
    ה9isa                         d Z ddlZddlZddlmZ ddlmZ ddl	m
Z
mZ ddlmZ ddlmZ ddlmZ ddlmZ dd	lmZ d
 Zd Zd Zd ZddZdddZd Zd Zd Zd Zd Z d Z!ddZ"d dZ#d Z$d Z%d Z&d Z'd!dZ(y)"zBA collection of utilities to work with sparse matrices and arrays.    N)LinearOperator)_sparse_min_max_sparse_nan_min_max)csc_mean_variance_axis0)csr_matmul_csr_to_dense)csr_mean_variance_axis0)incr_mean_variance_axis0)_check_sample_weightc                 z    t        j                  |       r| j                  n
t        |       }d|z  }t	        |      )z2Raises a TypeError if X is not a CSR or CSC matrixz,Expected a CSR or CSC sparse matrix, got %s.)spissparseformattype	TypeError)X
input_typeerrs      c/var/www/html/backtest/airagagent/rag_env/lib/python3.12/site-packages/sklearn/utils/sparsefuncs.py_raise_typeerrorr      s/    [[^aJ
8:
EC
C.    c                 (    | dvrt        d| z        y )N)r      z8Unknown axis value: %d. Use 0 for rows, or 1 for columns)
ValueErroraxiss    r   _raise_error_wrong_axisr   #   s$    6FM
 	
 r   c                     |j                   d   | j                   d   k(  sJ | xj                  |j                  | j                  d      z  c_        y)a  Inplace column scaling of a CSR matrix.

    Scale each feature of the data matrix by multiplying with specific scale
    provided by the caller assuming a (n_samples, n_features) shape.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Matrix to normalize using the variance of the features.
        It should be of CSR format.

    scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
        Array of precomputed feature-wise values to use for scaling.

    Examples
    --------
    >>> from sklearn.utils import sparsefuncs
    >>> from scipy import sparse
    >>> import numpy as np
    >>> indptr = np.array([0, 3, 4, 4, 4])
    >>> indices = np.array([0, 1, 2, 2])
    >>> data = np.array([8, 1, 2, 5])
    >>> scale = np.array([2, 3, 2])
    >>> csr = sparse.csr_matrix((data, indices, indptr))
    >>> csr.todense()
    matrix([[8, 1, 2],
            [0, 0, 5],
            [0, 0, 0],
            [0, 0, 0]])
    >>> sparsefuncs.inplace_csr_column_scale(csr, scale)
    >>> csr.todense()
    matrix([[16,  3,  4],
            [ 0,  0, 10],
            [ 0,  0,  0],
            [ 0,  0,  0]])
    r   r   clip)modeN)shapedatatakeindicesr   scales     r   inplace_csr_column_scaler&   *   sB    J ;;q>QWWQZ'''FFejjj00Fr   c                     |j                   d   | j                   d   k(  sJ | xj                  t        j                  |t        j                  | j
                              z  c_        y)a  Inplace row scaling of a CSR matrix.

    Scale each sample of the data matrix by multiplying with specific scale
    provided by the caller assuming a (n_samples, n_features) shape.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Matrix to be scaled. It should be of CSR format.

    scale : ndarray of float of shape (n_samples,)
        Array of precomputed sample-wise values to use for scaling.
    r   N)r    r!   nprepeatdiffindptrr$   s     r   inplace_csr_row_scaler,   S   sH     ;;q>QWWQZ'''FFbiirwwqxx011Fr   c                 l   t        |       t        j                  |       r:| j                  dk(  r+|dk(  rt	        | ||      S t        | j                  ||      S t        j                  |       r:| j                  dk(  r+|dk(  rt        | ||      S t	        | j                  ||      S t        |        y)a{  Compute mean and variance along an axis on a CSR or CSC matrix.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Input data. It can be of CSR or CSC format.

    axis : {0, 1}
        Axis along which the axis should be computed.

    weights : ndarray of shape (n_samples,) or (n_features,), default=None
        If axis is set to 0 shape is (n_samples,) or
        if axis is set to 1 shape is (n_features,).
        If it is set to None, then samples are equally weighted.

