# coding=utf-8
# Copyright 2025 Deepseek AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
from collections.abc import Iterable
from dataclasses import dataclass
from typing import Callable, Optional, Union

import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn

from transformers.models.blip.image_processing_blip import BlipImageProcessor

from ...activations import ACT2FN
from ...cache_utils import Cache
from ...configuration_utils import PretrainedConfig
from ...generation import ClassifierFreeGuidanceLogitsProcessor, GenerationMixin, GenerationMode, LogitsProcessorList
from ...generation.utils import GenerateDecoderOnlyOutput
from ...image_processing_utils import BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, resize, to_channel_dimension_format
from ...image_utils import (
    ChannelDimension,
    ImageInput,
    PILImageResampling,
    get_image_size,
    infer_channel_dimension_format,
    is_scaled_image,
    make_flat_list_of_images,
    to_numpy_array,
    valid_images,
    validate_preprocess_arguments,
)
from ...modeling_outputs import ModelOutput
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
    TensorType,
    TransformersKwargs,
    auto_docstring,
    can_return_tuple,
    filter_out_non_signature_kwargs,
    is_vision_available,
    logging,
)
from ..auto import CONFIG_MAPPING, AutoConfig, AutoModel
from ..blip_2.modeling_blip_2 import Blip2VisionModel
from ..chameleon.configuration_chameleon import ChameleonVQVAEConfig
from ..chameleon.modeling_chameleon import (
    ChameleonVQVAE,
    ChameleonVQVAEEncoderAttnBlock,
    ChameleonVQVAEEncoderConvDownsample,
    ChameleonVQVAEEncoderResnetBlock,
    ChameleonVQVAEVectorQuantizer,
)
from ..idefics.modeling_idefics import IdeficsBaseModelOutputWithPast, IdeficsCausalLMOutputWithPast
from ..llama.modeling_llama import eager_attention_forward
from ..siglip.configuration_siglip import SiglipVisionConfig
from ..siglip.modeling_siglip import SiglipEncoder, SiglipEncoderLayer, SiglipVisionEmbeddings


if is_vision_available():
    import PIL

logger = logging.get_logger(__name__)

# General docstring


class JanusVisionConfig(SiglipVisionConfig):
    r"""
    This is the configuration class to store the configuration of a [`JanusVisionModel`]. It is used to instantiate a
    `JanusVisionModel` according to the specified arguments, defining the model architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Args:
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        image_size (`int`, *optional*, defaults to 384):
            The size (resolution) of each image.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            Dropout probability for attention weights.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"`, and `"gelu_new"` are supported.
        mlp_ratio (`float`, *optional*, defaults to 4.0):
            Ratio of MLP hidden dimensionality to embedding dimensionality.
        attention_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys, and values in the attention layers.
        hidden_dropout_rate (`float`, *optional*, defaults to 0.0):
            The dropout probability for fully connected layers in the encoder.
        projection_dim (`int`, *optional*, defaults to 2048):
            Dimensionality of the MLP projection head.
        projection_dropout (`float`, *optional*, defaults to 0.0):
            Dropout probability for the projection layer.
        use_qk_norm (`bool`, *optional*, defaults to `False`):
            Whether to normalize the query and key matrices.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated normal initializer for initializing all weight matrices.
        depth (`int`, *optional*, defaults to 2):
            Number of hidden layers in the aligner module.
        num_image_tokens (`int`, *optional*, defaults to 576):
            Number of image tokens.
    """

    model_type = "janus_vision_model"
    base_config_key = "vision_config"

    def __init__(
        self,
        hidden_size=1024,
        num_hidden_layers=24,
        num_attention_heads=16,
        num_channels=3,
        patch_size=16,
        image_size=384,
        attention_dropout=0.0,
        layer_norm_eps=1e-6,
        hidden_act="gelu",
        mlp_ratio=4.0,
        attention_bias=True,
        hidden_dropout_rate=0.0,
        projection_dim=2048,
        projection_dropout=0.0,
        use_qk_norm=False,
        initializer_range=0.02,
        depth=2,
        num_image_tokens=576,
        **kwargs,
    ):
        super().__init__(
            hidden_size=hidden_size,
            num_hidden_layers=num_hidden_layers,
            num_attention_heads=num_attention_heads,
            num_channels=num_channels,
            patch_size=patch_size,
            image_size=image_size,
            attention_dropout=attention_dropout,
            layer_norm_eps=layer_norm_eps,
            hidden_act=hidden_act,
            **kwargs,
        )
        del self.intermediate_size

        self.mlp_ratio = mlp_ratio
        self.attention_bias = attention_bias
        self.hidden_dropout_rate = hidden_dropout_rate
        self.projection_dim = projection_dim
        self.projection_dropout = projection_dropout
        self.use_qk_norm = use_qk_norm
        self.initializer_range = initializer_range
        self.depth = depth
        self.num_image_tokens = num_image_tokens


class JanusVQVAEConfig(ChameleonVQVAEConfig):
    r"""
    This is the configuration class to store the configuration of a [`JanusVQVAEModel`]. It is used to instantiate a
    `JanusVQVAEModel` according to the specified arguments, defining the model architecture.
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information. Instantiating a
    configuration with the defaults will yield a similar configuration to the VQModel of the
    [deepseek-community/Janus-Pro-1B](https://huggingface.co/deepseek-community/Janus-Pro-1B).

    Args:
        embed_dim (`int`, *optional*, defaults to 8):
            Dimensionality of each embedding vector.
        num_embeddings (`int`, *optional*, defaults to 16384):
            Number of codebook embeddings.
        double_latent (`bool`, *optional*, defaults to `False`):
            Whether to use double z channels.
        latent_channels (`int`, *optional*, defaults to 256):
            Number of channels for the latent space.
        num_patches (`int`, *optional*, defaults to 32):
            Num of patches the input images can be divided into.
        in_channels (`int`, *optional*, defaults to 3):
            Number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            Number of out channels.
        base_channels (`int`, *optional*, defaults to 128):
            Base channel count.
        channel_multiplier (`list[int]`, *optional*, defaults to `[1, 1, 2, 2, 4]`):
            Channel multipliers for each resolution.
        num_res_blocks (`int`, *optional*, defaults to 2):
            Number of residual blocks.
        dropout (`float`, *optional*, defaults to 0.0):
            Dropout rate.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        projection_dim (`int`, *optional*, defaults to 2048):
            Dimensionality of the MLP projection head.
        num_hidden_layers (`int`, *optional*, defaults to 2):
            Number of hidden layers in VAVAE MLP Connecter module.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        image_token_embed_dim (`int`, *optional*, defaults to 2048):
            Dimension of image embeddings. It should be same as the dimensionality of text embeddings.
    """

