and; 2) the entries
in each of its rows sum to 1.

dim(P_matrix)

[1] 25 25

P_matrix |>

apply(MARGIN = 1, FUN = sum)

000 0 000 1 000 2 001 0 001 1 001 2 010 0 010 1 010 2 011 0

1 1 1 1 1 1 1 1 1 1

011 1 011 2 100 0 100 1 100 2 101 0 101 1 101 2 110 0 110 1

1 1 1 1 1 1 1 1 1 1

110 2 111 0 111 1 111 2 3

1 1 1 1 1

To better understand this transition matrix, we display the transition proba-
bilities starting at the “000 0” state, no runners and no outs below. (Only the
positive probabilities are shown and the as_tibble() and pivot_longer()

functions are used to display the probabilities vertically.) The most likely
transitions are to the “no runners, one out” state with probability 0.676 and to
the “runner on first, no outs” state with probability 0.235. The probability of
moving from the “000 0” state to the “000 0” state is 0.033; in other words, the
chance of a home run with no runners on with no outs is 0.033.

P_matrix |>

as_tibble(rownames = "state") |>

filter(state == "000 0") |>
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pivot_longer(

cols = -state,

names_to = "new_state",

values_to = "Prob"

) |>

filter(Prob > 0)

# A tibble: 5 x 3

state new_state Prob

<chr> <chr> <dbl>

1 000 0 000 0 0.0334

2 000 0 000 1 0.676

3 000 0 001 0 0.00563

4 000 0 010 0 0.0503

5 000 0 100 0 0.235

Let’s contrast this with the possible transitions starting from the “010 2”
state, runner on second with two outs. The most likely transitions are “3 outs”
(probability 0.650), “runners on first and second with two outs” (probability
0.156), and “runner on first with 2 outs” (probability 0.074).

P_matrix |>

as_tibble(rownames = "state") |>

filter(state == "010 2") |>

pivot_longer(

cols = -state,

names_to = "new_state",

values_to = "Prob"

) |>

filter(Prob > 0)

# A tibble: 8 x 3

state new_state Prob

<chr> <chr> <dbl>

1 010 2 000 2 0.0233

2 010 2 001 2 0.00587

3 010 2 010 2 0.0576

4 010 2 011 2 0.000451

5 010 2 100 2 0.0745

6 010 2 101 2 0.0325

7 010 2 110 2 0.156

8 010 2 3 0.650
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9.2.4 Simulating the Markov chain

One can simulate this Markov chain model a large number of times to obtain
the distribution of runs scored in a half-inning of 2016 baseball. The first step is
to construct a matrix giving the runs scored in all possible transitions between
states. Let Nrunners denote the number of runners in a state and O denote
the number of outs. Because every player who has already batted in the inning
is either on base, out, or has scored, for a batting play, the number of runs
scored is equal to

runs = (N (b)
runners + O(b) + 1) − (N (a)

runners + O(a)).

In other words, the runs scored is the sum of runners and outs before (b)
the play minus the sum of runners and outs after (a) the play plus one. For
example, suppose there are runners on first and second with one out, and after
the play, there is a runner on second with two outs. The number of runs scored
is equal to

runs = (2 + 1 + 1) − (1 + 2) = 1.

We define a new function num_havent_scored() which takes a state as input
and returns the sum of the number of runners and outs. We then apply this
function across all the possible states (using the map_int() function) and the
corresponding sums are stored in the vector runners_out.

num_havent_scored <- function(s) {

s |>

str_split("") |>

pluck(1) |>

as.numeric() |>

sum(na.rm = TRUE)

}

runners_out <- T_matrix |>

row.names() |>

set_names() |>

map_int(num_havent_scored)

The outer() function with the—(subtraction) operation performs the runs
calculation for all possible pairs of states and the resulting matrix is stored in
the matrix R_runs. If one inspects the matrix R_runs, one will notice some
negative values and some strange large positive values. But this is not a concern
since the corresponding transitions, for example a movement between a “000 0”
state and a “000 2” state in one batting play, are not possible. To make the
matrix square, we add an additional column of zeros to this run matrix using
the cbind() function.
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R_runs <- outer(

runners_out + 1,

runners_out,

FUN = "-"

) |>

cbind("3" = rep(0, 24))

We are now ready to simulate a half-inning of baseball using a new function
simulate_half_inning(). The inputs are the probability transition matrix
P, the run matrix R, and the starting state s (an integer between 1 and 24).
The output is the number of runs scored in the half-inning.

simulate_half_inning <- function(P, R, start = 1) {

s <- start

path <- NULL

runs <- 0

while (s < 25) {

s_new <- sample(1:25, size = 1, prob = P[s, ])

path <- c(path, s_new)

runs <- runs + R[s, s_new]

s <- s_new

}

runs

}

There are two key statements in this simulation. If the current state is s, the
function sample() will simulate a new state using the s row in the transition
matrix P; the new state is denoted s_new. The total number of runs scored in
the inning is updated using the value in the s row and the s_new column of
the runs matrix R.

Using the map_int() function, one can simulate a large number of half-innings
of baseball. In the below code, we simulate 10,000 half-innings starting with
no runners and no outs (state 1), collecting the runs scored in the vector
simulated_runs. The set.seed() function sets the random number seed so
the reader can reproduce the results of this particular simulation by running
this code.

set.seed(111653)

simulated_runs <- 1:10000 |>

map_int(~simulate_half_inning(T_matrix, R_runs))

To find the possible runs scored in a half-inning, we use the table() function
to tabulate the values in simulated_runs.
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table(simulated_runs)

simulated_runs

0 1 2 3 4 5 6 7 8 9

7364 1437 651 324 126 50 34 10 2 2

In our 10,000 simulations, five or more runs scored in 50 + 34 + 10 + 2 + 2
= 98 half-innings, so the chance of scoring five or more runs would be 98 /
10,000 = 0.0098. This calculation can be checked using the sum() function.

sum(simulated_runs >= 5) / 10000

[1] 0.0098

We compute the mean number of runs scored by applying the mean() function
to simulated_runs.

mean(simulated_runs)

[1] 0.477

Over the 10,000 half-innings, an average of 0.477 runs were scored.

To understand the runs potential of different runners and outs situations, one
can repeat this simulation procedure for other starting states. We write a
function runs_j() to compute the mean number of runs scored starting with
state j. Using the map_int() function, we apply the function runs_j() over
all of the possible starting states 1 through 24. The output is a vector of mean
runs scored stored in the mean_run_value column. These values are displayed
below as a simulated expected run matrix (see Section 5.1).

runs_j <- function(j) {

1:10000 |>

map_int(~simulate_half_inning(T_matrix, R_runs, j)) |>

mean()

}

erm_2016_mc <- tibble(

state = row.names(T_matrix),

mean_run_value = map_dbl(1:24, runs_j)

) |>

mutate(

bases = str_sub(state, 1, 3),

outs_ct = as.numeric(str_sub(state, 5, 5))

) |>

select(-state)
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erm_2016_mc |>

pivot_wider(names_from = outs_ct, values_from = mean_run_value)

# A tibble: 8 x 4

bases `0` `1` `2`
<chr> <dbl> <dbl> <dbl>

1 000 0.481 0.255 0.103

2 001 1.32 0.925 0.338

3 010 1.14 0.640 0.295

4 011 1.93 1.30 0.474

5 100 0.855 0.500 0.211

6 101 1.71 1.14 0.425

7 110 1.39 0.875 0.406

8 111 2.19 1.46 0.667

Recall that our simulation model is based only on batting plays. To understand
the effect of non-batting plays (stealing, caught stealing, wild pitches, etc.)
on run scoring, we compare this run expectancy matrix with the one found
in Chapter 5 using all batting and non-batting plays. Their difference is the
contribution of non-batting plays to the average number of runs scored.

erm_2016 <- read_rds(here::here("data/erm2016.rds"))

erm_2016 |>

inner_join(erm_2016_mc, join_by(bases, outs_ct)) |>

mutate(

run_value_diff = round(mean_run_value.x - mean_run_value.y, 2)

) |>

select(bases, outs_ct, run_value_diff) |>

pivot_wider(names_from = outs_ct, values_from = run_value_diff)

# A tibble: 8 x 4

# Groups: bases [8]

bases `0` `1` `2`
<chr> <dbl> <dbl> <dbl>

1 000 0.02 0.01 0

2 001 0.03 0.01 0.03

3 010 0 0.03 0.02

4 011 0 0.06 0.07

5 100 0 0.01 0.01

6 101 0.02 0.06 0.05

7 110 0.06 0.05 0.01

8 111 -0.08 0.07 0.03
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Note that most of the values of the difference are positive, indicating that these
non-batting plays generally do create runs. We note that the largest values
tend to occur in situations when there is a runner on third who can score on a
wild pitch or passed ball.

9.2.5 Beyond run expectancy

By using properties of Markov chains, it is straightforward to use the transition
matrix to learn more about the movement through the runners/outs states.

By multiplying the probability matrix P_matrix by itself three times, we
can learn about the likelihood of the state of the inning after three plate
appearances. In R, matrix multiplication is indicated by the %*% symbol. The
result is stored in the matrix P_matrix_3.

P_matrix_3 <- P_matrix %*% P_matrix %*% P_matrix

The first row of P_matrix_3 gives the probabilities of being in each of the 25
states after three hitters starting at the “000 0” state. We round these values
to three decimal places, sort from largest to smallest, and display the largest
values.

P_sorted <- P_matrix_3 |>

as_tibble(rownames = "state") |>

filter(state == "000 0") |>

pivot_longer(

cols = -state, names_to = "new_state", values_to = "Prob"

) |>

arrange(desc(Prob))

P_sorted |>

slice_head(n = 6)

# A tibble: 6 x 3

state new_state Prob

<chr> <chr> <dbl>

1 000 0 3 0.372

2 000 0 100 2 0.241

3 000 0 110 1 0.0815

4 000 0 010 2 0.0739

5 000 0 000 2 0.0529

6 000 0 001 2 0.0286

After three PAs, the most likely outcomes are three outs (probability 0.372),
runner on first with 2 outs (probability 0.241), and runners on first and second
with one out (probability 0.081).
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It is also easy to learn about the number of visits to all runner-outs states. Define
the matrix Q to be the 24-by-24 submatrix found from the transition matrix
by removing the last row and column (the three outs state). By subtracting
the matrix Q from the identity matrix and taking the inverse of the result, we
obtain the fundamental matrix N of an absorbing Markov chain. (The diag()
function is used to construct the identity matrix and the function solve()

takes the matrix inverse.)

Q <- P_matrix[-25, -25]

N <- solve(diag(rep(1, 24)) - Q)

To understand the fundamental matrix, we display the beginning entries of
the first row of the matrix.

N_0000 <- round(N["000 0", ], 2)

head(N_0000, n = 6)

000 0 000 1 000 2 001 0 001 1 001 2

1.05 0.75 0.60 0.01 0.03 0.05

Starting at the beginning of the inning (the “000 0” state), the average number
of times the inning will be in the “000 0” state is 1.05, the average number
of times in the “000 1” state is 0.75, the average number of times in the “000
2” state is 0.6, and so on. By using the sum() function, we find the average
number of states that are visited.

sum(N_0000)

[1] 4.27

In other words, the average number of plate appearances in a half-inning
(before three outs) is 4.27.

We can compute the average number of batting plays until three outs for
all starting states by multiplying the fundamental matrix N by a column
vector of ones. The vector of average number of plays is stored in the variable
avg_num_plays and eight values of this vector are displayed.

avg_num_plays <- N %*% rep(1, 24) |>

t() |>

round(2)

avg_num_plays[,1:8]

000 0 000 1 000 2 001 0 001 1 001 2 010 0 010 1

4.27 2.87 1.46 4.33 2.99 1.53 4.34 2.93
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This tells us the length of the remainder of the inning, on average, starting
with each possible state. For example, starting at the bases empty, one out
state, we expect on average to have 2.87 more batters. In contrast, with a
runner on third with two outs, we expect to have 1.53 more batters.

9.2.6 Transition probabilities for individual teams

The transition probability matrix describes movements between states for an
average team. Certainly, these probabilities will vary for teams of different
batting abilities, and the probabilities will also vary against teams of different
pitching abilities. We focus on different batting teams and discuss how to
obtain good estimates of the transition probabilities for all teams.

To get the relevant data, a new variable batting_team needs to be defined that
gives the batting team in each half-inning. By use of the str_sub() function,
we define the home team variable home_team_id, and an if_else() function
is used to define the batting team.

retro2016_complete <- retro2016_complete |>

mutate(

home_team_id = str_sub(game_id, 1, 3),

batting_team = if_else(

bat_home_id == 0,

away_team_id,

home_team_id

)

)

By use of the group_by() and count() functions, we construct a data frame
T_team giving the counts of each team in the transitions from the current to
new states.

T_team <- retro2016_complete |>

group_by(batting_team, state, new_state) |>

count()

For example, the filtering for batting_team equal to ANA gives the transition
counts for Anaheim in the 2016 season.

T_team |>

filter(batting_team == "ANA") |>

slice_head(n = 6)

# A tibble: 192 x 4

# Groups: batting_team, state, new_state [192]

batting_team state new_state n
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<chr> <chr> <chr> <int>

1 ANA 000 0 000 0 40

2 ANA 000 0 000 1 1007

3 ANA 000 0 001 0 9

4 ANA 000 0 010 0 75

5 ANA 000 0 100 0 359

6 ANA 000 1 000 1 31

7 ANA 000 1 000 2 720

8 ANA 000 1 001 1 3

9 ANA 000 1 010 1 54

10 ANA 000 1 100 1 261

# i 182 more rows

If one is interested in comparing run productions for different batting teams,
it is necessary to make some adjustments to the team transition probability
matrices to get realistic predictions of performance. To illustrate the problem,
we focus on transitions from the “100 2” state. We store the transition counts
in the data frame T_team_S using the tally() function and display a few rows
of this table below for six of the teams.

T_team_S <- retro2016_complete |>

filter(state == "100 2") |>

group_by(batting_team, state, new_state) |>

tally()

T_team_S |>

ungroup() |>

sample_n(size = 6)

# A tibble: 6 x 4

batting_team state new_state n

<chr> <chr> <chr> <int>

1 MIN 100 2 010 2 15

2 CIN 100 2 101 2 19

3 NYN 100 2 101 2 14

4 SEA 100 2 010 2 6

5 DET 100 2 011 2 9

6 DET 100 2 101 2 15

For some of the less common transitions, there is much variability in the counts
across teams and this causes the corresponding team transition probabilities
to be unreliable. If pT EAM represents the team’s transition probabilities for
a particular team, and pALL are the average transition probabilities, then a
better estimate at the team’s probabilities has the form

pEST = n

n + K
pT EAM + K

n + K
pALL,
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where n is the number of transitions for the team and K is a smoothing count.
The description of the methodology is beyond the scope of this book, but in
this case a smoothing count of K = 1274 leads to a good estimate at the team’s
transition probabilities. (The choice of K depends on the starting state.)

This method is illustrated for Washington’s transition counts starting from
the “100 2” state. In the data frame T_WAS, the transition counts are stored in
the variable n, and the corresponding proportions are stored in p. Similarly,
for all teams, n and p are the counts and proportions in the data frame T_all.

T_WAS <- T_team_S |>

filter(batting_team == "WAS") |>

mutate(p = n / sum(n))

T_all <- retro2016_complete |>

filter(state == "100 2") |>

group_by(new_state) |>

tally() |>

mutate(p = n / sum(n))

We compute the improved estimate at Washington’s transition proportions
using the formula and store the results in p_EST. The three sets of proportions
(Washington, overall, and improved) are displayed in a data frame.

T_WAS |>

inner_join(T_all, by = "new_state") |>

mutate(

p_EST = (n.x / (1274 + n.x)) * p.x + (1274 / (1274 + n.x)) * p.y

) |>

select(batting_team, new_state, p.x, p.y, p_EST)

# A tibble: 8 x 6

# Groups: batting_team, state [1]

state batting_team new_state p.x p.y p_EST

<chr> <chr> <chr> <dbl> <dbl> <dbl>

1 100 2 WAS 000 2 0.0319 0.0291 0.0291

2 100 2 WAS 001 2 0.00532 0.00577 0.00577

3 100 2 WAS 010 2 0.0213 0.0220 0.0219

4 100 2 WAS 011 2 0.0213 0.0220 0.0219

5 100 2 WAS 100 2 0.00266 0.000775 0.000776

6 100 2 WAS 101 2 0.0452 0.0435 0.0435

7 100 2 WAS 110 2 0.184 0.195 0.194

8 100 2 WAS 3 0.689 0.682 0.683

Note that the improved transition proportions are a compromise between the
team’s proportions and the overall values. For example, for a transition from
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the state “100 2” to “010 2”, the Washington value is 0.0213, the overall value
is 0.0220, and the improved value 0.0219 falls between the Washington and
overall values. This method is especially helpful for particular transitions such
as “100 2” to “100 2”, which may not occur for one team in this season but for
which we know there is a positive chance of these transitions happening in the
future.

This smoothing method can be applied for all teams and all rows of the
transition matrix to obtain improved estimates of teams’ probability transition
matrices. With the team transition matrices computed in this way, one can
explore the run-scoring behavior of individual batting teams.

9.3 Simulating a Baseball Season

9.3.1 The Bradley-Terry model

An attractive method of modeling paired comparison data such as baseball
games is the Bradley-Terry model. We illustrate this modeling technique via
simulation for the 1968 Major League Baseball season when the regular season
and playoff system had a relatively simple structure. It is straightforward to
adapt these methods to the present baseball season with a more complicated
schedule and playoff system.

In 1968, there were 20 teams, 10 in the National League and 10 in the American
League. Suppose each team has a talent or ability to win a game. The talents
for the 20 teams are represented by the values T1, ..., T20. We assume that the
talents are distributed from a normal curve model with mean 0 and standard
deviation sT . A team of average ability would have a talent value close to zero,
“good” teams would have positive talents, and bad teams would have negative
talents. Suppose team A plays team B in a single game. By the Bradley-Terry
model, the probability team A wins the game is given by the logistic function

P (A wins) = exp(TA)
exp(TA) + exp(TB) .

This model is closely related to the log5 method developed by Bill James in his
Baseball Abstract books in the 1980s (see, for example, James (1982)). If PA

and PB are the winning percentages of teams A and B, then James’ formula
is given by

P (A wins) = PA/(1 − PA)
PA/(1 − PA) + PB/(1 − PB) .

Comparing the two formulas, one sees that the log5 method is a special case of
the Bradley-Terry model where a team’s talent T is set equal to the log odds
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of winning log(P/(1 − P )). A team with a talent T = 0 will win (in the long
run) half of its games (P = 0.5). In contrast, a team with talent T = 0.2 will
win (using the log 5 values) approximately 55% of its games and a team with
talent T = −0.2 will win 45% of its games.

Using this model, one can simulate a baseball season as follows.

1. Construct the 1968 baseball schedule. In this season, each of the 10 teams
in each league play each other team in the same league 18 games, where 9
games are played in each team’s ballpark. (There was no interleague play
in 1968.)

2. Simulate 20 talents from a normal distribution with mean 0 and standard
deviation sT . The value of sT is chosen so that the simulated season winning
percentages from this model resemble the actual winning percentages during
this season.

3. Using the probability formula and the talent values, one computes the
probabilities that the home team wins all games. By a series of coin flips
with these probabilities, one determines the winners of all games.

4. Determine the winner of each league (ties need to be broken by some
random mechanism) and play a best-of-seven World Series using winning
probabilities computed using the Bradley-Terry model and the two talent
numbers.

9.3.2 Making up a schedule

The first step in the simulation is to construct the schedule of games. We wrote
a short function make_schedule() to help with this task. The inputs are the
vector of team names teams and the number of games k that will be played
between two teams in the first team’s home park. The output is a data frame
where each row corresponds to a game and Home and Visitor give the names
of the home and visiting teams. The rep() function, which generates repeated
copies of a vector, is used several times in this function.

make_schedule <- function(teams, k) {

num_teams <- length(teams)

Home <- rep(rep(teams, each = num_teams), k)

Visitor <- rep(rep(teams, num_teams), k)

tibble(Home = Home, Visitor = Visitor) |>

filter(Home != Visitor)

}

This function is used to construct the schedule for the 1968 season. Two vectors
NL and AL are constructed containing abbreviations for the National League
and American League teams. We apply the function make_schedule() twice,
once for each league, using k = 9 since one team hosts another team nine
games. We use the list_rbind() function to paste together the NL and AL
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schedules, creating the data frame schedule.

library(Lahman)

teams_68 <- Teams |>

filter(yearID == 1968) |>

select(teamID, lgID) |>

mutate(teamID = as.character(teamID)) |>

group_by(lgID)

schedule <- teams_68 |>

group_split() |>

set_names(pull(group_keys(teams_68), "lgID")) |>

map(~make_schedule(teams = .x$teamID, k = 9)) |>

list_rbind(names_to = "lgID")

dim(schedule)

[1] 1620 3

Note that schedule has 162·20
2 rows, since each game involves two teams.

9.3.3 Simulating talents and computing win probabilities

The next step is to compute the win probabilities for all of the games in
the season schedule. The team talents are assumed to come from a normal
distribution with mean 0 and standard deviation s_talent, which we assign
s_talent = 0.20. (Recall that this value of the standard deviation is chosen
so that the season team win percentages generated from the model resemble
the actual team win percentages.) We simulate the talents using the function
rnorm() that assigns the talents to the 20 teams. By use of two applications
of the inner_join() function, we add the team talents to the schedule data
frame; the new data frame is called schedule_talent.

s_talent <- 0.20

teams_68 <- teams_68 |>

mutate(talent = rnorm(10, 0, s_talent))

schedule_talent <- schedule |>

inner_join(teams_68, join_by(lgID, Home == teamID)) |>

rename(talent_home = talent) |>

inner_join(teams_68, join_by(lgID, Visitor == teamID)) |>

rename(talent_visitor = talent)

Last, once we have the talents for the home and visiting teams for all games, we
apply the Bradley-Terry model to compute home team winning probabilities
for all games; these probabilities are stored in the variable prob_home.
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schedule_talent <- schedule_talent |>

mutate(

prob_home = exp(talent_home) /

(exp(talent_home) + exp(talent_visitor))

)

The first six rows of the data frame schedule_talent are displayed below,
where one sees the games scheduled, the talents of the home and away teams,
and the probability that the home team wins the matchup.

slice_head(schedule_talent, n = 6)

# A tibble: 6 x 6

lgID Home Visitor talent_home talent_visitor prob_home

<chr> <chr> <chr> <dbl> <dbl> <dbl>

1 AL BAL BOS 0.197 0.269 0.482

2 AL BAL CAL 0.197 -0.230 0.605

3 AL BAL CHA 0.197 -0.00924 0.551

4 AL BAL CLE 0.197 -0.185 0.594

5 AL BAL DET 0.197 0.409 0.447

6 AL BAL MIN 0.197 -0.208 0.600

9.3.4 Simulating the regular season

To simulate an entire season of games, we perform a series of coin flips, where
the probability the home team wins depends on the winning probability. The
function rbinom() performs the coin flips for the 1620 scheduled games; the
outcomes are a sequence of 0s and 1s. By use of the if_else() function, we
define the winner variable to be the Home team if the outcome is 1, and the
Visitor otherwise.

schedule_talent <- schedule_talent |>

mutate(

outcome = rbinom(nrow(schedule_talent), 1, prob_home),

winner = if_else(outcome == 1, Home, Visitor)

)

The teams, home win probabilities, and outcomes of the first six games are
displayed below.

schedule_talent |>

select(Visitor, Home, prob_home, outcome, winner) |>

slice_head(n = 6)
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# A tibble: 6 x 5

Visitor Home prob_home outcome winner

<chr> <chr> <dbl> <int> <chr>

1 BOS BAL 0.482 0 BOS

2 CAL BAL 0.605 0 CAL

3 CHA BAL 0.551 1 BAL

4 CLE BAL 0.594 1 BAL

5 DET BAL 0.447 0 DET

6 MIN BAL 0.600 0 MIN

How did the teams perform during this particular simulated season? Using the
group_by() and summarize() functions, we find the number of wins for all
teams. We collect this information together with the team names in the data
frame WIN, and use the inner_join() function to combine the season results
with the team talents to create the data frame results.

results <- schedule_talent |>

group_by(winner) |>

summarize(Wins = n()) |>

inner_join(teams_68, by = c("winner" = "teamID"))

9.3.5 Simulating the post-season

After the regular season, one can simulate the post-season series. We write a
function win_league() that simulates a league championship. The inputs are
the data frame res of teams and win totals. By use of the min_rank() function,
we identify the teams that have the largest number of wins in each league. If
one team has the maximum number, then an indicator variable is_winner_lg
is created, which is 1 for that particular team. In order to avoid a tie in win
totals for two or more teams, we randomly add a random tiebreaker quantity
(that is less than 1) to every teams win total using the runif() function.

win_league <- function(res) {

res |>

group_by(lgID) |>

mutate(

tiebreaker = runif(n = length(talent)),

wins_total = Wins + tiebreaker,

rank = min_rank(desc(wins_total)),

is_winner_lg = wins_total == max(wins_total)

)

}

To simulate the post-season, we populate a new variable is_winner_ws; this is
an indicator for the World Series winner. By an application of win_league(),
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we find the winners of each league. We simulate the World Series by flipping a
coin seven times (rmultinom()), where the win probabilities are proportional
to exp(talent). The is_winner_ws indicates the team winning a majority of
the games.

sim_one <- win_league(results)

ws_winner <- sim_one |>

filter(is_winner_lg) |>

ungroup() |>

mutate(

outcome = as.numeric(rmultinom(1, 7, exp(talent))),

is_winner_ws = outcome > 3

) |>

filter(is_winner_ws) |>

select(winner, is_winner_ws)

sim_one |>

left_join(ws_winner, by = c("winner")) |>

replace_na(list(is_winner_ws = 0))

# A tibble: 20 x 9

# Groups: lgID [2]

winner Wins lgID talent tiebreaker wins_total rank

<chr> <int> <fct> <dbl> <dbl> <dbl> <int>

1 ATL 83 NL -0.215 0.867 83.9 5

2 BAL 86 AL 0.197 0.0260 86.0 3

3 BOS 99 AL 0.269 0.354 99.4 2

4 CAL 62 AL -0.230 0.936 62.9 10

5 CHA 85 AL -0.00924 0.246 85.2 4

6 CHN 85 NL -0.107 0.829 85.8 4

7 CIN 81 NL -0.0612 0.264 81.3 6

8 CLE 71 AL -0.185 0.290 71.3 9

9 DET 100 AL 0.409 0.0841 100. 1

10 HOU 90 NL -0.0871 0.845 90.8 2

11 LAN 63 NL -0.326 0.729 63.7 10

12 MIN 74 AL -0.208 0.667 74.7 7

13 NYA 78 AL 0.0424 0.422 78.4 6

14 NYN 80 NL 0.100 0.569 80.6 7

15 OAK 82 AL 0.287 0.927 82.9 5

16 PHI 93 NL 0.265 0.819 93.8 1

17 PIT 71 NL -0.146 0.0460 71.0 9

18 SFN 88 NL 0.249 0.119 88.1 3

19 SLN 76 NL -0.348 0.425 76.4 8

20 WS2 73 AL 0.0842 0.730 73.7 8

# i 2 more variables: is_winner_lg <lgl>, is_winner_ws <lgl>
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9.3.6 Function to simulate one season

It is convenient to place all of these commands including the func-
tions make_schedule() and win_league() in a single function
one_simulation_68(), which you can find in the abdwr3edata pack-
age. The only input is the standard deviation s_talent that describes the
spread of the normal talent distribution. The output is a data frame containing
the teams, talents, number of season wins, and success in the post-season. We
illustrate simulating one season and display the data frame results_1 that is
returned.

library(abdwr3edata)

set.seed(111653)

results_1 <- one_simulation_68(0.20)

results_1

# A tibble: 20 x 6

Team Wins League Talent Winner.Lg Winner.WS

<chr> <int> <dbl> <dbl> <dbl> <dbl>

1 SFN 93 1 -0.0591 1 0

2 PHI 93 1 -0.00979 0 0

3 LAN 87 1 0.00406 0 0

4 HOU 84 1 -0.117 0 0

5 SLN 80 1 -0.128 0 0

6 ATL 79 1 -0.100 0 0

7 CIN 79 1 -0.235 0 0

8 NYN 76 1 -0.269 0 0

9 CHN 76 1 -0.0199 0 0

10 PIT 63 1 -0.313 0 0

11 NYA 100 2 0.284 1 1

12 DET 93 2 0.379 0 0

13 CHA 87 2 0.139 0 0

14 BOS 86 2 -0.102 0 0

15 WS2 84 2 0.0915 0 0

16 OAK 82 2 -0.0622 0 0

17 CAL 78 2 -0.129 0 0

18 BAL 74 2 -0.0728 0 0

19 MIN 65 2 -0.207 0 0

20 CLE 61 2 -0.292 0 0

We write a new function display_standings() to put the season wins in a
more familiar standings format. The inputs to this function are the results_1
data frame and the league indicator.
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display_standings <- function(data, league) {

data |>

filter(League == league) |>

select(Team, Wins) |>

mutate(Losses = 162 - Wins) |>

arrange(desc(Wins))

}

We then apply this function twice (once for each league) using map() and then
use the bind_cols() function to combine the two standings into a single data
frame. The league champions and the World Series winner are also displayed
below.

map(1:2, display_standings, data = results_1) |>

bind_cols()

# A tibble: 10 x 6

Team...1 Wins...2 Losses...3 Team...4 Wins...5 Losses...6

<chr> <int> <dbl> <chr> <int> <dbl>

1 SFN 93 69 NYA 100 62

2 PHI 93 69 DET 93 69

3 LAN 87 75 CHA 87 75

4 HOU 84 78 BOS 86 76

5 SLN 80 82 WS2 84 78

6 ATL 79 83 OAK 82 80

7 CIN 79 83 CAL 78 84

8 NYN 76 86 BAL 74 88

9 CHN 76 86 MIN 65 97

10 PIT 63 99 CLE 61 101

results_1 |>

filter(Winner.Lg == 1) |>

select(Team, Winner.WS)

# A tibble: 2 x 2

Team Winner.WS

<chr> <dbl>

1 SFN 0

2 NYA 1

In this particular simulated season, the Philadelphia Phillies (PHI) and the
San Francisco Giants (SFN) tied for the National League title with 93 wins
and the New York Yankees (NYA) won the American League with 100 wins.
The Yankees defeated the Giants in the World Series. The team with the best
talent in this season was Detroit (talent equal to 0.379) and they lost in the
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map(1:2, display_standings, data = results_1) |>

bind_cols()

# A tibble: 10 x 6

Team...1 Wins...2 Losses...3 Team...4 Wins...5 Losses...6

<chr> <int> <dbl> <chr> <int> <dbl>

1 SFN 93 69 NYA 100 62

2 PHI 93 69 DET 93 69

3 LAN 87 75 CHA 87 75

4 HOU 84 78 BOS 86 76

5 SLN 80 82 WS2 84 78

6 ATL 79 83 OAK 82 80

7 CIN 79 83 CAL 78 84

8 NYN 76 86 BAL 74 88

9 CHN 76 86 MIN 65 97

10 PIT 63 99 CLE 61 101

results_1 |>

filter(Winner.Lg == 1) |>

select(Team, Winner.WS)

# A tibble: 2 x 2

Team Winner.WS

<chr> <dbl>

1 SFN 0

2 NYA 1

In this particular simulated season, the Philadelphia Phillies (PHI) and the
San Francisco Giants (SFN) tied for the National League title with 93 wins
and the New York Yankees (NYA) won the American League with 100 wins.
The Yankees defeated the Giants in the World Series. The team with the best
talent in this season was Detroit (talent equal to 0.379) and they lost in the
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FIGURE 9.1
Scatterplot of team talents and wins for many season simulations.

ALCS. In other words the “best team in baseball” was not the most successful
during this simulated season. We will shortly see if the best team typically
wins the World Series.

9.3.7 Simulating many seasons

One can learn about the relationship between a team’s ability and its season
performance by simulating many seasons of baseball. To simulate 1000 seasons,
we use the rep() function to create a vector of length 1000, then use map()

to repeatedly apply the one_simulation_68() function to this vector, storing
the output in many_results.

set.seed(111653)

many_results <- rep(0.20, 1000) |>

map(one_simulation_68) |>

list_rbind()

The data frame many_results contains the talent number and number of wins
for 1000 × 20 = 20,000 teams. By use of the geom_point() function using
the alpha = 0.05 argument, we construct a “smoothed” scatterplot of Talent
and Wins in Figure 9.1.

ggplot(many_results, aes(Talent, Wins)) +

geom_point(alpha = 0.05)
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FIGURE 9.2
Histogram of number of wins of teams of average talents in the simulations.

As expected, there is a positive trend in the graph, indicating that better teams
tend to win more games. But there is much vertical spread in the scatterplot,
which says that the relationship between talent and wins is not strong.