        .. versionadded:: 0.24

    return_sum_weights : bool, default=False
        If True, returns the sum of weights seen for each feature
        if `axis=0` or each sample if `axis=1`.

        .. versionadded:: 0.24

    Returns
    -------

    means : ndarray of shape (n_features,), dtype=floating
        Feature-wise means.

    variances : ndarray of shape (n_features,), dtype=floating
        Feature-wise variances.

    sum_weights : ndarray of shape (n_features,), dtype=floating
        Returned if `return_sum_weights` is `True`.

    Examples
    --------
    >>> from sklearn.utils import sparsefuncs
    >>> from scipy import sparse
    >>> import numpy as np
    >>> indptr = np.array([0, 3, 4, 4, 4])
    >>> indices = np.array([0, 1, 2, 2])
    >>> data = np.array([8, 1, 2, 5])
    >>> scale = np.array([2, 3, 2])
    >>> csr = sparse.csr_matrix((data, indices, indptr))
    >>> csr.todense()
    matrix([[8, 1, 2],
            [0, 0, 5],
            [0, 0, 0],
            [0, 0, 0]])
    >>> sparsefuncs.mean_variance_axis(csr, axis=0)
    (array([2.  , 0.25, 1.75]), array([12.    ,  0.1875,  4.1875]))
    csrr   )weightsreturn_sum_weightscscN)r   r   r   r   _csr_mean_var_axis0_csc_mean_var_axis0Tr   )r   r   r/   r0   s       r   mean_variance_axisr5   e   s    l D!	{{1~!((e+19&77I  'W9K  
QAHH-19&77I  'W9K  	r   )r/   c                   t        |       t        j                  |       r| j                  dv st	        |        t        j                  |      dk(  r,t        j                  |j                  ||j                        }t        j                  |      t        j                  |      cxk(  r"t        j                  |      k(  st        d       t        d      |dk(  rWt        j                  |      | j                  d   k7  rt        d| j                  d    dt        j                  |       d      t        j                  |      | j                  d   k7  r2t        d	| j                  d    dt        j                  |       d      |dk(  r| j                  n| } |t        || | j                        }t        | ||||
      S )a  Compute incremental mean and variance along an axis on a CSR or CSC matrix.

    last_mean, last_var are the statistics computed at the last step by this
    function. Both must be initialized to 0-arrays of the proper size, i.e.
    the number of features in X. last_n is the number of samples encountered
    until now.

    Parameters
    ----------
    X : CSR or CSC sparse matrix of shape (n_samples, n_features)
        Input data.

    axis : {0, 1}
        Axis along which the axis should be computed.

    last_mean : ndarray of shape (n_features,) or (n_samples,), dtype=floating
        Array of means to update with the new data X.
        Should be of shape (n_features,) if axis=0 or (n_samples,) if axis=1.

    last_var : ndarray of shape (n_features,) or (n_samples,), dtype=floating
        Array of variances to update with the new data X.
        Should be of shape (n_features,) if axis=0 or (n_samples,) if axis=1.

    last_n : float or ndarray of shape (n_features,) or (n_samples,),             dtype=floating
        Sum of the weights seen so far, excluding the current weights
        If not float, it should be of shape (n_features,) if
        axis=0 or (n_samples,) if axis=1. If float it corresponds to
        having same weights for all samples (or features).

    weights : ndarray of shape (n_samples,) or (n_features,), default=None
        If axis is set to 0 shape is (n_samples,) or
        if axis is set to 1 shape is (n_features,).
        If it is set to None, then samples are equally weighted.