    def __init__(
        self,
        embed_dim: int = 8,
        num_embeddings: int = 16384,
        double_latent: bool = False,
        latent_channels: int = 256,
        num_patches: int = 32,
        in_channels: int = 3,
        out_channels: int = 3,
        base_channels: int = 128,
        channel_multiplier: list[int] = [1, 1, 2, 2, 4],
        num_res_blocks: int = 2,
        dropout: float = 0.0,
        initializer_range=0.02,
        projection_dim=2048,
        num_hidden_layers=2,
        hidden_act="gelu",
        image_token_embed_dim=2048,
        **kwargs,
    ):
        super().__init__(
            embed_dim=embed_dim,
            num_embeddings=num_embeddings,
            double_latent=double_latent,
            latent_channels=latent_channels,
            in_channels=in_channels,
            base_channels=base_channels,
            channel_multiplier=channel_multiplier,
            num_res_blocks=num_res_blocks,
            dropout=dropout,
            initializer_range=initializer_range,
            **kwargs,
        )
        self.num_patches = num_patches
        self.out_channels = out_channels
        self.projection_dim = projection_dim
        self.num_hidden_layers = num_hidden_layers
        self.hidden_act = hidden_act
        self.image_token_embed_dim = image_token_embed_dim

        del self.resolution
        del self.attn_resolutions
        del self.attn_type


class JanusConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`JanusModel`]. It is used to instantiate an
    Janus model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Janus-1B or Janus-7B models.

    e.g. [deepseek-community/Janus-Pro-1B](https://huggingface.co/deepseek-community/Janus-Pro-1B) or
    [deepseek-community/Janus-Pro-7B](https://huggingface.co/deepseek-community/Janus-Pro-7B)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
            The config object or dictionary of the text backbone.
        vision_config (`Union[AutoConfig, dict]`,  *optional*, defaults to `JanusVisionConfig`):
            The config object or dictionary of the vision backbone.
        vq_config (`Union[AutoConfig, dict]`,  *optional*, defaults to `JanusVQVAEConfig`):
            The config object or dictionary of the VQVAE backbone.
        image_token_id (`int`, *optional*, defaults to 100581):
            Token index of a placeholder image token.

    Example:

    ```python
    >>> from transformers import JanusForConditionalGeneration, JanusConfig, JanusVisionConfig, JanusVQVAEConfig, LlamaConfig

    >>> # Initializing a Janus vision config
    >>> vision_config = JanusVisionConfig()

    >>> # Initializing a Llama config
    >>> text_config = LlamaConfig()

    >>> # Initializing a VQ config
    >>> vq_config = JanusVQVAEConfig()

    >>> # Initializing a Janus Pro 1B style configuration
    >>> configuration = JanusConfig(vision_config=vision_config, text_config=text_config, vq_config=vq_config)

    >>> # Initializing a model from the Janus Pro 1B style configuration
    >>> model = JanusForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "janus"
    sub_configs = {
        "text_config": AutoConfig,
        "vision_config": JanusVisionConfig,
        "vq_config": JanusVQVAEConfig,
    }

    def __init__(
        self,
        text_config=None,
        vision_config=None,
        vq_config=None,
        image_token_id=100581,
        **kwargs,
    ):
        if isinstance(text_config, dict):
            text_config["model_type"] = text_config.get("model_type", "llama")
            self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)

        elif text_config is None:
            logger.info("`text_config` is None. Initializing with default values")
            self.text_config = CONFIG_MAPPING["llama"]()
        elif isinstance(text_config, PretrainedConfig):
            self.text_config = text_config
        else:
            raise ValueError(
                f"Invalid type for `text_config`. Must be either `dict` or `LlamaConfig`."
                f" Type found: {type(text_config)}"
            )

        if vision_config is None:
            logger.info("`vision_config` is None. Initializing with default JanusVisionConfig values")
            self.vision_config = JanusVisionConfig()
        elif isinstance(vision_config, dict):
            self.vision_config = JanusVisionConfig(**vision_config)
        elif isinstance(vision_config, JanusVisionConfig):
            self.vision_config = vision_config
        else:
            raise ValueError(
                f"Invalid type for `vision_config`. Must be either `dict` or `JanusVisionConfig`."
                f" Type found: {type(vision_config)}"
            )

        if vq_config is None:
            logger.info("`vq_config` is None. Initializing with default JanusVQVAEConfig values")
            self.vq_config = JanusVQVAEConfig()
        elif isinstance(vq_config, dict):
            self.vq_config = JanusVQVAEConfig(**vq_config)
        elif isinstance(vq_config, JanusVQVAEConfig):
            self.vq_config = vq_config
        else:
            raise ValueError(
                f"Invalid type for `vq_config`. Must be either `dict` or `JanusVQVAEConfig`."
                f" Type found: {type(vq_config)}"
            )

        self.initializer_range = self.vision_config.initializer_range
        # This dimension is required when decoding discrete image tokens to continuous input.
        self.vq_config.num_patches = self.vision_config.image_size // self.vision_config.patch_size
        # The default is only the index for the 1B model, 7B uses a different one
        self.image_token_id = image_token_id
        super().__init__(**kwargs)


@auto_docstring
class JanusPreTrainedModel(PreTrainedModel):
    config: JanusConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["LlamaDecoderLayer", "JanusVisionEncoderLayer"]
    _skip_keys_device_placement = ["past_key_values", "causal_mask"]
    _supports_flash_attn = True
    _supports_sdpa = True