To reinforce the last point, suppose we focus on “average” teams that have
a talent number between −0.05 and 0.05. Using the filter() function, we
isolate the talent and wins data for these average teams. A histogram of the
season wins for these teams is shown in Figure 9.2.

many_results |>

filter(Talent > -0.05, Talent < 0.05) |>

ggplot(aes(Wins)) +

geom_histogram(color = crcblue, fill = "white")

One expects these average teams to win about 81 games. But what is surprising
is the variability in the win totals—average teams can regularly have win totals
between 70 and 90, and it is possible (but not likely) to have a win total close
to 100.

What is the relationship between a team’s talent and its post-season success?
Consider first the relationship between a team’s talent (variable Talent) and
winning the league (the variable Winner.Lg). Since Winner.Lg is a binary
(0 or 1) variable, a common approach for representing this relationship is a
logistic model; this is a generalization of the usual regression model where the
response variable is binary instead of continuous. We use the glm() function
with the family argument set to binomial to fit a logistic model; the output
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is stored in the variable fit1. In a similar fashion, we use a logistic model to
model the relationship between winning the World Series (variable Winner.WS)
and the talent; the output is in the variable fit2.

fit1 <- glm(

Winner.Lg ~ Talent,

data = many_results, family = binomial

)

fit2 <- glm(

Winner.WS ~ Talent,

data = many_results, family = binomial

)

A logistic model has the form

p = exp(a + bT )
1 + exp(a + bT ) ,

where T is a team’s talent, (a, b) are the regression coefficients, and p is the
probability of the event.

In the following code, we generate a vector of plausible values of a team’s
talent and store them in the vector talent_values. We then compute fitted
probabilities of winning the pennant and winning the World Series using
the predict() function. (The type = "response" argument will map values
of a + bT to the probability scale.) Then we construct a graph of talent
against probability using the geom_line() function where the color of the line
corresponds to the type of achievement. The completed graph is displayed in
Figure 9.3.

tdf <- tibble(

Talent = seq(-0.4, 0.4, length.out = 100)

)

tdf |>

mutate(

Pennant = predict(fit1, newdata = tdf, type = "response"),

`World Series` = predict(fit2, newdata = tdf, type = "response")

) |>

pivot_longer(

cols = -Talent,

names_to = "Outcome",

values_to = "Probability"

) |>

ggplot(aes(Talent, Probability, color = Outcome)) +

geom_line() + ylim(0, 1) +

scale_color_manual(values = crc_fc)
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FIGURE 9.3
Probability of winning the pennant and winning the World Series for teams of
different talents.

As expected, the chance of a team winning the pennant (solid line) increases
as a function of the talent. An average team with T = 0 has only a small
chance of winning the pennant; an excellent team with a talent close to 0.4 has
about a 60% chance of winning the pennant. The probabilities of winning the
World Series (represented by a dashed line) are substantially smaller than the
chances of winning the pennant. For example, this excellent (T = 0.4) team
has only about a 35% chance of winning the World Series. In fact, it can be
demonstrated that the team winning the World Series is likely not to be the
team with the best talent (largest value of T ).

9.4 Further Reading

A general description of the Markov chain probability model is contained in
Kemeny and Snell (1960). Pankin (1987) and Bukiet, Harold, and Palacios
(1997) illustrate the use of Markov chains to model baseball. Chapter 9 of
Albert (2017) gives an introductory description of Markov chains and illustrates
the construction and use of the transition matrix using 1987 season data. The
Bradley-Terry model (Bradley and Terry 1952) is a popular statistical model
for paired comparisons. Chapter 9 of Albert and Bennett (2003) describes the
application of the Bradley-Terry model for baseball team competition. The
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use of R in simulation is introduced in Chapter 11 of Albert and Rizzo (2012).
Lopez, Matthews, and Baumer (2018) use a Bradley-Terry state space model
to address the question of how often the best teams win.

9.5 Exercises

1. A Simple Markov Chain

Suppose one is interested only in the number of outs in an inning. There are
four possible states in an inning (0 outs, 1 out, 2 outs, and 3 outs) and you
move between these states in each plate appearance. Suppose at each PA,
the chance of not increasing the number of outs is 0.3, and the probability of
increasing the outs by one is 0.7. The following R code puts the transition
probabilities of this Markov chain in a matrix P.

P <- matrix(c(.3, .7, 0, 0,

0, .3, .7, 0,

0, 0, .3, .7,

0, 0, 0, 1), 4, 4, byrow = TRUE)

a. If one multiplies the matrix P by itself P to obtain the matrix P2:

P2 <- P %*% P

The first row of P2 gives the probabilities of moving from 0 outs to each
of the four states after two plate appearances. Compute P2. Based on this
computation, find the probability of moving from 0 outs to 1 out after two
plate appearances.

b. The fundamental matrix N is computed as

N <- solve(diag(c(1, 1, 1)) - P[-4, -4])

The first row gives the average number of PAs at 0 out, 1 out, and 2 outs in
an inning. Compute N and find the average number of PAs in one inning in
this model.

2. A Simple Markov Chain, Continued

The following function simulate_half_inning() will simulate the number of
plate appearances in a single half-inning of the Markov chain model described
in Exercise 1 where the input P is the transition probability matrix.
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simulate_half_inning <- function(P) {

s <- 1

path <- NULL

while(s < 4){

s_new <- sample(1:4, 1, prob = P[s, ])

path <- c(path, s_new)

s <- s_new

}

length(path)

}

a. Use the map() function to simulate 1000 half-innings of this Markov chain
and store the lengths of these simulated innings in the vector lengths.

b. Using this simulated output, find the probability that a half-inning contains
exactly four plate appearances.

c. Use the simulated output to find the average number of PAs in a half-inning.
Compare your answer with the exact answer in Exercise 1, part (b).

3. Simulating a Half Inning

In Section 9.2.4, the expected number of runs as calculated for each one of the
24 possible runners-outs situations using data from the 2016 season. To see
how these values can change across seasons, download play-by-play data from
Retrosheet for the 1968 season, construct the probability transition matrix,
simulate 10,000 half-innings from each of the 24 situations, and compute the
run expectancy matrix. Compare this 1968 run expectancy matrix with the
one computed using 2016 data.

4. Simulating the 1950 Season

Suppose you are interested in simulating the 1950 regular season for the
National League. In this season, the team abbreviations were “PHI”, “BRO”,
“NYG”, “BSN”, “STL”, “CIN”, “CHC”, and “PIT” and each team played every
other team 22 games (11 games at each park).

a. Using the function make_schedule(), construct the schedule of games for
this NL season.

b. Suppose the team talents follow a normal distribution with mean 0 and
standard deviation 0.25. Using the Bradley-Terry model, assign home win
probabilities for all games on the schedule.

c. Use the rbinom() function to simulate the outcomes of all 616 games of
the NL 1950 season.

d. Compute the number of season wins for all teams in your simulation.
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5. Simulating the 1950 Season, Continued

a. Write a function to perform the simulation scheme described in Exercise 4.
Have the function return the team with the largest talent and the team
with the most wins. (If there is a tie for the league pennant, have the
function return one of the best teams at random.)

b. Repeat this simulation for 1000 seasons, collecting the most talented team
and the most successful team for all seasons.

c. Based on your simulations, what is the chance that the most talented team
wins the pennant?

6. Simulating the World Series

a. Write a function to simulate a World Series. The input is the probability p

that the AL team will defeat the NL team in a single game.

b. Suppose an AL team with talent 0.40 plays a NL team with talent 0.25.
Using the Bradley-Terry model, determine the probability p that the AL
wins a game.

c. Using the value of p determined in part (b), simulate 1000 World Series
and find the probability the AL team wins the World Series.

d. Repeat parts (b) and (c) for AL and NL teams who have the same talents.
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Exploring Streaky Performances

10.1 Introduction

Some of the most interesting phenomena in baseball are streaky or hot/cold
performances by hitters and pitchers. During particular periods in the season,
a particular player will hit for a high batting average, and in other periods,
the player will be in a “cold streak” and all batted balls appear to be fielded
for outs. In this chapter, we’ll use R to explore streaky hitting performances.

One of the great hitting accomplishments in baseball history is Joe DiMaggio’s
56-game hitting streak, and Section 10.2 explores DiMaggio’s game-to-game
hitting for the 1941 season. We use an R function to find all of DiMaggio’s
hitting streaks, and a moving average function to explore DiMaggio’s batting
average over short time intervals. Retrosheet play-by-play data records batters’
performances in all plate appearances and we use this data in Section 10.3 to
explore hitting streaks in individual at-bats. Suppose a hitter is going through
an “0 for 20” hitting slump; should we be surprised? One way of answering
this question is to find the longest hitting slumps for all hitters in a particular
baseball season. A second way to understand the size of this hitting slump is
to contrast this hitting with patterns of slumps under a random model. We
describe a method for simulating a random pattern of hits and outs and use
this method to assess if a particular player exhibits more streakiness in his
hitting sequence than what one would expect by chance.

This discussion of streakiness focuses on patterns of hits and outs, and certainly
the quality of an at-bat depends on more than just getting a hit. Section 10.4
discusses patterns of streakiness using the players’ launch speeds among the
batted balls. We look at players’ mean launch speeds over groups of five games
during a season. A way to describe streaky hitting behavior is to look at the
variability of the five-game mean launch speed values. Using this measure of
streakiness, we identify the streaky hitters during the 2016 season.
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10.2 The Great Streak

10.2.1 Finding game hitting streaks

Whenever there is a discussion of great streaky performances in baseball,
one has to talk about the “Great Streak” where Joe DiMaggio got a hit in
56 consecutive games during the 1941 season. Many people think that this
particular hitting accomplishment is one of the few baseball records that will
not be broken in our lifetimes. We use DiMaggio’s game-to-game hitting data
to motivate how we can use R to explore streaky performances.

In contrast with previous versions of this book, play-by-play hitting records
are now available from Retrosheet for the 1941 season. You can download the
entire season’s worth of data using the retrosheet_data() function from the
baseballr package, following the procedure outlined in Section A.1.3.

Nevertheless, Baseball-Reference gives a game-to-game hitting log for DiMaggio
for this season that will suffice for our purposes. We’ve placed a copy of the
data that contains this hitting log as the dimaggio_1941 data object in
the abdwr3edata package after copying-and-pasting it from the appropriate
table (at the time of this writing, the fifth one on the page) on Baseball-
Reference.com’s website. We create a new data frame joe.

library(abdwr3edata)

joe <- dimaggio_1941

For each game during the season, the data frame records AB, the number of
at-bats, and H, the number of hits. As a quick check that the data has been
entered correctly, we compute DiMaggio’s season batting average by summing
the game hit totals and dividing by the total at-bats.

joe |> summarize(AVG = sum(H) / sum(AB))

# A tibble: 1 x 1

AVG

<dbl>

1 0.357

The result agrees with DiMaggio’s published 1941 batting average of .357.
(Actually, although this was a high average, it was overshadowed by Ted
Williams’ .406 average during the 1941 season.

A hitting streak is commonly defined as the number of consecutive games in
which a player gets at least one base hit. Suppose we’re interested in computing
all of DiMaggio’s hitting streaks for the 1941 season. Toward this goal, using

http://www.Reference.com
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the if_else() function, we create a new variable had_hit for each game that
is either 1 or 0 depending on whether DiMaggio recorded at least one hit in
the game.

joe <- joe |>

mutate(had_hit = if_else(H > 0, 1, 0))

We display the values of had_hit that visually show DiMaggio’s streaky hitting
performance using the pull() function.

pull(joe, had_hit)

[1] 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0 1

[30] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[59] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

[88] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1

[117] 1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1

We see that DiMaggio started the season with an eight-game hitting streak,
then had three games with no hits, a hitting streak of three games, and so on.

Suppose we wish to compute all hitting streaks for a particular player. This is
conveniently done using the following user-defined function streaks(). The
input to this function is a vector y of 0s and 1s corresponding to game results
where the player was hitless (0) or received at least one hit (1). The output
will be a data frame containing the lengths of all hitting streaks and all hitting
slumps where the variable values indicates if the run is a streak or a slump.
The function rle() from the base package computes the lengths and values of
streaks of equal values in an input vector. We use the as_tibble() function
to return a tibble.

streaks <- function(y) {

x <- rle(y)

class(x) <- "list"

as_tibble(x)

}

Next, we apply this function to DiMaggio’s game hit/no-hit sequence stored
in the variable had_hit. Note that we use the filter() function is used to
select the lengths of the hitting streaks.

joe |>

pull(had_hit) |>

streaks() |>

filter(values == 1) |>
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pull(lengths)

[1] 8 3 2 1 3 56 16 4 2 4 7 1 5 2

This function picks up DiMaggio’s famous 56-game hitting streak. It is remark-
able to note that Joe followed his 56-game streak immediately with a 16-game
hitting streak.

The media is also fascinated with streaks of no-hit games. One can find
DiMaggio’s streaks of hitless games by using the streaks() function with the
specification values == 0 to select the lengths of the hitting slumps.

joe |>

pull(had_hit) |>

streaks() |>

filter(values == 0) |>

pull(lengths)

[1] 3 1 2 3 2 1 2 2 3 3 1 1 1

It is interesting that the length of the longest streak of no-hit games was only
three for DiMaggio’s 1941 season.

10.2.2 Moving batting averages

An alternative way of looking at streaky hitting performances uses batting
averages computed over short time intervals. One may be interested in exploring
DiMaggio’s batting average in this manner. He must have been a hot hitter
during his 56-game hitting streak, and perhaps DiMaggio was somewhat cold
in other periods during the season.

In general, suppose we are interested in computing a player’s batting average
over a width (or window) of 10 games. We want to compute the batting average
over games 1 to 10, over games 2 to 11, over games 3 to 12, and so on. These
batting averages would be the sum of hits divided by the sum of at-bats over
the 10-game periods. These short-term batting averages are commonly called
moving averages.

The function moving_average() below computes these moving averages. The
arguments to the function are a data frame with variables H and AB, and the
window of games width. The main tools in this function are the functions
rollmean() and rollsum() from the zoo package. The output of the function
is a data frame with two variables (justifying the use of transmute() in place
of mutate()): Game and Average. The variable Game gives the game number
value in the middle of the window, and Average is the corresponding batting
average over the game window.



238 Exploring Streaky Performances

FIGURE 10.1
Moving average plot of DiMaggio’s batting average for the 1941 season using
a window of 10 games. The horizontal line shows DiMaggio’s season batting
average. The games where DiMaggio had at least one base hit are displayed
on the horizontal axis.

library(zoo)

moving_average <- function(df, width) {

N <- nrow(df)

df |>

transmute(

Game = rollmean(1:N, k = width, fill = NA),

Average = rollsum(H, width, fill = NA) /

rollsum(AB, width, fill = NA)

)

}

After the function moving_average() is read into R, it is easy to compute
DiMaggio’s batting average over short time intervals. Suppose we consider
a window of 10 games. In the following code, we use moving_average() to
compute the moving batting averages and pass the output to ggplot() and
geom_line() to construct a line graph of these averages (see Figure 10.1). We
add a horizontal line using the geom_hline() function at DiMaggio’s season
batting average so one can easily see when Joe was relatively hot and cold
during the season. To relate this display with DiMaggio’s hitting streaks, we
use the geom_rug() function to display the games where Joe had at least one
hit on the horizontal axis.
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FIGURE 10.1
Moving average plot of DiMaggio’s batting average for the 1941 season using
a window of 10 games. The horizontal line shows DiMaggio’s season batting
average. The games where DiMaggio had at least one base hit are displayed
on the horizontal axis.

library(zoo)

moving_average <- function(df, width) {

N <- nrow(df)

df |>

transmute(

Game = rollmean(1:N, k = width, fill = NA),

Average = rollsum(H, width, fill = NA) /

rollsum(AB, width, fill = NA)

)

}

After the function moving_average() is read into R, it is easy to compute
DiMaggio’s batting average over short time intervals. Suppose we consider
a window of 10 games. In the following code, we use moving_average() to
compute the moving batting averages and pass the output to ggplot() and
geom_line() to construct a line graph of these averages (see Figure 10.1). We
add a horizontal line using the geom_hline() function at DiMaggio’s season
batting average so one can easily see when Joe was relatively hot and cold
during the season. To relate this display with DiMaggio’s hitting streaks, we
use the geom_rug() function to display the games where Joe had at least one
hit on the horizontal axis.
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joe_ma <- moving_average(joe, 10)

ggplot(joe_ma, aes(Game, Average)) +

geom_line() +

geom_hline(

data = summarize(joe, bavg = sum(H)/sum(AB)),

aes(yintercept = bavg), color = "red"

) +

geom_rug(

data = filter(joe, had_hit == 1),

aes(Rk, .3 * had_hit), sides = "b",

color = crcblue

)

This figure dramatically shows that DiMaggio’s hitting performance climbed
steadily during his 56-game hitting streak and he actually had a short-term
10-game batting average over .500 during the streak. DiMaggio had a noticeable
hitting slump in the second half of the season and he hit bottom about Game
110. In practice, the appearance of this graph may depend on the choice of
time interval (argument width in the function moving_average()) and one
should experiment with several width choices to get a better understanding of
a hitter’s short-term batting performance.

10.3 Streaks in Individual At-Bats

The previous section considered hitting streaks at a game-to-game level. Since
records of individual plate appearances are available in the Retrosheet play-
by-play files, it is straightforward to explore hitting streaks at this finer level.
Ichiro Suzuki was one of the most exciting hitters in baseball, especially for his
ability to hit singles, many of the infield variety. We explore the streakiness
patterns in Suzuki’s play-by-play hitting data for the 2016 season.

We begin by reading the Retrosheet play-by-play file for the 2016 season,
storing the file in the data frame retro2016.

retro2016 <- read_rds(here::here("data/retro2016.rds"))

We use the filter() function to define a new data frame ichiro_AB; records
are chosen where the batting id is suzui001 (Suzuki’s code id) and the at-bat
flag is TRUE. (In this exploration, only Suzuki’s official at-bats are considered.)
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ichiro_AB <- retro2016 |>

filter(bat_id == "suzui001", ab_fl == TRUE)

10.3.1 Streaks of hits and outs

We record each at-bat if a hit occurred. There is a variable h_fl in the
Retrosheet data recording the number of bases for a hit. Using the if_else()
function, we define a new variable H that is 1 if a hit occurs and 0 otherwise.
To make sure that these at-bats are correctly ordered in time during the
season, we define a variable date (extracted from the game_id variable using
the str_sub() function), and the arrange() function sorts the data frame
ichiro_AB by date.

ichiro_AB <- ichiro_AB |>

mutate(

H = if_else(h_fl > 0, 1, 0),

date = str_sub(game_id, 4, 12),

AB = 1

) |>

arrange(date)

From the variable H, we identify the lengths of all hitting streaks, where a
streak refers to a sequence of consecutive base hits. Using the streaks()

function defined in Section 10.2 and filtering by values == 1, we obtain the
streak lengths for Suzuki in the 2016 season.

ichiro_AB |>

pull(H) |>

streaks() |>

filter(values == 1) |>

pull(lengths)

[1] 1 1 2 1 2 1 1 1 1 1 1 2 5 1 3 1 1 1 1 2 2 1 3 1 1 3 1 1 2 2

[31] 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 3

[61] 1 1 1 1 1 2 2 1 1 1

As expected, most of the hitting streaks lengths are 1, although once Suzuki
had five consecutive hits.

It may be more interesting to explore the lengths of the gaps between hits. We
apply the function streak() a second time filtering by values == 0 to find
the lengths of all of the gaps between hits that are 1 or larger.
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ichiro_AB <- retro2016 |>

filter(bat_id == "suzui001", ab_fl == TRUE)

10.3.1 Streaks of hits and outs

We record each at-bat if a hit occurred. There is a variable h_fl in the
Retrosheet data recording the number of bases for a hit. Using the if_else()
function, we define a new variable H that is 1 if a hit occurs and 0 otherwise.
To make sure that these at-bats are correctly ordered in time during the
season, we define a variable date (extracted from the game_id variable using
the str_sub() function), and the arrange() function sorts the data frame
ichiro_AB by date.

ichiro_AB <- ichiro_AB |>

mutate(

H = if_else(h_fl > 0, 1, 0),

date = str_sub(game_id, 4, 12),

AB = 1

) |>

arrange(date)

From the variable H, we identify the lengths of all hitting streaks, where a
streak refers to a sequence of consecutive base hits. Using the streaks()

function defined in Section 10.2 and filtering by values == 1, we obtain the
streak lengths for Suzuki in the 2016 season.

ichiro_AB |>

pull(H) |>

streaks() |>

filter(values == 1) |>

pull(lengths)

[1] 1 1 2 1 2 1 1 1 1 1 1 2 5 1 3 1 1 1 1 2 2 1 3 1 1 3 1 1 2 2

[31] 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 3

[61] 1 1 1 1 1 2 2 1 1 1

As expected, most of the hitting streaks lengths are 1, although once Suzuki
had five consecutive hits.

It may be more interesting to explore the lengths of the gaps between hits. We
apply the function streak() a second time filtering by values == 0 to find
the lengths of all of the gaps between hits that are 1 or larger.
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ichiro_out <- ichiro_AB |>

pull(H) |>

streaks() |>

filter(values == 0)

ichiro_out |>

pull(lengths)

[1] 2 1 2 1 4 2 5 2 2 3 4 3 1 1 1 1 11 12 1 2

[21] 7 3 1 1 2 2 1 1 3 4 1 4 8 1 2 1 4 2 1 1

[41] 4 2 7 1 11 4 3 1 10 1 3 1 11 8 1 3 6 5 1 3

[61] 3 1 1 3 2 1 1 18 2 3

This output is more interesting. We construct a frequency table of this output
by use of the group_by() and count() functions.

ichiro_out |>

group_by(lengths) |>

count()

# A tibble: 12 x 2

# Groups: lengths [12]

lengths n

<int> <int>

1 1 26

2 2 13

3 3 11

4 4 7

5 5 2

6 6 1

7 7 2

8 8 2

9 10 1

10 11 3

11 12 1

12 18 1

We see that Suzuki had a streak of 18 outs once, a streak of 12 outs twice, and
a streak of 11 outs three times.

10.3.2 Moving batting averages

Another way to view Suzuki’s streaky batting performance is to consider
his batting average over short time intervals, analogous to what we did for
DiMaggio for his game-to-game hitting data. Using the moving_average()

function, we construct a moving average plot of Ichiro’s batting average using
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FIGURE 10.2
Moving average plot of Ichiro Suzuki’s batting average for the 2016 season
using a window of 30 at-bats. The horizontal line shows Suzuki’s season batting
average. The at-bats where Suzuki had at least one base hit are shown on the
horizontal axis.

a window of 30 at-bats (see Figure 10.2). Using the geom_rug() function, we
display the at-bats where Ichiro had hits. The long streaks of outs are visible
as gaps in the rug plot. During the middle of the season, Ichiro had a 30 at-bat
batting average exceeding 0.500, while during other periods, his 30 at-bat
average was as low as 0.100.

ichiro_H <- ichiro_AB |>

mutate(AB_Num = row_number()) |>

filter(H == 1)

moving_average(ichiro_AB, 30) |>

ggplot(aes(Game, Average)) +

geom_line() + xlab("AB") +

geom_hline(yintercept = mean(ichiro_AB$H),

color = "red") +

geom_rug(

data = ichiro_H,

aes(AB_Num, .3 * H), sides = "b",

color = crcblue

)
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FIGURE 10.2
Moving average plot of Ichiro Suzuki’s batting average for the 2016 season
using a window of 30 at-bats. The horizontal line shows Suzuki’s season batting
average. The at-bats where Suzuki had at least one base hit are shown on the
horizontal axis.

a window of 30 at-bats (see Figure 10.2). Using the geom_rug() function, we
display the at-bats where Ichiro had hits. The long streaks of outs are visible
as gaps in the rug plot. During the middle of the season, Ichiro had a 30 at-bat
batting average exceeding 0.500, while during other periods, his 30 at-bat
average was as low as 0.100.

ichiro_H <- ichiro_AB |>

mutate(AB_Num = row_number()) |>

filter(H == 1)

moving_average(ichiro_AB, 30) |>

ggplot(aes(Game, Average)) +

geom_line() + xlab("AB") +

geom_hline(yintercept = mean(ichiro_AB$H),

color = "red") +

geom_rug(

data = ichiro_H,

aes(AB_Num, .3 * H), sides = "b",

color = crcblue

)
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10.3.3 Finding hitting slumps for all players

In our exploration of Suzuki’s batting performance, we saw that he had a “0
for 18” hitting performance during the season. Should we be surprised by a
hitting slump of length 18? Let’s compare Suzuki’s long slump with the longest
slumps for all regular players during the 2016 season.

First, we write a new function longest_ofer() that computes the length of
the longest hitting slump for a given batter. (An “ofer” is a slang word for
a hitless streak in baseball.) The input to this function is the batter id code
batter and the output of the function is the length of the longest slump.

longest_ofer <- function(batter) {

retro2016 |>

filter(bat_id == batter, ab_fl == TRUE) |>

mutate(

H = ifelse(h_fl > 0, 1, 0),

date = substr(game_id, 4, 12)

) |>

arrange(date) |>

pull(H) |>

streaks() |>

filter(values == 0) |>

summarize(max_streak = max(lengths))

}

After reading this function into R, we confirm that it works by finding the
longest hitting slump for Suzuki.

longest_ofer("suzui001")

# A tibble: 1 x 1

max_streak

<int>

1 18

Suppose we want to compute the length of the longest hitting slump for all
players in this season with at least 400 at-bats. Using the group_by() and
summarize() functions, we compute the number of at-bats for all players, and
players_400 contains the id codes of all players with 400 or more at-bats. By
use of the map() function together with the new longest_ofer() function,
we compute the length of the longest slump for all regular hitters. The final
object reg_streaks is a data frame with variables bat_id and max_streak.

players_400 <- retro2016 |>

group_by(bat_id) |>
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summarize(AB = sum(ab_fl)) |>

filter(AB >= 400) |>

pull(bat_id)

reg_streaks <- players_400 |>

set_names() |>

map(longest_ofer) |>

list_rbind() |>

mutate(bat_id = players_400)

To decipher the player ids, it is helpful to merge the data frame of the longest
hitting slumps reg_streaks with the player roster information contained
in the People data frame from the Lahman package. We then apply the
inner_join() function, merging data frames reg_streaks and the People

data frame, matching on the variables bat_id (in reg_streaks) and retroID

(in People). The rows of the resulting data frame are reordered using the slump
lengths in decreasing order using the function arrange() with the desc()

modifier. The top six slump lengths are displayed by the slice_head() function
below.

library(Lahman)

reg_streaks |>

inner_join(People, by = c("bat_id" = "retroID")) |>

mutate(Name = paste(nameFirst, nameLast)) |>

arrange(desc(max_streak)) |>

select(Name, max_streak) |>

slice_head(n = 6)

# A tibble: 6 x 2

Name max_streak

<chr> <int>

1 Carlos Beltran 32

2 Denard Span 30

3 Brandon Moss 29

4 Eugenio Suarez 28

5 Francisco Lindor 27

6 Albert Pujols 26

The six longest hitting slumps during the 2016 season were by Carlos Beltran
(32), Denard Span (30), Brandon Moss (29), Eugenio Suarez (28), Francisco
Lindor (27) and Albert Pujols (26). Relative to these long hitting slumps,
Suzuki’s hitting slump of 18 at-bats looks short.

10.3.4 Were Ichiro Suzuki and Mike Trout unusually streaky?

In the previous section, patterns of streakiness of hit/out data were compared
for all players in the 2016 season. An alternative way to look at the streakiness
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summarize(AB = sum(ab_fl)) |>

filter(AB >= 400) |>

pull(bat_id)

reg_streaks <- players_400 |>

set_names() |>

map(longest_ofer) |>

list_rbind() |>

mutate(bat_id = players_400)

To decipher the player ids, it is helpful to merge the data frame of the longest
hitting slumps reg_streaks with the player roster information contained
in the People data frame from the Lahman package. We then apply the
inner_join() function, merging data frames reg_streaks and the People

data frame, matching on the variables bat_id (in reg_streaks) and retroID

(in People). The rows of the resulting data frame are reordered using the slump
lengths in decreasing order using the function arrange() with the desc()

modifier. The top six slump lengths are displayed by the slice_head() function
below.

library(Lahman)

reg_streaks |>

inner_join(People, by = c("bat_id" = "retroID")) |>

mutate(Name = paste(nameFirst, nameLast)) |>

arrange(desc(max_streak)) |>

select(Name, max_streak) |>

slice_head(n = 6)

# A tibble: 6 x 2

Name max_streak

<chr> <int>

1 Carlos Beltran 32

2 Denard Span 30

3 Brandon Moss 29

4 Eugenio Suarez 28

5 Francisco Lindor 27

6 Albert Pujols 26

The six longest hitting slumps during the 2016 season were by Carlos Beltran
(32), Denard Span (30), Brandon Moss (29), Eugenio Suarez (28), Francisco
Lindor (27) and Albert Pujols (26). Relative to these long hitting slumps,
Suzuki’s hitting slump of 18 at-bats looks short.

10.3.4 Were Ichiro Suzuki and Mike Trout unusually streaky?

In the previous section, patterns of streakiness of hit/out data were compared
for all players in the 2016 season. An alternative way to look at the streakiness
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of a player is to contrast his streaky pattern of hitting with streaky patterns
under a “random”model.

To illustrate this method, consider a hypothetical player who bats 13 times
with the outcomes

0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1.

We define a measure of streakiness based on this sequence of hits and outs.
One good measure of streakiness or clumpiness in the sequence is the sum of
squares of the gaps between successive hits. In this example, the gaps between
hits are 1, 2, and 4, and the sum of squares of the gaps is S = 12 +22 +42 = 21.

Is the value of streakiness statistic S = 21 large enough to conclude that
this player’s pattern of hitting is non-random? We answer this question by a
simple simulation experiment. If the player sequence of hit/out outcomes is
truly random, then all possible arrangements of the sequence of 6 hits and 7
outs are equally likely. We randomly arrange the sequence 0, 1, 0, 0, 1, 1, 0,
0, 0, 0, 1, 1, 1, find the gaps, and compute the streakiness measure S. This
randomization procedure is repeated many times, collecting, say, 1000 values
of the streakiness measure S. We then construct a histogram of the values
of S—this histogram represents the distribution of S under a random model.
If the observed value of S = 21 is in the middle of the histogram, then the
player’s pattern of streakiness is consistent with a random model. On the
other hand, if the value S = 21 is in the right tail of this histogram, then
the observed streaky pattern is not consistent with “random” streakiness and
there is evidence that the player’s pattern of hits and outs is non-random.

We first illustrate this method for Ichiro Suzuki’s 2016 hitting data.

The clumpiness or streakiness is measured by the sum of squares of all gaps
between hits. We use the function streaks() to find all of the gaps and by
filtering for values == 0, and we focus on the gaps between successive hits.
Each of the gap values is squared and the sum() function computes the sum.

ichiro_S <- ichiro_AB |>

pull(H) |>

streaks() |>

filter(values == 0) |>

summarize(C = sum(lengths ^ 2)) |>

pull()

ichiro_S

[1] 1532

The value of Suzuki’s streakiness statistic S is 1532.

Next, we write a function random_mix() to perform one iteration of the
simulation experiment where the input y is a vector of 0s and 1s. The sample()
function finds a random arrangement of y, the streaks() function with the
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FIGURE 10.3
Histogram of one thousand values of the clumpiness statistic assuming all
arrangements of hits and outs for Suzuki are equally likely. The observed value
of the clumpiness statistic for Suzuki is shown using a vertical line.

restriction values == 0 finds the gaps between hits, and the sum of squares
of the gaps is computed.

random_mix <- function(y) {

y |>

sample() |>

streaks() |>

filter(values == 0) |>

summarize(C = sum(lengths ^ 2)) |>

pull()

}

We repeat this simulation experiment 1000 times using the map_int() function,
and store the values of the streakiness statistic in the vector ichiro_random.

ichiro_random <- 1:1000 |>

map_int(~random_mix(ichiro_AB$H))

We construct a histogram of the values of ichiro_random using the
geom_hist() function, and use the geom_vline() function to overlay the
clumpiness value (1532) for Suzuki (see Figure 10.3).
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FIGURE 10.3
Histogram of one thousand values of the clumpiness statistic assuming all
arrangements of hits and outs for Suzuki are equally likely. The observed value
of the clumpiness statistic for Suzuki is shown using a vertical line.

restriction values == 0 finds the gaps between hits, and the sum of squares
of the gaps is computed.

random_mix <- function(y) {

y |>

sample() |>

streaks() |>

filter(values == 0) |>

summarize(C = sum(lengths ^ 2)) |>

pull()

}

We repeat this simulation experiment 1000 times using the map_int() function,
and store the values of the streakiness statistic in the vector ichiro_random.

ichiro_random <- 1:1000 |>

map_int(~random_mix(ichiro_AB$H))

We construct a histogram of the values of ichiro_random using the
geom_hist() function, and use the geom_vline() function to overlay the
clumpiness value (1532) for Suzuki (see Figure 10.3).
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ggplot(enframe(ichiro_random), aes(ichiro_random)) +

geom_histogram(

aes(y = after_stat(density)), bins = 20,

color = crcblue, fill = "white"

) +

geom_vline(xintercept = ichiro_S, linewidth = 2) +

annotate(

geom = "text", x = ichiro_S * 1.15,

y = 0.0010, label = "OBSERVED", size = 5

)

Since the value of 1532 is in the right tail of the histogram distribution, the
streakiness pattern in Suzuki’s hitting is not so consistent with a random model
(above the 90% percentile, as computed with the quantile() function). There
is some evidence that Suzuki was truly streaky in his hitting during the 2016
season.

quantile(ichiro_random, probs = 0:10/10)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

948 1160 1208 1246 1280 1319 1358 1396 1448 1518 2202

This method can be used to check if the streaky patterns of any hitter are
non-random. We construct a new function clump_test() using the R code
previous discussed. The input is the player id code playerid and the season
batting data frame data. One thousand values of the clumpiness measure are
computed by 1000 replications of the simulation procedure. A histogram of
the clumpiness measures is constructed and the observed clumpiness statistic
is shown as a vertical line.

clump_test <- function(data, playerid) {

player_ab <- data |>

filter(bat_id == playerid, ab_fl == TRUE) |>

mutate(

H = ifelse(h_fl > 0, 1, 0),

date = substr(game_id, 4, 12)

) |>

arrange(date)

stat <- player_ab |>

pull(H) |>

streaks() |>

filter(values == 0) |>

summarize(C = sum(lengths ^ 2)) |>

pull()
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FIGURE 10.4
Histogram of one thousand values of the clumpiness statistic assuming all
arrangements of hits and outs for the 2016 Mike Trout are equally likely. The
observed value of the clumpiness statistic for Trout is shown using a vertical
line.