        .. versionadded:: 0.24

    Returns
    -------
    means : ndarray of shape (n_features,) or (n_samples,), dtype=floating
        Updated feature-wise means if axis = 0 or
        sample-wise means if axis = 1.

    variances : ndarray of shape (n_features,) or (n_samples,), dtype=floating
        Updated feature-wise variances if axis = 0 or
        sample-wise variances if axis = 1.

    n : ndarray of shape (n_features,) or (n_samples,), dtype=integral
        Updated number of seen samples per feature if axis=0
        or number of seen features per sample if axis=1.

        If weights is not None, n is a sum of the weights of the seen
        samples or features instead of the actual number of seen
        samples or features.

    Notes
    -----
    NaNs are ignored in the algorithm.

    Examples
    --------
    >>> from sklearn.utils import sparsefuncs
    >>> from scipy import sparse
    >>> import numpy as np
    >>> indptr = np.array([0, 3, 4, 4, 4])
    >>> indices = np.array([0, 1, 2, 2])
    >>> data = np.array([8, 1, 2, 5])
    >>> scale = np.array([2, 3, 2])
    >>> csr = sparse.csr_matrix((data, indices, indptr))
    >>> csr.todense()
    matrix([[8, 1, 2],
            [0, 0, 5],
            [0, 0, 0],
            [0, 0, 0]])
    >>> sparsefuncs.incr_mean_variance_axis(
    ...     csr, axis=0, last_mean=np.zeros(3), last_var=np.zeros(3), last_n=2
    ... )
    (array([1.33, 0.167, 1.17]), array([8.88, 0.139, 3.47]),
    array([6., 6., 6.]))
    r1   r.   r   dtypez8last_mean, last_var, last_n do not have the same shapes.r   zHIf axis=1, then last_mean, last_n, last_var should be of size n_samples z (Got z).zIIf axis=0, then last_mean, last_n, last_var should be of size n_features )	last_meanlast_varlast_nr/   )r   r   r   r   r   r(   sizefullr    r9   r   r4   r
   _incr_mean_var_axis0)r   r   r:   r;   r<   r/   s         r   incr_mean_variance_axisr@      s   b D!KKNqxx>9	wwv!&	HGGI"''("3FrwwvFSTT GSTTqy779+""#''!*VBGGI4F3GrK 
 779+##$771:,fRWWY5G4HL 
 qyaA&wA	Y&' r   c                     t        j                  |       r&| j                  dk(  rt        | j                  |       yt        j                  |       r| j                  dk(  rt        | |       yt        |        y)a  Inplace column scaling of a CSC/CSR matrix.

    Scale each feature of the data matrix by multiplying with specific scale
    provided by the caller assuming a (n_samples, n_features) shape.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Matrix to normalize using the variance of the features. It should be
        of CSC or CSR format.

    scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
        Array of precomputed feature-wise values to use for scaling.

    Examples
    --------
    >>> from sklearn.utils import sparsefuncs
    >>> from scipy import sparse
    >>> import numpy as np
    >>> indptr = np.array([0, 3, 4, 4, 4])
    >>> indices = np.array([0, 1, 2, 2])
    >>> data = np.array([8, 1, 2, 5])
    >>> scale = np.array([2, 3, 2])
    >>> csr = sparse.csr_matrix((data, indices, indptr))
    >>> csr.todense()
    matrix([[8, 1, 2],
            [0, 0, 5],
            [0, 0, 0],
            [0, 0, 0]])
    >>> sparsefuncs.inplace_column_scale(csr, scale)
    >>> csr.todense()
    matrix([[16,  3,  4],
            [ 0,  0, 10],
            [ 0,  0,  0],
            [ 0,  0,  0]])
    r1   r.   N)r   r   r   r,   r4   r&   r   r$   s     r   inplace_column_scalerB   &  sQ    J 
{{1~!((e+acc5)	QAHH- E*r   c                     t        j                  |       r&| j                  dk(  rt        | j                  |       yt        j                  |       r| j                  dk(  rt        | |       yt        |        y)a  Inplace row scaling of a CSR or CSC matrix.

    Scale each row of the data matrix by multiplying with specific scale
    provided by the caller assuming a (n_samples, n_features) shape.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Matrix to be scaled. It should be of CSR or CSC format.

    scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
        Array of precomputed sample-wise values to use for scaling.