    _can_compile_fullgraph = True
    _supports_param_buffer_assignment = False


@dataclass
@auto_docstring(
    custom_intro="""
    Base class for Janus VQ-VAE mode model outputs.
    """
)
class JanusVQVAEOutput(ModelOutput):
    r"""
    decoded_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
        Reconstructed pixel values after encoding and decoding the input.
    embedding_loss (`torch.FloatTensor`):
        Embedding loss.
    """

    decoded_pixel_values: Optional[torch.FloatTensor] = None
    embedding_loss: Optional[torch.FloatTensor] = None


class JanusBaseModelOutputWithPast(IdeficsBaseModelOutputWithPast):
    pass


class JanusCausalLMOutputWithPast(IdeficsCausalLMOutputWithPast):
    pass


class JanusVisionEmbeddings(SiglipVisionEmbeddings):
    def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
        _, _, height, width = pixel_values.shape
        target_dtype = self.patch_embedding.weight.dtype
        patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))  # shape = [*, width, grid, grid]
        embeddings = patch_embeds.flatten(2).transpose(1, 2)

        if interpolate_pos_encoding:
            pos_embeds = self.interpolate_pos_encoding(embeddings, height, width)
        else:
            pos_embeds = self.position_embedding(self.position_ids)

        embeddings = embeddings + pos_embeds

        return embeddings


class JanusVisionAttention(nn.Module):
    """Attention Class for Janus Vision Encoder"""

    def __init__(self, config: JanusVisionConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )
        self.scale = self.head_dim**-0.5
        self.attention_dropout = config.attention_dropout
        proj_dropout = config.projection_dropout
        qk_norm = config.use_qk_norm
        self.is_causal = False

        # Janus has no MHA, hence for `eager_attention_forward` call setting `num_key_value_groups` to 1.
        self.num_key_value_groups = 1

        self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=config.attention_bias)
        self.k_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=config.attention_bias)
        self.v_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=config.attention_bias)
        self.projection_layer = nn.Linear(self.embed_dim, self.embed_dim)
        self.projection_dropout = nn.Dropout(proj_dropout) if proj_dropout > 0 else nn.Identity()

        self.q_norm = nn.LayerNorm(self.embed_dim) if qk_norm else nn.Identity()
        self.k_norm = nn.LayerNorm(self.embed_dim) if qk_norm else nn.Identity()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ):
        batch_size, seq_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.reshape(-1, self.num_heads, self.head_dim)
        query_states = self.q_norm(query_states)

        key_states = key_states.reshape(-1, self.num_heads, self.head_dim)
        key_states = self.k_norm(key_states)

        query_states = query_states.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scale,
            is_causal=self.is_causal,
            **kwargs,
        )
        attn_output = attn_output.reshape(batch_size, seq_len, self.embed_dim)

        output = self.projection_layer(attn_output)
        output = self.projection_dropout(output)
        return output, attn_weights


class JanusVisionMLP(nn.Module):
    def __init__(self, config: JanusVisionConfig):
        super().__init__()
        self.config = config
        self.intermediate_size = int(config.hidden_size * config.mlp_ratio)
        self.activation_fn = ACT2FN[config.hidden_act]  # Gelu act
        self.fc1 = nn.Linear(config.hidden_size, self.intermediate_size)
        self.fc2 = nn.Linear(self.intermediate_size, config.hidden_size)
        self.dropout1 = nn.Dropout(config.hidden_dropout_rate)
        self.dropout2 = nn.Dropout(config.hidden_dropout_rate)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.dropout1(hidden_states)
        hidden_states = self.fc2(hidden_states)
        hidden_states = self.dropout2(hidden_states)
        return hidden_states


class JanusVisionEncoderLayer(SiglipEncoderLayer):
    def __init__(self, config: JanusVisionConfig):
        super().__init__(config)
        self.config = config
        self.embed_dim = config.hidden_size
        self.self_attn = JanusVisionAttention(config)
        self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.mlp = JanusVisionMLP(config)


class JanusVisionEncoder(SiglipEncoder):
    def __init__(self, config: JanusVisionConfig):
        super().__init__(config)
        self.layers = nn.ModuleList([JanusVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])


class JanusVisionModel(Blip2VisionModel):
    def __init__(self, config: JanusVisionConfig):
        super().__init__(config)
        self.encoder = JanusVisionEncoder(config)


class JanusVisionAlignerMLP(nn.Module):
    def __init__(self, config: JanusVisionConfig):
        super().__init__()

        self.fc1 = nn.Linear(config.hidden_size, config.projection_dim)
        self.hidden_layers = nn.ModuleList(
            [nn.Linear(config.projection_dim, config.projection_dim) for _ in range(1, config.depth)]
        )
        self.activation_fn = ACT2FN[config.hidden_act]

    def forward(self, hidden_states):
        hidden_states = self.fc1(hidden_states)
        for layer in self.hidden_layers:
            hidden_states = self.activation_fn(hidden_states)
            hidden_states = layer(hidden_states)
        return hidden_states


class JanusVQVAEVectorQuantizer(ChameleonVQVAEVectorQuantizer):
    def __init__(self, config: JanusVQVAEConfig):
        super().__init__(config)
        self.quant_state_dims = [config.num_patches] * 2

    def get_codebook_entry(self, image_tokens: torch.LongTensor) -> torch.FloatTensor:
        batch_size = image_tokens.shape[0]
        emb_dim: int = self.embedding.weight.shape[-1]

        # get quantized latent vectors
        hidden_state_quant = self.embedding(image_tokens)
        # l2 normalization on the last dimension
        hidden_state_quant = F.normalize(hidden_state_quant, p=2, dim=-1)

        # reshape back to match original input shape
        hidden_state_quant = hidden_state_quant.view((batch_size, *self.quant_state_dims, emb_dim))
        hidden_state_quant = hidden_state_quant.permute(0, 3, 1, 2).contiguous()

        return hidden_state_quant


class JanusVQVAEResnetBlock(ChameleonVQVAEEncoderResnetBlock):
    pass


class JanusVQVAEAttnBlock(ChameleonVQVAEEncoderAttnBlock):
    pass


class JanusVQVAEConvDownsample(ChameleonVQVAEEncoderConvDownsample):
    pass


class JanusVQVAEConvUpsample(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)

    def forward(self, hidden_states):
        hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
        hidden_states = self.conv(hidden_states)
        return hidden_states


class JanusVQVAEMidBlock(nn.Module):
    def __init__(self, config: JanusVQVAEConfig, channels: int):
        super().__init__()
        self.block_1 = JanusVQVAEResnetBlock(
            config=config,
            in_channels=channels,
            out_channels=channels,
        )
        self.attn_1 = JanusVQVAEAttnBlock(channels)
        self.block_2 = JanusVQVAEResnetBlock(
            config=config,
            in_channels=channels,
            out_channels=channels,
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.block_1(hidden_states)
        hidden_states = self.attn_1(hidden_states)
        hidden_states = self.block_2(hidden_states)
        return hidden_states


class JanusVQVAEEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.num_resolutions = len(config.channel_multiplier)
        self.num_res_blocks = config.num_res_blocks
        base_channels = config.base_channels
        in_channels = config.in_channels
        double_latent = config.double_latent
        latent_channels = config.latent_channels
        channel_multiplier = config.channel_multiplier

        self.conv_in = torch.nn.Conv2d(in_channels, base_channels, kernel_size=3, stride=1, padding=1)

        in_channel_multiplier = (1,) + tuple(channel_multiplier)
        self.in_channel_multiplier = in_channel_multiplier
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = base_channels * in_channel_multiplier[i_level]
            block_out = base_channels * channel_multiplier[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(
                    JanusVQVAEResnetBlock(
                        config=config,
                        in_channels=block_in,
                        out_channels=block_out,
                    )
                )
                block_in = block_out
                if i_level == self.num_resolutions - 1:
                    attn.append(JanusVQVAEAttnBlock(block_in))

            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions - 1:
                down.downsample = JanusVQVAEConvDownsample(block_in)
            self.down.append(down)

        self.mid = JanusVQVAEMidBlock(config, block_in)

        self.norm_out = torch.nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
        self.conv_out = torch.nn.Conv2d(
            block_in,
            2 * latent_channels if double_latent else latent_channels,
            kernel_size=3,
            stride=1,
            padding=1,
        )

    def forward(self, pixel_values: torch.LongTensor):
        # downsampling
        hidden_states = [self.conv_in(pixel_values)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                hidden_state = self.down[i_level].block[i_block](
                    hidden_states[-1],
                )
                if len(self.down[i_level].attn) > 0:
                    hidden_state = self.down[i_level].attn[i_block](hidden_state)
                hidden_states.append(hidden_state)
            if i_level != self.num_resolutions - 1:
                hidden_states.append(self.down[i_level].downsample(hidden_states[-1]))

        # middle
        last_hidden_state = hidden_states[-1]
        last_hidden_state = self.mid(last_hidden_state)

        # end
        last_hidden_state = self.norm_out(last_hidden_state)
        last_hidden_state *= torch.sigmoid(last_hidden_state)
        last_hidden_state = self.conv_out(last_hidden_state)
        return last_hidden_state


class JanusVQVAEDecoder(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.num_resolutions = len(config.channel_multiplier)
        self.num_res_blocks = config.num_res_blocks
        base_channels = config.base_channels
        latent_channels = config.latent_channels
        out_channels = config.out_channels

        # compute in_ch_mult, block_in and curr_res at lowest res
        block_in = base_channels * config.channel_multiplier[self.num_resolutions - 1]

        # z to block_in
        self.conv_in = torch.nn.Conv2d(latent_channels, block_in, kernel_size=3, stride=1, padding=1)

        # middle
        self.mid = JanusVQVAEMidBlock(config, block_in)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = base_channels * config.channel_multiplier[i_level]
            for i_block in range(self.num_res_blocks + 1):
                block.append(
                    JanusVQVAEResnetBlock(
                        config=config,
                        in_channels=block_in,
                        out_channels=block_out,
                    )
                )
                block_in = block_out
                if i_level == self.num_resolutions - 1:
                    attn.append(JanusVQVAEAttnBlock(block_in))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = JanusVQVAEConvUpsample(block_in)
            self.up.append(up)

        # end
        self.norm_out = torch.nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
        self.conv_out = torch.nn.Conv2d(block_in, out_channels, kernel_size=3, stride=1, padding=1)

    def forward(self, hidden_state: torch.FloatTensor) -> torch.FloatTensor:
        hidden_state = self.conv_in(hidden_state)

        # middle
        hidden_state = self.mid(hidden_state)

        # upsampling
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks + 1):
                hidden_state = self.up[i_level].block[i_block](hidden_state)
                if len(self.up[i_level].attn) > 0:
                    hidden_state = self.up[i_level].attn[i_block](hidden_state)
            if i_level != self.num_resolutions - 1:
                hidden_state = self.up[i_level].upsample(hidden_state)

        hidden_state = self.norm_out(hidden_state)
        hidden_state *= torch.sigmoid(hidden_state)
        hidden_state = self.conv_out(hidden_state)
        return hidden_state


class JanusVQVAE(ChameleonVQVAE):
    _no_split_modules = [
        "JanusVQVAEAttnBlock",
        "JanusVQVAEResnetBlock",
        "JanusVQVAEVectorQuantizer",
    ]
    main_input_name = "pixel_values"

    def __init__(self, config: JanusVQVAEConfig):
        super().__init__(config)
        self.decoder = JanusVQVAEDecoder(config)
        self.gradient_checkpointing = False

        # Initialize the VQVAE model.
        self.post_init()

    def decode(self, image_tokens: torch.LongTensor) -> torch.FloatTensor:
        """
        Decodes quantized token IDs into pixel values.
        Args:
            image_tokens (torch.LongTensor): Batch of token IDs.
        Returns:
            pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
                Pixel values decoded from the token IDs.
        """
        if image_tokens.shape[1] != self.quantize.quant_state_dims[0] * self.quantize.quant_state_dims[1]:
            raise ValueError(
                f"Expected `image_tokens` to have shape `(batch_size, {self.quantize.quant_state_dims[0] * self.quantize.quant_state_dims[1]})`, "
                f"but got shape `{image_tokens.shape}`."
            )
        codebook_entry = self.quantize.get_codebook_entry(image_tokens)
        hidden_states = self.post_quant_conv(codebook_entry)
        pixel_values = self.decoder(hidden_states)
        return pixel_values