ST <- 1:1000 |>

map_int(~random_mix(player_ab$H))

ggplot(enframe(ST), aes(ST)) +

geom_histogram(

aes(y = after_stat(density)), bins = 20,

color = crcblue, fill = "white"

) +

geom_vline(xintercept = stat, linewidth = 2) +

annotate(

geom = "text", x = stat * 1.10,

y = 0.0010, label = "OBSERVED", size = 5

)

}

Was Mike Trout streaky during the 2016 season? To investigate the non-
randomness of Trout’s sequence of hit/out data, we run the function
clump_test() using Trout’s player id code troum001 and show the result-
ing histogram display in Figure 10.4.

clump_test(retro2016, "troum001")
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ST <- 1:1000 |>

map_int(~random_mix(player_ab$H))
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) +
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}

Was Mike Trout streaky during the 2016 season? To investigate the non-
randomness of Trout’s sequence of hit/out data, we run the function
clump_test() using Trout’s player id code troum001 and show the result-
ing histogram display in Figure 10.4.

clump_test(retro2016, "troum001")
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Note that Trout’s clumpiness measure is in the left tail of this distribution,
indicating that Trout did not display more streakiness than one would expect
by chance.

10.4 Local Patterns of Statcast Launch Velocity

In our discussion of hitting slumps and streaks, our focus is on either getting a
hit or an out in an official at-bat. With the new Statcast data, one can propose
alternative definitions of a successful plate appearance from measurements
from the ball that is put in-play. In particular, we explore patterns of slumps
and streaks for a given player using the launch velocity of batted balls.

In the following code, we read in the file sc_2017_ls.rds that contains data
on every pitch in the 2017 season. To focus on batted balls, the filter()

function is used to select the pitches where the variable type is equal to X. By
use of the group_by() and summarize() functions, we return a data frame
launch_speeds that contains the number of batted balls and the sum of the
launch speeds for each player for each game.

sc_2017_ls <- read_rds(here::here("data/sc_2017_ls.rds"))

sc_ip2017 <- sc_2017_ls |>

filter(type == "X")

launch_speeds <- sc_ip2017 |>

group_by(player_name, game_date) |>

arrange(game_date) |>

summarize(

bip = n(),

sum_LS = sum(launch_speed)

)

Here we focus on players who had at least 250 batted balls. Below we compute
the number of batted balls for each player, merge this information with the
data frame launch_speeds, and use the filter() function to create a new
data frame ls_250 containing the game-to-game launch speed data for the
regular players.

ls_250 <- sc_ip2017 |>

group_by(player_name) |>

summarize(total_bip = n()) |>

filter(total_bip >= 250) |>

inner_join(launch_speeds, by = "player_name")

Say we are interested in looking at a player’s mean launch speed over groups
of five games—games 1-5, games 6-10, games 11-15, and so on. The collection
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of player’s launch speeds for all games in a season is represented as a data
frame, where rows correspond to games, the sum_LS column corresponds to
the sum of launch speeds for these games, and the BIP column corresponds to
the number of batted balls. The new function regroup() collapses a player’s
batting performance matrix into groups of size group_size, where a particular
row will correspond to the sum of launch speeds and sum of the count of batted
balls in a particular group of games. (In our exploration, we use groups of size
5.)

regroup <- function(data, group_size) {

out <- data |>

mutate(

id = row_number() - 1,

group_id = floor(id / group_size)

)

# hack to avoid a small leftover bin!

if (nrow(data) %% group_size != 0) {

max_group_id <- max(out$group_id)

out <- out |>

mutate(

group_id = if_else(

group_id == max_group_id, group_id - 1, group_id

)

)

}

out |>

group_by(group_id) |>

summarize(

G = n(), bip = sum(bip), sum_LS = sum(sum_LS)

)

}

To illustrate this grouping operation, we collect the game-to-game hitting data
for A.J. Pollock in the data frame aj. As before, to make sure the data is
chronologically ordered, the rows are ordered by increasing values of game_date
using arrange(). We then apply the regroup() function to the data frame
aj. The output is a data frame with four columns: the first column contains
the group id, the second contains the number of games in each group, the
third is the number of batted balls for each group of five games, and the last
column contains the sum of launch velocities. (Only the first few rows of this
data frame are displayed.)
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aj |>
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regroup(5) |>

slice_head(n = 5)

# A tibble: 5 x 4

group_id G bip sum_LS

<dbl> <int> <int> <dbl>

1 0 5 21 1850.

2 1 5 17 1500.

3 2 5 15 1376.

4 3 5 18 1598.

5 4 5 17 1505.

We have illustrated the process of finding the five-game hitting data for A.J.
Pollock. When we look at the sequence of five-game launch speed data for
an arbitrary player, the mean launch speeds for a consistent player will have
small variation, and the values for a streaky player will have high variability.
A common measure of variability is the standard deviation, the average size of
the deviations from the mean.

We write a new function to compute the mean and standard deviation
of the grouped launch speed means for a given player. This function
summarize_streak_data() performs this operation for the game-by-game
data frame of launch speeds ls_250, a given player with name name, and a
grouping of group_size games (by default 5}). The output is a vector with
the number of batted balls, the mean of the group mean launch speeds Mean
and the standard deviation of the mean launch speeds SD.

summarize_streak_data <- function(data, name, group_size = 5) {

data |>

filter(player_name == name) |>

arrange(game_date) |>

regroup(group_size) |>

summarize(

balls_in_play = sum(bip),

Mean = mean(sum_LS / bip, na.rm = TRUE),

SD = sd(sum_LS / bip, na.rm = TRUE)

)

}

To illustrate the use of this function, we apply it to A. J. Pollock’s hitting
data.

aj_sum <- summarize_streak_data(ls_250, "A.J. Pollock")

aj_sum

# A tibble: 1 x 3
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balls_in_play Mean SD

<int> <dbl> <dbl>

1 354 87.9 3.44

Pollock had 354 batted balls, the mean of his five-game launch speed means
was 87.9 and the standard deviation of his five-game launch speed means was
3.44.

We now apply the function summarize_streak_data() to all players with at
least 250 batted balls in the 2017 season. We define the vector player_list
to be the vector of all unique player ids and use the map() function to apply
summarize_streak_data() to all players in player_list.

player_list <- ls_250 |>

pull(player_name) |>

unique()

results <- player_list |>

map(summarize_streak_data, data = ls_250) |>

list_rbind() |>

mutate(Player = player_list)

We construct a scatterplot of the means and standard deviations of the
mean launch speeds of these “regular” players in Figure 10.5. By use of
the geom_label_repel() function, we label with player names the points
corresponding to the largest and smallest standard deviations.

library(ggrepel)

ggplot(results, aes(Mean, SD)) +

geom_point() +

geom_label_repel(

data = filter(results, SD > 5.63 | SD < 2.3 ),

aes(label = Player)

)

The streakiest hitter during the 2017 season using this standard deviation
measure was Michael Conforto. Conversely, the most consistent player, Dexter
Fowler, is identified as the one with the smallest standard deviation of the
five-game mean launch speeds. These two players can be compared graphically
by plotting their five-game launch speed values against the period number (see
Figure 10.6).

We create a new function get_streak_data() to compute the vector of five-
game launch speed means for a particular player. This function is a simple
modification of the function summarize_streak_data() where the period
number Period and mean launch speed launch_speed_avg are computed for
each five-game period.
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FIGURE 10.5
Scatterplot of means and standard deviations of the five-game averages of
launch speeds of regular players during the 2017 season. The labeled points
correspond to the players with the smallest and largest standard deviations,
corresponding to consistent and streaky hitters.

get_streak_data <- function(data, name, group_size = 5) {

data |>

filter(player_name == name) |>

arrange(game_date) |>

regroup(group_size) |>

mutate(

launch_speed_avg = sum_LS / bip,

Period = row_number()

)

}

Using this new function, we create a data frame streaky with Conforto
and Fowler’s streakiness data. First we use the set_names() function to
build a named vector of players. Then we use the map() function to apply
get_streak_data() to each player in the vector.

The graphics functions ggplot(), geom_line(), and facet_wrap() in the
ggplot2 package are used to create the line graphs. One nice feature of ggplot2
graphics is that it automatically uses the same vertical scale for the two panels
and shows the player names on the right of the graph.



254 Exploring Streaky Performances

FIGURE 10.6
Line plots of five-game average launch velocities of Michael Conforto and
Dexter Fowler for the 2017 season. Conforto had a streaky pattern of launch
velocities and Fowler’s pattern is very consistent.

streaky <- c("Michael Conforto", "Dexter Fowler") |>

set_names() |>

map(get_streak_data, data = ls_250) |>

list_rbind(names_to = "Player")

ggplot(streaky, aes(Period, launch_speed_avg)) +

geom_line(linewidth = 1) +

facet_wrap(vars(Player), ncol = 1)

Note that, as expected, Conforto and Fowler have dramatically different pat-
terns of five-game launch speed means. Most of Fowler’s five-game mean launch
speeds fall between 85 and 90 mph. In contrast, Conforto had a change in
mean launch speed from 80 to 100 mph in two periods; he was a remarkably
streaky hitter during the 2017 season.

10.5 Further Reading

There is much interest in streaky performances of baseball players in the
literature. Gould (1989), Berry (1991), and Seidel (2002) discuss the significance



254 Exploring Streaky Performances

FIGURE 10.6
Line plots of five-game average launch velocities of Michael Conforto and
Dexter Fowler for the 2017 season. Conforto had a streaky pattern of launch
velocities and Fowler’s pattern is very consistent.

streaky <- c("Michael Conforto", "Dexter Fowler") |>

set_names() |>

map(get_streak_data, data = ls_250) |>

list_rbind(names_to = "Player")

ggplot(streaky, aes(Period, launch_speed_avg)) +

geom_line(linewidth = 1) +

facet_wrap(vars(Player), ncol = 1)

Note that, as expected, Conforto and Fowler have dramatically different pat-
terns of five-game launch speed means. Most of Fowler’s five-game mean launch
speeds fall between 85 and 90 mph. In contrast, Conforto had a change in
mean launch speed from 80 to 100 mph in two periods; he was a remarkably
streaky hitter during the 2017 season.

10.5 Further Reading

There is much interest in streaky performances of baseball players in the
literature. Gould (1989), Berry (1991), and Seidel (2002) discuss the significance

Exercises 255

of DiMaggio’s hitting streak in the 1941 season. Albert and Bennett (2003),
Chapter 5, describes the difference between observed streakiness and true
streakiness and give an overview of different ways of detecting streakiness of
hitters. Albert (2008) and McCotter (2010) discuss the use of randomization
methods to detect if there is more streakiness in hitting data than one would
expect by chance.

10.6 Exercises

1. Ted Williams

The data file williams.1941.csv contains Ted Williams game-to-game hitting
data for the 1941 season. This season was notable in that Williams had a season
batting average of .406 (the most recent season batting average exceeding .400).
Read this dataset into R.

a. Using the R function streaks(), find the lengths of all of Williams’ hitting
streaks during this season. Compare the lengths of his hitting streaks with
those of Joe DiMaggio during this same season.

b. Use the function streaks() to find the lengths of all hitless streaks of
Williams during the 1941 season. Compare these lengths with those of
DiMaggio during the 1941 season.

2. Ted Williams, Continued

a. Use the R function moving_average() to find the moving batting averages
of Williams for the 1941 season using a window of 5 games. Graph these
moving averages and describe any hot and cold patterns in Williams hitting
during this season.

b. Compute and graph moving batting averages of Williams using several
alternative choices for the window of games.

3. Streakiness of the 2008 Lance Berkman

Lance Berkman had a remarkable hot period of hitting during the 2008 season.

a. Download the Retrosheet play-by-play data for the 2008 season, and extract
the hitting data for Berkman.

b. Using the function streaks(), find the lengths of all hitting streaks of
Berkman. What was the length of his longest streak of consecutive hits?

c. Use the streaks() function to find the lengths of all streaks of consecutive
outs. What was Berkman’s longest “ofer” during this season?

d. Construct a moving batting average plot using a window of 20 at-bats.
Comment on the patterns in this graph; was there a period when Berkman
was unusually hot?
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4. Streakiness of the 2008 Lance Berkman, Continued

a. Use the method described in Section 10.3.4 to see if Berkman’s streaky
patterns of hits and outs are consistent with patterns from a random model.

b. The method of Section 10.3.4 used the sum of squares of the gaps as a
measure of streakiness. Suppose one uses the longest streak of consecutive
outs as an alternative measure. Rerun the method with this new measure
and see if Berkman’s longest streak of outs is consistent with the random
model.

5. Streakiness of All Players During the 2008 Season

a. Using the 2008 Retrosheet play-by-play data, extract the hitting data for
all players with at least 400 at-bats.

b. For each player, find the length of the longest streak of consecutive outs.
Find the hitters with the longest streaks and the hitters with shortest
streaks. How does Berkman’s longest “oh-for” compare in the group of
longest streaks?

6. Streakiness of All Players During the 2008 Season, Continued

a. For each player and each game during the 2008 season, compute the sum of
wOBA weights and the number of plate appearances PA (see Section 10.4).

b. For each player with at least 500 PA, compute the wOBA over groups of
five games (games 1-5, games 6-10, etc.) For each player, find the standard
deviation of these five-game wOBA, and find the ten most streaky players
using this measure.

7. The Great Streak

The Retrosheet website recently added play-by-play data for the 1941 season
when Joe DiMaggio achieved his 56-game hitting streak.

a. Download the 1941 play-by-play data from the Retrosheet website.
b. Confirm that DiMaggio had three “0 for 12” streaks during the 1941 season.
c. Use the method described in Section 10.3.4 to see if DiMaggio’s streaky

patterns of hits and outs in individual at-bats are consistent with patterns
from a random model.

d. DiMaggio is perceived to be very streaky due to his game-to-game hitting
accomplishment during the 1941 season. Based on your work, is DiMaggio’s
pattern of hitting also very streaky on individual at-bats?
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11

Using a Database to Compute
Park Factors

11.1 Introduction

Thus far in this book, we have performed analyses entirely from baseball
datasets loaded into R. That was possible because we were dealing with
datasets with a relatively small number of rows. However, when one wants to
work on multiple seasons of play-by-play (or pitch-by-pitch) data, it becomes
more difficult to manage all of the data inside R.1 While Retrosheet game
logs consist of approximately 250,000 records, there are more than 10 million
Retrosheet play-by-play events, and Statcast provides data on roughly 800,000
pitches per year for MLB games.

A solution to this big data problem is to store them in a Relational Database
Management System (RDBMS), connect it to R, and access only the data
needed for the particular analysis. In this chapter, we provide some guidance on
this approach. Our choice for the RDBMS is MariaDB , a fork of MySQL, which
is likely the most popular open-source RDBMS2. However, readers familiar with
other software (e.g., PostgreSQL, SQLite) can find similar solutions for their
RDBMS of choice. We compare alternative big data strategies in Chapter 12.

Here, we use MySQL to gain some understanding of park effects in baseball.
Unlike in most other team sports, in baseball the size and configuration of the
playing surface varies greatly across ballparks. The left-field wall in Fenway
Park (home of the Boston Red Sox) is listed at 310 feet from home plate, while
the left-field fence in Wrigley Field (home of the Chicago Cubs) is 355 feet
away. The left-field wall in Boston, commonly known as The Green Monster,
is 37 feet high, while the left-field fence in Dodger Stadium in Los Angeles is
only four feet high. Such differences in ballpark shapes and dimensions and

1R by default reads data into memory (RAM), thus imposing limits on the size of datasets
it can read.

2MariaDB is designed to be a drop-in replacement for MySQL. In fact, the MariaDB
application is called mysql. In some cases, we may use the terms interchangeably.
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the prevailing weather conditions have a profound effect on the game and the
associated measures of player performance.

We first show how to obtain and set up a MariaDB Server, and then illustrate
connecting R to the database for the purpose of first inserting, and then
retrieving data. This interface is used to present evidence of the effect of Coors
Field (home of the Colorado Rockies) on run scoring. We direct the reader to
online resources providing baseball data (of the seasonal and pitch-by-pitch
types) ready for import into MySQL. We conclude the chapter by providing
readers with a basic approach for calculating park factors and using these
factors to make suitable adjustments to players’ stats.

11.2 Installing MySQL and Creating a Database

Since this is a book focusing on R, we emphasize the use of MariaDB together
with R. A user can install a MariaDB Server on her own from https://mari
adb.com/downloads/. In this third edition of the book, we will demonstrate
the use of MariaDB , which is an open-source fork of MySQL that is almost
totally compatible. Somewhat confusingly, MariaDB installs a server that is
called MySQL. Readers should be able to follow these instructions3 whether
they are using MariaDB or MySQL.

Many people already have a MySQL server running on their computers. The
easiest way to see whether this is the case is to check for a running process
using a terminal.

ps -ax | grep "mariadb"

404058 ? SNsl 2:04 /usr/sbin/mariadbd

490520 pts/0 SN+ 0:00 sh -c 'ps' -ax | grep 'mariadb'
490522 pts/0 SN+ 0:00 grep mariadb

Here, the process at /usr/sbin/mariadbd is the MySQL server.

Once the MySQL server is running, you will connect to it and create a new
database. We illustrate how this can be achieved using the command line
MySQL client. In this case, we log into MySQL as the user root and supply
the corresponding password. To replicate the work in this chapter, you will
need access to an account on the server that has sufficient privileges to create
new users and databases. Please consults the MariaDB documentation if you

3Appendix F of Benjamin S. Baumer, Kaplan, and Horton (2021b) (available at https:
//mdsr-book.github.io/mdsr3e/F-dbsetup.html) also provides step-by-step instructions for
setting up a SQL server.

https://mariadb.com
https://mariadb.com
https://mdsr-book.github.io
https://mdsr-book.github.io


258 Using a Database to Compute Park Factors

the prevailing weather conditions have a profound effect on the game and the
associated measures of player performance.

We first show how to obtain and set up a MariaDB Server, and then illustrate
connecting R to the database for the purpose of first inserting, and then
retrieving data. This interface is used to present evidence of the effect of Coors
Field (home of the Colorado Rockies) on run scoring. We direct the reader to
online resources providing baseball data (of the seasonal and pitch-by-pitch
types) ready for import into MySQL. We conclude the chapter by providing
readers with a basic approach for calculating park factors and using these
factors to make suitable adjustments to players’ stats.

11.2 Installing MySQL and Creating a Database

Since this is a book focusing on R, we emphasize the use of MariaDB together
with R. A user can install a MariaDB Server on her own from https://mari
adb.com/downloads/. In this third edition of the book, we will demonstrate
the use of MariaDB , which is an open-source fork of MySQL that is almost
totally compatible. Somewhat confusingly, MariaDB installs a server that is
called MySQL. Readers should be able to follow these instructions3 whether
they are using MariaDB or MySQL.

Many people already have a MySQL server running on their computers. The
easiest way to see whether this is the case is to check for a running process
using a terminal.

ps -ax | grep "mariadb"

404058 ? SNsl 2:04 /usr/sbin/mariadbd

490520 pts/0 SN+ 0:00 sh -c 'ps' -ax | grep 'mariadb'
490522 pts/0 SN+ 0:00 grep mariadb

Here, the process at /usr/sbin/mariadbd is the MySQL server.

Once the MySQL server is running, you will connect to it and create a new
database. We illustrate how this can be achieved using the command line
MySQL client. In this case, we log into MySQL as the user root and supply
the corresponding password. To replicate the work in this chapter, you will
need access to an account on the server that has sufficient privileges to create
new users and databases. Please consults the MariaDB documentation if you

3Appendix F of Benjamin S. Baumer, Kaplan, and Horton (2021b) (available at https:
//mdsr-book.github.io/mdsr3e/F-dbsetup.html) also provides step-by-step instructions for
setting up a SQL server.

Installing MySQL and Creating a Database 259

run into trouble.

mysql -u root -p

Once inside MySQL, we can create a new database called abdwr with the
following command.

CREATE DATABASE abdwr;

Similarly, we create a new user abdwr that uses the password spahn.

CREATE USER 'abdwr'@'localhost' IDENTIFIED BY 'spahn';

Next, we give the user abdwr all the privileges on the database abdwr, and
then force the server to reload the privileges database.

GRANT ALL ON abdwr.* TO 'abdwr'@'localhost' WITH GRANT OPTION;

FLUSH PRIVILEGES;

11.2.1 Setting up an Option File

In the previous section, we created a user named abdwr on our MariaDB server
and gave that user the password spahn. In general, exposing passwords in
plain text is not a good idea, and we will now demonstrate how to use an
option file to store MariaDB/MySQL database credentials.

An option file is just a plain text file with database connection options embedded
in it. If this file is stored at ~/.my.cnf it will be automatically read when you
try to log in to any MariaDB/MySQL database, without the need for you to
type in your password (or any other connection parameters).

The option file you need for this book looks like this:

cat ~/.my.cnf

[abdwr]

database="abdwr"

user="abdwr"

password="spahn"

With this option file, you can connect to the MariaDB server via the command
line with just:

mysql
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11.3 Connecting R to MySQL

Connections to SQL databases from R are best managed through the DBI
package, which provides a common interface to many different RDBMSs.
Many DBI-compliant packages provide direct connections to various databases.
For example, the RMariaDB package connects to MariaDB databases, the
RPostgreSQL package connects to PostgreSQL databases, the RSQLite package
connects to SQLite databases, and the odbc package connects to any database
that supports ODBC . Because of subtle changes in licensing, since the second
edition of this book development of database tools to connect to MySQL
servers has moved from the RMySQL to the RMariaDB package. Please see
https://solutions.posit.co/connections/db/ for the most current information
about connecting your database of choice to R.

The RMariaDB package provides R users with functions to connect to a MySQL
database. Readers who plan to make extensive use of MySQL connections are
encouraged to make the necessary efforts for installing RMariaDB.

11.3.1 Connecting using RMariaDB

The DBI function dbConnect() creates a connection to a database server, and
returns an object that stores the connection information.

If you don’t care about password security, you can explicitly state those
parameters as in the code below. The user and password arguments indicate
the user name and the password for accessing the MySQL database (if they
have been specified when the database was created), while dbname indicates
the default database to which R will be connected (in our case abdwr, created
in Section 11.2).

library(RMariaDB)

con <- dbConnect(

MariaDB(), dbname = "abdwr",

user = "abdwr", password = "spahn"

)

Alternatively, we could connect using the group argument along with the
option file described Section 11.2.1.

library(RMariaDB)

con <- dbConnect(MariaDB(), group = "abdwr")

Note that the connection is assigned to an R object (con), as it will be required
as an argument by several functions.

https://solutions.posit.co
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user = "abdwr", password = "spahn"

)

Alternatively, we could connect using the group argument along with the
option file described Section 11.2.1.

library(RMariaDB)

con <- dbConnect(MariaDB(), group = "abdwr")

Note that the connection is assigned to an R object (con), as it will be required
as an argument by several functions.
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class(con)

[1] "MariaDBConnection"

attr(,"package")

[1] "RMariaDB"

To remove a connection, use dbDisconnect().

11.3.2 Connecting R to other SQL backends

The process of connecting R to any other SQL backend is very similar to the
one outlined above for MySQL. Since the connections are all managed by DBI,
one only needs to change the database backend. For example, to connect to a
PostgreSQL server instead of MySQL, one loads the RPostgreSQL package
instead of RMariaDB, and uses the PostgreSQL() function instead of the
MariaDB() function in the call to dbConnect(). The rest of the process is the
same. The resulting PostgreSQL connection can be used in the same way as
the MySQL connection is used below.

11.4 Filling a MySQL Game Log Database from R

The game log data files are currently available at the Retrosheet web page
https://www.retrosheet.org/gamelogs/index.html. By clicking on a single
year, one obtains a compressed (.zip) file containing a single text file of that
season’s game logs. Here we first create a function for loading a season of
game logs into R, then show how to append the data into a MySQL table. We
then iterate this process over several seasons, downloading the game logs from
Retrosheet and appending them to the MySQL table.

Since game log files downloaded from Retrosheet do not have column head-
ers, the resulting gl2012 data frame has meaningful names stored in the
game_log_header.csv file as done elsewhere in this book.

11.4.1 From Retrosheet to R

The retrosheet_gamelog() function, shown below, takes the year of the
season as input and performs the following operations:

• Imports the column header file
• Downloads the zip file of the season from Retrosheet
• Extracts the text file contained in the downloaded zip file
• Reads the text file into R, using the known column headers
• Removes both the compressed and the extracted files

https://www.retrosheet.org
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• Returns the resulting data frame

retrosheet_gamelog <- function(season) {

require(abdwr3edata)

require(fs)

dir <- tempdir()

glheaders <- retro_gl_header

remote <- paste0(

"http://www.retrosheet.org/gamelogs/gl",

season,

".zip"

)

local <- path(dir, paste0("gl", season, ".zip"))

download.file(url = remote, destfile = local)

unzip(local, exdir = dir)

local_txt <- gsub(".zip", ".txt", local)

gamelog <- here::here(local_txt) |>

read_csv(col_names = names(glheaders))

file.remove(local)

file.remove(local_txt)

return(gamelog)

}

After the function has been read into R, one season of game logs (for example,
the year 2012) can be read into R by typing the command:

gl2012 <- retrosheet_gamelog(2012)

11.4.2 From R to MySQL

Next, we transfer the data in the gl2012 data frame to the abdwr MySQL
database. In the lines that follow, we use the dbWriteTable() function to
append the data to a table in the MySQL database (which may or may not
exist).

Here are some notes on the arguments in the dbWriteTable() function:

• The conn argument requires an open connection; here the one that was
previously defined (con) is specified.

• The name argument requires a string indicating the name of the table (in
the database) where the data are to be appended.

• The value argument requires the name of the R data frame to be appended
to the table in the MySQL database.

• Setting append to TRUE indicates that, should a table by the name
"gamelogs" already exist, data from gl2012 will be appended to the
table. If append is set to FALSE, the table "gamelogs" (if it exists) will be
overwritten.
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• The field.types argument supplies a named vector of data types for
the MySQL columns. If this argument is left blank, dbWriteTable() will
attempt to guess the optimal values. In this case, we choose to specify
values for certain variables because we want to enforce uniformity across
various years.

if (dbExistsTable(con, "gamelogs")) {

dbRemoveTable(con, "gamelogs")

}

con |>

dbWriteTable(

name = "gamelogs", value = gl2012,

append = FALSE,

field.types = c(

CompletionInfo = "varchar(50)",

AdditionalInfo = "varchar(255)",

HomeBatting1Name = "varchar(50)",

HomeBatting2Name = "varchar(50)",

HomeBatting3Name = "varchar(50)",

HomeBatting4Name = "varchar(50)",

HomeBatting5Name = "varchar(50)",

HomeBatting6Name = "varchar(50)",

HomeBatting7Name = "varchar(50)",

HomeBatting8Name = "varchar(50)",

HomeBatting9Name = "varchar(50)",

HomeManagerName = "varchar(50)",

VisitorStartingPitcherName = "varchar(50)",

VisitorBatting1Name = "varchar(50)",

VisitorBatting2Name = "varchar(50)",

VisitorBatting3Name = "varchar(50)",

VisitorBatting4Name = "varchar(50)",

VisitorBatting5Name = "varchar(50)",

VisitorBatting6Name = "varchar(50)",

VisitorBatting7Name = "varchar(50)",

VisitorBatting8Name = "varchar(50)",

VisitorBatting9Name = "varchar(50)",

VisitorManagerName = "varchar(50)",

HomeLineScore = "varchar(30)",

VisitorLineScore = "varchar(30)",

SavingPitcherName = "varchar(50)",

ForfeitInfo = "varchar(10)",

ProtestInfo = "varchar(10)",

UmpireLFID = "varchar(8)",

UmpireRFID = "varchar(8)",

UmpireLFName = "varchar(50)",

UmpireRFName = "varchar(50)"

)

)
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To verify that the data now resides in the MySQL Server, we can query it
using dplyr.

gamelogs <- con |>

tbl("gamelogs")

head(gamelogs)

# Source: SQL [6 x 161]

# Database: mysql [abdwr@localhost:NA/abdwr]

Date DoubleHeader DayOfWeek VisitingTeam VisitingTeamLeague

<dbl> <dbl> <chr> <chr> <chr>

1 2.01e7 0 Wed SEA AL

2 2.01e7 0 Thu SEA AL

3 2.01e7 0 Wed SLN NL

4 2.01e7 0 Thu TOR AL

5 2.01e7 0 Thu BOS AL

6 2.01e7 0 Thu WAS NL

# i 156 more variables: VisitingTeamGameNumber <dbl>,

# HomeTeam <chr>, HomeTeamLeague <chr>,

# HomeTeamGameNumber <dbl>, VisitorRunsScored <dbl>,

# HomeRunsScore <dbl>, LengthInOuts <dbl>, DayNight <chr>,

# CompletionInfo <chr>, ForfeitInfo <chr>, ProtestInfo <chr>,

# ParkID <chr>, Attendance <dbl>, Duration <dbl>,

# VisitorLineScore <chr>, HomeLineScore <chr>, ...

In Section 11.4.1, we provided code for appending one season of game logs into
a MySQL table. However, we have demonstrated in previous chapters that
it is straightforward to use R to work with a single season of game logs. To
fully appreciate the advantages of storing data in a RDBMS, we will populate
a MySQL table with game logs going back through baseball history. With
a historical database and an R connection, we demonstrate the use of R to
perform analysis over multiple seasons.

We write a simple function append_game_logs() that combines the previous
two steps of importing the game log data into R, and then transfers those data
to a MySQL table.4 The whole process may take several minutes. If one is
not interested in downloading files dating back to 1871, seasons from 1995 are
sufficient for reproducing the example of the next section.

The function append_game_logs() takes the following parameters as inputs:

• conn is a DBI connection to a database.

4The downloading of data from Retrosheet is performed by the previously presented
retrosheet_gamelog() function; thus the reader has to make sure said function is loaded
for the code in this section to work.
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• season indicates the season one wants to download from Retrosheet and
append to the MySQL database. By default the function will work on
seasons from 1871 to 2022.

append_game_logs <- function(conn, season) {

message(paste("Working on", season, "season..."))

one_season <- retrosheet_gamelog(season)

conn |>

dbWriteTable(

name = "gamelogs", value = one_season, append = TRUE

)

}

Next, we remove the previous games using the TRUNCATE TABLE SQL command
and then fill the table by iterating the process of append_game_logs using
map().

dbSendQuery(con, "TRUNCATE TABLE gamelogs;")

map(1995:2017, append_game_logs, conn = con)

Now we have many years worth of game logs.

gamelogs |>

group_by(year = str_sub(Date, 1, 4)) |>

summarize(num_games = n())

# Source: SQL [?? x 2]

# Database: mysql [abdwr@localhost:NA/abdwr]

year num_games

<chr> <int64>

1 1995 2017

2 1996 2267

3 1997 2266

4 1998 2432

5 1999 2428

6 2000 2429

7 2001 2429

8 2002 2426

9 2003 2430

10 2004 2428

# i more rows
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11.5 Querying Data from R

11.5.1 Retrieving data from SQL

All DBI backends support dbGetQuery(), which retrieves the results of an
SQL query from the database. As the purpose of having data stored in a
MySQL database is to selectively import data into R for particular analysis,
one typically selectively reads data into R by querying one or more tables of
the database.

For example, suppose one is interested in comparing the attendance of the two
Chicago teams by day of the week since the 2006 season. The following code
retrieves the raw data in R.

query <- "

SELECT date, hometeam, dayofweek, attendance

FROM gamelogs

WHERE Date > 20060101

AND HomeTeam IN ('CHN', 'CHA');
"

chi_attendance <- dbGetQuery(con, query)

slice_head(chi_attendance, n = 6)

date hometeam dayofweek attendance

1 20060402 CHA Sun 38802

2 20060404 CHA Tue 37591

3 20060405 CHA Wed 33586

4 20060407 CHN Fri 40869

5 20060408 CHN Sat 40182

6 20060409 CHN Sun 39839

The dbGetQuery() function queries the database. Its arguments are the connec-
tion handle established previously (conn) and a string consisting of a valid SQL
statement (query). Readers familiar with SQL will have no problem understand-
ing the meaning of the query. For those unfamiliar with SQL, we present here
a brief explanation of the query, inviting anyone who is interested in learning
about the language to look for the numerous resources devoted to the subject
(see for example, https://dev.mysql.com/doc/refman/8.2/en/select.html).

