#!/usr/bin/env python3
"""
Complete System Demonstration: Time Period Validation + NBA Dynamic Strategies
Shows the full end-to-end flow with time period requirements enforced
"""

import json

def demonstrate_time_period_enforcement():
    """Demonstrate how the system enforces time period requirements"""

    print("🛡️ TIME PERIOD ENFORCEMENT DEMONSTRATION")
    print("=" * 60)

    print("🔍 Testing AI responses to messages without time periods...")

    # Simulate AI responses for messages without time periods
    test_cases = [
        {
            'user_input': 'Bet on home teams in NBA games',
            'ai_response': '⚠️ **Time Period Required**\n\nTo ensure accurate backtesting results, you must specify a time period for your strategy testing.\n\nPlease specify the time period for backtesting (e.g., \'2023-24 NBA season\', \'2024 regular season\').\n\nThis helps avoid overfitting and provides transparency about when your strategy was tested.',
            'expected': 'rejected with time period requirement'
        },
        {
            'user_input': 'Create a trend following strategy',
            'ai_response': '⚠️ **Time Period Required**\n\nTo ensure accurate backtesting results, you must specify a time period for your strategy testing.\n\nPlease specify the time period for backtesting (e.g., \'January 2024\', \'last 6 months\', \'2023-2024\').\n\nThis helps avoid overfitting and provides transparency about when your strategy was tested.',
            'expected': 'rejected with time period requirement'
        }
    ]

    for i, test_case in enumerate(test_cases, 1):
        print(f"\n{'='*20} TEST CASE {i} {'='*20}")
        print(f"👤 User: '{test_case['user_input']}'")
        print(f"🤖 AI: {test_case['ai_response'][:100]}...")
        print(f"✅ Result: {test_case['expected']}")

def demonstrate_accepted_strategies():
    """Show examples of properly formatted strategies with time periods"""

    print("\n" + "=" * 60)
    print("✅ ACCEPTED STRATEGIES WITH TIME PERIODS")
    print("=" * 60)

    accepted_strategies = [
        {
            'user_input': 'Bet on home teams in the 2023-24 NBA season',
            'time_period': '2023-24 NBA season',
            'market': 'NBA',
            'expected': 'Accepted - generates dynamic Python code for NBA betting'
        },
        {
            'user_input': 'Create a trend following strategy for January 2024',
            'time_period': 'January 2024',
            'market': 'Forex',
            'expected': 'Accepted - generates TypeScript code for financial trading'
        },
        {
            'user_input': 'Build a momentum strategy for the last 6 months',
            'time_period': 'Last 6 months',
            'market': 'Crypto',
            'expected': 'Accepted - generates momentum-based trading logic'
        },
        {
            'user_input': 'Create a mean reversion strategy for 2023-2024',
            'time_period': '2023-2024',
            'market': 'Stocks',
            'expected': 'Accepted - generates mean reversion strategy code'
        }
    ]

    for i, strategy in enumerate(accepted_strategies, 1):
        print(f"\n{'='*15} ACCEPTED STRATEGY {i} {'='*15}")
        print(f"👤 User: '{strategy['user_input']}'")
        print(f"📅 Time Period: {strategy['time_period']}")
        print(f"🏛️ Market: {strategy['market']}")
        print(f"✅ Status: {strategy['expected']}")

        # Simulate what happens next
        if 'NBA' in strategy['market']:
            print("🔧 Next: AI generates Python generate_bets() function")
            print("📊 Next: NBA backtesting engine filters games by time period")
            print("💰 Next: Evaluates bets against actual game results")
        else:
            print("🔧 Next: AI generates TypeScript strategy code")
            print("📊 Next: Financial backtesting engine filters data by time period")
            print("💰 Next: Simulates trades with profit/loss calculations")

def demonstrate_nba_time_filtering():
    """Show how NBA strategies filter by time periods"""

    print("\n" + "=" * 60)
    print("🏀 NBA TIME PERIOD FILTERING IN ACTION")
    print("=" * 60)

    # Sample NBA games across different time periods
    nba_games = [
        {'id': '001', 'date': '2023-10-24', 'home': 'LAL', 'away': 'GSW', 'period': 'October 2023'},
        {'id': '002', 'date': '2023-11-15', 'home': 'BOS', 'away': 'NYK', 'period': 'November 2023'},
        {'id': '003', 'date': '2023-12-20', 'home': 'LAL', 'away': 'PHX', 'period': 'December 2023'},
        {'id': '004', 'date': '2024-01-10', 'home': 'DAL', 'away': 'GSW', 'period': 'January 2024'},
        {'id': '005', 'date': '2024-02-05', 'home': 'PHX', 'away': 'LAL', 'period': 'February 2024'},
        {'id': '006', 'date': '2024-03-18', 'home': 'BOS', 'away': 'NYK', 'period': 'March 2024'},
        {'id': '007', 'date': '2024-04-22', 'home': 'LAL', 'away': 'DAL', 'period': 'April 2024'},
    ]

    print(f"📊 Available NBA Games: {len(nba_games)} across 2023-24 season")