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        pixel_values: torch.FloatTensor,
    ) -> tuple[torch.FloatTensor, torch.FloatTensor]:
        batch_size = pixel_values.shape[0]
        quant, embedding_loss, indices = self.encode(pixel_values)
        decoded_pixel_values = self.decode(indices.view(batch_size, -1))

        return JanusVQVAEOutput(decoded_pixel_values, embedding_loss)


class JanusVQVAEAlignerMLP(nn.Module):
    def __init__(self, config: JanusVQVAEConfig):
        super().__init__()

        self.fc1 = nn.Linear(config.embed_dim, config.projection_dim)
        self.hidden_layers = nn.ModuleList(
            [nn.Linear(config.projection_dim, config.projection_dim) for _ in range(1, config.num_hidden_layers)]
        )
        self.activation_fn = ACT2FN[config.hidden_act]

    def forward(self, hidden_states):
        hidden_states = self.fc1(hidden_states)
        for layer in self.hidden_layers:
            hidden_states = self.activation_fn(hidden_states)
            hidden_states = layer(hidden_states)
        return hidden_states


class JanusVQVAEHead(nn.Module):
    """Head used for sampling tokens in image generation, replacing the usual lm head."""

    def __init__(self, config: JanusVQVAEConfig):
        super().__init__()
        self.proj_out = nn.Linear(config.image_token_embed_dim, config.projection_dim)
        self.activation_fn = ACT2FN[config.hidden_act]
        self.vision_head = nn.Linear(config.projection_dim, config.num_embeddings)

    def forward(self, hidden_states: torch.Tensor) -> torch.tensor:
        hidden_states = self.proj_out(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.vision_head(hidden_states)
        return hidden_states


@auto_docstring(
    custom_intro="""
    The Janus model which consists of a siglip vision backbone, a Llama language model and a VQ model.
    """
)
class JanusModel(JanusPreTrainedModel):
    def __init__(self, config: JanusConfig):
        super().__init__(config)
        self.config = config
        # This is necessary for backward compatibility, see SiglipModel initialization
        self.vision_model = JanusVisionModel._from_config(config.vision_config)
        self.aligner = JanusVisionAlignerMLP(self.vision_model.config)

        self.vqmodel = JanusVQVAE._from_config(config.vq_config)

        # Below generation_* modules are used for Image generation.
        # Embeddings used for image generation, instead of Janus vision embeddings.
        self.generation_embeddings = nn.Embedding(self.vqmodel.config.num_embeddings, self.vqmodel.config.embed_dim)
        self.generation_aligner = JanusVQVAEAlignerMLP(self.vqmodel.config)
        self.generation_head = JanusVQVAEHead(self.vqmodel.config)

        self.language_model = AutoModel.from_config(config=config.text_config)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing.
        self.post_init()

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def get_image_features(self, pixel_values):
        image_embeds = self.vision_model(pixel_values)
        image_embeds = self.aligner(image_embeds.last_hidden_state)
        return image_embeds

    def get_placeholder_mask(
        self, input_ids: torch.LongTensor, inputs_embeds: torch.FloatTensor, image_features: torch.FloatTensor
    ):
        """
        Obtains multimodal placeholder mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
        equal to the length of multimodal features. If the lengths are different, an error is raised.
        """
        if input_ids is None:
            special_image_mask = inputs_embeds == self.get_input_embeddings()(
                torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
            )
            special_image_mask = special_image_mask.all(-1)
        else:
            special_image_mask = input_ids == self.config.image_token_id

        n_image_tokens = special_image_mask.sum()
        special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
        if inputs_embeds[special_image_mask].numel() != image_features.numel():
            n_image_features = image_features.shape[0] * image_features.shape[1]
            raise ValueError(
                f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
            )
        return special_image_mask

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **kwargs,
    ):
        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
            )
        if inputs_embeds is None:
            inputs_embeds = self.get_input_embeddings()(input_ids)

        if pixel_values is not None:
            image_embeds = self.get_image_features(pixel_values)
            image_features = image_embeds.reshape(-1, inputs_embeds.shape[-1])
            image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
            image_attention_mask = self.get_placeholder_mask(
                input_ids, inputs_embeds=inputs_embeds, image_features=image_features
            )
            inputs_embeds = inputs_embeds.masked_scatter(image_attention_mask, image_features)

        lm_output = self.language_model(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            cache_position=cache_position,
            logits_to_keep=logits_to_keep,
            **kwargs,
        )

        return JanusBaseModelOutputWithPast(
            last_hidden_state=lm_output.last_hidden_state,
            past_key_values=lm_output.past_key_values,
            hidden_states=lm_output.hidden_states,
            attentions=lm_output.attentions,
            image_hidden_states=image_embeds if pixel_values is not None else None,
        )


class JanusForConditionalGeneration(JanusPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["model.language_model.embed_tokens.weight", "lm_head.weight"]
    _can_compile_fullgraph = True

    def __init__(self, config: JanusConfig):
        super().__init__(config)
        self.config = config
        self.model = JanusModel(config)
        self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)

        # Initialize weights and apply final processing.
        self.post_init()

    def get_input_embeddings(self):
        return self.model.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.model.language_model.set_input_embeddings(value)

    def prepare_embeddings_for_image_generation(self, inputs: torch.Tensor) -> torch.Tensor:
        hidden_state = self.model.generation_embeddings(inputs)
        hidden_state = self.model.generation_aligner(hidden_state)
        return hidden_state

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **kwargs: Unpack[TransformersKwargs],
    ):
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
        """
        outputs = self.model(
            input_ids=input_ids,
            pixel_values=pixel_values,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            cache_position=cache_position,
            **kwargs,
        )
        hidden_states = outputs.last_hidden_state
        # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        loss = None
        if labels is not None:
            loss = self.loss_function(
                logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs
            )

        return JanusCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_hidden_states=outputs.image_hidden_states,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        pixel_values=None,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        logits_to_keep=None,
        **kwargs,
    ):
        # Overwritten -- extra custom processing

        model_inputs = super().prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            cache_position=cache_position,
            logits_to_keep=logits_to_keep,
            **kwargs,
        )

        # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
        # Otherwise we need pixel values to be passed to model
        if cache_position[0] == 0:
            model_inputs["pixel_values"] = pixel_values

        return model_inputs

    def decode_image_tokens(self, image_tokens: torch.Tensor):
        """
        Decodes generated image tokens from language model to continuous pixel values
        with VQGAN module via upsampling.
        Args:
            image_tokens (`torch.LongTensor` of shape `(batch_size, num_of_tokens)`):
                The tensors corresponding to the input images.
        """
        decoded_image = self.model.vqmodel.decode(image_tokens)
        decoded_image = decoded_image.permute(0, 2, 3, 1)
        return decoded_image