The first row in the SQL statement indicates the columns of the table that are
to be select-ed (in this case date, hometeam, dayofweek, and attendance).
The second line states from which table they have to be retrieved (gamelogs).
Finally, the where clause specifies conditions for the rows that are to be retrieved:
the date has to be greater than 20060101 and the value of hometeam has to
be either CHN or CHA.

https://dev.mysql.com
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Alternatively, one could use the dplyr interface to MySQL through the
gamelogs object we created earlier.

gamelogs |>

filter(Date > 20060101, HomeTeam %in% c('CHN', 'CHA')) |>

select(Date, HomeTeam, DayOfWeek, Attendance) |>

head()

# Source: SQL [6 x 4]

# Database: mysql [abdwr@localhost:NA/abdwr]

Date HomeTeam DayOfWeek Attendance

<dbl> <chr> <chr> <dbl>

1 20060402 CHA Sun 38802

2 20060404 CHA Tue 37591

3 20060405 CHA Wed 33586

4 20060407 CHN Fri 40869

5 20060408 CHN Sat 40182

6 20060409 CHN Sun 39839

dplyr even contains a function called show_query() that will translate your
dplyr pipeline into a valid SQL query. Note the similarities and differences
between the SQL code we wrote above and the translated SQL code below.

gamelogs |>

filter(Date > 20060101, HomeTeam %in% c('CHN', 'CHA')) |>

select(Date, HomeTeam, DayOfWeek, Attendance) |>

show_query()

<SQL>

SELECT `Date`, `HomeTeam`, `DayOfWeek`, `Attendance`
FROM `gamelogs`
WHERE (`Date` > 20060101.0) AND (`HomeTeam` IN ('CHN', 'CHA'))

11.5.2 Data cleaning

Before we can plot these data, we need to clean up two things. We first use
the ymd() function from the lubridate package to convert the number that
encodes the date into a Date field in R. Next, we set the attendance of the
games reporting zero to NA using the na_if() function.5

5In case of single admission doubleheaders (i.e., when two games are played on the same
day and a single ticket is required for attending both) the attendance is reported only for
the second game, while it is set at zero for the first.
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FIGURE 11.1
Comparison of attendance by day of the week on games played at home by
the Cubs (CHN} and the White Sox (CHA).

chi_attendance <- chi_attendance |>

mutate(

the_date = ymd(date),

attendance = na_if(attendance, 0)

)

We show a graphical comparison between attendance at the two Chicago
ballparks in Figure 11.1. In order to get geom_smooth() to work, the variable
on the horizontal axis must be numeric. Thus, we use the wday() function
from lubridate to compute the day of the week (as a number) from the date.
Getting the axis labels to display as abbreviations requires using wday() again,
but with the label argument set to TRUE.

ggplot(

chi_attendance,

aes(

x = wday(the_date), y = attendance,

color = hometeam

)

) +

geom_jitter(height = 0, width = 0.2, alpha = 0.2) +

geom_smooth() +

scale_y_continuous("Attendance") +
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scale_x_continuous(

"Day of the Week", breaks = 1:7,

labels = wday(1:7, label = TRUE)

) +

scale_color_manual(values = crc_fc)

We note that the Cubs typically draw more fans than the White Sox, while
both teams see larger crowds on weekends.

11.5.3 Coors Field and run scoring

As an example of accessing multiple years of data, we explore the effect of
Coors Field (home of the Colorado Rockies in Denver on run scoring through
the years. Coors Field is a peculiar ballpark because it is located at an altitude
of about one mile above sea level. The air is thinner than in other stadiums,
resulting in batted balls that travel farther and curveballs that are “flatter”.
Lopez, Matthews, and Baumer (2018) estimate that Coors Field confers the
largest home advantage in all of baseball.

We retrieve data for the games played by the Rockies—either at home or on
the road—since 1995 (the year they moved to Coors Field) using a SQL query
and the function dbGetQuery()6.

query <- "

SELECT date, parkid, visitingteam, hometeam,

visitorrunsscored AS awR, homerunsscore AS hmR

FROM gamelogs

WHERE (HomeTeam = 'COL' OR VisitingTeam = 'COL')
AND Date > 19950000;

"

rockies_games <- dbGetQuery(con, query)

The game data is conveniently stored in the rockies_games data frame. We
compute the sum of runs scored in each game by adding the runs scored by the
home team and the visiting team. We also add a new column coors indicating
whether the game was played at Coors Field.7

rockies_games <- rockies_games |>

mutate(

runs = awR + hmR,

6The keyword AS in SQL has the purpose of assigning different names to columns. Thus
visitorrunsscored AS awR tells SQL that, in the results returned by the query, the column
visitorrunsscored will be named awR.

7Retrosheet code for Coors Field is DEN02. A list of all ballpark codes is available at
https://www.retrosheet.org/parkcode.txt.

https://www.retrosheet.org
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FIGURE 11.2
Comparison of runs scored by the Rockies and their opponents at Coors Field
and in other ballparks.

coors = parkid == "DEN02"

)

We compare the offensive output by the Rockies and their opponents at Coors
and other ballparks graphically in Figure 11.2.

ggplot(

rockies_games,

aes(x = year(ymd(date)), y = runs, color = coors)

) +

stat_summary(fun.data = "mean_cl_boot") +

xlab("Season") +

ylab("Runs per game (both teams combined)") +

scale_color_manual(

name = "Location", values = crc_fc,

labels = c("Other", "Coors Field")

)

We use the stats_summary() layer to summarize the y values at every unique
value of x. The fun.data argument lets the user specify a summarizing func-
tion; in this case mean_cl_boot() implements a nonparametric bootstrap
procedure for obtaining confidence bands for the population mean. The output
resulting from this layer are the vertical bars appearing for each data point.
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The scale_linetype_discrete() layer is used for labeling the series (name
argument) and assigning a name to the legend (labels).

From Figure 11.2 one notices how Coors Field has been an offense-friendly
park, boosting run scoring by as much as six runs per game over the course of
a season. However, the effect of the Colorado ballpark has somewhat decreased
in the new millennium, displaying smaller differences in the 2006–2011 period.
One reason for Coors becoming less of an extreme park is the installation of
a humidor. Since the 2002 season, baseballs have been stored in a room at a
higher humidity prior to each game, with the intent of compensating for the
unusual natural atmospheric conditions.8

11.6 Building Your Own Baseball Database

Section 11.4.1 illustrated populating a MySQL database from within R by
creating a table of Retrosheet game logs. Several so-called SQL dumps are
available online for creating and filling databases with baseball data. SQL
dumps are simple text files (featuring a .sql extension) containing SQL
instructions for creating and filling SQL tables.

11.6.1 Lahman’s database

Sean Lahman provides his historical database of seasonal stats in several
formats. There is also the Lahman package for R, which makes these data
available in memory. However, the database is also available as a SQL dump,
which can be downloaded from http://seanlahman.com/download-baseball-
database/ (look for the 2019 - MySQL version). Unfortunately, the MySQL
dump files are no longer supported, but older versions are still available.

There are several options for importing this file into SQL. It is beyond the scope
of this book to illustrate all said processes; thus here we provide a command
to obtain the desired result from a terminal. In order for the following code to
work, the MySQL service should be running9 (see Section 11.2).

mysql -u username -p lahmansbaseballdb < lahman-mysql-dump.sql

Note that the SQL dump file creates a new database named
lahmansbaseballdb.

8For a detailed analysis of the humidor’s effects, see Nathan (2011).
9Also, make sure to change the directory containing the .sql file and the user name and

the password as appropriate.

http://seanlahman.com
http://seanlahman.com
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11.6.2 Retrosheet database

In Appendix A we provide R code to download Retrosheet files and transform
them in formats easily readable by R. By slightly adapting the code provided
in Section 11.4.2, one can also append them to a MySQL database.

There are many software packages available on the Internet to process Ret-
rosheet files. We built our database using the baseballr package.

11.6.3 Statcast database

As illustrated in Appendix C, the baseballr package provides the
statcast_search() function for downloading Statcast data from Baseball
Savant. In Chapter 12, we show how the abdwr3edata package can leverage
this functionality to download multiple seasons of Statcast data. The chapter
also discusses various alternative data storage options and their respective
strengths and weaknesses.

11.7 Calculating Basic Park Factors

Park factors (usually abbreviated as PF) have been used for decades by baseball
analysts as a tool for contextualizing the effect of the ballpark when assessing
the value of players. Park factors have been calculated in several ways and in
this section we illustrate a very basic approach, focusing on year 1996, one of
the most extreme seasons for Coors Field, as displayed in Figure 11.2.

In the explanations that will follow, we presume the reader has Retrosheet
data for the 1990s in her database.10 The following code will set up a suitable
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here::here("data_large/retrosheet"),
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)
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map(pluck, "events") |>

bind_rows() |>

as_tibble()

con |>

10Refer to Section 11.6.2 for performing the necessary steps to get the data into a MySQL
database.
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dbWriteTable(name = "events", value = events)

events_db <- con |>

tbl("events")

Once this process is complete, the database should contain a table called
events with more than 1.7 million rows. Note that while storing the full table
in R as the tibble object events takes up nearly 1 GiB of memory, pushing
that data to the database and using the dplyr interface to the database as the
object events_db occupies almost no space in memory (of course, it still takes
up 1 GiB on disk).

11.7.1 Loading the data into R

As a first step, we connect to the MySQL database and retrieve the desired
data. Using a SQL query, we select the columns containing the home and away
teams and the event code from the events table, keeping only the rows where
the year is 1996 and the event code corresponds to one indicating a batted
ball (see Appendix A). The results of the query are stored in the hr_PF data
frame in R.

query <- "

SELECT away_team_id, LEFT(game_id, 3) AS home_team_id, event_cd

FROM events

WHERE year = 1996

AND event_cd IN (2, 18, 19, 20, 21, 22, 23);

"

hr_PF <- dbGetQuery(con, query)

dim(hr_PF)

[1] 130437 3

11.7.2 Home run park factor

A ballpark can have different effects on various player performance statistics.
The unique configuration of Fenway Park in Boston, for example, enhances the
likelihood of a batted ball to become a double, especially flyballs to left, which
often carom off the Green Monster. On the other hand, home runs are rare on
the right side of Fenway Park due to the unusually deep right-field fence.

In this example we explore the stadium effect on home runs in 1996, by
calculating park factors for home runs. To begin, we create a new column
was_hr, which indicates the occurrence of a home run for every row in the
hr_PF data frame.
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hr_PF <- hr_PF |>

mutate(was_hr = ifelse(event_cd == 23, 1, 0))

Next, we compute the frequency of home runs per batted ball for all MLB
teams both at home and on the road. Note that this requires two passes
through the entire data frame.

ev_away <- hr_PF |>

group_by(team_id = away_team_id) |>

summarize(hr_event = mean(was_hr)) |>

mutate(type = "away")

ev_home <- hr_PF |>

group_by(team_id = home_team_id) |>

summarize(hr_event = mean(was_hr)) |>

mutate(type = "home")

We then combine the two resulting data frames and use the pivot_wider()
function to put the home and away home run frequencies side-by-side.

ev_compare <- ev_away |>

bind_rows(ev_home) |>

pivot_wider(names_from = type, values_from = hr_event)

ev_compare

# A tibble: 28 x 3

team_id away home

<chr> <dbl> <dbl>

1 ATL 0.0323 0.0372

2 BAL 0.0488 0.0477

3 BOS 0.0385 0.0443

4 CAL 0.0387 0.0483

5 CHA 0.0424 0.0349

6 CHN 0.0374 0.0407

7 CIN 0.0403 0.0393

8 CLE 0.0440 0.0372

9 COL 0.0341 0.0538

10 DET 0.0457 0.0506

# i 18 more rows

Park factors are typically calculated so that the value 100 indicates a neutral
ballpark (one that has no effect on the particular statistic) while values over
100 indicate playing fields that increase the likelihood of the event (home run in
this case) and values under 100 indicate ballparks that decrease the likelihood
of the event.
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We compute the 1996 home run park factors with the following code, and use
arrange() to display the ballparks with the largest and smallest park factors.

ev_compare <- ev_compare |>

mutate(pf = 100 * home / away)

ev_compare |>

arrange(desc(pf)) |>

slice_head(n = 6)

# A tibble: 6 x 4

team_id away home pf

<chr> <dbl> <dbl> <dbl>

1 COL 0.0341 0.0538 158.

2 CAL 0.0387 0.0483 125.

3 ATL 0.0323 0.0372 115.

4 BOS 0.0385 0.0443 115.

5 DET 0.0457 0.0506 111.

6 SDN 0.0294 0.0320 109.

Coors Field is at the top of the HR-friendly list, displaying an extreme value
of 158—this park boosted home run frequency by over 50% in 1996!

ev_compare |>

arrange(pf) |>

slice_head(n = 6)

# A tibble: 6 x 4

team_id away home pf

<chr> <dbl> <dbl> <dbl>

1 LAN 0.0360 0.0256 71.2

2 HOU 0.0344 0.0272 79.1

3 NYN 0.0363 0.0289 79.5

4 CHA 0.0424 0.0349 82.2

5 CLE 0.0440 0.0372 84.6

6 FLO 0.0316 0.0271 85.7

At the other end of the spectrum was Dodger Stadium in Los Angeles, featuring
a home run park factor of 71, meaning that it suppressed home runs by nearly
30% relative to the league average park.

11.7.3 Assumptions of the proposed approach

The proposed approach to calculating park factors makes several simplifying
assumptions. The first assumption is that the home team always plays at
the same home ballpark. While that is true for most teams in most seasons,
sometimes alternate ballparks have been used for particular games. For example,
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during the 1996 season, the Oakland Athletics played their first 16 home games
in Cashman Field (Las Vegas, NV) while renovations at the Oakland-Alameda
County Coliseum were being completed. In the same year, as a marketing
move by MLB, the San Diego Padres had a series of three games against the
New York Mets at Estadio de Béisbol Monterrey in Mexico.11

Another assumption of the proposed approach is that a single park factor is
appropriate for all players, without considering how ballparks might affect
some categories of players differently. Asymmetric outfield configurations, in
fact, cause playing fields to have unequal effects on right-handed and left-
handed players. For example, the aforementioned Green Monster in Boston,
being situated in left field, comes into play more frequently when right-handed
batters are at the plate; and the latest Yankee Stadium has seen left-handed
batters take advantage of the short distance of the right field fence.

Finally, the proposed park factors (as well as most published versions of park
factors) essentially ignore the players involved in each event (in this case the
batter and the pitcher). As teams rely more on the analysis of play-by-play
data, they typically adapt their strategies to accommodate the peculiarities
of ballparks. For example, while the diminished effect of Coors Field on run
scoring displayed in Figure 11.2 is mostly attributable to the humidor, part of
the effect is certainly due to teams employing different strategies when playing
in this park. For example, teams can use pitchers who induce a high number
of groundballs that may be less affected by the rarefied air.

11.7.4 Applying park factors

In the 1996 season, four Rockies players hit 30 or more home runs: Andrés
Galarraga led the team with 47, followed by Vinnie Castilla and Ellis Burks
(tied at 40) and Dante Bichette (31). Behind them Larry Walker had just 18
home runs, but in very limited playing time due to injuries. In fact, Walker’s
HR/AB ratio was second only to Galarraga’s. Their offensive output was
certainly boosted by playing 81 of their games in Coors Field. Using the
previously calculated park factors, one can estimate the number of home runs
Galarraga would have hit in a neutral park environment.

We begin by retrieving from the MySQL database every one of Galarraga’s
1996 plate appearances ending with a batted ball, and defining a column
was_hr is defined indicating whether the event was a home run, as was done
in Section 11.7.2).

query <- "

SELECT away_team_id, LEFT(game_id, 3) AS home_team_id, event_cd

11A list of games played in alternate sites is displayed on the Retrosheet website at the
url https://www.retrosheet.org/neutral.htm.

https://www.retrosheet.org
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FROM events

WHERE year = 1996

AND event_cd IN (2, 18, 19, 20, 21, 22, 23)

AND bat_id = 'galaa001';
"

andres <- dbGetQuery(con, query) |>

mutate(was_hr = ifelse(event_cd == 23, 1, 0))

We add the previously calculated park factors to the andres data frame.
This is done by merging the data frames andres and ev_compare using the
inner_join() function with the columns home_team_id and team_id as keys.
In the merged data frame andres_pf, we calculate the mean park factor for
Galarraga’s plate appearances using summarize().

andres_pf <- andres |>

inner_join(ev_compare, by = c("home_team_id" = "team_id")) |>

summarize(mean_pf = mean(pf))

andres_pf

mean_pf

1 129

The composite park factor for Galarraga, derived from the 252 batted balls
he had at home and the 225 he had on the road (ranging from 9 in Dodger
Stadium in Los Angeles to 23 at the Astrodome in Houston), indicate Andrés
had his home run frequency increased by an estimated 29% relative to a
neutral environment. In order to get the estimate of home runs in a neutral
environment, we divide Galarraga’s home runs by his average home run park
factor divided by 100.

47 / (andres_pf / 100)

mean_pf

1 36.4

According to our estimates, Galarraga’s benefit from the ballparks he played
in (particularly his home Coors Field) amounted to roughly 47 − 36 = 11 home
runs in the 1996 season.

11.8 Further Reading

Chapter 2 of Adler (2006) has detailed instructions on how to obtain and
install MySQL, and on how to set up an historical baseball database with
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Retrosheet data. Hack #56 (Chapter 5 of the same book) provides SQL code
for computing and applying Park Factors. Section F.2 of Benjamin S. Baumer,
Kaplan, and Horton (2021b) contains step-by-step instructions more complete
than those presented in Section 11.2.

MySQL reference manuals are available in several formats at http://dev.my
sql.com/doc/ on the MySQL website. The HTML online version features a
search box, which allows users to quickly retrieve pages pertaining to specific
functions.

11.9 Exercises

1. Runs Scored at the Astrodome

a. Using the dbGetQuery() function from the DBI package, select games
featuring the Astros (as either the home or visiting team) during the years
when the Astrodome was their home park (i.e., from 1965 to 1999).

b. Draw a plot to visually compare through the years the runs scored (both
teams combined) in games played at the Astrodome and in other ballparks.

2. Astrodome Home Run Park Factor

a. Select data from one season between 1965 and 1999. Keep the columns
indicating the visiting team identifier, the home team identifier and the
event code, and the rows identifying ball-in-play events. Create a new
column that identifies whether a home run has occurred.

b. Prepare a data frame containing the team identifier in the first column,
the frequency of home runs per batted ball when the team plays on the
road in the second column, and the same frequency when the team plays
at home in the third column.

c. Compute home run park factors for all MLB teams and check how the
domed stadium in Houston affected home run hitting.

3. Applying Park Factors to “Adjust” Numbers

a. Using the same season selected for the previous exercise, obtain data from
plate appearances (ending with the ball being hit into play) featuring
one Astros player of choice. The exercise can either be performed on
plate appearances featuring an Astros pitcher on the mound or an Astros
batter at the plate. For example, if the selected season is 1988, one might
be interested in discovering how the Astrodome affected the number of
home runs surrendered by veteran pitcher Nolan Ryan (Retrosheet id:
ryann001) or the number of home runs hit by rookie catcher Craig Biggio
(id: biggc001).

http://dev.mysql.com
http://dev.mysql.com
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b. As shown in Section 11.7.4, merge the selected player’s data with the Park
Factors previously calculated and compute the player’s individual Park
Factor (which is affected by the different playing time the player had in
the various ballparks) and use it to estimate a “fair” number of home runs
hit (or surrendered if a pitcher was chosen).

4. Park Factors for Other Events

a. Park Factors can be estimated for events other than Home Runs. The
SeamHeads.com Ballpark Database, for example, features Park Factors
for seven different events, plus it offers split factors according to batters’
handedness. See for example the page for the Astrodome: http://www.se
amheads.com/ballparks/ballpark.php?parkID=HOU02&tab=pf1.

b. Choose an event (even different from the seven shown at SeamHeads) and
calculate how ballparks affect its frequency. As a suggestion, the reader may
want to look at seasons in the ’80s, when artificial turf was installed in close
to 40% of MLB fields, and verify whether parks with concrete/synthetic
grass surfaces featured a higher frequency of batted balls (home runs
excluded) converted into outs.12

5. Length of Game

Major League Baseball instituted a pitch clock for the 2023 season, as one
of several measures to reduce the length of games. The Retrosheet game logs
contain a variable Duration that measures the length of each game, in minutes.
Use the retrosheet_gamelog() function to compare the length of games from
2022 to 2023. Draw a box plot to illustrate the distribution of length of game.

6. Length of Game (continued)

Extend your analysis from the previous question to go back as far as is necessary
to find the most recent year (prior to 2023) that had an average length of game
less than that of 2023.

12SeamHeads provides information on the surface of play in each stadium’s page. For
example, in the previously mentioned page relative to the Astrodome, if one hovers the
mouse over the ballpark name in a given season, a pop-up will appear providing information
both on the ballpark cover and its playing field surface. SeamHeads is currently providing
its ballpark database as a zip archive containing comma-separated-value (.csv) files that can
be easily read by R: the link for downloading it is found at the bottom of each page in the
ballpark database section.

http://www.seamheads.com
http://www.seamheads.com
http://www.SeamHeads.com
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Working with Large Data

12.1 Introduction

In Chapter 11, we set up and populated a MySQL database using the RMari-
aDB package for R. That database contained game logs and play-by-play data
gathered from Retrosheet. In this chapter, we expand on this work by building
databases of pitch-by-pitch Statcast data downloaded from Baseball Savant.
Along the way, in addition to MySQL we explore several different ways to store
and represent a dataset that spans four years of play (2020–2023). Finally, we
compare and contrast the strengths of weaknesses of these various approaches
and take these databases for a few test drives.

In Section C.10, we show how to use the statcast_search() function from
the baseballr package to download Statcast data from Baseball Savant. Because
there is a row of data for each pitch thrown in Major League Baseball, these
data can quickly become large enough to complicate our workflow. For the
most part, the data that we have used in this book has been small, in the
sense that it only comprises a few kilobytes or megabytes, which is far less than
the amount of physical memory (i.e. random access memory) in most personal
computers. Even the Retrosheet data, which covers every play, is less than
100 MB for a full season. However, as we will see below, the Statcast data is
an order of magnitude larger, and will occupy several hundred megabytes per
season, and several gigabytes over multiple seasons. Working with data of this
magnitude can impede or overwhelm a personal computer if one is not careful.
As such, in this chapter we introduce new tools for acquiring multiple years
worth of Statcast, and then storing that data efficiently. Mercifully, regardless
of what data storage format we choose, the magic of dplyr and dbplyr makes
the process of analyzing the data the same.
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12.2 Acquiring a Year’s Worth of Statcast Data

To further explore many sabermetric ideas, it’s useful to collect the in-play
data for all plays in a particular season. One can acquire the relevant data
via the statcast_search() function provided by baseballr. However, because
this function only returns at most 25,000 observations, and there were more
than 700,000 pitches thrown in 2023, compiling the full season’s worth of data
takes some effort. To that end we show how one can iterate the process of
downloading Statcast data on a daily basis, and then combine that data into
the full-season data sets that we use in this book.

On a typical day during the regular season, around 4500 pitches are thrown.
This means that in a typical week, more than 30,000 pitches are thrown, which
exceeds the 25,000 limit returned by statcast_search(). This means that we
can’t safely download data on a weekly basis. As a workaround, we write the
following function to download Statcast data for a single day and write that
data to an appropriately-named CSV in a specified directory dir. The code
for the statcast_daily() function is included in the abdwr3edata package,
and reproduced here.

abdwr3edata::statcast_daily

function(the_date = lubridate::now(), dir = getwd()) {

if (!dir.exists(dir)) {

dir.create(dir, recursive = TRUE)

}

filename <- paste0("sc_", lubridate::as_date(the_date), ".csv")

file_path <- fs::path(dir, filename)

# if the file already exists, read it.

if (file.exists(file_path)) {

x <- file_path |>

readr::read_csv() |>

suppressMessages()

if (nrow(x) > 0) {

message(

paste(

"Found", nrow(x), "observations in", file_path, "..."

)

)

}

return(NULL)

}
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# the file doesn't exist or doesn't have data, get it

message(paste("Retrieving data from", the_date))

x <- baseballr::statcast_search(

start_date = lubridate::as_date(the_date),

end_date = lubridate::as_date(the_date),

player_type = "batter"

) |>

dplyr::filter(game_type == "R")

if (nrow(x) > 0) {

message(paste("Writing", file_path, "..."))

x |>

readr::write_csv(file = fs::path(dir, filename))

}

return(NULL)

}

<bytecode: 0x582ac35576e0>

<environment: namespace:abdwr3edata>

In this case, we don’t want to store the data in the working directory. We
want to store it in a directory named statcast_csv, and we need to create
that directory if it doesn’t exist already. Using the path() function from the
fs package ensures that the file paths we create will be valid on any operating
system.

library(fs)

data_dir <- here::here("data_large")

statcast_dir <- path(data_dir, "statcast_csv")

if (!dir.exists(statcast_dir)) {

dir.create(statcast_dir)

}

Now, we create a vector of dates for which we want to download Statcast
data. For example, regular season games during the 2023 season were played
between March 30 and November 6. These were the 89th and 274th days of the
year, respectively. To extend statcast_daily() to a full season, we’ll have to
iterate the function over a series of dates. We can use the parse_date_time()
function from the lubridate package to convert a vector of integers to a vector
of dates.

mlb_2023_dates <- 89:274 |>

parse_date_time("%j") |>

as_date()

head(mlb_2023_dates)
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# the file doesn't exist or doesn't have data, get it

message(paste("Retrieving data from", the_date))

x <- baseballr::statcast_search(

start_date = lubridate::as_date(the_date),

end_date = lubridate::as_date(the_date),
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) |>

dplyr::filter(game_type == "R")

if (nrow(x) > 0) {

message(paste("Writing", file_path, "..."))

x |>

readr::write_csv(file = fs::path(dir, filename))

}

return(NULL)

}

<bytecode: 0x582ac35576e0>

<environment: namespace:abdwr3edata>
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[1] "2024-03-29" "2024-03-30" "2024-03-31" "2024-04-01"

[5] "2024-04-02" "2024-04-03"

The walk() function from the purrr package will allow us to successively apply
the statcast_daily() function to each of these 186 days. walk() is similar to
map() but doesn’t return anything. Since statcast_daily() always returns
NULL, the effect is the same. Note that since statcast_daily() writes a CSV
file for each day, you can safely run this function over and over again without
duplicating any work. The code for the statcast_season() function shown
below pulls these steps together. Note that if we want to be able to use this
function over multiple years, we need to be a little bit more conservative with
our choice of beginning and ending dates. While these dates vary from one
year to another, they will typically be close to the first of April and the first of
November.

abdwr3edata::statcast_season

function(

year = lubridate::year(lubridate::now()), dir = getwd()

) {

if (!dir.exists(dir)) {

dir.create(dir, recursive = TRUE)

}

mlb_days <- 80:280

mlb_dates <- mlb_days |>

paste(year) |>

lubridate::parse_date_time("%j %Y") |>

lubridate::as_date()

mlb_dates |>

purrr::walk(statcast_daily, dir)

}

<bytecode: 0x582ac71bac90>

<environment: namespace:abdwr3edata>

Once the directory is populated with daily CSV files, we can read them all
into one large data frame with a call to read_csv(). This functionality is
encapsulated in the statcast_read_csv() function.

abdwr3edata::statcast_read_csv

function(dir = getwd(), pattern = "*.csv") {

dir |>

list.files(pattern = pattern, full.names = TRUE) |>
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readr::read_csv() |>

dplyr::bind_rows()

}

<bytecode: 0x582ac739aac0>

<environment: namespace:abdwr3edata>

Putting it all together, we run the statcast_season() function to verify that
we’ve downloaded all of the data for the 2023 season, and then once that is
complete, we run the statcast_read_csv() function to read the various CSV
files we’ve downloaded.

library(abdwr3edata)

# skip this step while building the book!

# statcast_season(2023, dir = statcast_dir)

sc2023 <- statcast_dir |>

statcast_read_csv(pattern = "2023.+\\.csv")

To check the validity of the data, we can spot check certain statistics against
their known values. First, if 30 teams play 162 games against each other, we
should see 2430 total games. Second, according to Baseball-Reference, there
were 5,868 home runs hit in 2023. How many do we see in our data?

sc2023 |>

group_by(game_type) |>

summarize(

num_games = n_distinct(game_pk),

num_pitches = n(),

num_hr = sum(events == "home_run", na.rm = TRUE)

)

# A tibble: 1 x 4

game_type num_games num_pitches num_hr

<chr> <int> <int> <int>

1 R 2430 717945 5868

Our data appears to be accurate for the full season.

If we want to acquire multiple years of Statcast data, we simply iterate the
statcast_season() function over multiple years.

In the remainder of this chapter, we analyze data across the 2020–2023 seasons.
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readr::read_csv() |>
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12.3 Storing Large Data Efficiently

Once we’re satisfied with the integrity of our data, we should store the data
in a format that makes it easy to work with in the future. Downloading the
data for each day took a long time, and there is no reason to keep pinging the
Baseball Savant servers once we already have a copy of the data.

As noted above, a full season of Statcast data contains over 700,000 rows and
nearly 100 variables. This takes up about half of a gigabyte of space in memory
in R.

sc2023 |>

object.size() |>

print(units = "MB")

500.7 Mb

While most computers now have at least 16 GB of memory, working with data
of this magnitude (especially if you want to work with data across multiple
seasons) can quickly become burdensome. We can help ourselves by writing
the data to disk and storing it in an efficient format.

We saw above that the data frame containing a full season’s worth of Statcast
data occupies about half a gigabtye in memory. We built that data frame by
combining many small CSVs, each containing one day’s worth of data. How
much space do those CSV files occupy on disk?

statcast_dir |>

list.files(full.names = TRUE) |>

str_subset("2023") |>

file.size() |>

sum() / 1024^2

[1] 373

In this case, the CSVs occupy about 75% as much space on disk as the data
do when read into memory. That’s fine—but we can do better!

The main advantage of CSVs is that they are human-readable and editable,
which makes them easy to understand, and because they are so commonly-used,
they can be read and written by virtually any program designed for working
with data. However, CSVs are not a very space-efficient file format. Let’s
explore some different options.
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12.3.1 Using R’s internal data format

Suppose now that we want to work with multiple years of Statcast data. For
example, suppose we want to investigate pandemic-era trends using data from
the 2020–2023 seasons. Should we store these data in four files or one? If
we keep the data in four files (one for each year), then analyzing it across
multiple years will be cumbersome, since we would have to read the data into
R separately, and then combine the resulting data frames into one large data
frame. That large data frame will occupy multiple gigabytes of memory, which
could make things sluggish. Alternatively, we could do this once, and then
write one big *.rds file that contained all four years worth of data. But then
that file would be large, and we’d have to redo that process every time new
data came in.

Once the data has been read into R, we can use the write_rds() function to
write the full-season data frame to disk for safekeeping. This uses R’s internal
binary data storage format, which is much more space-efficient than CSVs.
However, the .rds format is designed to work with R, so while it’s great if
you’re going to be working exclusively in R, it isn’t that useful if you want to
share your data with users of other applications (like Python).