    # Different time period queries and their results
    time_period_tests = [
        {
            'query': 'Bet on home teams in December 2023',
            'filter': 'December 2023 games only',
            'expected_games': 1,
            'game_ids': ['003']
        },
        {
            'query': 'Create strategy for 2024 NBA season',
            'filter': 'All 2024 games',
            'expected_games': 4,
            'game_ids': ['004', '005', '006', '007']
        },
        {
            'query': 'Test strategy for 2023-24 regular season',
            'filter': 'October-March games (regular season)',
            'expected_games': 6,
            'game_ids': ['001', '002', '003', '004', '005', '006']
        }
    ]

    for test in time_period_tests:
        print(f"\n🎯 Query: '{test['query']}'")
        print(f"🔍 Filter Applied: {test['filter']}")
        print(f"📊 Games Selected: {test['expected_games']}")
        print(f"🆔 Game IDs: {test['game_ids']}")

        # Show what the strategy would generate
        print("🔧 Generated Strategy Code:")
        print("   def generate_bets(games, players, teams, params):")
        print(f"       # Filter games to: {test['filter']}")
        print("       filtered_games = [g for g in games if game_matches_time_period(g, params)]")
        print("       # Generate bets for filtered games...")
        print("       return bets")

def demonstrate_financial_time_filtering():
    """Show how financial strategies handle time periods"""

    print("\n" + "=" * 60)
    print("💰 FINANCIAL MARKET TIME PERIOD FILTERING")
    print("=" * 60)

    financial_examples = [
        {
            'strategy': 'Trend following in January 2024',
            'time_period': 'January 2024',
            'data_points': '31 trading days',
            'filter_logic': 'Filter OHLC data where date.month == 1 and date.year == 2024'
        },
        {
            'strategy': 'Momentum strategy for last 6 months',
            'time_period': 'Last 6 months',
            'data_points': '~126 trading days',
            'filter_logic': 'Filter data from (current_date - 6 months) to current_date'
        },
        {
            'strategy': 'Mean reversion over 2023-2024',
            'time_period': '2023-2024',
            'data_points': '~504 trading days',
            'filter_logic': 'Filter data where 2023 <= date.year <= 2024'
        }
    ]

    for example in financial_examples:
        print(f"\n📈 Strategy: {example['strategy']}")
        print(f"📅 Time Period: {example['time_period']}")
        print(f"📊 Data Scope: {example['data_points']}")
        print(f"🔧 Filter Logic: {example['filter_logic']}")

        print("🔧 Generated Strategy Code:")
        print("   def generate_signals(df, params):")
        print("       # Apply time period filtering")
        print(f"       # {example['filter_logic']}")
        print("       # Generate trading signals...")
        print("       return df")

def demonstrate_system_benefits():
    """Show the benefits of time period requirements"""

    print("\n" + "=" * 60)
    print("🎯 SYSTEM BENEFITS: TIME PERIOD REQUIREMENTS")
    print("=" * 60)

    benefits = [
        {
            'benefit': 'Prevents Overfitting',
            'explanation': 'Strategies tested on specific periods can\'t accidentally fit to entire datasets',
            'example': 'A "December only" NBA strategy can\'t benefit from knowing January results'
        },
        {
            'benefit': 'Transparency',
            'explanation': 'Users know exactly when their strategy was tested',
            'example': '"2023-24 season" clearly shows the testing timeframe'
        },
        {
            'benefit': 'Market Condition Awareness',
            'explanation': 'Strategies account for different market conditions in different periods',
            'example': 'Holiday season NBA games vs regular season performance'
        },
        {
            'benefit': 'Realistic Expectations',
            'explanation': 'Backtests reflect realistic performance in specific timeframes',
            'example': 'January forex strategy accounts for post-holiday volatility'
        },
        {
            'benefit': 'Walk-Forward Validation',
            'explanation': 'Enables proper out-of-sample testing when combined with walk-forward analysis',
            'example': 'Train on 2023 data, test on 2024 unseen data'
        }
    ]

    for benefit in benefits:
        print(f"\n✅ {benefit['benefit']}")
        print(f"   💡 {benefit['explanation']}")
        print(f"   📝 Example: {benefit['example']}")

def main():
    """Run complete system demonstration"""

    print("🎯 COMPLETE SYSTEM DEMONSTRATION:")
    print("Time Period Requirements for Sports & Financial Backtesting")
    print("=" * 70)

    # Show time period enforcement
    demonstrate_time_period_enforcement()

    # Show accepted strategies
    demonstrate_accepted_strategies()

    # Show NBA time filtering
    demonstrate_nba_time_filtering()

    # Show financial time filtering
    demonstrate_financial_time_filtering()

    # Show system benefits
    demonstrate_system_benefits()

    print("\n" + "=" * 70)
    print("🏆 SYSTEM IMPLEMENTATION COMPLETE")
    print("=" * 70)
    print("✅ Chat API validates time period requirements")
    print("✅ NBA strategies filter games by seasons/periods")
    print("✅ Financial strategies respect date ranges")
    print("✅ AI generates code that respects time boundaries")
    print("✅ Backtesting engines filter data by specified periods")
    print("✅ Users get transparent, non-overfit results")
    print("✅ Walk-forward analysis becomes meaningful")
    print("\n🎉 Both sports and financial backtesting now REQUIRE time periods!")
    print("This ensures accurate, transparent, and realistic strategy testing! 🚀")

if __name__ == "__main__":
    main()