    @torch.no_grad
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        logits_processor: Optional[LogitsProcessorList] = None,
        **kwargs,
    ):
        # 1. Handle generation config and model kwargs
        generation_config = kwargs.pop("generation_config", self.generation_config)
        generation_config = copy.deepcopy(generation_config)

        # Default to "text" generation if mode isn't provided
        generation_mode = kwargs.pop("generation_mode", "text")
        if generation_mode == "text":
            # Set guidance_scale=None to prevent running UnbatchedCFG processor.
            return super().generate(
                inputs=inputs,
                attention_mask=attention_mask,
                generation_config=generation_config,
                guidance_scale=None,
                **kwargs,
            )

        model_kwargs = generation_config.update(**kwargs)  # All unused kwargs must be model kwargs

        # Validate generation mode
        if generation_config.get_generation_mode() not in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH):
            raise ValueError(
                "Got incompatible mode for Image Generation, should be one of greedy or sampling. "
                "Ensure that beam search is de-activated by setting `num_beams=1`."
            )

        # Validate the configuration and model kwargs
        generation_config.validate()
        self._validate_model_kwargs(model_kwargs.copy())

        # 2. Initialize logit processors
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()

        # Set `use_cache=True` as we will be using input embeds for generation.
        model_kwargs["use_cache"] = True

        if generation_config.guidance_scale is None:
            logger.warning("`guidance_scale` is required for CFG but not provided. Setting to default value of 5.")
            generation_config.guidance_scale = 5
        model_kwargs["guidance_scale"] = generation_config.guidance_scale

        # 3. Prepare model inputs
        input_ids, model_input_name, model_kwargs = self._prepare_model_inputs(
            inputs, generation_config.bos_token_id, model_kwargs
        )
        dtype, device = input_ids.dtype, input_ids.device

        if len(input_ids.shape) != 2:
            raise ValueError(
                f"Expected input ids of shape (batch_size, seq_len), but got {input_ids.shape}"
                "Passing `inputs embeds` is not supported currently."
            )

        # Prepare special tokens which will be used generate internally.
        kwargs_has_attention_mask = attention_mask is not None
        self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=input_ids.device)

        # 4. Add CFG processor along with user passed logit processor.
        if generation_config.guidance_scale and generation_config.guidance_scale > 1:
            logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale))
            generation_config.guidance_scale = None  # Reset to prevent processor duplication.

        # 5. Prepare logits processor
        logits_processor = self._get_logits_processor(
            generation_config=generation_config,
            input_ids_seq_length=input_ids.shape[1],
            encoder_input_ids=input_ids,
            prefix_allowed_tokens_fn=None,
            logits_processor=logits_processor,
            device=device,
        )

        # 6. Expand inputs for multiple image generations per prompt.
        input_ids, model_kwargs = self._expand_inputs_for_generation(
            input_ids=input_ids,
            attention_mask=attention_mask,
            expand_size=generation_config.num_return_sequences,
            **model_kwargs,
        )

        # 7. Prepare input and model caches
        num_image_tokens = self.model.vision_model.config.num_image_tokens
        batch_size, seq_len = input_ids.shape

        input_tokens = input_ids.repeat(2, 1)  # Double batch size for conditional/unconditional logits
        attention_mask = model_kwargs.pop("attention_mask", None)
        attention_mask = attention_mask.repeat(2, 1)
        model_kwargs["attention_mask"] = attention_mask

        # Mask all the tokens that are neither BOS nor BOI with pad token in the unconditional logits.
        mask = (input_tokens[batch_size:, :] != generation_config.bos_token_id) & (
            input_tokens[batch_size:, :] != generation_config.generation_kwargs["boi_token_id"]
        )
        input_tokens[batch_size:, :].masked_fill_(mask, generation_config.pad_token_id)

        inputs_embeds = self.get_input_embeddings()(input_tokens)

        model_kwargs = self._get_initial_cache_position(seq_len, device, model_kwargs)

        if model_kwargs.get("past_key_values", None) is None:
            # Prepare cache if not provided.
            model_kwargs["past_key_values"] = self._get_cache(
                cache_implementation=generation_config.cache_implementation or "static",
                # batch_size should account for both conditional/unconditional input; hence multiplied by 2.
                batch_size=batch_size * 2,
                # we should have at least a cache len of seq_len + num_image_tokens.
                max_cache_len=max(generation_config.max_length, num_image_tokens + seq_len),
                model_kwargs=model_kwargs,
            )

        # Placeholder for generated tokens.
        generated_tokens = torch.zeros((batch_size, num_image_tokens), dtype=dtype, device=device)

        # 8. init attention / hidden states / scores tuples
        output_attentions = generation_config.output_attentions
        output_hidden_states = generation_config.output_hidden_states
        output_scores = generation_config.output_scores
        output_logits = generation_config.output_logits
        return_dict_in_generate = generation_config.return_dict_in_generate

        raw_scores = () if (return_dict_in_generate and output_scores) else None
        raw_logits = () if (return_dict_in_generate and output_logits) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None

        for i in range(num_image_tokens):
            model_inputs = self.prepare_inputs_for_generation(
                inputs_embeds=inputs_embeds, input_ids=input_tokens, **model_kwargs
            )

            model_inputs["attention_mask"] = model_inputs["attention_mask"].to(inputs_embeds.device)
            model_inputs["cache_position"] = model_inputs["cache_position"].to(inputs_embeds.device)

            outputs = self.model.language_model(
                **model_inputs,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            # Update model_kwargs like cache_position for next generation.
            model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
            hidden_state = outputs.last_hidden_state[:, -1, :].clone()

            # Generate scores using the generation head (Not using above defined LM Head)
            scores = self.model.generation_head(hidden_state)
            next_token_scores = logits_processor(input_ids, scores)