The statcast_write_rds() function wraps the write_rds() function, but
first splits the data into groups based on the year. It will write a different,
appropriately-named *.rds file for each year present in the data frame that
you give it.

abdwr3edata::statcast_write_rds

function(x, dir = getwd(), ...) {

tmp <- x |>

dplyr::group_by(year = lubridate::year(game_date))

years <- tmp |>

dplyr::group_keys() |>

dplyr::pull(year)

tmp |>

dplyr::group_split() |>

rlang::set_names(years) |>

purrr::map(

~readr::write_rds(

.x,

file = fs::path(

dir,

paste0(

"statcast_",

max(lubridate::year(dplyr::pull(.x, game_date))),

".rds"
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)

),

compress = "xz",

# ...

)

)

list.files(dir, pattern = "*.rds", full.names = TRUE)

}

<bytecode: 0x582ac79e6c38>

<environment: namespace:abdwr3edata>

In this case, the directory of CSV files takes up nearly 6 times more space (373
Mb for the 2023 files) than the single .rds file that contains the exact same
data (64 Mb)!

disk_space_rds <- data_dir |>

path("statcast_rds") |>

dir_info(regexp = "*.rds") |>

select(path, size) |>

mutate(

path = path_file(path),

format = "rds"

)

disk_space_rds

# A tibble: 4 x 3

path size format

<chr> <fs::bytes> <chr>

1 statcast_2020.rds 23.4M rds

2 statcast_2021.rds 63.1M rds

3 statcast_2022.rds 63M rds

4 statcast_2023.rds 63.8M rds

12.3.2 Using Apache Arrow and Apache Parquet

Apache Parquet is a file format that, when combined with the software frame-
work Apache Arrow, provides a slick, scalable solution to the problem we raised
above about how to store our data. The Parquet format is not as space-efficient
as the *.rds format, but it is cross-platform and scalable, in that it will
automatically chunk the data into partitions based on a grouping variable (in
this case, the year). The arrow package for R provides a dplyr compatible
interface that allows us to work with data in the Parquet format very easily.
Because Arrow is columnar-oriented (as opposed to row-oriented), it can be
very fast. Please see the chapter on Arrow in Wickham, Çetinkaya-Rundel,
and Grolemund (2023) for more information about Arrow.
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One nice feature of arrow is that it can read an entire directory of CSVs using
the open_dataset() function.

library(arrow)

sc_arrow <- statcast_dir |>

open_dataset(format = "csv")

dim(sc_arrow)

[1] 2399921 92

Note that while the Arrow object sc_arrow behaves like a data frame—in
this case containing nearly 2.4 million rows!—it takes up almost no space in
memory.

sc_arrow |>

object.size()

504 bytes

This is possible because the data is still on disk in the form of the CSVs. It
hasn’t been read into R’s memory yet. That won’t stop us from querying the
data, however.

summary_arrow <- sc_arrow |>

group_by(year = year(game_date), game_type) |>

summarize(

num_games = n_distinct(game_pk),

num_pitches = n(),

num_hr = sum(events == "home_run", na.rm = TRUE)

)

summary_arrow |>

collect()

# A tibble: 4 x 5

# Groups: year [4]

year game_type num_games num_pitches num_hr

<int> <chr> <int> <int> <int>

1 2020 R 898 263584 2304

2 2021 R 2429 709852 5944

3 2022 R 2430 708540 5215

4 2023 R 2430 717945 5868

So far we have just worked with an Arrow object that was backed by a directory
of CSVs. We can write the Arrow data frame in the Parquet format using the
write_dataset() function. Note that since we used the group_by() function
first, we’ll get one Parquet file for each year. This is a form of file-based
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partitioning that can provide significant performance advantages (Wickham,
Çetinkaya-Rundel, and Grolemund 2023).

statcast_parquet <- path(data_dir, "statcast_parquet")

if (!dir.exists(statcast_parquet)) {

dir.create(statcast_parquet)

}

sc_arrow |>

group_by(year = year(game_date)) |>

write_dataset(path = statcast_parquet, format = "parquet")

The write_dataset() function automatically creates a directory structure
that partitions the data set into separate files of about 100 MB for each full
season. This is just more than a quarter of the disk space occupied by the
CSVs.

disk_space_parquet <- statcast_parquet |>

dir_info(recurse = TRUE, glob = "*.parquet") |>

select(path, size) |>

mutate(

format = "parquet",

path = path_rel(path, start = statcast_parquet)

)

disk_space_parquet

# A tibble: 4 x 3

path size format

<fs::path> <fs::bytes> <chr>

1 year=2020/part-0.parquet 37.4M parquet

2 year=2021/part-0.parquet 101.5M parquet

3 year=2022/part-0.parquet 101.1M parquet

4 year=2023/part-0.parquet 102.4M parquet

12.3.3 Using DuckDB

While Arrow provides a dplyr interface that allows you to work seamlessly
with Arrow objects in R as if they were data frames, Arrow is not SQL-based.
Thus, while Arrow and Parquet are cross-platform, you would need another
interface to write SQL queries against them.

Another fast, cross-platform alternative that is SQL-based is DuckDB. Like
SQLite, DuckDB has a server-less architecture that can store data in memory
or write its database files locally. This makes it a great option for someone
who wants a SQL-interface but doesn’t want to set up or maintain a SQL
server. You can learn more about DuckDB in Wickham, Çetinkaya-Rundel,
and Grolemund (2023).
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DuckDB also implements a dplyr interface, so we set up a database connection
in the same way we set up any DBI-compatible SQL database connection: using
dbConnect(). However, in this case we want to write the database files to disk
so that we can use them again in the future, and so that we can compare their
sizes to the other storage formats. The dbdir argument specifies the path to a
DuckDB database file that will be created for us if it doesn’t exist already.

statcast_duckdb <- path(data_dir, "statcast_duckdb")

if (!dir.exists(statcast_duckdb)) {

dir.create(statcast_duckdb)

}

library(duckdb)

con_duckdb <- dbConnect(

drv = duckdb(),

dbdir = path(statcast_duckdb, "statcast.ddb")

)

Initially, our DuckDB database doesn’t contain any tables, so we use the
dbWriteTable() function to copy the contents of the Arrow object to our
DuckDB object.1

con_duckdb |>

dbWriteTable("events", collect(sc_arrow), overwrite = TRUE)

Now, we can use our familiar dplyr interface to access the DuckDB database.

sc_ddb <- con_duckdb |>

tbl("events")

summary_duckdb <- sc_ddb |>

group_by(year = year(game_date), game_type) |>

summarize(

num_games = n_distinct(game_pk),

num_pitches = n(),

num_hr = sum(as.numeric(events == "home_run"), na.rm = TRUE)

)

summary_duckdb

# Source: SQL [4 x 5]

# Database: DuckDB v0.9.2 [bbaumer@Linux:R 4.3.2//statcast.ddb]

# Groups: year

1The arrow package contains a function called to_duckdb() that will create a DuckDB
object from an existing Arrow object, but we choose not to use that because in this case we
want to copy the data.
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year game_type num_games num_pitches num_hr

<dbl> <chr> <dbl> <dbl> <dbl>

1 2020 R 898 263584 2304

2 2022 R 2430 708540 5215

3 2021 R 2429 709852 5944

4 2023 R 2430 717945 5868

While both the arrow and duckdb packages provide dplyr interfaces, only
duckdb works with SQL tools like dbGetQuery().

con_duckdb |>

dbGetQuery("

SELECT game_date, pitch_type, release_speed, pitcher

FROM events

WHERE release_speed > 100 AND events = 'home_run'
LIMIT 6;

")

game_date pitch_type release_speed pitcher

1 2021-04-10 FF 100 594798

2 2021-05-18 SI 100 621237

3 2021-06-27 FF 100 543037

4 2021-06-29 SI 101 621237

5 2021-07-09 FC 100 661403

6 2021-07-16 FC 100 661403

The storage footprint of the DuckDB database is similar to that of the CSVs,
but we will see in Section 12.4 that the performance is excellent.

disk_space_duckdb <- statcast_duckdb |>

dir_info(recurse = TRUE, glob = "*.ddb") |>

select(path, size) |>

mutate(

format = "duckdb",

path = path_rel(path, start = statcast_duckdb)

)

disk_space_duckdb

# A tibble: 1 x 3

path size format

<fs::path> <fs::bytes> <chr>

1 statcast.ddb 1.28G duckdb



292 Working with Large Data

12.3.4 Using MySQL

Finally, we can use the MariaDB (MySQL) database that we set up in Sec-
tion 11.2.

library(dbplyr)

library(RMariaDB)

con_mariadb <- dbConnect(MariaDB(), group = "abdwr")

Just as we did with DuckDB, we first copy the data to the MySQL server
using dbWriteTable().

con_mariadb |>

dbWriteTable("events", collect(sc_arrow), overwrite = TRUE)

Now we can query the database using the dplyr interface or write SQL queries.

sc_maria <- con_mariadb |>

tbl("events")

summary_maria <- sc_maria |>

group_by(year = year(game_date), game_type) |>

summarize(

num_games = n_distinct(game_pk),

num_pitches = n(),

num_hr = sum(events == "home_run", na.rm = TRUE)

)

summary_maria

# Source: SQL [4 x 5]

# Database: mysql [abdwr@localhost:NA/abdwr]

# Groups: year

year game_type num_games num_pitches num_hr

<int> <chr> <int64> <int64> <dbl>

1 2020 R 898 263584 2304

2 2021 R 2429 709852 5944

3 2022 R 2430 708540 5215

4 2023 R 2430 717945 5868

Determining the storage footprint for a MySQL database is a bit more com-
plicated, but the size of the events.ibd and events.frm files in the output
below provide a lower bound on the size of the events table. The storage
footprint here is about the same as those of the original CSV files and DuckDB.
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sc_maria <- con_mariadb |>

tbl("events")

summary_maria <- sc_maria |>

group_by(year = year(game_date), game_type) |>

summarize(

num_games = n_distinct(game_pk),

num_pitches = n(),

num_hr = sum(events == "home_run", na.rm = TRUE)

)

summary_maria

# Source: SQL [4 x 5]

# Database: mysql [abdwr@localhost:NA/abdwr]

# Groups: year

year game_type num_games num_pitches num_hr

<int> <chr> <int64> <int64> <dbl>

1 2020 R 898 263584 2304

2 2021 R 2429 709852 5944

3 2022 R 2430 708540 5215

4 2023 R 2430 717945 5868

Determining the storage footprint for a MySQL database is a bit more com-
plicated, but the size of the events.ibd and events.frm files in the output
below provide a lower bound on the size of the events table. The storage
footprint here is about the same as those of the original CSV files and DuckDB.
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disk_space_mariadb <- "/var/lib/mysql/abdwr/" |>

dir_info(glob = "*events.*") |>

select(path, size) |>

mutate(

format = "mariadb",

path = path_rel(path, start = "/var/lib/mysql/abdwr/")

)

disk_space_mariadb

# A tibble: 2 x 3

path size format

<fs::path> <fs::bytes> <chr>

1 events.frm 3.92K mariadb

2 events.ibd 1.22G mariadb

12.4 Performance Comparison

In this chapter, we have explored five different data storage formats (CSV,
*.rds, Parquet, DuckDB, and MariaDB), as well as their corresponding R
object interfaces, all of which are compatible with those of the dplyr package.
Computing performance is often measured in terms of three quantities: com-
putational speed, memory footprint, and disk storage footprint. We consider
these three criteria in turn.

12.4.1 Computational speed

First, we compare the performance in terms of querying speed. We use the
mark() function from the bench package to compare the amount of time it
takes to compute the Statcast summary statistics for our 2020–2023 data. The
five classes of objects are: 1) a tbl (data frame) which stores in the data in
memory; 2) an Arrow object backed by the CSV files; 3) an Arrow object
backed by the Parquet files, partitioned by year; 4) a DuckDB object; and 5)
a MariaDB object.

First, we set up the tbl interface and query across all four years of data.

sc_tbl <- statcast_dir |>

statcast_read_csv()

summary_tbl <- sc_tbl |>

group_by(year = year(game_date), game_type) |>

summarize(
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num_games = n_distinct(game_pk),

num_pitches = n(),

num_hr = sum(events == "home_run", na.rm = TRUE)

)

Second, we set up an arrow object to read the from the Parquet files we created
earlier, and to make use of the file-based partitioning based on year.

sc_arrow_part <- statcast_parquet |>

open_dataset(partitioning = "year")

summary_arrow_part <- sc_arrow_part |>

group_by(year = year(game_date), game_type) |>

summarize(

num_games = n_distinct(game_pk),

num_pitches = n(),

num_hr = sum(events == "home_run", na.rm = TRUE)

)

Now we can benchmark the query execution times.

library(bench)

res <- mark(

tbl = summary_tbl,

arrow_csv = summary_arrow |> collect(),

arrow_part = summary_arrow_part |> collect(),

duckdb = summary_duckdb |> collect(),

mariadb = summary_maria |> collect(),

check = FALSE

) |>

arrange(median)

res

# A tibble: 5 x 6

expression min median `itr/sec` mem_alloc `gc/sec`
<bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>

1 tbl 18.04ns 22ns 45777998. 0B 0

2 duckdb 59.18ms 59.38ms 16.6 446.1KB 5.52

3 arrow_part 143.9ms 145.94ms 6.79 47.6KB 0

4 arrow_csv 991.09ms 991.09ms 1.01 47.9KB 0

5 mariadb 3.54s 3.54s 0.282 154.8KB 0

The performance can vary greatly depending on the hardware available and
software configuration of the computer. On this machine, which has 12 CPUs
and 32 gigabytes of RAM, the results indicate that duckdb is significantly faster
than the other databases. The tbl interface already has the data in memory,



294 Working with Large Data

num_games = n_distinct(game_pk),

num_pitches = n(),

num_hr = sum(events == "home_run", na.rm = TRUE)

)

Second, we set up an arrow object to read the from the Parquet files we created
earlier, and to make use of the file-based partitioning based on year.

sc_arrow_part <- statcast_parquet |>

open_dataset(partitioning = "year")

summary_arrow_part <- sc_arrow_part |>

group_by(year = year(game_date), game_type) |>

summarize(

num_games = n_distinct(game_pk),

num_pitches = n(),

num_hr = sum(events == "home_run", na.rm = TRUE)

)

Now we can benchmark the query execution times.

library(bench)

res <- mark(

tbl = summary_tbl,

arrow_csv = summary_arrow |> collect(),

arrow_part = summary_arrow_part |> collect(),

duckdb = summary_duckdb |> collect(),

mariadb = summary_maria |> collect(),

check = FALSE

) |>

arrange(median)

res

# A tibble: 5 x 6

expression min median `itr/sec` mem_alloc `gc/sec`
<bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>

1 tbl 18.04ns 22ns 45777998. 0B 0

2 duckdb 59.18ms 59.38ms 16.6 446.1KB 5.52

3 arrow_part 143.9ms 145.94ms 6.79 47.6KB 0

4 arrow_csv 991.09ms 991.09ms 1.01 47.9KB 0

5 mariadb 3.54s 3.54s 0.282 154.8KB 0

The performance can vary greatly depending on the hardware available and
software configuration of the computer. On this machine, which has 12 CPUs
and 32 gigabytes of RAM, the results indicate that duckdb is significantly faster
than the other databases. The tbl interface already has the data in memory,

Performance Comparison 295

so of course it is by far the fastest. In this case, our query ran across all four
partitions, so the partitioning scheme of Parquet wasn’t that useful. Still, the
Arrow object that was backed by Parquet files was about 7 times faster than
the Arrow object backed by the CSV files. However, the DuckDB instance
was still about 2 times faster than the Arrow/Parquet object. Even the Arrow
object backed by the CSV files was about 4 times faster than RMariaDB,
which was by far the worst performer.

In Section 12.5, we explore whether the performance of the Arrow/Parquet
object will improve when querying the data for individual seasons separately.

12.4.2 Memory footprint

Second, we note that while the other objects occupy a negligible amount of
space in memory, the tbl object takes up 1.6 Gb of RAM! This is because, as
noted above, the tbl object stores the data in memory, while the other objects
leave the data on disk and only query the relevant data when prompted. The
size of these objects in bytes is shown below. Thus, the superior performance
of the tbl object comes at a cost.

list(

"tbl" = sc_tbl,

"arrow" = sc_arrow,

"duckdb" = sc_ddb,

"mariadb" = sc_maria

) |>

map_int(object.size)

tbl arrow duckdb mariadb

1752447264 504 44384 12672

12.4.3 Disk storage footprint

Third, in terms of data storage space, the *.rds format is the most compact.
However, it comes with its own limitations: *.rds only works with R. The
Parquet files take up about 50% more space than the *.rds files, but they
work across platforms and they implement seamless partitioning. The DuckDB
files take up about three times as much disk space as the Parquet files (and
this is before we have built any indexes!), but they are faster to query.

disk_space <- bind_rows(

disk_space_csv,

disk_space_rds,

disk_space_parquet,

disk_space_duckdb,
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disk_space_mariadb

)

disk_space |>

group_by(format) |>

summarize(footprint = sum(size)) |>

arrange(desc(footprint))

# A tibble: 5 x 2

format footprint

<chr> <fs::bytes>

1 duckdb 1.28G

2 mariadb 1.22G

3 csv 1.22G

4 parquet 342.46M

5 rds 213.36M

12.4.4 Overall guidelines

In our experiment with a 2.4 million row data set, on this particular computer
using these particular data, we confirmed the obvious: reading the data into a
tbl object in memory leads to the fastest computational performance while
requiring the largest footprint in memory. Among the interfaces that read
the data from disk, duckdb provided the fastest computational performance,
while RMariaDB offered the slowest performance. Neither reduced the largest
footprint on disk substantially from the original CSV files. Arrow using the
Parquet storage format provided medium performance with medium footprint
on disk. R’s internal *.rds storage format was the most compact, but the least
versatile.

This leads us to the following guidelines as we consider these options in broader
practice.

• If your data is small (i.e., less than a couple hundred megabytes), just use
CSV because it’s easy, cross-platform, and versatile. The fact that it is not
space-efficient won’t matter because your data is small anyway.

• If your data is larger than a couple hundred megabytes and you’re just
working in R (either by yourself or with a few colleagues), use .rds because
it’s space-efficient and optimized for R. (Note that this is how we chose
to store much of the Retrosheet and Statcast data we use in this book.)
Reading these files into tbl objects will lead to fast performance, and the
data probably aren’t large enough to eat up enough of your computer’s
memory for you to notice.

• If your data is around a gigabyte or more and you need to share your data
files across different platforms (i.e., not just R but also Python, etc.) and
you don’t want to use a SQL-based RDBMS, store your data in the Parquet
format and use the arrow package. Parquet is cross-platform and Arrow
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scales better than .rds. Both the performance and the storage footprint
are likely to meet your needs. The file-based partitioning scheme may or
may not help you, depending on how you are querying the database.

• If you want to work in SQL with a local data store, use DuckDB, because
it offers more features and better performance than RSQLite, and doesn’t
require a server-client architecture that can be cumbersome to set up and
maintain.

• If you have access to a RDBMS server (hopefully maintained by a profes-
sional database administrator), use the appropriate DBI interface (e.g.,
RMariaDB, RPostgreSQL, etc.) to connect to it. A well-oiled server with
sufficient resources will easily outperform anything you can do on your
personal computer.

Making the appropriate choice for your situation will depend on weighing these
factors carefully.

12.5 Launch Angles and Exit Velocities, Revisited

In the previous edition of this book, we created a data graphic that showed
how wOBA varied as a function of launch angle and exit velocity for all batted
balls in the 2017 season. That data graphic appeared on the cover of the second
edition. Here, we produce a similar graphic across our four years of data. In
doing so, we revisit the performance of our fastest data interfaces, and compare
how well they work in practice.

Recall that while DuckDB stores its data in one large file, Arrow employs a
file-based partitioning scheme that writes our data to a separate file for each
year. Consider what happens when we ask the database to give us all the data
for a particular player, say Pete Alonso, in a particular year, say 2020. DuckDB
has to look in the whole big file for these data, but Arrow only has to look at
the file for 2020, which in this case is less than one quarter the size of all of
the files together. Then it only needs to look for Alonso’s data within that file.
Because the file is smaller, it should be faster to find the relevant data.

Conversely, if we were to ask for Alonso’s data across all four years, the file-
based partitioning wouldn’t do any good, because we’d have to consult all of
the files anyway.

The following function pulls the data we need for any given batter and set of
years.

read_bip_data <- function(tbl, begin, end = begin,

batter_id = 624413) {
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x <- tbl |>

mutate(year = year(game_date)) |>

group_by(year) |>

filter(type == "X", year >= begin, year <= end) |>

select(

year, game_date, batter, launch_speed, launch_angle,

estimated_ba_using_speedangle,

estimated_woba_using_speedangle

)

if (!is.null(batter_id)) {

x <- x |>

filter(batter == batter_id)

}

x |>

collect()

}

First, we compare the computational performance for pulling Pete Alonso’s
balls in play for a single season, 2020.

mark(

tbl = nrow(read_bip_data(sc_tbl, 2020)),

arrow = nrow(read_bip_data(sc_arrow_part, 2020)),

duckdb = nrow(read_bip_data(sc_ddb, 2020)),

iterations = 5

) |>

arrange(median)

# A tibble: 3 x 6

expression min median `itr/sec` mem_alloc `gc/sec`
<bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>

1 duckdb 91.8ms 95.6ms 9.70 1.07MB 3.88

2 arrow 218.3ms 221ms 4.44 408.14KB 5.33

3 tbl 390.6ms 394.9ms 2.49 280.27MB 0.498

Amazingly, both the duckdb and arrow objects outperform the tbl object,
which is remarkable given that the tbl object is stored in R’s memory and the
others are reading from files stored on disk. This result reveals how well these
highly optimized technologies work in practice. It’s also worth noting that while
the duckdb object is still about twice as fast as the arrow object, the latter
greatly improved its performance relative to the previous comparison. This is
because the file-based partitioning scheme was useful in this case, because we
were only querying for data in an individual year.

If instead, we query across years, this performance boost disappears, and
duckdb once again several times faster than arrow.



298 Working with Large Data

x <- tbl |>

mutate(year = year(game_date)) |>

group_by(year) |>

filter(type == "X", year >= begin, year <= end) |>

select(

year, game_date, batter, launch_speed, launch_angle,

estimated_ba_using_speedangle,

estimated_woba_using_speedangle

)

if (!is.null(batter_id)) {

x <- x |>

filter(batter == batter_id)

}

x |>

collect()

}

First, we compare the computational performance for pulling Pete Alonso’s
balls in play for a single season, 2020.

mark(

tbl = nrow(read_bip_data(sc_tbl, 2020)),

arrow = nrow(read_bip_data(sc_arrow_part, 2020)),

duckdb = nrow(read_bip_data(sc_ddb, 2020)),

iterations = 5

) |>

arrange(median)

# A tibble: 3 x 6

expression min median `itr/sec` mem_alloc `gc/sec`
<bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>

1 duckdb 91.8ms 95.6ms 9.70 1.07MB 3.88

2 arrow 218.3ms 221ms 4.44 408.14KB 5.33

3 tbl 390.6ms 394.9ms 2.49 280.27MB 0.498

Amazingly, both the duckdb and arrow objects outperform the tbl object,
which is remarkable given that the tbl object is stored in R’s memory and the
others are reading from files stored on disk. This result reveals how well these
highly optimized technologies work in practice. It’s also worth noting that while
the duckdb object is still about twice as fast as the arrow object, the latter
greatly improved its performance relative to the previous comparison. This is
because the file-based partitioning scheme was useful in this case, because we
were only querying for data in an individual year.

If instead, we query across years, this performance boost disappears, and
duckdb once again several times faster than arrow.

Launch Angles and Exit Velocities, Revisited 299

mark(

tbl = nrow(read_bip_data(sc_tbl, 2021, 2023)),

arrow = nrow(read_bip_data(sc_arrow_part, 2021, 2023)),

duckdb = nrow(read_bip_data(sc_ddb, 2021, 2023)),

iterations = 5

) |>

arrange(median)

# A tibble: 3 x 6

expression min median `itr/sec` mem_alloc `gc/sec`
<bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>

1 duckdb 89.7ms 100ms 9.35 983KB 3.74

2 arrow 398.7ms 407ms 2.39 375KB 2.87

3 tbl 548.1ms 552ms 1.76 520MB 0.352

12.5.1 Launch angles over time

We’re now ready to make our plot, and compare the relationship of wOBA to
both launch angle and exit velocity, but now over time. Just as we did in the
second edition, we add some helpful guidelines to our plot.

guidelines <- tibble(

launch_angle = c(10, 25, 50),

launch_speed = 40,

label = c("Ground balls", "Line drives", "Flyballs")

)

Since duckdb proved to be our best performer, we’ll use it to pull the data
and draw the plot. Note that we use the slice_sample() function to avoid
plotting all the data.

ev_plot <- sc_ddb |>

read_bip_data(2020, 2023, batter_id = NULL) |>

# for speed

slice_sample(prop = 0.2) |>

ggplot(

aes(

x = launch_speed,

y = launch_angle,

color = estimated_woba_using_speedangle

)

) +

geom_hline(

data = guidelines, aes(yintercept = launch_angle),

color = "black", linetype = 2
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) +

geom_text(

data = guidelines,

aes(label = label, y = launch_angle - 4),

color = "black", hjust = "left"

) +

geom_point(alpha = 0.05) +

scale_color_viridis_c("BA") +

scale_x_continuous(

"Exit velocity (mph)",

limits = c(40, 120)

) +

scale_y_continuous(

"Launch angle (degrees)",

breaks = seq(-75, 75, 25)

) +

facet_wrap(vars(year))

A few observations stand out in Figure 12.1. First, line drives have a very high
probability of being a hit, but the likelihood depends on how hard the ball
comes off the bat and how high it is going. Second, there is a “sweet spot”where
nearly all batted ball are hits. These form a white pocket centered around a
launch angle of about 25 degrees and an exit velocity of at least 100 mph. As
we will see later, these are often home runs. The contention is that batters are
optimizing their swings to produce batted balls with these properties.

ev_plot +

guides(color = guide_colorbar(title = "wOBA"))

Do you see any differences across the various years? Other than the fact that
there is less data in 2020 due to the pandemic-shortened season, the relationship
appears to be about the same.

12.6 Further Reading

The abdwr3edata package contains all of the functions displayed in this chapter.
Chapter 11 of this book covers the use of a MySQL database to explore park
factors. In Section 11.2, we illustrate how to setup and use a MySQL server,
and in Section 11.6, we discuss how to build your own baseball database.

Chapter 21 of Wickham, Çetinkaya-Rundel, and Grolemund (2023) cov-
ers databases, and explicates the dplyr interface to duckdb and other
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FIGURE 12.1
Estimated wOBA as a function of launch angle and exit velocity, 2020–2023.
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DBI-compliant databases. Chapter 22 discusses Arrow and Parquet in greater
detail.

12.7 Exercises

1. Home runs on fast pitches

Use the database constructed in this chapter to find the total number of home
runs that were hit on fastballs traveling in excess of 100 mph across the four
seasons 2020–2023. What percentage of the total number of home runs hit in
each season were hit on such fastballs?

2. Stolen base percentages by velocity

Use the database constructed in this chapter to compute the stolen base success
rate for every pitch speed, rounded to the nearest 1 mph. Separate your analysis
by steals of 2nd base versus 3rd base. Does pitch speed appear to be correlated
with stolen base success rate?
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13

Home Run Hitting

13.1 Introduction

Home run hitting has always been associated with the great sluggers in baseball
history, such as Babe Ruth, Roger Maris, Hank Aaron and Barry Bonds. But
since the introduction of Statcast data in 2015, there has been an explosion in
home run hitting with a remarkable 6776 home runs hit in the 2019 season.
That raises the general question of what variables contribute to home run
hitting. Many of the possible explanatory variables for the increase in home
run hitting are contained in the Statcast data.

This chapter focus on the exploration of home runs using Statcast data on balls
in play from the 2021 and 2023 seasons. Section 13.2 describes the variables
from a subset of the Statcast data. Launch variables such as launch angle, exit
velocity and spray angle are collected for each ball put in play and this section
explores the association of these variables with home runs using data from the
2023 season. Team abbreviations for the home and away teams can be used to
compute ballpark effects. The identities of the pitcher and batter are collected
for each ball in play and by use of random effects model, one can see if the
variation in home run rates is attributed to the batters or to the pitchers.

There is much interest in the potential causes behind changes home run hitting
across seasons (see Albert et al. (2018), Albert et al. (2019)). Section 13.3
focuses on the changes between the 2021 and 2023 seasons. Although on the
surface there appears to be little difference in home runs hit, this section shows
how one can detect changes, both in batter behavior and in the carry properties
of the baseball.
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13.2 Exploring a Season of Home Run Hitting

13.2.1 Meet the data

We begin by reading in the data file sc_bip_2021_2023.rds which contains
information on all balls put in play for the 2021 and 2023 seasons. Please
see Section 12.2 for details on how to acquire these data. Using the year()

function in the lubridate package, we define a Season variable, and we define
HR to be 1 if a home run is hit, and 0 otherwise. The filter() function is
used to define sc_2023, the balls in play for the 2023 season. The glimpse()
function is used to identify the data type for all 14 variables in this Statcast
dataset.

sc_two_seasons <- here::here("data/sc_bip_2021_2023.rds") |>

read_rds() |>

mutate(

Season = year(game_date),

HR = ifelse(events == "home_run", 1, 0)

)

sc_2023 <- sc_two_seasons |>

filter(Season == 2023)

glimpse(sc_2023)

Rows: 124,199

Columns: 16

$ game_pk <dbl> 718773, 718774, 718778, 718773, 718781~

$ game_date <date> 2023-03-30, 2023-03-30, 2023-03-30, 2~

$ batter <dbl> 613564, 643446, 453568, 641584, 527038~

$ pitcher <dbl> 656605, 645261, 605483, 656605, 543037~

$ events <chr> "triple", "single", "single", "single"~

$ stand <chr> "L", "L", "L", "L", "R", "R", "R", "R"~

$ p_throws <chr> "R", "R", "L", "R", "R", "L", "R", "R"~

$ hit_distance_sc <dbl> 134, 9, 162, 254, 51, 56, 42, 185, 171~

$ hc_x <dbl> 215.1, 164.8, 90.7, 196.9, 110.2, 153.~

$ hc_y <dbl> 107.2, 105.1, 133.9, 95.2, 148.4, 209.~

$ launch_speed <dbl> 94.2, 93.7, 59.1, 111.7, 94.8, 69.5, 1~

$ launch_angle <dbl> 9, -19, 27, 13, 1, 81, -2, 9, 9, 7, 76~

$ home_team <chr> "CIN", "MIA", "SD", "CIN", "NYY", "SD"~

$ away_team <chr> "PIT", "NYM", "COL", "PIT", "SF", "COL~

$ Season <dbl> 2023, 2023, 2023, 2023, 2023, 2023, 20~

$ HR <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~

The game_date variable provides the date of the game and the batter

and pitcher are numerical codes for the identity of the batter and pitcher
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13.2 Exploring a Season of Home Run Hitting

13.2.1 Meet the data

We begin by reading in the data file sc_bip_2021_2023.rds which contains
information on all balls put in play for the 2021 and 2023 seasons. Please
see Section 12.2 for details on how to acquire these data. Using the year()

function in the lubridate package, we define a Season variable, and we define
HR to be 1 if a home run is hit, and 0 otherwise. The filter() function is
used to define sc_2023, the balls in play for the 2023 season. The glimpse()
function is used to identify the data type for all 14 variables in this Statcast
dataset.

sc_two_seasons <- here::here("data/sc_bip_2021_2023.rds") |>

read_rds() |>

mutate(

Season = year(game_date),

HR = ifelse(events == "home_run", 1, 0)

)

sc_2023 <- sc_two_seasons |>

filter(Season == 2023)

glimpse(sc_2023)

Rows: 124,199

Columns: 16

$ game_pk <dbl> 718773, 718774, 718778, 718773, 718781~

$ game_date <date> 2023-03-30, 2023-03-30, 2023-03-30, 2~

$ batter <dbl> 613564, 643446, 453568, 641584, 527038~

$ pitcher <dbl> 656605, 645261, 605483, 656605, 543037~

$ events <chr> "triple", "single", "single", "single"~

$ stand <chr> "L", "L", "L", "L", "R", "R", "R", "R"~

$ p_throws <chr> "R", "R", "L", "R", "R", "L", "R", "R"~

$ hit_distance_sc <dbl> 134, 9, 162, 254, 51, 56, 42, 185, 171~

$ hc_x <dbl> 215.1, 164.8, 90.7, 196.9, 110.2, 153.~

$ hc_y <dbl> 107.2, 105.1, 133.9, 95.2, 148.4, 209.~

$ launch_speed <dbl> 94.2, 93.7, 59.1, 111.7, 94.8, 69.5, 1~

$ launch_angle <dbl> 9, -19, 27, 13, 1, 81, -2, 9, 9, 7, 76~

$ home_team <chr> "CIN", "MIA", "SD", "CIN", "NYY", "SD"~

$ away_team <chr> "PIT", "NYM", "COL", "PIT", "SF", "COL~

$ Season <dbl> 2023, 2023, 2023, 2023, 2023, 2023, 20~

$ HR <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~

The game_date variable provides the date of the game and the batter

and pitcher are numerical codes for the identity of the batter and pitcher
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respectively for the particular ball put into play. The events variable is a
description of the outcome of the ball in play. The stand and p_throws vari-
ables give the sides (L or R) for the batter and pitcher. The hit_distance_sc
variable is the distance (in feet) that the ball goes before it hits the ground.
The hc_x and hc_y variables gives the location of ball put in the field. The
launch_speed and launch_angle variables give the exit velocity (in mph) and
launch angle (in degrees) of the ball when it leaves the bat. The home_team

and away_team variables give abbreviations of the home and visiting teams in
the game. See Appendix C for more details on the variables available through
Statcast.

13.2.2 Home runs and launch variables

To begin, we use the summarize() and mutate() functions to compute the
number of balls in play, the home run count and the home run rate in the 2023
season.

S <- sc_2023 |>

summarize(

BIP = n(),

HR = sum(events == "home_run")

) |>

mutate(HR_Rate = 100 * HR / BIP)

S

# A tibble: 1 x 3

BIP HR HR_Rate

<int> <int> <dbl>

1 124199 5868 4.72

We see that 4.72 percent of batted balls were home runs.

We use a model to understand the relationship between home run hitting and
the launch angle and launch speed variables. The generalized additive model
of the form

log
(

Pr(HR)
1 − Pr(HR)

)
= s(LA, LS)

is fit where Pr(HR) is the probability of a home run, LA and LS denote the
launch angle and launch speed measurements, and s() is a smooth function of
the two measurements.

