# coding=utf-8
# Copyright 2024 Cohere team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This file is based on the LLama model definition file in transformers

"""PyTorch Cohere model."""

from typing import Callable, Optional, Union

import torch
from torch import nn

from ...cache_utils import Cache
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_rope_utils import dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import TransformersKwargs, logging
from ...utils.deprecation import deprecate_kwarg
from ..llama.modeling_llama import (
    LlamaAttention,
    LlamaForCausalLM,
    LlamaMLP,
    LlamaModel,
    LlamaRotaryEmbedding,
    eager_attention_forward,
)
from .configuration_cohere import CohereConfig


logger = logging.get_logger(__name__)


class CohereLayerNorm(nn.Module):
    def __init__(self, hidden_size=None, eps=1e-5, bias=False):
        """The hidden size can be a tuple or an int. The tuple is used for QKNorm to normalize across head_dim"""
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        mean = hidden_states.mean(-1, keepdim=True)
        variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
        hidden_states = (hidden_states - mean) * torch.rsqrt(variance + self.variance_epsilon)
        hidden_states = self.weight.to(torch.float32) * hidden_states
        return hidden_states.to(input_dtype)


class CohereRotaryEmbedding(LlamaRotaryEmbedding):
    @torch.no_grad()
    @dynamic_rope_update  # power user: used with advanced RoPE types (e.g. dynamic rope)
    def forward(self, x, position_ids):
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
        position_ids_expanded = position_ids[:, None, :].float()

        device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):  # Force float32
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.repeat_interleave(freqs, 2, dim=-1)  # diff from Llama: we interleave() instead of cat()
            cos = emb.cos() * self.attention_scaling
            sin = emb.sin() * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


def rotate_half(x):
    # Split and rotate. Note that this function is different from e.g. Llama.
    x1 = x[..., ::2]
    x2 = x[..., 1::2]
    rot_x = torch.stack([-x2, x1], dim=-1).flatten(-2)
    return rot_x


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    dtype = q.dtype
    q = q.float()
    k = k.float()
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed.to(dtype=dtype), k_embed.to(dtype=dtype)


class CohereMLP(LlamaMLP):
    def __init__(self, config):
        super().__init__(config)
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)


class CohereAttention(LlamaAttention):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: CohereConfig, layer_idx: Optional[int] = None):
        super().__init__(config, layer_idx)
        self.use_qk_norm = config.use_qk_norm
        if self.use_qk_norm:
            # When sharding the model using Tensor Parallelism, need to be careful to use n_local_heads
            self.q_norm = CohereLayerNorm(
                hidden_size=(config.num_attention_heads, self.head_dim), eps=config.layer_norm_eps
            )
            self.k_norm = CohereLayerNorm(
                hidden_size=(config.num_key_value_heads, self.head_dim), eps=config.layer_norm_eps
            )

    @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_values: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)

        query_states = self.q_proj(hidden_states).view(hidden_shape)
        key_states = self.k_proj(hidden_states).view(hidden_shape)
        value_states = self.v_proj(hidden_states).view(hidden_shape)

        if self.use_qk_norm:  # main diff from Llama
            query_states = self.q_norm(query_states)
            key_states = self.k_norm(key_states)

        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_values is not None:
            # sin and cos are specific to RoPE models; position_ids needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
            **kwargs,
        )

        attn_output = attn_output.reshape(*input_shape, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        return attn_output, attn_weights


class CohereDecoderLayer(GradientCheckpointingLayer):
    def __init__(self, config: CohereConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = CohereAttention(config=config, layer_idx=layer_idx)
        self.mlp = CohereMLP(config)
        self.input_layernorm = CohereLayerNorm(hidden_size=(config.hidden_size), eps=config.layer_norm_eps)

    @deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*):
                attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
                query_sequence_length, key_sequence_length)` if default attention is used.
            past_key_values (`Cache`, *optional*): cached past key and value projection states
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
                Indices depicting the position of the input sequence tokens in the sequence
            position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
                Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
                with `head_dim` being the embedding dimension of each attention head.
        """
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)

        hidden_states_attention, _ = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
            **kwargs,
        )

        hidden_states_mlp = self.mlp(hidden_states)
        hidden_states = residual + hidden_states_attention + hidden_states_mlp
        return hidden_states


class CohereModel(LlamaModel):
    def __init__(self, config: CohereConfig):
        super().__init__(config)
        self.layers = nn.ModuleList(
            [CohereDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.rotary_emb = CohereRotaryEmbedding(config=config)
        self.norm = CohereLayerNorm(hidden_size=(config.hidden_size), eps=config.layer_norm_eps)


class CohereForCausalLM(LlamaForCausalLM):
    def __init__(self, config):
        super().__init__(config)
        self.model = CohereModel(config)
        self.logit_scale = config.logit_scale
        self.tie_word_embeddings = config.tie_word_embeddings

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **kwargs: Unpack[TransformersKwargs],
    ) -> CausalLMOutputWithPast:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Example:

        ```python
        >> from transformers import AutoTokenizer, CohereForCausalLM

        >> model = CohereForCausalLM.from_pretrained("CohereForAI/c4ai-command-r-v01")
        >> tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01")

        >> prompt = "Hey, are you conscious? Can you talk to me?"
        >> inputs = tokenizer(prompt, return_tensors="pt")

        >> # Generate
        >> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs: BaseModelOutputWithPast = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = outputs.last_hidden_state
        # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])
        logits = logits * self.logit_scale  # main diff from Llama

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


__all__ = [
    "CohereForCausalLM",
    "CohereModel",
    "CoherePreTrainedModel",  # noqa: F822
]