            # Sample next token.
            if generation_config.do_sample:
                probs = torch.softmax(next_token_scores, dim=-1)
                next_token = torch.multinomial(probs, num_samples=1).squeeze(-1)
            else:
                next_token = torch.argmax(next_token_scores, dim=-1)

            generated_tokens[:, i] = next_token

            # Prepare embeddings for the next step.
            next_token = torch.cat([next_token, next_token])
            next_token = next_token.unsqueeze(-1)

            inputs_embeds = self.prepare_embeddings_for_image_generation(next_token)

        if return_dict_in_generate:
            if output_scores:
                raw_scores += (scores,)
            if output_logits:
                raw_logits += (hidden_state.float(),)
            if output_attentions:
                decoder_attentions += outputs.attentions
            if output_hidden_states:
                decoder_hidden_states += outputs.hidden_states

        if return_dict_in_generate:
            return GenerateDecoderOnlyOutput(
                sequences=generated_tokens,
                scores=scores,
                logits=raw_logits,
                attentions=decoder_attentions,
                hidden_states=decoder_hidden_states,
                past_key_values=outputs.past_key_values,
            )
        else:
            return generated_tokens


class JanusImageProcessor(BlipImageProcessor):
    r"""
    Constructs a JANUS image processor.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
            `do_resize` parameter in the `preprocess` method.
        size (`dict`, *optional*, defaults to `{"height": 384, "width": 384}`):
            Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
            method.
        min_size (`int`, *optional*, defaults to 14):
            The minimum allowed size for the resized image. Ensures that neither the height nor width
            falls below this value after resizing.
        resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
            Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be
            overridden by the `resample` parameter in the `preprocess` method.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
            `do_rescale` parameter in the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be
            overridden by the `rescale_factor` parameter in the `preprocess` method.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
            method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
        image_mean (`float` or `list[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
            overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `list[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
            Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_convert_rgb (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to RGB.
        do_pad (`bool`, *optional*, defaults to `True`):
            Whether to pad the image to square or not.
    """

    def __init__(
        self,
        do_resize: bool = True,
        size: Optional[dict[str, int]] = None,
        min_size: int = 14,
        resample: PILImageResampling = PILImageResampling.BICUBIC,
        do_rescale: bool = True,
        rescale_factor: Union[int, float] = 1 / 255,
        do_normalize: bool = True,
        image_mean: Optional[Union[float, list[float]]] = None,
        image_std: Optional[Union[float, list[float]]] = None,
        do_convert_rgb: Optional[bool] = None,
        do_pad: Optional[bool] = True,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.do_pad = do_pad
        self.min_size = min_size
        if image_mean is None:
            self.background_color = (127, 127, 127)
        else:
            self.background_color = tuple(int(x * 255) for x in image_mean)

    def pad_to_square(
        self,
        image: np.ndarray,
        background_color: Union[int, tuple[int, int, int]] = 0,
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ) -> np.ndarray:
        """
        Pads an image to a square based on the longest edge.

        Args:
            image (`np.ndarray`):
                The image to pad.
            background_color (`int` or `tuple[int, int, int]`, *optional*, defaults to 0):
                The color to use for the padding. Can be an integer for single channel or a
                tuple of integers representing for multi-channel images. If passed as integer
                in multi-channel mode, it will default to `0` in subsequent channels.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the output image. Can be one of:
                    - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                If unset, will use same as the input image.
            input_data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the input image. Can be one of:
                    - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                    - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.

        Returns:
            `np.ndarray`: The padded image.
        """
        height, width = get_image_size(image, input_data_format)
        num_channels = image.shape[0] if input_data_format == ChannelDimension.FIRST else image.shape[-1]

        if height == width:
            image = (
                to_channel_dimension_format(image, data_format, input_data_format)
                if data_format is not None
                else image
            )
            return image

        max_dim = max(height, width)

        # Ensure background_color is the correct shape
        if isinstance(background_color, int):
            background_color = [background_color]
        elif len(background_color) != num_channels:
            raise ValueError(
                f"background_color must have no more than {num_channels} elements to match the number of channels"
            )

        if input_data_format == ChannelDimension.FIRST:
            result = np.zeros((num_channels, max_dim, max_dim), dtype=image.dtype)
            for i, color in enumerate(background_color):
                result[i, :, :] = color
            if width > height:
                start = (max_dim - height) // 2
                result[:, start : start + height, :] = image
            else:
                start = (max_dim - width) // 2
                result[:, :, start : start + width] = image
        else:
            result = np.zeros((max_dim, max_dim, num_channels), dtype=image.dtype)
            for i, color in enumerate(background_color):
                result[:, :, i] = color
            if width > height:
                start = (max_dim - height) // 2
                result[start : start + height, :, :] = image
            else:
                start = (max_dim - width) // 2
                result[:, start : start + width, :] = image

        return result

    def resize(
        self,
        image: np.ndarray,
        size: Union[dict[str, int], int],
        resample: PILImageResampling = PILImageResampling.BICUBIC,
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        **kwargs,
    ) -> np.ndarray:
        """
        Resize an image to dynamically calculated size.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`dict[str, int]` or `int`):
                The size to resize the image to. If a dictionary, it should have the keys `"height"` and `"width"`.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
                `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
            data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the output image. If unset, the channel dimension format of the input
                image is used. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `None`: will be inferred from input
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.

        Returns:
            `np.ndarray`: The resized image.
        """
        if input_data_format is None:
            input_data_format = infer_channel_dimension_format(image)

        height, width = get_image_size(image, input_data_format)
        max_size = max(height, width)

        size = get_size_dict(size, default_to_square=True)
        if size["height"] != size["width"]:
            raise ValueError(
                f"Output height and width must be the same. Got height={size['height']} and width={size['width']}"
            )
        size = size["height"]

        delta = size / max_size
        # Largest side becomes `size` and the other side is scaled according to the aspect ratio.
        output_size_nonpadded = [
            max(int(height * delta), self.min_size),
            max(int(width * delta), self.min_size),
        ]

        image = resize(
            image,
            size=output_size_nonpadded,
            resample=resample,
            data_format=data_format,
            input_data_format=input_data_format,
            **kwargs,
        )
        return image

    @filter_out_non_signature_kwargs()
    def preprocess(
        self,
        images: ImageInput,
        do_resize: Optional[bool] = None,
        size: Optional[dict[str, int]] = None,
        resample: Optional[PILImageResampling] = None,
        do_rescale: Optional[bool] = None,
        rescale_factor: Optional[float] = None,
        do_normalize: Optional[bool] = None,
        image_mean: Optional[Union[float, list[float]]] = None,
        image_std: Optional[Union[float, list[float]]] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        do_convert_rgb: Optional[bool] = None,
        background_color: Optional[Union[int, tuple[int, int, int]]] = None,
        do_pad: Optional[bool] = None,
        data_format: ChannelDimension = ChannelDimension.FIRST,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ) -> PIL.Image.Image:
        """
        Preprocess an image or batch of images.