Recall the variable HR is defined to be 1 if a home run is hit, and 0 otherwise.
We fit the generalized additive model by use of the gam() function from the
mgcv package.
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library(mgcv)

fit_23 <- gam(

HR ~ s(launch_angle, launch_speed),

family = binomial,

data = sc_2023

)

This model can be used to predict the home run probability for any values of
the launch variables. For example, suppose a batter hits a ball at 105 mph
with a launch angle of 25 degrees. We use the predict() function with the
type argument set to response to predict the home run probability. We see
from the output that a batted ball hit at 105 mph with a launch angle of 25
degrees has a 77.2% chance of being a home run.

fit_23 |>

predict(

newdata = data.frame(

launch_speed = 105,

launch_angle = 25

),

type = "response"

)

1

0.772

One can display these home run predictions by use of a filled contour graph.
Using the expand_grid() function, we define a 50 by 50 grid of launch variables
where the launch angle is between 15 and 40 angles and the launch speed is
between 90 and 100 mph. We use the predict() function to compute home
run probability predictions on this grid.

grid <- expand_grid(

launch_angle = seq(15, 40, length = 50),

launch_speed = seq(90, 110, length = 50)

)

hats <- fit_23 |>

predict(newdata = grid, type = "response")

grid <- grid |>

mutate(prob = hats)

Using the geom_contour_fill() function from the metR package, we con-
struct a contour graph displayed in Figure 13.1, where the contour lines are at
the values from 0.1 to 0.9 in steps of 0.2.
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FIGURE 13.1
Filled contour graph of home run probability as a function of the launch angle
and launch velocity from 2023 data.

library(metR)

ggplot(grid) +

geom_contour_fill(

aes(

x = launch_angle,

y = launch_speed,

z = prob

),

breaks = c(0, .1, .3, .5, .7, .9, 1),

linewidth = 1.5

) +

scale_fill_distiller(palette = "Spectral") +

theme(text = element_text(size = 18)) +

labs(x = "Launch Angle", y = "Launch Speed") +

guides(fill = guide_legend(title = "Prob(HR)"))

Certainly, high launch speeds are a contributing factor in home run hitting.
But certainly the launch angle is also an important variable. From the contour
graph, we see that the chance of home run at 105 mph and 20 degrees is
approximately the same as the probability when the launch speed is 95 and the
launch angle is 30. Batted balls hit over 105 mph with a launch angle between
25 and 35 degrees are likely to be home runs.
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FIGURE 13.2
Smoothed home run probability as a function of launch angle for batted balls
hit between 100 and 105 mph.

13.2.3 What is the optimal launch angle?

The previous graph raises the question—what is the optimal launch angle for
hitting a home run? To address this question, let’s focus on batted balls hit
between 100 and 105 mph. Using the geom_smooth() function from the ggplot2
package we display the smoothed home run probability in Figure 13.2 when
HR is graphed against launch_angle for these batted balls. The message from
this graph is, for these hard-hit balls, the home run probability is maximized
at 28 degrees.

sc_2023 |>

filter(launch_speed >= 100, launch_speed <= 105) |>

ggplot(aes(x = launch_angle, y = HR)) +

geom_smooth(method = "gam") +

scale_y_continuous(

"Probability of a Home Run",

limits = c(0, 1)

) +

scale_x_continuous(

"Launch Angle (degrees)",

limits = c(10, 50)

)



308 Home Run Hitting

FIGURE 13.2
Smoothed home run probability as a function of launch angle for batted balls
hit between 100 and 105 mph.

13.2.3 What is the optimal launch angle?

The previous graph raises the question—what is the optimal launch angle for
hitting a home run? To address this question, let’s focus on batted balls hit
between 100 and 105 mph. Using the geom_smooth() function from the ggplot2
package we display the smoothed home run probability in Figure 13.2 when
HR is graphed against launch_angle for these batted balls. The message from
this graph is, for these hard-hit balls, the home run probability is maximized
at 28 degrees.

sc_2023 |>

filter(launch_speed >= 100, launch_speed <= 105) |>

ggplot(aes(x = launch_angle, y = HR)) +

geom_smooth(method = "gam") +

scale_y_continuous(

"Probability of a Home Run",

limits = c(0, 1)

) +

scale_x_continuous(

"Launch Angle (degrees)",

limits = c(10, 50)

)

Exploring a Season of Home Run Hitting 309

13.2.4 Temperature effects

Another contributing factor to home run hitting is temperature. Generally the
ball carries further in warmer temperatures. To see this effect, we need to collect
some additional data. Using the mlb_game_info() function from the baseballr
package, we collect the game-time temperature and park name for all games in
the 2023 season—these data are stored in the data frame temps_2023 in the
abdwr3edata package. Since the temperature is only variable for parks that
don’t have a dome, we collect another data frame parks_2023 that contains
the park name and the dome status for all parks used in the 2023 season.

We read in these two additional data files and by two applications of the
inner_join() function, merge them with the Statcast data.

library(abdwr3edata)

temps_parks_2023 <- temps_2023 |>

inner_join(parks_2023, by = c("Park"))

sc_2023 <- sc_2023 |>

inner_join(temps_parks_2023, by = "game_pk")

We use the filter() function to restrict attention to games where the Dome
variable is “No”. Then we use the group_by() and summarize() functions to
compute the count of balls in play and home runs for each day in the 2013
season.

temp_hr <- filter(sc_2023, Dome == "No") |>

group_by(temperature) |>

summarize(

BIP = n(),

HR = sum(HR, na.rm = TRUE)

) |>

mutate(HR_Rate = 100 * HR / BIP)

Using ggplot2, we construct a scatterplot of the home run rate against the
temperature and overlay a smoothing line in Figure 13.3. We see that there
is a general tendency for the home run rate to rise for increasing game-time
temperature.

temp_hr |>

filter(temperature >= 55, temperature <= 90) |>

ggplot(aes(temperature, HR_Rate)) +

geom_point() +

geom_smooth(method = "lm", formula = "y ~ x") +

labs(

x = "Temperature (deg F)",

y = "Home Run Rate"

)
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FIGURE 13.3
Scatterplot of home run rate against temperature during the 2023 season.

To measure this temperature effect, we fit a least-squares model of the form

HR Rate = β0 + β1(Temp − 70)

lm(HR_Rate ~ I(temperature - 70), weights = BIP, data = temp_hr) |>

pluck(coef)

(Intercept) I(temperature - 70)

4.652 0.041

From the output, we predict the home run rate to be 4.65% at a game-time
temperature of 70 degrees and the rate increases by 0.041 for each additional
one-degree Fahrenheit increase in temperature.

13.2.5 Spray angle effects

Besides the launch speed and launch angle, we have measurements that can
be used to construct the spray angle, which is the radial angle that is set to
0 for balls hit up the middle, –45 degrees for balls hit along the third base
line and 45 degrees for balls hit along the first base line. Statcast doesn’t
provide the spray angle measurement directly, but one can compute this angle
from the location of the batted ball measurements hc_x and hc_y. Please see
Section C.7 for a detailed explanation of the calculation. Using the mutate()
function, we compute the spray_angle, measured in degrees and define sc_hr
to be the Statcast measurements for the home runs hit in the 2023 season.
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FIGURE 13.4
Scatterplot of spray angle and distance traveled for home runs hit in the 2023
season.

sc_2023 <- sc_2023 |>

mutate(

location_x = 2.5 * (hc_x - 125.42),

location_y = 2.5 * (198.27 - hc_y),

spray_angle = atan(location_x / location_y) * 180 / pi

)

sc_hr <- sc_2023 |>

filter(events == "home_run")

We construct a scatterplot of spray_angle and batted ball distance variable
hit_distance_sc shown in Figure 13.4. Since the distances to the fences are
greatest in center field, the batted ball distance tends to be greatest for home
runs hit for spray angle values near zero and the distances tend to be smallest
for balls hit along the first and third base lines. From the graph, we identify
five home runs that had a distance exceeding 475 feet. There is one curious
outlier—a home run with a distance of 300 feet and spray angle close to 25
degrees. This turns out to be an inside-the-park home run hit by Bobby Witt,
Jr. of the Kansas City Royals.

ggplot(sc_hr, aes(spray_angle, hit_distance_sc)) +

geom_point(alpha = 0.25)

Batters tend to hit home runs in the “pull” direction. We can verify this
graphically. In Figure 13.5, we divide the hitters by the batting side, either
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FIGURE 13.5
Density estimates of spray angle of home runs hit by left- and right-handed
hitters.

L or H, and then display density estimates of the spray angle for each group
of hitters. As expected, left-handed hitters tend to hit home runs to the right
(positive spray angle) and right-handed hitters tend to hit home runs in the
negative spray angle direction. What is interesting is that the degree of pull is
strongest for the left-handed batters—the modal (most likely) spray angle value
is 37 degrees for left-handed hitters compared to –25 degrees for right-handed
hitters.

ggplot(sc_hr, aes(spray_angle)) +

geom_density() +

facet_wrap(vars(stand), ncol = 1)

13.2.6 Ballpark effects

As baseball fans know, all ballparks are not the same with respect to home
run hitting. The parks differ with respect to the distances to the fences and
climate, so it is easier to hit home runs in some MLB parks. One way to define
a ballpark effect with respect to home runs for, say Atlanta, is to compare the
ratio of all home runs hit by the Braves and their opponents at Truist Park
and all home runs hit by the Braves and opponents when the Braves are on
the road. (See Section 11.7 for in-depth example of how to calculate ballpark
factors.)
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FIGURE 13.6
Dotplots of home run ballpark effects from 2023 season data.

One can compute home run ball park effects for all 30 teams by use of the
home_team and away_team variables. Using the group_by() and summarize()

functions, we compute the count of home runs hit for all teams (and opponents)
when they are at home. Similarly, we compute the home run count for all teams
when they are on the road. The Home and Away data frames are merged using
the inner_join() function and the variable Park_Factor is used to define
the park factor.

sc_home <- sc_2023 |>

group_by(home_team) |>

summarize(HR = sum(HR))

sc_away <- sc_2023 |>

group_by(away_team) |>

summarize(HR = sum(HR))

pf <- sc_home |>

inner_join(sc_away, join_by(home_team == away_team)) |>

mutate(Park_Factor = HR.x / HR.y)

These park factor values are graphed using dotplots in Figure 13.6, where
a vertical line at 1 is added that shows a “neutral” ballpark. Several parks
stand out as being home run friendly, the Texas Rangers (TEX) and New York
Yankees (NYY) have park factors exceeding 1.5, while the Cincinnati Reds
(CIN) have a park factor close to 1.4. It should be said that park factors for a
single season tend to be unstable and so Baseball Savant will typically display
park factors over a three-season period.
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ggplot(pf, aes(Park_Factor, home_team)) +

geom_point() +

geom_vline(xintercept = 1, color = crcblue)

13.2.7 Are home runs about the hitter or the pitcher?

When we think of home run hitting, we tend to think of batters with high home
run counts and not think as much about pitchers who allow many (or few)
home runs. That raises the question—when one looks at the variation of home
run rates among batters and pitchers, is more of the variation attributable
to the hitters or does more of the variation come from the variability among
pitchers?

This question can be addressed by use of a non-nested random effects model.
Let pij denote the probability that a batted ball is a home run depending on
the ith batter and the jth pitcher. We consider the logistic random effects
model written as

log
(

p

1 − p

)
= µ + βi + γj

where µ is an overall effect, βi is the effect due to the ith hitter and γj is
the effect due to the jth pitcher. We let the batter effects follow a normal
distribution with mean 0 and standard deviation σb and the pitcher effects be
normal with mean 0 and standard deviation σp.

This random effects model is conveniently fit using the glmer() function from
the lme4 package. The syntax for the formula is similar to lm() function where
the | indicates that the pitcher and the batter identities are random effects. We
are interested in the estimated values of the random effects standard deviations
σb and σp that are displayed using the VarCorr() function.

library(lme4)

fit <- glmer(

HR ~ (1 | pitcher) + (1 | batter),

data = sc_2023,

family = binomial

)

VarCorr(fit)

Groups Name Std.Dev.

pitcher (Intercept) 0.188

batter (Intercept) 0.523

Note that the estimated value of σb is much larger than the estimated σp

indicating that most of the variation in home run rates is attributable to the
hitter, not the pitcher. So our instincts are correct—it is best to focus on
leaderboards on home run hitting instead of home runs allowed by pitchers.
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13.3 Comparing Home Run Hitting in the 2021 and 2023 Seasons

13.3.1 Introduction

We are interested in comparing home run hitting for the 2021 and 2023 seasons.
On the surface, home run hitting for the two seasons was similar since 1.21
home runs were hit per game per game in 2023 compared with 1.22 in 2021.
But we will see that there have been changes both in batter behavior and in
the carry properties of the baseball between the two seasons, and we’ll explore
these changes by comparing specific rates.

From Figure 13.1, we see that most home runs are hit when the launch angle is
between 20 and 40 degrees and the exit velocity is between 95 and 110 mph. In
this section, we divide this launch variable space into subregions and consider
two rates computed on each subregion. We consider the BIP rate

BIP Rate = 100 × BIP

N
,

the percentage of batted balls BIP hit in the subregion where N is the total
number of batted balls. Also we consider the percentage of home runs hit in
the subregion

HR Rate = 100 × HR

BIP
.

Section 13.3.2 describes the process of binning the launch variable space into
subregions and Section 13.3.3 describes how one can plot measures over the bins.
Sections 13.3.4 and 13.3.5 explain how one compares rates across two seasons
using a logit reexpression. Associated graphs show how players are changing
their batting behavior and how the ball’s carry properties have changed from
2021 to 2023.

13.3.2 Binning launch variables

We write a special function bin_rates() to compute the balls-in-play and
home run rates across regions of the launch variable space. One inputs the
Statcast data frame sc_ip, a vector of breakpoints for launch angle LA_breaks
and a vector of breakpoints for the exit velocity LS_breaks.

The mutate() and cut() functions are used to categorize the launch speeds and
launch angles using the breakpoints vectors. Then by use of the group_by()
function, the number of balls in play and the home run count is computed for
each bin. The mutate() function is used again to compute the BIP and home
run rates for all bins.
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bin_rates <- function(sc_ip, LA_breaks, LS_breaks) {

Total_BIP <- nrow(sc_ip)

sc_ip |>

mutate(

LS = cut(launch_speed, breaks = LS_breaks),

LA = cut(launch_angle, breaks = LA_breaks)

) |>

filter(!is.na(LA), !is.na(LS)) |>

group_by(LA, LS) |>

summarize(

BIP = n(),

HR = sum(HR),

.groups = "drop"

) |>

mutate(

BIP_Rate = 100 * BIP / Total_BIP,

HR_Rate = 100 * HR / BIP

)

}

To illustrate the use of bin_rates(), we use values of launch angle equally
spaced from 20 to 40 degrees and values of launch velocity spaced from 95 to
110 mph. The output of bin_rates() is a data frame with the launch angle
and launch speed intervals LA, LS, the counts BIP, HR, and the rates BIP_Rate
and HR_Rate. We display the first six rows of this data frame.
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3 (20,25] (105,110] 932 646 0.828 69.3

4 (25,30] (95,100] 1494 311 1.33 20.8

5 (25,30] (100,105] 1382 861 1.23 62.3

6 (25,30] (105,110] 684 637 0.608 93.1

13.3.3 Plotting measure over bins

We write the function bin_plot() to display a measure over bins over the
launch variable space. The inputs are the data frame S containing the bin
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frequencies and rates, the vector of breakpoints LA_breaks, LS_breaks, and
the measure to be displayed label.

As a first step, we write a function compute_bin_midpoint() to compute
the midpoints of the intervals. The parse_number() function from the readr
package strips away unwanted characters.

compute_bin_midpoint <- function(x) {

x |>

as.character() |>

str_split_1(",") |>

map_dbl(parse_number) |>

mean()

}

We use the function geom_text() to display label over the bins and applica-
tions of geom_vline() and geom_hline() are used to overlay lines at the bin
boundaries.

bin_plot <- function(S, LA_breaks, LS_breaks, label) {

S |>

mutate(

la = map_dbl(LA, compute_bin_midpoint),

ls = map_dbl(LS, compute_bin_midpoint)

) |>

ggplot(aes(x = la, y = ls)) +

geom_text(aes(label = {{label}}), size = 8) +

geom_vline(

xintercept = LA_breaks,

color = crcblue

) +

geom_hline(

yintercept = LS_breaks,

color = crcblue

) +

theme(text = element_text(size = 18)) +

labs(x = "Launch Angle", y = "Launch Speed")

}

We illustrate the use of bin_plot() on the 2023 Statcast data in Figure 13.8.
We use the data frame S containing the binned frequencies and indicate that
HR is the variable to display. This figure shows that 861 home runs were hit
where the launch angle is in (25, 30) and the exit velocity is in (100, 105).

bin_plot(S, LA_breaks, LS_breaks, HR)
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FIGURE 13.7
Home run counts over different regions defined by launch angle and launch
speed for 2023 data.

Instead suppose we wish to display the home run rate HR_Rate. In Figure 13.8,
we see the chance that a batted ball with launch angle between 25 and 30
degrees and exit velocity between 100 and 105 mph has a 62% chance of being
a home run. As one would expect, the home run rates increase for larger values
of launch speed.

S |>

bin_plot(

LA_breaks, LS_breaks,

label = paste(round(HR_Rate, 0), "%", sep = "")

)

13.3.4 Changes in batter behavior

We apply the functions bin_rates() and bin_plot() to compare batted ball
and home run rates between the 2021 and 2023 seasons. Using the same vectors
of breakpoints for launch angle and launch speed, we bin the 2021 and 2023
Statcast data frames using two applications of bin_rates() via map(). Then
we combine these two summary data frames using the list_rbind() function.

S2 <- sc_two_seasons |>

group_split(Season) |>
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FIGURE 13.8
Home run rates over different regions defined by launch angle and launch speed
for 2023 data.

map(bin_rates, LA_breaks, LS_breaks) |>

set_names(c(2021, 2023)) |>

list_rbind(names_to = "year")

We want to compare the balls in play rates for 2021 and 2023. One issue with
rates is that rates near 0 and 100 percent tend to have smaller variation than
rates near 50 percent. One way of addressing this variation issue is through
the use of logits. If R denotes a rate on the percentage scale, then we define
the logit of R to be:

logit(R) = log
(

R

100 − R

)

Logits tend to have similar spread across all rate values. If we have two rates
measured for two seasons, say R2023 and R2021, then we compare the rates by
use of the difference dlogit of the corresponding logits:

dlogit = log
(

R2023

100 − R2023

)
− log

(
R2021

100 − R2021

)

If the difference dlogit is positive (negative), this indicates that the 2023 rate
is higher (lower) than the 2021 rate. We write a special function logit() to
compute a logit. The pivot_wider() function helps us reorganize the data so
that we can easily subtract the ball in play rates across years. Then by use
of mutate(), we define the variable d_BIP_logits to be the difference of the
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FIGURE 13.9
Difference in logit balls in play rates over regions for 2023 and 2021 seasons.

logits of the two balls-in-play rates. We use the bin_plot() in Figure 13.9 to
display the values of d_BIP_logits over the launch variable space.

logit <- function(x){

log(x) - log(100 - x)

}

S2 |>

select(year, LA, LS, BIP_Rate) |>

pivot_wider(

names_from = year, names_prefix = "y",

values_from = BIP_Rate

) |>

mutate(d_BIP_logits = logit(y2023) - logit(y2021)) |>

bin_plot(

LA_breaks, LS_breaks,

label = round(d_BIP_logits, 2)

)

Note that most of the difference in logit values across the regions are positive,
especially for exit velocities between 100 and 105 mph and launch angle values
between 20 and 35 degrees. The takeaway is the 2023 rates are higher—the
2023 hitters are more likely than the 2021 hitters to put more balls in play in
launch variable regions where home runs are likely.



320 Home Run Hitting

FIGURE 13.9
Difference in logit balls in play rates over regions for 2023 and 2021 seasons.

logits of the two balls-in-play rates. We use the bin_plot() in Figure 13.9 to
display the values of d_BIP_logits over the launch variable space.

logit <- function(x){

log(x) - log(100 - x)

}

S2 |>

select(year, LA, LS, BIP_Rate) |>

pivot_wider(

names_from = year, names_prefix = "y",

values_from = BIP_Rate

) |>

mutate(d_BIP_logits = logit(y2023) - logit(y2021)) |>

bin_plot(

LA_breaks, LS_breaks,

label = round(d_BIP_logits, 2)

)

Note that most of the difference in logit values across the regions are positive,
especially for exit velocities between 100 and 105 mph and launch angle values
between 20 and 35 degrees. The takeaway is the 2023 rates are higher—the
2023 hitters are more likely than the 2021 hitters to put more balls in play in
launch variable regions where home runs are likely.

Comparing Home Run Hitting in the 2021 and 2023 Seasons 321

FIGURE 13.10
Difference in logit home run rates over regions for 2023 and 2021 seasons.

13.3.5 Changes in carry of the baseball

The last section focused on the behavior of the batters—they are hitting at
higher rates of hard-hit balls with high launch variables. A second question
relates to the carry properties of the baseball. Given values of the launch
variables, what is the chance the batted ball is a home run?

We compare the home run rates in bins for the two seasons using the logit mea-
sure. We define the measure d_HR_logits which is the difference between the
logit home run rate for 2023 and the corresponding rate for 2021. Again we use
the bin_plot() function to display these differences in logits in Figure 13.10.

S2 |>

select(year, LA, LS, HR_Rate) |>

pivot_wider(

names_from = year, names_prefix = "y",

values_from = HR_Rate

) |>

mutate(d_HR_logits = logit(y2023) - logit(y2021)) |>

bin_plot(

LA_breaks, LS_breaks,

label = round(d_HR_logits, 2)

)

Here we see that most of the difference values are negative which indicates
that the logit of the HR rate for 2023 is smaller than the corresponding logit
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for 2021. For example, when the launch speed is between 100 and 105 mph and
the launch angle is between 30 and 35 degrees, the 2023 home run rate is 0.16
smaller than the 2021 home run rate. This indicates that the 2023 baseball
has less carry than the ball used during the 2021 season.

Although the 2021 and 2023 have similar overall home run rates on balls put
in play, there are interesting differences between the two seasons. There is an
increasing tendency in 2023 for batters to hit the ball harder in high launch
angles, but this is offset by a slightly deader baseball with less carry in 2023.

13.4 Further Reading

Major League Baseball commissioned an independent study to investigate
the causes of the home run increase during the period 2015–2017. The MLB
commission released two reports: Albert et al. (2018) and Albert et al. (2019).
A more recent study based on 2022 data is found in Albert and Nathan (2022).

13.5 Exercises

1. Modeling Probability of Hit

a. Using a similar generalized additive model as in Section 13.2.2, fit a model
to the logit of the probability of a hit as a smooth function of the launch
angle and launch velocity.

b. Using this model, predict the probability that a ball hit at 20 degrees at
100 mph will be a base hit.

c. Construct a contour plot of the fitted probability of a hit over the region
where the launch angle is between 15 and 40 degrees and the launch speed
is between 80 and 110 mph.

2. How Does P(HR) Depends on Spray Angle?

Construct a smooth scatterplot of the home run variable HR as a function of
the spray angle similar to what was done in Section 13.2.3. Use this plot to
show that it is hardest to hit a home run hit to dead center field.

3. Optimal Launch Angle for a Single

Define a new variable S that is equal to 1 if a single is hit and 0 otherwise. Fit
a generalized linear model where the logit of the probability of a single is a
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smooth function of the launch angle. By looking a predictions from this model,
find the launch angle which maximizes the probability of a single.

4. Nonnested Model for Launch Angle and Launch Speed

a. In Section 13.2.7, we fit a non-nested random effects model for the proba-
bility that a batted ball is a home run. Using the lmer() function in the
lme4 package, explore how the launch angles depend on the batter and the
pitcher. Find the random effects standard deviations.

b. Fit a similar non-nested random effects model using launch velocity as a
response variable. Again find the random effects standard deviations.

c. Looking at the results from parts a and b, is the variation in launch angles
attributable primarily to the hitter or the pitcher? What about launch
velocities—what is the primary source of the variation?

5. Comparing Home Run Hitting for Two Seasons

In Section 13.3, batted ball and home run rates for the 2021 and 2023 seasons
were compared using a particular choice of bins for launch angle and launch
speed. By using a different set of breakpoints for the two variables, compare
batted ball rates and home runs for the two seasons. Compare your findings
with the conclusions stated in Section 13.3.

6. Ratios in Rates for Two Seasons

In Section 13.3, batted ball and home run rates for the 2021 and 2023 seasons
were compared using logits. Repeat the exercise using rates instead of logits and
use ratios of rates to compare the two seasons. Explain using a few sentences
how batted ball rates and home run rates have changed between the two
seasons.
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Making a Scientific Presentation
using Quarto

Quarto is a new authoring system for producing many different kinds of
documents that include dynamic computation of R (or Python) code. In
many ways, Quarto is the natural successor to R Markdown. The previous
edition of this book was written in LATEX, with the knitr package providing a
mechanism for rendering the R code into LATEX, which was then compiled into
a PDF. However, this book is written in Quarto. This change enables us to
simultaneously render the book into multiple formats: in this case, HTML for
the website, and PDF for the printed edition.

As noted above, Quarto documents can be rendered to a variety of different
formats, including HTML presentations powered by reveal.js, a popular
JavaScript library. In this chapter, we illustrate how Quarto an be used to
create a professional quality reproducible scientific presentation.

14.1 Introduction to Slides in Quarto

Like all Markdown documents, Quarto documents have a YAML header, fol-
lowed by various sections of Markdown code. In the example below, the YAML
header appears at the top of the document, enclosed by --- on the first line
and --- on the 4th line. Various options can be specified in the YAML section.
In this case, we specify the author, title, and (importantly) the format. Note
that revealjs is nested within format, and that incremental is nested within
revealjs. What we are saying is that we want the incremental property,
which is available within the revealjs format, to be set to true. In Quarto,
it possible to specify different options for multiple formats simultaneously.

---

title: "Home Run Hitting"

author: "Jim Albert"

format:

DOI: 10.1201/9781032668239-14 324

http://doi.org/10.1201/9781032668239-14
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revealjs:

incremental: true

---

Next, we create slides using Markdown section headers and regular Markdown
content. For example, the following Markdown code creates a slide titled
“Baseball” that contains a list of two players: Mickey Mantle and Aaron Judge.

## Baseball

- Mickey Mantle

- Aaron Judge

In Section 14.2, we create a complex set of slides, based on extensions of these
simple principles.

14.2 Example: Jim’s Presentation on Home Run Hitting

In this section, we will walk you through the creation of a scientific presentation
constructed in Quarto and output as HTML using the reveal.js framework.
The full presentation as Jim gave it is available at: https://bayesball.github.i
o/homerun talk/homeruns.html. A slightly modified version that is consistent
with the content presented here can be viewed at: https://beanumber.github.i
o/abdwr3e/revealjs/hr pres.html

14.2.1 Sections of presentation

First, we decide to divide the presentation into three sections, one introducing
general patterns of home run hitting in baseball history, another describing
the findings of the 2017 MLB Home Run Committee (Albert et al. 2018), and
finally a section describing recent changes in the pattern of home run hitting
during the Statcast era.

We create separate slides with these section titles by use of level 1 headings
(#):

# Introduction

# What is Causing the Increase in Home Rate Rates?

# Recent Exploration of Home Run Rates

https://bayesball.github.io
https://beanumber.github.io
https://bayesball.github.io
https://beanumber.github.io
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14.2.2 Including R output

One attractive aspect of using Quarto in creating presentations is the ability
to incorporate R code and output into a document. As an illustration, suppose
we are interested in describing the dramatic change in home run hitting over
Major League Baseball history by graphing the number of home runs hit per
team per game against season. We use the Lahman database to retrieve these
data.

In the Quarto document, we display the R code within chunks demarcated by
the ```{r} and ``` symbols. The compiled document contains the ggplot2
graph displayed below. By using the echo: true option, the R code is included
in the compiled document. In the case of a presentation, we would generally
use the echo: false option so the code would not be shown. You can see the
full slide in Jim’s presentation.

```{r}
#| echo: true

library(Lahman)

br <- Batting |>

group_by(Year = yearID) |>

summarize(HR = sum(HR))

ggplot(br, aes(Year, HR)) +

geom_point(color = "black", size = 2) +

geom_smooth(

formula = "y ~ x", color = "blue",

se = FALSE, method = "loess",

span = 0.20, linewidth = 1.5

) +

labs(x = "Season", y = "Avg HR") +

theme(text = element_text(size = 22))

```
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14.2.3 Multiple columns and adding images

Part of the presentation is describing some of the famous home run hitters in
baseball history. The image file at the URL below contains a picture of Home
Run Baker. Note that unlike Beamer presentations in LATEX (see Section 14.3),
images in reveal.js presentations can be sourced directly from the Internet.
We include this image in the presentation by use of the ![](url) syntax where
url indicates the location of the folder containing the image.

The Quarto code also illustrates the use of a two column format where the
left column contains the image and the right column gives a brief description
of the player. The .column width argument describes the percentages for the
widths of the left and right columns.

## Home Run Baker

:::: columns

::: {.column width="40%"}

:::

::: {.column width="60%"}

- Played during Deadball Era

- Was home run leader in 1914 with 9 HR

- Home runs were not a big part of the game

:::

::::

Figure 14.1 shows the completed slide of the compiled presentation.

14.2.4 Including a table

It is easy to include a table into the presentation by use of standard Markdown
methods. Here we create a table displaying the total home run counts for the
seasons 2015 through 2022 using the common Markdown pipe format. The
resulting slide is shown in Figure 14.2.

## Home Run Totals in the Statcast Era

| Season | HR Total |

|--------|----------|

| 2015 | 4909 |

| 2016 | 5610 |

| 2017 | 6105 |

| 2018 | 5585 |

| 2019 | 6776 |

![](https://live.staticflickr.com/6/12033666_c111eb7fab_z.jpg)
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FIGURE 14.1
Slide from Jim’s presentation showing Home Run Baker.

FIGURE 14.2
Slide from Jim’s presentation showing a table of home runs counts.

| 2021 | 5944 |

| 2022 | 5215 |

An alternative method for displaying a table uses the kable() function in the
knitr package. The table data is placed in a data frame by use of the tibble()
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TABLE 14.1
A table of home runs counts rendered using kable().

Season Home runs
2015 4909
2016 5610
2017 6105
2018 5585
2019 6776
2021 5944
2022 5215

function. In the kable() function, we choose a “simple” format, align both
columns to be centered, and add special names for the columns. Below we show
the code to implement this R work and then display the output in Table 14.1.

```{r}
#| echo: false

df <- tibble(

Season = c(2015, 2016, 2017, 2018, 2019, 2021, 2022),

HR_Total = c(4909, 5610, 6105, 5585, 6776, 5944, 5215)

)

df |>

knitr::kable(

"simple", align = "cc",

col.names = c("Season", "Home Runs")

)

```

14.2.5 Including LATEX

Another attractive feature of Quarto documents is the ability to incorporate
LATEX, which is a venerable system for displaying mathematical formulas. A
LATEX equation can be placed within the $$ delimiters. Here we use LATEX
to display the formula for the in-play home run rate. Below the Quarto
code, Figure 14.3 shows a snapshot of the slide containing the mathematical
expression.

## In-Play Rates

- Define the home run rate as the fraction of $HR$ among all

batted balls ($AB - SO$)

$$

HR \, Rate = \frac{HR}{AB - SO}
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$$

- Look at history of $HR$ rates

FIGURE 14.3
Slide from Jim’s presentation showing an equation set in LaTeX.

14.2.6 Options using the revealjs format

The revealjs format (resulting in reveal.js presentations) allows for a wide
variety of options. The website https://quarto.org/docs/presentations/revealjs/
provides an overview of all the capabilities of this particular presentation
format.

There are many advanced features, including the ability to create animations,
zoom in and out, include slides numbers, print to PDF, and a Chalkboard
feature that allow you to draw on a slide.

There are 11 built-in themes for Reveal presentations—snapshots from the
default theme have been presented up to this point. One can use the sky

format by use of the following YAML header. A snapshot of the Home Run
Baker slide is displayed using this theme in Figure 14.4.

---

title: "Home Run Hitting"

author: "Jim Albert"

format:

revealjs:

incremental: true

theme: sky

---

https://quarto.org
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FIGURE 14.4
Slide from Jim’s presentation showing Home Run Baker and using the sky

theme.

14.3 Alternative Output Formats

We have focused on the use of the revealjs output format where the presen-
tation output is an HTML file. Other popular formats are Beamer (where the
output is a PDF file) and PowerPoint (where the output is a .pptx file).

These alternative formats require only small changes to the YAML header. For
example, suppose one wishes to create a PDF of our home run presentation
using the Beamer LATEX class. In the YAML header, we indicate as an option
to format that we wish to use the beamer class. In the options to beamer,
we indicate we want to have incremental lists and use the Boadilla beamer
theme with a seahorse color theme.

---

title: "Home Run Hitting"

author: Jim Albert

format:

beamer:

incremental: true

theme: Boadilla

colortheme: seahorse

---
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Instead, suppose we wish to have PowerPoint output. We indicate below that
the format is pptx with incremental lists. No other changes to the presentation
content are necessary!