        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            size (`dict[str, int]`, *optional*, defaults to `self.size`):
                Controls the size of the image after `resize`. The shortest edge of the image is resized to
                `size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image
                is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest
                edge equal to `int(size["shortest_edge"] * (1333 / 800))`.
            resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image values between [0 - 1].
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Rescale factor to rescale the image by if `do_rescale` is set to `True`.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to normalize the image by if `do_normalize` is set to `True`.
            image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            background_color (`tuple[int, int, int]`):
                The background color to use for the padding.
            do_pad (`bool`, *optional*, defaults to `self.do_pad`):
                Whether to pad the image to square or not.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        """
        do_resize = do_resize if do_resize is not None else self.do_resize
        resample = resample if resample is not None else self.resample
        do_rescale = do_rescale if do_rescale is not None else self.do_rescale
        rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
        do_normalize = do_normalize if do_normalize is not None else self.do_normalize
        image_mean = image_mean if image_mean is not None else self.image_mean
        image_std = image_std if image_std is not None else self.image_std
        do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
        do_pad = do_pad if do_pad is not None else self.do_pad
        background_color = background_color if background_color is not None else self.background_color

        size = size if size is not None else self.size
        size = get_size_dict(size, default_to_square=False)
        images = self.fetch_images(images)
        images = make_flat_list_of_images(images)

        if not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )

        validate_preprocess_arguments(
            do_rescale=do_rescale,
            rescale_factor=rescale_factor,
            do_normalize=do_normalize,
            image_mean=image_mean,
            image_std=image_std,
            do_resize=do_resize,
            size=size,
            resample=resample,
        )
        # PIL RGBA images are converted to RGB
        if do_convert_rgb:
            images = [convert_to_rgb(image) for image in images]

        # All transformations expect numpy arrays.
        images = [to_numpy_array(image) for image in images]

        if do_rescale and is_scaled_image(images[0]):
            logger.warning_once(
                "It looks like you are trying to rescale already rescaled images. If the input"
                " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
            )

        if input_data_format is None:
            # We assume that all images have the same channel dimension format.
            input_data_format = infer_channel_dimension_format(images[0])

        if do_resize:
            images = [
                self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
                for image in images
            ]

        if do_pad:
            # Expand and pad the images to obtain a square image of dimensions `size x size`
            images = [
                self.pad_to_square(
                    image=image,
                    background_color=background_color,
                    input_data_format=input_data_format,
                )
                for image in images
            ]

        if do_rescale:
            images = [
                self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
                for image in images
            ]

        if do_normalize:
            images = [
                self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
                for image in images
            ]

        images = [
            to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
        ]

        encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)

        return encoded_outputs

    def postprocess(
        self,
        images: ImageInput,
        do_rescale: Optional[bool] = None,
        rescale_factor: Optional[float] = None,
        do_normalize: Optional[bool] = None,
        image_mean: Optional[list[float]] = None,
        image_std: Optional[list[float]] = None,
        input_data_format: Optional[str] = None,
        return_tensors: Optional[str] = None,
    ):
        """Applies post-processing to the decoded image tokens by reversing transformations applied during preprocessing."""
        do_rescale = do_rescale if do_rescale is not None else self.do_rescale
        rescale_factor = 1.0 / self.rescale_factor if rescale_factor is None else rescale_factor
        do_normalize = do_normalize if do_normalize is not None else self.do_normalize
        image_mean = image_mean if image_mean is not None else self.image_mean
        image_std = image_std if image_std is not None else self.image_std

        images = make_flat_list_of_images(images)  # Ensures input is a list

        if isinstance(images[0], PIL.Image.Image):
            return images if len(images) > 1 else images[0]

        if input_data_format is None:
            input_data_format = infer_channel_dimension_format(images[0])  # Determine format dynamically

        pixel_values = []

        for image in images:
            image = to_numpy_array(image)  # Ensure NumPy format

            if do_normalize:
                image = self.unnormalize(
                    image=image, image_mean=image_mean, image_std=image_std, input_data_format=input_data_format
                )

            if do_rescale:
                image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
                image = image.clip(0, 255).astype(np.uint8)

            if do_normalize and do_rescale and return_tensors == "PIL.Image.Image":
                image = to_channel_dimension_format(image, ChannelDimension.LAST, input_channel_dim=input_data_format)
                image = PIL.Image.fromarray(image)

            pixel_values.append(image)

        data = {"pixel_values": pixel_values}
        return_tensors = return_tensors if return_tensors != "PIL.Image.Image" else None

        return BatchFeature(data=data, tensor_type=return_tensors)

    def unnormalize(
        self,
        image: np.ndarray,
        image_mean: Union[float, Iterable[float]],
        image_std: Union[float, Iterable[float]],
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ) -> np.ndarray:
        """
        Unnormalizes `image` using the mean and standard deviation specified by `mean` and `std`.
        image = (image * image_std) + image_mean
        Args:
            image (`torch.Tensor` of shape `(batch_size, num_channels, image_size, image_size)` or `(num_channels, image_size, image_size)`):
                Batch of pixel values to postprocess.
            image_mean (`float` or `Iterable[float]`):
                The mean to use for unnormalization.
            image_std (`float` or `Iterable[float]`):
                The standard deviation to use for unnormalization.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        """
        num_channels = 3

        if isinstance(image_mean, Iterable):
            if len(image_mean) != num_channels:
                raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(image_mean)}")
        else:
            image_mean = [image_mean] * num_channels

        if isinstance(image_std, Iterable):
            if len(image_std) != num_channels:
                raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(image_std)}")
        else:
            image_std = [image_std] * num_channels

        rev_image_mean = tuple(-mean / std for mean, std in zip(image_mean, image_std))
        rev_image_std = tuple(1 / std for std in image_std)
        image = self.normalize(
            image=image, mean=rev_image_mean, std=rev_image_std, input_data_format=input_data_format
        )
        return image


__all__ = [
    "JanusImageProcessor",
    "JanusPreTrainedModel",
    "JanusForConditionalGeneration",
    "JanusModel",
    "JanusVQVAE",
    "JanusVisionModel",
    "JanusVQVAEConfig",
    "JanusVisionConfig",
    "JanusConfig",
]