---

title: "Home Run Hitting"

author: Jim Albert

format:

pptx:

incremental: true

---

By default, PowerPoint will use a relatively plain looking template. You can
modify this by creating a PowerPoint template and using the reference-doc
option to use this template.

14.4 Further Reading

The official Quarto documentation provides an introduction to the HTML,
PowerPoint and Beamer formats for creating presentations. The reveal.js site
provides more details on the use of the reveal.js presentation framework.

14.5 Exercises

1. Home Run Hitting in Recent Years

Use the Lahman package and write R code that will generate the table of the
total number of home runs hit from 2015–2022. Put the table on a slide as we
have done in Section 14.2.4.

2. Home Run Hitting in Recent Years (continued)

Use the Lahman package and write R code that will display the home run rate
on balls in play (HR / (AB - SO)) for seasons 2000–2022 as a function of the
season. Put the figure on a slide as we have done in Section 14.2.2.

3. Should the Player be in the Hall of Fame?

Select a player who you believe should be in the Baseball Hall of Fame. Make
a presentation that compares your player with another player at the same
fielding position who is currently in the Hall of Frame. Your presentation
should include graphs, tables and images of both players.



332 Making a Scientific Presentation using Quarto

Instead, suppose we wish to have PowerPoint output. We indicate below that
the format is pptx with incremental lists. No other changes to the presentation
content are necessary!

---

title: "Home Run Hitting"

author: Jim Albert

format:

pptx:

incremental: true

---

By default, PowerPoint will use a relatively plain looking template. You can
modify this by creating a PowerPoint template and using the reference-doc
option to use this template.

14.4 Further Reading

The official Quarto documentation provides an introduction to the HTML,
PowerPoint and Beamer formats for creating presentations. The reveal.js site
provides more details on the use of the reveal.js presentation framework.

14.5 Exercises

1. Home Run Hitting in Recent Years

Use the Lahman package and write R code that will generate the table of the
total number of home runs hit from 2015–2022. Put the table on a slide as we
have done in Section 14.2.4.

2. Home Run Hitting in Recent Years (continued)

Use the Lahman package and write R code that will display the home run rate
on balls in play (HR / (AB - SO)) for seasons 2000–2022 as a function of the
season. Put the figure on a slide as we have done in Section 14.2.2.

3. Should the Player be in the Hall of Fame?

Select a player who you believe should be in the Baseball Hall of Fame. Make
a presentation that compares your player with another player at the same
fielding position who is currently in the Hall of Frame. Your presentation
should include graphs, tables and images of both players.

Exercises 333

4. Leaderboard Presentation

Make a presentation that presents the top-ten career leaders with respect
to some batting or pitching measure. This presentation should include an R
scatterplot that displays the career measure against the midcareer season for
the ten players. Also include images of the ten players in the leaderboard
together with some information about the players.
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Using Shiny for Baseball
Applications

15.1 Introduction

One of the exciting features of the R ecosystem is the relative ease in construct-
ing web applications of R work by use of the shiny package. In this chapter,
we illustrate the construction of a Shiny app by use of a baseball application
where one wishes to compare the career trajectories of two pitchers from Major
League Baseball history.

A good starting point to develop a Shiny app is writing a function that imple-
ments the computation that one wishes to display in the app. In Section 15.2,
we use several R functions to select a group of contemporary pitchers and
construct the comparison graph of their career trajectories. Section 15.3 out-
lines the steps of constructing the Shiny app including the user interface and
server components and running the app. Once the Shiny app is completed,
Section 15.4 describes several methods of getting other people to try your app
and Section 15.5 concludes by providing some tips that should help interested
readers get their own apps running quickly.

15.2 Comparing Two Pitcher Trajectories

We focus on comparing the career trajectories of two pitchers who played
during the same baseball era. Given a particular interval of seasons of interest
and minimum number of innings pitched, we wish to graphically display a
measure of performance against season or age for two selected pitchers. The
relevant data is in the Lahman package and a FanGraphs table containing
values needed in the computation of the FIP measure.

We wrote two functions to help with these tasks. The first is a function called
selectPlayers2() that returns a data frame of all of the pitchers who achieved
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a certain minimum number of innings pitched where the pitchers’ midcareer
fell inside a particular time interval. There are too many pitchers in the history
of baseball to list them all—to do so would make the app cumbersome to use.
Instead, selectPlayers2() helps us narrow the list to a reasonable number
of pitchers. For example, the following code returns all of the pitchers with at
least 2000 innings pitched and whose midcareer fell between 1959 and 1966.
These are the pitchers who are eligible to be compared by the app.

library(abdwr3edata)

selectPlayers2(c(1959, 1966), 2000)

# A tibble: 26 x 2

playerID Name

<chr> <chr>

1 bellga01 Gary Bell

2 buhlbo01 Bob Buhl

3 bunniji01 Jim Bunning

4 cardwdo01 Don Cardwell

5 chancde01 Dean Chance

6 drysddo01 Don Drysdale

7 ellswdi01 Dick Ellsworth

8 grantmu01 Mudcat Grant

9 jacksla01 Larry Jackson

10 klinero01 Ron Kline

# i 16 more rows

Inside the function itself, we begin by computing the mid-career year and
number of innings pitched, where midYear is defined to be the average of the
first and final seasons of a pitcher. Given the aforementioned values as inputs,
selectPlayers2() queries the Lahman package and outputs the player ids
and names for all pitchers that meet the criteria. The full code for the function
is shown below.

selectPlayers2

function(midYearRange, minIP) {

Lahman::Pitching |>

mutate(IP = IPouts / 3) |>

group_by(playerID) |>

summarize(

minYear = min(yearID),

maxYear = max(yearID),

midYear = (minYear + maxYear) / 2,

IP = sum(IP),
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.groups = "drop"

) |>

filter(

midYear <= max(midYearRange),

midYear >= min(midYearRange),

IP >= minIP

) |>

select(playerID) |>

inner_join(Lahman::People, by = "playerID") |>

mutate(Name = paste(nameFirst, nameLast)) |>

select(playerID, Name)

}

<bytecode: 0x59bb9e639d20>

<environment: namespace:abdwr3edata>

A second helper function compare_plot() constructs the graph comparing the
career trajectories of two selected pitchers. This function requires the player
ids for the two pitchers, the measure to graph (among ERA, WHIP, FIP, SO
Rate, BB Rate) on the vertical axis, and the time variable (either season or
age) to plot on the horizontal axis.

To illustrate the use of the compare_plot() function, suppose we wish to
compare the FIP (fielding-independent pitching) trajectories as a function of
age for the great Dodgers pitches Sandy Koufax and Don Drysdale. From the
People table in the Lahman package, we collect the player ids for the two
pitchers. The fg data frame contains data from the FanGraphs“guts” table. We
then apply the compare_plot() function with inputs koufasa01, drysddo01,
FIP, and age (see Figure 15.1).

compare_plot(

"koufasa01", "drysddo01", "FIP", "age"

) |>

pluck("plot1")

For each pitcher, this function constructs a scatterplot of the FIP measure
against age and overlays a smoothing curve. The geom_textsmooth() function
from the geomtextpath package is used to add player labels to each smoothing
curve. The full code for the function is a bit long to display here, but you can
access the code from the abdwr3edata package.

compare_plot



336 Using Shiny for Baseball Applications

.groups = "drop"

) |>

filter(

midYear <= max(midYearRange),

midYear >= min(midYearRange),

IP >= minIP

) |>

select(playerID) |>

inner_join(Lahman::People, by = "playerID") |>

mutate(Name = paste(nameFirst, nameLast)) |>

select(playerID, Name)

}

<bytecode: 0x59bb9e639d20>

<environment: namespace:abdwr3edata>

A second helper function compare_plot() constructs the graph comparing the
career trajectories of two selected pitchers. This function requires the player
ids for the two pitchers, the measure to graph (among ERA, WHIP, FIP, SO
Rate, BB Rate) on the vertical axis, and the time variable (either season or
age) to plot on the horizontal axis.

To illustrate the use of the compare_plot() function, suppose we wish to
compare the FIP (fielding-independent pitching) trajectories as a function of
age for the great Dodgers pitches Sandy Koufax and Don Drysdale. From the
People table in the Lahman package, we collect the player ids for the two
pitchers. The fg data frame contains data from the FanGraphs“guts” table. We
then apply the compare_plot() function with inputs koufasa01, drysddo01,
FIP, and age (see Figure 15.1).

compare_plot(

"koufasa01", "drysddo01", "FIP", "age"

) |>

pluck("plot1")

For each pitcher, this function constructs a scatterplot of the FIP measure
against age and overlays a smoothing curve. The geom_textsmooth() function
from the geomtextpath package is used to add player labels to each smoothing
curve. The full code for the function is a bit long to display here, but you can
access the code from the abdwr3edata package.

compare_plot

Creating the Shiny App 337

FIGURE 15.1
Career trajctories of FIP for Sandy Koufax and Don Drysdale.

15.3 Creating the Shiny App

15.3.1 Basic structure

A Shiny app is contained in a single R script file frequently named app.R. This
file contains three basic components:

• a user interface object ui describing the layout of the app include all input
controls

• a server function server() describing the instructions needed to run the
app

• a call to the shinyApp() function creating the app given the user interface
and server information

The following code displays the basic structure of the app.R file. Note that this
file initially lists the two functions selectPlayers2() and compare_plot()

followed by the Shiny component ui and the Shiny functions server() and
shinyApp().

library(shiny)

selectPlayers2 <- function(midYearRange, minIP) {

# ...code...
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FIGURE 15.2
Layout of one Shiny app.

}

compare_plot <- function(playerid_1, playerid_2, measure, xvar, fg) {

# ...code...

}

ui <- fluidPage(

# ...code...

)

server <- function(input, output, session) {

# ...code...

}

shinyApp(ui = ui, server = server)

You can view the full code for the app through the compareTrajectories()
function from the abdwr3edata package.

compareTrajectories

15.3.2 Designing the user interface

In the layout of this particular Shiny app, the user interface controls are on the
left side of the app and the output is on the right side as shown in Figure 15.2.

The layout is defined by use of the fluidPage() function inside the ui object.
The fluidRow() function defines a Shiny output window that is 4 units wide
for the user interface and 8 units wide for the output.
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ui <- fluidPage(

fluidRow(

column(4,

# user interface controls

),

column(8,

# output functions

)

)

)

The user interface controls for this application consist of sliders, pull-down
menus and radio buttons. Functions from the shiny package are used to
construct the different input types in the app.

Slider controls are used to input the range of mid-career and minimum innings
pitched (IP) values. The sliderInput() function is used to define the first
slider input midyear. The inputs to this function are the input label, the text
to display, the range of slider values, and the current value. Since value is a
vector of two values, one is inputting a range of values in the slider.

sliderInput(

"midyear",

label = "Select Range of Mid Career:",

min = 1900, max = 2010,

value = c(1975, 1985),

sep = ""

)

A selectInput() function is used to construct a pull-down menu input item.
We display below the code for inputting the player_name1 variable. Note that
the selectPlayers2() function is used to produce the list of player names
that have specific midcareer and minimum PA values.

selectInput(

"player_name1",

label = "Select First Pitcher:",

choices = selectPlayers2(c(1975, 1985), 2000)$Name

)

Radio buttons are defined by use of the radioButtons() function. Below the
code is displayed for the type variable. The inputs to this function are the
label, the string that is displayed and the possible input values.



340 Using Shiny for Baseball Applications

radioButtons(

"type",

label = "Select Measure:",

choices = c("ERA", "WHIP", "FIP", "SO Rate", "BB Rate")

)

15.3.3 Adding dynamic user inputs

One special feature of this particular Shiny app is the use of dynamic UI
where the values of the input controls can be modified by other input controls.
Dynamic UI is achieved by use of the observeEvent() function in the server()
function. In the following code snippet, in observeEvent(), the values of
the player_name1 input are modified when values of the midyear input are
changed. The observeEvent() function is used several times so that the
values of player_name1 and player_name2 are modified whenever the values
of midyear or midpa are changed.

observeEvent(

input$midyear,

updateSelectInput(

inputId = "player_name1",

choices = selectPlayers2(

input$midyear, input$minpa

)$Name

)

)

15.3.4 Completing the server component

The server() function also contains the actual work for the Shiny app. The
following snippet shows how the output component output$plot1 is defined.
From the user inputs input$midyear, input$midpa, input$player_name1
and input$player_name2, the selectPlayers2() function is applied to access
the player user ids. Then the compare_plot() function is used with these
inputs to construct the plot. The renderPlot() function controls how what is
drawn on the app changes when these inputs change.

output$plot1 <- renderPlot({

S <- selectPlayers2(input$midyear, input$minpa)

id1 <- filter(S, Name == input$player_name1)$playerID

id2 <- filter(S, Name == input$player_name2)$playerID

compare_plot(id1, id2, input$type, input$xvar)$plot1

},

res = 96

)
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FIGURE 15.3
Snapshot of the career trajectories Shiny app.

15.3.5 Running the app

In usual practice, the app.R script containing the Shiny code is placed in a
separate folder. One runs the Shiny app by typing in the RStudio console
window

runApp()

Alternatively, one can press the “Run App” button at the top of the screen.
Figure 15.3 displays a snapshot of the completed Shiny app. Because this
particular app is part of an R package, you can run the app by typing:

compareTrajectories()

In Figure 15.3, one is selecting the mid-career interval 1985–2000, a minimum
PA value of 2000, and comparing the ERA trajectories of the Hall of Fame
pitchers Greg Maddux and Tom Glavine.

We note that while their career trajectories were similar, Maddux had a superior
ERA during his peak years.
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15.4 Sharing the App

There are several ways of sharing your Shiny app with others.

• Share the app.R file. Since the app is contained in a single file app.R, one
can simply share this script file with other people.

• Put it in a package. This is the method illustrated by the
compareTrajectories() function in the abdwr3edata package.

• Share the app via Github. Another way of sharing the app is to create a
Github repository and store your Shiny app in that repository. Then the
user can use the runGitHub() function to run the Shiny app from your
repository. To illustrate this method, one of the authors created the Github
repository testshinyapp and then stored the career trajectories app in
this repository. Thanks to the runGitHub() function, the interested reader
can run this app by typing in the Console.

runGitHub( "testshinyapp", "bayesball")

• Host the app on a Shiny server. Posit currently has a hosting service which
allows a user to see your app as a web program. To use the Posit service,
one needs to set up an account on https://www.shinyapps.io/.
Then once you have your Shiny app running, there is a Publish button on
the app display that uploads your app to the server. One of the authors
recently did this for the career trajectory Shiny app and the live version of
the app is current available at the following URL:

https://bayesball.shinyapps.io/CareerTrajectoryPitching/

15.5 Tips for Getting Started Making Apps

An easy way to get started is to start with a template, a script to a Shiny app
that has a similar user interface to the one that you are interested to making.
For example, if you are interested in plotting career trajectories for batters, you
can modify the CareerTrajectoryPitching app described in this chapter.

There are many illustrations of the code for producing different types of Shiny
apps on the Posit Shiny Gallery. By starting with a sample app.R script,
one can avoid the small coding errors that are easy to make when one is
constructing a program from scratch.

https://www.shinyapps.io
https://bayesball.shinyapps.io
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15.6 Further Reading

Posit has a large amount of information and examples of Shiny apps at the Shiny
R site https://shiny.posit.co/r/getstarted/shiny-basics/lesson1/index.html. In
addition, one of the authors has created an R package ShinyBaseball found at
https://github.com/bayesball/ShinyBaseball that contains a large number of
Shiny apps for illustrating baseball research for a variety of problems. These
apps have been used to illustrate R work for the “Exploring Baseball with R”
blog at https://baseballwithr.wordpress.com/.

15.7 Exercises

1. Plotting Locations of Balls in Play

The following function construct_zone_plot() produces a plot of the zone
locations of balls in play for a player where the color of the plotting plot
depends on the outcome. The inputs to the function are the Statcast dataset
of balls in play sc_ip, the name of the batter p_name and the outcome type
(either “Hit” or “Home Run”). For example, if sc2023_ip is a data frame of
balls in play for the 2023 season, then one can display the locations of all of
Ronald Acuña’s balls in play colored by hit by use of the function

construct_zone_plot(sc2023_ip, "Acu~na Jr., Ronald", "Hit")

https://shiny.posit.co
https://github.com
https://baseballwithr.wordpress.com
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Construct a Shiny app using this function where the player name is input
through a select list and the outcome type is input using radio buttons.

construct_zone_plot <- function(sc_ip, p_name, type) {

require(dplyr)

require(ggplot2)

add_zone <- function() {

topKzone <- 3.5

botKzone <- 1.6

inKzone <- -0.85

outKzone <- 0.85

kZone <- data.frame(

x = c(inKzone, inKzone, outKzone, outKzone, inKzone),

y = c(botKzone, topKzone, topKzone, botKzone, botKzone)

)

geom_path(aes(.data$x, .data$y),

data = kZone, lwd = 1

)

}

hits <- c("single", "double", "triple", "home_run")

sc_player <- filter(sc_ip, player_name == p_name) |>

mutate(

Hit = ifelse(events %in% hits, "YES", "NO"),

Home_Run = ifelse(events == "home_run", "YES", "NO")

)

ggplot() +

geom_point(
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color = .data[[type]]

)

) +
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coord_equal() +

scale_colour_manual(values = c("tan", "red")) +

labs(

title = paste(

substr(sc_player$game_date[1], 1, 4),

p_name

),

subtitle = "Location of Balls in Play"

) +

theme(

plot.title = element_text(

color = "black", hjust = 0.5, size = 18

),

plot.subtitle = element_text(

color = "black", hjust = 0.5, size = 14
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Construct a Shiny app using this function where the player name is input
through a select list and the outcome type is input using radio buttons.
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require(ggplot2)
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topKzone <- 3.5
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outKzone <- 0.85

kZone <- data.frame(

x = c(inKzone, inKzone, outKzone, outKzone, inKzone),

y = c(botKzone, topKzone, topKzone, botKzone, botKzone)

)

geom_path(aes(.data$x, .data$y),

data = kZone, lwd = 1
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)

ggplot() +

geom_point(

data = sc_player,

aes(plate_x, plate_z,

color = .data[[type]]

)

) +

add_zone() +

coord_equal() +

scale_colour_manual(values = c("tan", "red")) +

labs(

title = paste(

substr(sc_player$game_date[1], 1, 4),

p_name

),

subtitle = "Location of Balls in Play"

) +

theme(

plot.title = element_text(

color = "black", hjust = 0.5, size = 18

),

plot.subtitle = element_text(

color = "black", hjust = 0.5, size = 14
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)

)

}

2. Plotting Locations of Balls in Play using Other Outcomes

In Exercise 1, the color of the plotting point can depend on the outcome “Hit”
or“Home Run”. Revise the construct_zone_plot() function so that the type
outcome can be one of the continuous variables launch_angle, launch_speed
or estimated_ba_using_speedangle. Revise the Shiny app so that the user
can input one of these three variables.

3. Plotting Locations of Balls in Play with Brushing

Shiny allows one to interactively select portions of a graph by brushing. The
following code in the user input section modifies the plotOutput() function
by adding the brush option.

plotOutput("plot", brush = brushOpts("plot_brush", fill = "#0000ff"))

In a new output$data component of the server section of the Shiny app, the
following code will take a subset of the sc_player data frame which is defined
by the selected rectangle that is brushed.

sc1 <- brushedPoints(sc_player, input$plot_brush)

By using this code, modify the Shiny app in Exercise 1 to allow brushing of
the scatterplot. In a separate region of the display, compute the balls in play,
the hits, the home runs, and the corresponding hit and home run rates for
points in the selected region.
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Retrosheet Files Reference

A.1 Downloading Play-by-Play Files

A.1.1 Introduction

The play-by-play data files for every Major League season between 1913 and
2022 are currently available at the Retrosheet Web page at https://www.retr
osheet.org/game.htm. By clicking on a single year, say 1950, one obtains a
compressed (.zip) file containing a collection of files: one set of files containing
information on the plays for the home games for all teams, and another set of
files giving the rosters of the players for each team. This appendix illustrates
the easiest way to work with Retrosheet files.

A.1.2 Chadwick

Henry Chadwick was a sportswriter who is credited with inventing the box
score, batting average, and earned run average. The special software tools
designed to process Retrosheet data are named in his honor. These tools are
maintained by Ted Turocy, and are available at https://github.com/chadwic
kbureau/chadwick. Please follow the installation instructions for Chadwick.
The repository contains binaries suitable for Windows users, while Linux and
Mac users can compile their own versions of these tools by downloading and
compiling the source code.

The particular component of Chadwick that we need to generate Retrosheet
play-by-play data is called cwevent. It is a program that is run at the command
line. If it is installed and working properly, you can simply type cwevent at
the command line and see output like this.

cwevent

Chadwick expanded event descriptor, version 0.10.0

Type 'cwevent -h' for help.

Copyright (c) 2002-2023

Dr T L Turocy, Chadwick Baseball Bureau (ted.turocy@gmail.com)
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This is free software, subject to the terms of the GNU GPL

license.

If you have installed Chadwick and you get an error when you run cwevent, it is
probably one of two problems, both of which involve setting path environment
variables. If the error says command not found (or something of that nature),
then your operating system cannot find the cwevent binary, probably because
your PATH environment variable does not include the directory where the
cwevent binary is. On this Ubuntu machine1, we can find the correct path by
typing:

which cwevent

/usr/local/bin

You can check the current value of the PATH environment variable at the
command line using echo.

echo $PATH

Use the export directive to append the path to the cwevent binary to the
current PATH environment variable.

export PATH=$PATH:/usr/local/bin

If cwevent runs, but throws an error, the most likely problem is that cwevent
can’t find the Chadwick shared libraries. You can solve this problem by setting
the LD_LIBRARY_PATH environment variable. Note that environment variables
are system-specific. On this Ubuntu machine, we can find the Chadwick shared
libraries using the find command.

find /usr/local -name "libchadwick*"

/usr/local/lib/libchadwick.la

/usr/local/lib/libchadwick.a

/usr/local/lib/libchadwick.so

/usr/local/lib/libchadwick.so.0

/usr/local/lib/libchadwick.so.0.0.0

So in order for cwevent to work, the LD_LIBRARY_PATH environment vari-
able needs to include /usr/local/lib. You can set the LD_LIBRARY_PATH

environment variable using export as we did above, or, to set environ-
ment variables from within R, use the Sys.getenv() and Sys.setenv()

1On Windows, the analogous DOS command is where.
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functions. The safe_add_ld_path() function we present below is similar
to the chadwick_ld_library_path() function in the baseballr package.

safe_add_ld_path <- function(path_new = "/usr/local/lib") {

path_old <- Sys.getenv("LD_LIBRARY_PATH")

path_old_parts <- path_old |>

str_split_1(":") |>

unique()

if (!path_new %in% path_old_parts) {

path_new_parts <- c(path_new, path_old_parts)

Sys.setenv(

LD_LIBRARY_PATH = paste0(path_new_parts, collapse = ":")

)

}

Sys.getenv("LD_LIBRARY_PATH")

}

safe_add_ld_path()

[1] "/usr/lib/R/lib:/usr/lib/x86_64-linux-gnu:/usr/local/lib:"

A.1.3 Downloading data for one or more seasons

Once you have Chadwick installed and working properly, the
retrosheet_data() function from the baseballr package makes obtain-
ing Retrosheet play-by-play data a breeze.

The retrosheet_data() function takes three optional arguments that help
you manage your data. Note that this function calls cwevent, and so it will
not work if you haven’t set up Chadwick properly as in Section A.1.2.

To download the Retrosheet data we use in this book, type:

retro_data <- baseballr::retrosheet_data(

here::here("data_large/retrosheet"),

c(1992, 1996, 1998, 2016)

)

This will download and process four years worth of play-by-play data and
return a list of length four, with each item containing a list of length
two. Each of the four items in retro_data corresponds to the four years we
specified. The two items in each of those years are data frames: one called
events that stores the play-by-play data, and another called rosters that
stores the rosters.
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To isolate the play-by-play data for a single year, use the pluck() function.

retro1992 <- retro_data |>

pluck("1992") |>

pluck("events")

A.1.4 Saving the data

You probably don’t want to have to download and process all of this data every
time you want to use it. Now that you have it stored in R, the best way to
save it for later use is by writing the data frame for each year to disk using R’s
internal data storage format. You can do this with the write_rds() function.

retro1992 |>

write_rds(

file = here::here("data/retro1992.rds"),

compress = "xz"

)

Be sure to use the compress argument—it will significantly reduce the size of
the data.

If you want to build a whole database of Retrosheet data (for many years),
iterate the process described above and combine it with our illustration of how
to build a SQL database in Chapter 11 and our discussion of working with
large data in Chapter 12.

A.1.5 The function parse_retrosheet_pbp()

In previous versions of this book, we included a function called
parse_retrosheet_pbp() that could be used to download and process Ret-
rosheet data. This function has been superseded by the retrosheet_data()
function from the baseballr package, and we no longer recommend using it.
However, if you are interested in working through its logic, the code is available
through the abdwr3edata package.

abdwr3edata::parse_retrosheet_pbp

function(season) {

download_retrosheet(season)

unzip_retrosheet(season)

create_csv_file(season)

create_csv_roster(season)

cleanup()
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}

<bytecode: 0x575fc1168c20>

<environment: namespace:abdwr3edata>

You may want to access the various helper functions for further detail. For
example:

abdwr3edata::download_retrosheet

function(season) {

# get zip file from retrosheet website

utils::download.file(

url = paste0(

),

destfile = file.path(

"retrosheet", "zipped",

paste0(season, "eve.zip")

)

)

}

<bytecode: 0x575fc1330600>

<environment: namespace:abdwr3edata>

A.1.6 Alternatives to Chadwick

The retrosheet package (Douglas and Scriven 2024) provides an alternative
method for bringing Retrosheet data into R without an external dependency
on the Chadwick software through its getRetrosheet() function. However,
these data are returned as a list of lists (rather than a list of data frames), and
thus can be considerably more cumbersome to analyze.

A.2 Retrosheet Event Files: a Short Reference

As we mentioned in Chapter 1, Retrosheet event files come in a format expressly
devised for them, and require the use of some software tools for converting
them in a format suitable for data analysis. Retrosheet provides such software
tools https://www.retrosheet.org/tools.htm and a step-by-step example
https://www.retrosheet.org/stepex.txt for performing the conversion.

Chadwick provides similar tools for parsing Retrosheet event files that have been
used for creating the play-by-play files used in this book (see Section A.1.2).

"http://www.retrosheet.org/events/", season, "eve.zip"

https://www.retrosheet.org
https://www.retrosheet.org
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Chadwick tools generate a line for each play in the Retrosheet event files,
consisting of 97 “regular” columns (the same that are obtained using the tools
provided by Retrosheet) plus 63 “extended” fields, allowing to easily access
all of the information contained in the Retrosheet event files. Going through
every one of the more than 150 columns generated by the Chadwick tools is
beyond the scope of this book, and thus we point to the documentation on the
Chadwick website for the full list.2 In this section we present the main fields
describing an event and the state of the game when it happens.

Please note that while the Chadwick tools return variable names in all caps,
the retrosheet_data() function uses snake case for variable names.

A.2.1 Game and event identifiers

The games are identified in Retrosheet event files by 12-character strings
(the GAME_ID column): the first three characters identify the home team, the
following eight characters indicate the date when the game took place (in the
YYYYMMDD format), and the last character is used to distinguish games of
doubleheaders (thus “1” indicates the first game, “2” the second game, and “0”
means only one game was played on the day).

Events are progressively numerated in each game (column EVENT_ID), thus
every single action in the Retrosheet database can be uniquely identified by
the combination of the game identifier and the event identifier.

A.2.2 The state of the game

Several fields are helpful for defining the state of the game when a particular
event happened. The inning and the team on offense variables are stored in the
INN_CT and BAT_HOME_ID fields respectively. The latter field can assume values
“0” (away team batting, i.e., top of the inning) or “1” (home team batting,
bottom of the inning). The visitor score and the home score variables are
recorded in the AWAY_SCORE_CT and HOME_SCORE_CT.

The number of outs before the play is indicated in the OUTS_CT column, while
the situation of runners on base is coded in the field START_BASES_CD, using
numbers from 1 to 7 as shown in Table A.1.3

The actual description of the event resides in the EVENT_TX column, consisting
of a string describing the outcome of the play (e.g., strikeout, single, etc.),
some additional details (e.g., the type and location of the batted ball), and
the advancement of any runner on base. Several columns are generated by

2The documentation for all the software tools is available at https://chadwick.sourcefor
ge.net/doc/cwtools.html. In particular, the tool for processing the event files (cwevent) is
documented at https://chadwick.sourceforge.net/doc/cwevent.html#cwtools-cwevent.

3An analogous column named END_BASES_CD contains the base state at the end of the
play, coded in the same way.

https://chadwick.sourceforge.net
https://chadwick.sourceforge.net
https://chadwick.sourceforge.net
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TABLE A.1
Retrosheet coding for the situation of runners on base.

Code Bases occupancy
0 Empty
1 1B only
2 2B only
3 1B & 2B
4 3B only
5 1B & 3B
6 2B & 3B
7 Loaded

decoding the EVENT_TX string:

• EVENT_CD is a numeric code reflecting the basic event; Table A.2 displays
the codes for the possible plays coded in this column.

• BAT_EVENT_FL is a flag indicating whether an event is a batting event,
in which case it is labeled as T. Non-batting events include, for example,
stolen bases, wild pitches and, generally, any event that does not mark the
end of a plate appearance.

• H_CD is a numeric code indicating the base hit type, going from 1 for a
single to 4 for a home run.

• BATTEDBALL_CD is a single character code denoting the batted ball type. It
can assume one of the following values: G (ground ball), L (line drive), F
(fly ball), P (pop-up). Note that for most of the seasons in the Retrosheet
database, the batted ball type is reported only for plate appearances ending
with the batter making an out, while they are not available on base hits.

• BATTEDBALL_LOC_TX is a string indicating the batted ball location, coded
according to the diagram shown at https://www.retrosheet.org/location.ht
m. Note that this information is available for a limited number of seasons.

• FLD_CD is a numeric code denoting the fielder first touching a batted ball,
coded with the conventional baseball fielding notation going from 1 (the
pitcher) to 9 (the right fielder).

The sequence of pitches is recorded in the PITCH_SEQ_TX and has been ad-
dressed in Chapter 6, where Table 6.1 displays how the different pitch outcomes
are coded. Several columns are generated from this one, indicating counts of
the various types of pitch outcomes, as displayed in Table A.3.

https://www.retrosheet.org
https://www.retrosheet.org
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TABLE A.2
Retrosheet coding for the type of event.

Code Event type
2 Generic Out
3 Strikeout
4 Stolen Base
5 Defensive Indifference
6 Caught Stealing
8 Pickoff
9 Wild Pitch
10 Passed Ball
11 Balk
12 Other Advance
13 Foul Error
14 Nonintentional Walk
15 Intentional Walk
16 Hit By Pitch
17 Interference
18 Error
19 Fielder Choice
20 Single
21 Double
22 Triple
23 Homerun

TABLE A.3
Columns reporting counts of various pitch types.

Column name Column description
PA BALL CT No. of balls in plate appearance
PA CALLED BALL CT No. of called balls in plate appearance
PA INTENT BALL CT No. of intentional balls in plate appearance
PA PITCHOUT BALL CT No. of pitchouts in plate appearance
PA HITBATTER BALL CT No. of pitches hitting batter

in plate appearance
PA OTHER BALL CT No. of other balls in plate appearance
PA STRIKE CT No. of strikes in plate appearance
PA CALLED STRIKE CT No. of called strikes in plate appearance
PA SWINGMISS STRIKE CT No. of swinging strikes in plate appearance
PA FOUL STRIKE CT No. of foul balls in plate appearance
PA INPLAY STRIKE CT No. of balls in play in plate appearance
PA OTHER STRIKE CT No. of other strikes in plate appearance



356 Retrosheet Files Reference

TABLE A.2
Retrosheet coding for the type of event.

Code Event type
2 Generic Out
3 Strikeout
4 Stolen Base
5 Defensive Indifference
6 Caught Stealing
8 Pickoff
9 Wild Pitch
10 Passed Ball
11 Balk
12 Other Advance
13 Foul Error
14 Nonintentional Walk
15 Intentional Walk
16 Hit By Pitch
17 Interference
18 Error
19 Fielder Choice
20 Single
21 Double
22 Triple
23 Homerun

TABLE A.3
Columns reporting counts of various pitch types.

Column name Column description
PA BALL CT No. of balls in plate appearance
PA CALLED BALL CT No. of called balls in plate appearance
PA INTENT BALL CT No. of intentional balls in plate appearance
PA PITCHOUT BALL CT No. of pitchouts in plate appearance
PA HITBATTER BALL CT No. of pitches hitting batter

in plate appearance
PA OTHER BALL CT No. of other balls in plate appearance
PA STRIKE CT No. of strikes in plate appearance
PA CALLED STRIKE CT No. of called strikes in plate appearance
PA SWINGMISS STRIKE CT No. of swinging strikes in plate appearance
PA FOUL STRIKE CT No. of foul balls in plate appearance
PA INPLAY STRIKE CT No. of balls in play in plate appearance
PA OTHER STRIKE CT No. of other strikes in plate appearance

Parsing Retrosheet Pitch Sequences 357

A.3 Parsing Retrosheet Pitch Sequences

A.3.1 Introduction

Chapter 6 showed how to compute, using regular expressions, whether a plate
appearance went through either a 1-0 or a 0-1 count. Here we provide the code
to retrieve the same information for every possible balls/strikes count.

A.3.2 Setup

We first load Retrosheet data for the 2016 season.

retro2016 <- read_rds(here::here("data/retro2016.rds"))

Then a new column sequence is created in which the pitch sequence is reported,
stripped by any character not indicating an actual pitch to the batter.4

retro2016 <- retro2016 |>

mutate(sequence = gsub("[.>123+*N]", "", pitch_seq_tx))

A.3.3 Evaluating every count

Every plate appearance starts with a 0-0 count. The code for both the 1-0 and
0-1 counts was described in Chapter 6.

retro2016 <- retro2016 |>

mutate(

c00 = TRUE,

c10 = grepl("^[BIPV]", sequence),

c01 = grepl("^[CFKLMOQRST]", sequence)

)

A number inside the curly brackets indicates the exact number of times the
preceding expression has to be repeated in the string to match. The following
lines look for plate appearances going through the counts 2-0, 3-0, and 0-2.

retro2016 <- retro2016 |>

mutate(

c20 = grepl("^[BIPV]{2}", sequence),

c30 = grepl("^[BIPV]{3}", sequence),

4See Table 6.1 in Chapter 6 for reference.
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c02 = grepl("^[CFKLMOQRST]{2}", sequence)

)

The | (vertical bar) character is used to separate alternatives. The following
lines parse the sequence string looking for the different sequences that can
lead to 1-1, 2-1, and 3-1 counts.

b <- "[BIPV]"

s <- "[CFKLMOQRST]"

retro2016 <- retro2016 |>

mutate(

c11 = grepl(

paste0("^", s, b, "|^", b, s), sequence

),

c21 = grepl(

paste0("^", s, b, b,

"|^", b, s, b,

"|^", b, b, s), sequence

),

c31 = grepl(

paste0("^", s, b, b, b,

"|^", b, s, b, b,

"|^", b, b, s, b,

"|^", b, b, b, s), sequence

)

)

On two-strike counts, batters can indefinitely foul pitches off without affecting
the count. In the lines below, sequences reaching two strikes before reaching
the desired number of balls feature the [FR]* expression, denoting a foul ball5

happening any number of times, including zero, as indicated by the asterisk.

retro2016 <- retro2016 |>

mutate(

c12 = grepl(

paste0("^", b, s, s,

"|^", s, b, s,

"|^", s, s, "[FR]*", b), sequence

),

c22 = grepl(

paste0("^", b, b, s, s,

"|^", b, s, b, s,

"|^", b, s, s, "[FR]*", b,

"|^", s, b, b, s,

5F encodes a foul ball, R a foul ball on a pitchout. See Table 6.1.
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)

The | (vertical bar) character is used to separate alternatives. The following
lines parse the sequence string looking for the different sequences that can
lead to 1-1, 2-1, and 3-1 counts.

b <- "[BIPV]"

s <- "[CFKLMOQRST]"

retro2016 <- retro2016 |>

mutate(

c11 = grepl(

paste0("^", s, b, "|^", b, s), sequence

),

c21 = grepl(

paste0("^", s, b, b,

"|^", b, s, b,

"|^", b, b, s), sequence

),

c31 = grepl(

paste0("^", s, b, b, b,

"|^", b, s, b, b,

"|^", b, b, s, b,

"|^", b, b, b, s), sequence

)

)

On two-strike counts, batters can indefinitely foul pitches off without affecting
the count. In the lines below, sequences reaching two strikes before reaching
the desired number of balls feature the [FR]* expression, denoting a foul ball5

happening any number of times, including zero, as indicated by the asterisk.

retro2016 <- retro2016 |>

mutate(

c12 = grepl(

paste0("^", b, s, s,

"|^", s, b, s,

"|^", s, s, "[FR]*", b), sequence

),

c22 = grepl(

paste0("^", b, b, s, s,

"|^", b, s, b, s,

"|^", b, s, s, "[FR]*", b,

"|^", s, b, b, s,

5F encodes a foul ball, R a foul ball on a pitchout. See Table 6.1.
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"|^", s, b, s, "[FR]*", b,

"|^", s, s, "[FR]*", b, "[FR]*", b),

sequence

),

c32 = grepl(

paste0("^", s, "*", b, s,

"*", b, s, "*", b), sequence

) & grepl(

paste0("^", b, "*", s, b, "*", s), sequence

)

)

The retrosheet_add_counts() in the abdwr3edata package contains all of
the code necessary to compute these counts.

abdwr3edata::retrosheet_add_counts
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Historical Notes on PITCHf/x
Data

B.1 Introduction

PITCHf/x was a product by Sportvision, a company that produced broadcast
effects for sports, such as the first-down virtual line for football and the FoxTrax
hockey puck. Two cameras installed in each MLB park recorded the flight
of the baseball between the pitcher’s mound and home plate, and advanced
software calculated the position, the velocity, and the acceleration of the ball,
giving sufficient information to estimate the full trajectory of the ball in its
mound-to-plate trip.

From 2006 until fairly recently, Major League Baseball Advanced Media
(MLBAM) maintained a publicly accessible Gameday web server that fed
their online content with real-time data delivered in an XML format. Previous
editions of this book used the pitchRx package to download this pitch-by-
pitch information. Unfortunately, this server has been superseded by an API -
based system located at https://statsapi.mlb.com/, and thus the pitchRx
package no longer works. While this new system is also publicly accessible and
delivers real-time data, it is not well documented and proper usage requires
registration as a developer. Several developers have published API packages
on GitHub, most notably the MLB-StatsAPI package for Python available
at https://github.com/toddrob99/MLB-StatsAPI, but to the best of our
knowledge no similar R package is in widespread use.

That is the bad news.

The good news is that most, if not all, of the useful data provided by the old
Gameday server is available through the Statcast data served via Baseball
Savant. Appendix C details the retrieval and use of these data.

In the remainder of this section, we list several resources that were vital in
moving sabermetric research fueled by PITCHf/x data forward, mainly for
posterity.

DOI: 10.1201/9781032668239-B 360
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B.2 Online Resources

The following PITCHf/x resources were available on the World Wide Web.
Note that due to site maintainers being hired by MLB front offices, the demise
of PITCHf/x, or exclusive licensing contracts, these resources are subject to
being removed or moved.

• Mike Fast’s PITCHf/x glossary (https://fastballs.wordpress.com/2007/08/
02/glossary-of-the-gameday-pitch-fields/): Detailed explanations for the
PITCHf/x fields have been provided by Mike Fast.

• Brooks Baseball (https://www.brooksbaseball.net/): Created and main-
tained by Dan Brooks, its main features are the Player Cards, consisting of
tables and charts for every pitcher who has ever played in a ballpark with
the PITCHf/x system installed. Tables and charts report information on
characteristics of pitches, their usage (including sequencing), and the out-
comes they produce. The classification of pitches used at Brooks Baseball is
not the MLBAM one, as pitches are classified by Pitch Info LLC. Another
useful resource of Brooks Baseball is the PitchFX Tool, which allows site
visitors to select one pitcher for one game and obtain a pitch-by-pitch table.

• Baseball Prospectus (https://www.baseballprospectus.com/): In
its Statistics section, Baseball Prospectus offers PITCHf/x Hitters Pro-
files, PITCHf/x Pitchers Profiles, PITCHf/x Leaderboards, and PITCHf/x
Matchups. The building blocks of these resources come from the previously
mentioned Brooks Baseball.

• FanGraphs (https://www.fangraphs.com/): FanGraphs has PITCHf/x
tables and charts for individual players. For example, pitcher James Shields’s
PITCHf/x page is available at https://www.fangraphs.com/pitchfx.aspx?p
layerid=7059&position=P.

• F/X by Texas Leaguers (https://pitchfx.texasleaguers.com/): Allows one
to set a time frame and find PITCHf/x pitching or batting data for one
particular player. This site includes charts on trajectory and movement,
tables on pitch characteristics, and outcomes and pitcher/batter match-ups.

• Prof. Alan Nathan’s The Physics of Baseball (http://baseball.physics
.illinois.edu/): Contains research on baseball physics and has a section
dedicated to pitch tracking using video technology at http://baseball.physi
cs.illinois.edu/pitchtracker.html.

• Katron’s MLB Gameday BIP Location (https://katron.org/projects/base
ball/hit-location/): Allows one to transpose hit location data of a given
ballpark in another ballpark of choice. Keeping in mind all the caveats

https://fastballs.wordpress.com
https://www.brooksbaseball.net
https://www.baseballprospectus.com
https://www.fangraphs.com
https://www.fangraphs.com
https://pitchfx.texasleaguers.com
http://baseball.physics.illinois.edu
http://baseball.physics.illinois.edu
https://katron.org
http://baseball.physics.illinois.edu
http://baseball.physics.illinois.edu
https://fastballs.wordpress.com
https://www.fangraphs.com
https://katron.org
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previously illustrated for batted ball data, it can be used to explore the
effect moving to a new team can have on a player’s batting.

• Sportvision: Sportvision was the company that has devised the PITCHf/x
system. They have since been acquired by SMT.
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C

Statcast Data Reference

C.1 Introduction

Statcast is the current state-of-the-art tracking system used in all Major League
ballparks since the 2015 season. This system is used to track the movements
of the baseball and all players on the field at 20,000 frames per second. Using
the Statcast system, we can learn about the speed, direction, and distance
traveled of players. For example, this system allows for precise evaluation of a
defensive player’s movement toward a batted ball.

Currently some of the Statcast data is available through the Baseball Savant
website, which downloads the data from MLB Advanced Media. The R package
baseballr has special functions for downloading Statcast pitch-by-pitch data
from Baseball Savant. We discuss these in Section C.10. The purpose of this
reference is to describe the variables that overlap with variables available in the
Retrosheet play-by-play and now defunct PITCHf/x datasets (see Appendix B),
and describe the new “off the bat” variables available from Statcast.

DOI: 10.1201/9781032668239-C 363

C.2 Cross-referencing with Other Data Sources

The People table in the Lahman database is a useful resource for cross-
referencing players across several data sources such as the Baseball-Reference
website and the Retrosheet files. Unfortunately, it currently does not contain a
column for the MLBAM player identifier; thus the People table is not useful for
merging Statcast data to information coming from other sources. The best way
to cross-reference player identifiers across these systems is by using The Register
at Chadwick Baseball Bureau (https://github.com/chadwickbureau/register).
There, one finds a link for the download of a zip file containing a register
of players, managers, and umpires at any professional level (including, other
than the Major Leagues, the Minor and Independent Leagues, Winter Leagues,
Japanese and Korean top levels, and the Negro Leagues).

http://doi.org/10.1201/9781032668239-C
https://github.com
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Simpler still is to use the chadwick_player_lu() function from the baseballr
package, as we did in Section 7.5. Since this file takes a minute to download
and process, we can store a local copy using the write_rds() function.

master_id <- baseballr::chadwick_player_lu() |>

write_rds(

here::here("data/chadwick_register.rds"), compress = "xz"

)

C.3 Game Situation Variables

Many of the variables concern the game situation at the time of the pitch
(see Table C.1). These variables include the date, inning, and number of outs.

TABLE C.1
Game situation variables from Statcast.

Name Description
game date Date of game
batter Id of the batter
pitcher Id of the pitcher
stand Side of the batter
p throws Throwing hand of pitcher
home team Code for home team
away team Code for visiting team
balls Number of current balls
strikes Number of current strikes
on 3b Id of baserunner on third base
on 2b Id of baserunner on second base
on 1b Id of baserunner on first base
outs when up Current number of outs
inning Current inning
inning topbot Top or bottom of inning
pos1 person id Id of pitcher
pos2 person id Id of catcher
pos3 person id Id of first baseman
pos4 person id Id of second baseman
pos5 person id Id of third baseman
pos6 person id Id of shortstop
pos7 person id Id of left fielder
pos8 person id Id of center fielder
pos9 person id Id of right fielder
pitch number Number of pitch in PA
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TABLE C.2
Pitch variables from Statcast.

Name Description
pitch type code for pitch type
pitch name pitch type
description description of outcome of pitch
release speed speed of pitch (mph) when released
effective speed speed of pitch (mph) when crossing plate
release pos x x-coordinate of release point of pitch
release pos y y-coordinate of release point of pitch
release pos z z-coordinate of release point of pitch
zone zone location of pitch
pfx x horizontal movement of pitch
pfx z vertical movement of pitch
sz top vertical location of top of strike zone
sz bot vertical location of bottom of strike zone
plate x horizontal location of pitch
plate z vertical location of pitch
vx0 x-coordinate of pitch velocity
vy0 y-coordinate of pitch velocity
vz0 z-coordinate of pitch velocity
ax x-coordinate of pitch acceleration
ay y-coordinate of pitch acceleration
az z-coordinate of pitch acceleration
release spin rate spin rate
spin axis spin direction

The identities of all players on the field together with the identities of the
baserunners are included. With respect to the specific plate appearance, the
dataset includes the pitch number, the number of balls and strikes, and the
batting side and throwing hand of the pitcher.

C.4 Pitch Variables

Similar to the PITCHf/x system, this Statcast dataset contains information
about each pitch. The variables in Table C.2 include the release point of the
pitch, its speed in miles per hour, and movement in the horizontal and vertical
directions. The location of the pitch in the zone is recorded and it is classified
into a particular region using the zone variable. Using a classification method,
the pitch type is recorded. See Table C.3 for the decoding of the abbreviations.



366 Statcast Data Reference

TABLE C.3
The pitch type and pitch name variables used by Statcast.

pitch type pitch name
CH Changeup
CS Slow Curve
CU Curveball
EP Eephus
FA Other
FC Cutter
FF 4-Seam Fastball
FO Forkball
FS Split-Finger
KC Knuckle Curve
KN Knuckleball
PO Pitch Out
SC Screwball
SI Sinker
SL Slider
ST Sweeper
SV Slurve
NA NA

Here are more detailed descriptions of the pitch variables.

• release speed and effective speed: Speed in miles per hour at the release
point and when the ball crosses the front of home plate.

• sz top and sz bot: Vertical coordinates for the top and the bottom of the
strike zone of the batter currently at the plate. Both variables are expressed
as feet from the ground and they are manually recorded at the beginning
of every at-bat.

• pfx x and pfx z: Horizontal and vertical movement of the pitch compared
to a theoretical pitch of the same speed with no spin-induced movement.
Both variables are measured in inches.

• plate x and plate z: Horizontal and vertical location of the pitch, measured
when the pitch crosses the front of home plate. The coordinate system is
centered on the middle of home plate and at ground level and viewed from
the catcher/umpire point of view, thus a positive value of plate_x indicates
the pitch crosses the plate to the right of its middle and a negative value to
the left. A negative value of plate_z indicates a pitch that bounced before
reaching home plate. Both plate_x and plate_z variables are measured
in feet.

• release pos x, release pos y, release pos z: Coordinates indicating the
calculated position of the ball at the release point. The release_pos_y
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parameter indicates the distance from home plate and is generally set
at 50 feet from home plate; researchers have found 55 feet as a distance
that better approximates the true release point of the pitch and it is thus
advisable to recalculate the coordinates at the 55 foot mark, as illustrated
in Section C.5. release_pos_x, release_pos_y, and release_pos_z are
the left and right position and the height of the release point in the same
coordinate system as plate_x and plate_z.

• vx0, vy0, and vz0: Components of the pitch velocity in three dimensions,
measured at release in feet per second.

• ax, ay, and az: Components of the pitch acceleration in three dimensions,
measured at release in ft/s2.

• release spin rate: Spin rate of the ball in revolutions per minute.

• spin axis: Direction of the spin of the ball, where 0° indicates a perfect top
spin and 180° indicates a perfect bottom spin.

C.5 Calculating the Pitch Trajectory

As seen in the previous sections, Statcast tracks data on location, velocity, and
acceleration of a pitch. Using the kinematics equation for constant acceleration,
the position of the ball at a given time t can be determined by the following
equations:

x = x0 + xv0t + 1
2axt

y = y0 + yv0t + 1
2ayt

z = z0 + zv0t + 1
2azt

The previous equations are translated to R with use of the following function
pitchloc().1

pitchloc <- function(t, x0, ax, vx0,

y0, ay, vy0, z0, az, vz0) {

x <- x0 + vx0 * t + 0.5 * ax * I(t ^ 2)

y <- y0 + vy0 * t + 0.5 * ay * I(t ^ 2)

z <- z0 + vz0 * t + 0.5 * az * I(t ^ 2)

1The code in this section has been slightly adapted from https://code.google.com/p/r-
pitchfx/.

https://code.google.com
https://code.google.com
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if(length(t) == 1) {

loc <- c(x, y, z)

} else {

loc <- cbind(x, y, z)

}

return(loc)

}

The function pitch_trajectory() calculates the trajectory of a pitch from
release point to home plate at specified time intervals (the default choice of
the argument interval is 0.01 seconds).

pitch_trajectory <- function(x0, ax, vx0,

y0, ay, vy0, z0, az, vz0,

interval = 0.01) {

cross_p <- (-1 * vy0 - sqrt(I(vy0 ^ 2) - 2 * y0 * ay)) / ay

tracking <- t(

sapply(

seq(0, cross_p, interval),

pitchloc,

x0 = x0, ax = ax, vx0 = vx0,

y0 = y0, ay = ay, vy0 = vy0,

z0 = z0, az = az, vz0 = vz0

)

)

colnames(tracking) <- c("x", "y", "z")

tracking <- data.frame(tracking)

return(tracking)

}

C.6 Play Event Variables

Although each row of the data set represents a pitch, several variables in Ta-
ble C.4 record the outcome of the plate appearance. The type variable indicates
if the ball is a strike, ball, or put in play. The events, des, and description

variable provide descriptions of the outcome of the plate appearance.

TABLE C.4
Play event variables.

Name Description
type ball or strike or ball in play
events outcome of plate appearance
des detailed description of outcome of plate appearance
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TABLE C.5
Batted ball variables.

Name Description
hit distance sc distance away (ft.) that ball lands
hc x x location of batted ball when it lands
hc y y location of batted ball when it lands
launch speed speed of ball as it comes off of the bat
launch angle vertical angle at which ball leaves bat
barrel classification to batted-ball events whose

comparable hit types led to a minimum
.500 AVG and 1.500 SLG

C.7 Batted Ball Variables

One special aspect of the Statcast dataset is the inclusion of variables about
balls that are put into play described in Table C.5. These variables include
the exit velocity and launch angle off of the bat, the (x, y)-coordinates of the
location of the batted ball, and its estimated distance from home plate. A
barrel is a way of categorizing a well-hit ball with good combinations of exit
velocity and launch angle.

The batted location variables hc_x and hc_y are related to the spray angle ϕ
by the equation

ϕ = atan

(
hcx − 125.42
198.27 − hcy

)
.

We show this graphically in Figure C.1.

C.8 Derived Variables

Based on the batted ball variables, Statcast has developed several met-
rics that help in understanding the quality of a specific batted ball, shown
in Table C.6. Based on the launch speed and launch angle, one variable
estimated_ba_using_speedangle gives the estimated probability of a base
hit, and a second variable estimated_woba_using_speedangle provides the
estimate of the weighted on-base percentage for this batted ball.
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FIGURE C.1
Relationship of Statcast variables hc_x and hc_y with the spray angle ϕ.

TABLE C.6
Statcast derived variables.

Name Description

estimated ba using speedangle estimated hit probability
estimated woba using speedangle estimated woba value

C.9 Defense Variables

Statcast also includes information about the defensive alignments of the teams,
shown in Table C.7. The if_fielding_alignment variable indicates if the
defensive infield is “standard”, “infield shift” (three or more infielders on same
side of second base), or “strategic positioning”. The of_fielding_alignment
can either be“standard”,“strategic”, or“4th outfielder”. Currently, there is some
debate about the value of these new defensive alignments and the inclusion of
these variables can help determine the effectiveness of these strategies.
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TABLE C.7
Statcast defensive alignment variables.

Name Description
if fielding alignment infield positioning
of fielding alignment outfield positioning

C.10 Acquiring Statcast Data

The statcast_search() function from the baseballr package will allow you
to download Statcast data from Baseball Savant over a specified period of
time, or for a particular player. For example, Andrew McCutchen, Freddie
Freeman, and José Altuve recorded their 2000th career hits on June 11, June
25, and August 19, 2023, respectively. To retrieve data for McCutchen during
the three days before and after his hit, we can use the statcast_search()

function. There are various ways to find McCutchen’s MLB player identifier
(see Section C.2), which in this case is 457705.

library(baseballr)

mccutchen <- statcast_search(

start_date = "2023-06-08",

end_date = "2023-06-14",

playerid = 457705

)

mccutchen |>

filter(game_date == "2023-06-11", events == "single") |>

select(pitch_type, release_speed, release_spin_rate)

# A tibble: 1 x 3

pitch_type release_speed release_spin_rate

<chr> <dbl> <dbl>

1 SL 85.8 2502

McCutchen’s 2000th hit came off of an 86 mph slider spinning at 2500 revolu-
tions per minute.

Please see Section 12.2 for information about how to store one or more years
of Statcast data.
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Indices

The Subject Index catalogs general items of interest, including sabermetric
concepts, people, teams, and other notions generally found in an index.

The R Index contains all R functions mentioned in the text. Packages are listed
as subitems under the library() function.
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Subject index

1998 home run duel, 84

A. J. Pollock, 251
Aardsma, David, 5, 6
Aaron, Hank, 1, 2, 6, 57, 83, 303
Acuña, Ronald, 343
aesthetic, 67, 86, 138, 170
age

peak, 184, 194, 197, 199
age, of MLB player, 82, 182
Alexander, Manny, 15
Alomar, Roberto, 194, 196
Alonso, Pete, 297, 298
Altuve, José, 109, 115, 117, 124,

126, 371
American League, 219, 220, 226
Anaheim Angels, 216
Apache Arrow, see Arrow
Apache Parquet, see Parquet
API, 360
Arenado, Nolan, 122
Arrow, 287–290, 295–297, 302
artificial turf, 279
Astrodome, 16, 277–279
Atlanta Braves, 312
attendance, 266
axes labels, 68

ball/strike count, 136
Baltimore Orioles, 13, 15, 129
bar graph, 50, 67
barrel, 369
base stealing, see stealing, bases
baseball

circumference of, 167
eras of, 66, 81

post-season, 100, 223
World Series, see World Series

Baseball Hall of Fame, see Hall of
Fame

Baseball Prospectus, 361
Baseball Savant, 23, 272, 280, 285,

313, 360, 363, 371
Baseball-Reference, 129, 136, 189,

235, 284, 363
basketball, 108
batting average, 7, 34, 71, 124, 137,

189, 234, 239, 241, 349
opponent’s, 8

Beamer, 327, 331
Belanger, Mark, 26
Beltran, Carlos, 244
Berkman, Lance, 255
best-fit line, see linear model
Biagini, Joe, 23
bias, 113

sampling, 152
selection, 149

Bichette, Dante, 276
big data, 257
Biggio, Craig, 194, 278
Biogenesis scandal, 3
birth year, see age, of MLB player
Bobby Witt, Jr., 311
Bonds, Barry, 1, 2, 19, 83, 303
bootstrap procedure, 270
Boston, 37
Boston Braves, 6, 39
Boston Red Sox, 2, 6, 8, 100, 257,

273
boxplots

parallel, 80, 81
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bracket notation
for data frames, 34
for lists, 48
for vectors, 42

brackets
curly, 52
double square, 48
square, 34, 43, 49, 142

Bradley-Terry model, 204,
219–221, 230

Broadway, 153
Brock, Lou, 6
Brooks, Dan, 361
Bunning, Jim, 27
Burks, Ellis, 276

Cabrera, Miguel, 150–154, 156, 157
Cal Ripken, Jr., 13
calculus, 105
California Angels, 15
called strike probability, 166, 168,

171, 173, 174, 176, 178
Caola, Ralph, 105
cartography, 152
Cashman Field, 276
Castilla, Vinnie, 276
catcher, 187

defense, 164
framing, 26, 164, 166, 174, 178

categorical variable, see vectors,
factor, 34

caught stealing, see stealing,
caught

Chadwick, 349, 350, 353
cwevent, 349
software, 353

Chadwick, Henry, 4, 349
changeup, 158
Chapman, Aroldis, 22, 26
character variable, see vectors,

character
Chicago, 268
Chicago Cubs, 6, 12, 257, 266, 269
Chicago White Sox, 266, 269
Cincinnati Reds, 313

Clemente, Roberto, 26
Cleveland Indians, 96
closer, 104
clumpiness, 245, 247, 249

measure of, 245
Cobb, Ty, 89
color palette

diverging, 139, 146
Colorado Rockies, 16, 258, 269
comma separated value format, 54
Comprehensive R Archive

Network, see CRAN
Conforto, Michael, 252–254
Console, 31, 61
console window, 39
container, 43
contour line, 152, 160
contour plot, 136, 152, 154, 322
Coors Field, 15, 258, 269, 271, 272,

275–277
CRAN, 30, 55
CRAN Task View, xix
curly brackets, see brackets, curly
curve ball, 157
Cy Young Award, 150

data
player tracking, 23

data frame, 44
data frames, 34

merging, 38
data wrangling, see data

manipulation
Davis, Eric, 202
Deadball Era, 2
defensive evaluation, 363
defensive shifts, 25, 370
Denver, 269
dependent variable, see response

variable
designated hitter, 11
Detroit Tigers, 99, 226
Dickey, R.A., 28
DiMaggio, Joe, 234–239, 241, 255,
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Cobb, Ty, 89
color palette
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comma separated value format, 54
Comprehensive R Archive

Network, see CRAN
Conforto, Michael, 252–254
Console, 31, 61
console window, 39
container, 43
contour line, 152, 160
contour plot, 136, 152, 154, 322
Coors Field, 15, 258, 269, 271, 272,

275–277
CRAN, 30, 55
CRAN Task View, xix
curly brackets, see brackets, curly
curve ball, 157
Cy Young Award, 150

data
player tracking, 23

data frame, 44
data frames, 34

merging, 38
data wrangling, see data

manipulation
Davis, Eric, 202
Deadball Era, 2
defensive evaluation, 363
defensive shifts, 25, 370
Denver, 269
dependent variable, see response

variable
designated hitter, 11
Detroit Tigers, 99, 226
Dickey, R.A., 28
DiMaggio, Joe, 234–239, 241, 255,
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distributions
skewed, 71
symmetric, 71

Division series
American League, 17

Dodger Stadium, 257, 275, 277
dollar sign, 48, 49
Donaldson, Josh, 122
dot plot, 68
Drysdale, Don, 336
DuckDB, 289–293, 295, 297

earned run average, 36, 349
Eaton, Adam, 135
Eckstein, David, 22
Eisenreich, Jim, 202
environment variables, 350
ERA, 341
error term, 93
Espinoza, Alvaro, 202
Estadio de Béisbol Monterrey, 276
estimated hit probability, 369
exit velocity, 23, 26, 297, 299, 303,

315, 369
expected run matrix, 109, 113, 114,

143, 212
expected run value, xvii, 109,

113–116, 126, 136, 144
explanatory variables, 169, 303
extreme values

in residual graph, 96

factor, see vectors, factor
factor variable, see vectors, factor
Fahrenheit, 310
FanGraphs, 334, 336
Fast, Mike, 361
fastball, 157
Feliz, Neftali, 22
Feller, Bob, 26
Fenway Park, 257, 273
fielding position

value of, 189
FIP, 36, 37, 334, 336
first baseman, 187

fitted values, 95, 169, 170
fixed effects, 174, 175
Flip Play, The, 18
formula, 93
Fowler, Dexter, 252–254
Foxx, Jimmie, 79
Franco, Julio, 194, 196
Freeman, Freddie, 122, 371
frequency table, 46, 67, 157
functions

user-defined, 51

Galarraga, Andrés, 202, 276, 277
Gehrig, Lou, 13, 75, 79
Gehringer, Charlie, 196
generalized additive model, 169,

170, 174, 305
generalized linear mixed model,

174
generalized linear model, 322
Giambi, Jeremy, 18
Gibson, Bob, 27
Gibson, Josh, 4
gigabyte, 285
Github, 342
Glavine, Tom, 341
Gordon, Dee, 91
graphical user interface, 30
Green Monster, see Fenway Park,

257, 273, 276
Greenberg, Hank, 79

Hall of Fame, 4, 66, 74, 81, 332,
341

handedness, see platoon effects
Hardball Times, The, 159
Harvey, Doug, 16
heat map, 137
histogram, 72, 245, 247
hitter’s count, 147
hitting streak, 235, 249
home plate, 167
Home Run Baker, 327, 330
home runs, 300

distances of, 23
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value of, 125
Hornsby, Rogers, 79
Houston Astros, 16, 277
Howard, Ryan, 22
HTML, 324
Humber, Phil, 20, 22
humidor, 271
Huson, Jeff, 15

interleague play, 220
isopleth, see contour line, 152
iteration, 57

James, Bill, xvii, 10, 98, 99, 107,
108, 181, 189, 219

JavaScript, 324
Jeter, Derek, 18, 193, 195
jitter, 117
Judge, Aaron, 325

Kansas City, 22
Kansas City Royals, 29, 311
key, 38
Killebrew, Harmon, 57, 58
kilobytes, 280
knuckleball, 28
Koufax, Sandy, 336

Lahman, 25
database, 1, 3, 5, 8, 11, 26, 55,

103, 271
package, see R packages,

Lahman
Lahman, Sean, 3, 271
Las Vegas, 276
launch angle, 23, 26, 297, 299, 303,

305, 307, 310, 315, 318,
322, 323, 369

launch speed, 234, 251, 305, 307,
310, 318, 322, 323

Lindor, Francisco, 244
line drives, 300
linear model, 95

predictions, 95
linear regression, 93
linear relationship

positive, 94, 103, 228
link function, 169
list variable, 48
LOESS, 121
LOESS smoother, 60, 74, 152, 198,

199
log5 method, see Bradley-Terry

model, 219
logarithm, 100
logical operators, 42
logical variable, see vectors, logical
logistic function, 169
logistic regression model, 228, 229
logit, 174, 319–322
Long, Terrence, 18
Los Angeles Angels, 96, 103
Los Angeles Dodgers, 257, 275, 277
luck, 102, 103

Maddux, Greg, 341
Major League Baseball, 3, 13, 20,

82, 182, 279, 280, 322,
326, 334

Advanced Media, 360, 363
Gameday, xviii, 19, 360
Home Run Committee, 325

Mantle, Mickey, 12, 52, 54, 181,
182, 184, 185, 187, 190,
193, 194, 325

margin of victory, 102
MariaDB, 257, 258, 260, 292, 293
Maris, Roger, 12, 303
Markdown, 324, 327
Markov chain, xviii, 204–206, 208,

210, 214, 215, 230
absorbing states, 205
assumptions, 205
transition states, 205

Marte, Starling, 135
Martinez, J.D., 91
Mathews, Eddie, 191, 194
matrix multiplication, 214
Mays, Willie, 57, 202
McCutchen, Andrew, 371
McGwire, Mark, 12, 19, 66, 84, 90
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199
log5 method, see Bradley-Terry

model, 219
logarithm, 100
logical operators, 42
logical variable, see vectors, logical
logistic function, 169
logistic regression model, 228, 229
logit, 174, 319–322
Long, Terrence, 18
Los Angeles Angels, 96, 103
Los Angeles Dodgers, 257, 275, 277
luck, 102, 103

Maddux, Greg, 341
Major League Baseball, 3, 13, 20,

82, 182, 279, 280, 322,
326, 334

Advanced Media, 360, 363
Gameday, xviii, 19, 360
Home Run Committee, 325

Mantle, Mickey, 12, 52, 54, 181,
182, 184, 185, 187, 190,
193, 194, 325

margin of victory, 102
MariaDB, 257, 258, 260, 292, 293
Maris, Roger, 12, 303
Markdown, 324, 327
Markov chain, xviii, 204–206, 208,
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Marte, Starling, 135
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Mathews, Eddie, 191, 194
matrix multiplication, 214
Mays, Willie, 57, 202
McCutchen, Andrew, 371
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Subject index 387

mean, 102
measures of center, 71
measures of spread, 71
megabytes, 280
memoryless property, 148, 205
Meriwether, Chuck, 16
meteorology, 152
Metrodome, 19
Mexico, 276
Miami Marlins, 19
Milwaukee, 37
Minneapolis, 19
mixed models, 178
MLB seasons

1927, 11
1941, 234, 235
1950, 232
1960, 134
1961, 12
1964, 6
1965, 34
1968, 27, 219, 220
1995, 13
1996, 275, 276
1998, 12, 66, 84
2002, 113
2012, 27, 150
2016, 150, 239
2023, 322

model
assumptions, 275
fit, 181
predictions, 153

Molina, José, 164
Molitor, Paul, 194, 196
Morandini, Mickey, 28
Moss, Brandon, 244
moving average, 237
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