    Examples
    --------
    >>> from sklearn.utils import sparsefuncs
    >>> from scipy import sparse
    >>> import numpy as np
    >>> indptr = np.array([0, 2, 3, 4, 5])
    >>> indices = np.array([0, 1, 2, 3, 3])
    >>> data = np.array([8, 1, 2, 5, 6])
    >>> scale = np.array([2, 3, 4, 5])
    >>> csr = sparse.csr_matrix((data, indices, indptr))
    >>> csr.todense()
    matrix([[8, 1, 0, 0],
            [0, 0, 2, 0],
            [0, 0, 0, 5],
            [0, 0, 0, 6]])
    >>> sparsefuncs.inplace_row_scale(csr, scale)
    >>> csr.todense()
     matrix([[16,  2,  0,  0],
             [ 0,  0,  6,  0],
             [ 0,  0,  0, 20],
             [ 0,  0,  0, 30]])
    r1   r.   N)r   r   r   r&   r4   r,   r   r$   s     r   inplace_row_scalerD   S  sQ    H 
{{1~!((e+ e,	QAHH-a'r   c                 0   ||fD ]'  }t        |t        j                        st        d       |dk  r|| j                  d   z  }|dk  r|| j                  d   z  }| j
                  |k(  }|| j
                  | j
                  |k(  <   || j
                  |<   y)aK  Swap two rows of a CSC matrix in-place.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Matrix whose two rows are to be swapped. It should be of
        CSC format.

    m : int
        Index of the row of X to be swapped.

    n : int
        Index of the row of X to be swapped.
     m and n should be valid integersr   N)
isinstancer(   ndarrayr   r    r#   )r   mntm_masks        r   inplace_swap_row_cscrM     s     V @a$>??@ 	1u	QWWQZ1u	QWWQZYY!^F !AIIaii1nAIIfr   c           	      B   ||fD ]'  }t        |t        j                        st        d       |dk  r|| j                  d   z  }|dk  r|| j                  d   z  }||kD  r||}}| j
                  }||   }||dz      }||   }||dz      }||z
  }	||z
  }
|	|
k7  rE| j
                  |dz   |xxx |
|	z
  z  ccc ||
z   | j
                  |dz   <   ||	z
  | j
                  |<   t        j                  | j                  d| | j                  || | j                  || | j                  || | j                  |d g      | _        t        j                  | j                  d| | j                  || | j                  || | j                  || | j                  |d g      | _        y)aK  Swap two rows of a CSR matrix in-place.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Matrix whose two rows are to be swapped. It should be of
        CSR format.

    m : int
        Index of the row of X to be swapped.

    n : int
        Index of the row of X to be swapped.
    rF   r   r      N)	rG   r(   rH   r   r    r+   concatenater#   r!   )r   rI   rJ   rK   r+   m_startm_stopn_startn_stopnz_mnz_ns              r   inplace_swap_row_csrrW     s    V @a$>??@ 	1u	QWWQZ1u	QWWQZ 	1u!1XXFQiGAE]FQiGAE]FGDGDt|	Qtd{*!D.QtmIIhwIIgf%IIfW%IIgf%IIfg	
AI ^^FF8GFF76"FF6'"FF76"FF67O	
AFr   c                     t        j                  |       r| j                  dk(  rt        | ||       yt        j                  |       r| j                  dk(  rt	        | ||       yt        |        y)a  
    Swap two rows of a CSC/CSR matrix in-place.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Matrix whose two rows are to be swapped. It should be of CSR or
        CSC format.

    m : int
        Index of the row of X to be swapped.

    n : int
        Index of the row of X to be swapped.

    Examples
    --------
    >>> from sklearn.utils import sparsefuncs
    >>> from scipy import sparse
    >>> import numpy as np
    >>> indptr = np.array([0, 2, 3, 3, 3])
    >>> indices = np.array([0, 2, 2])
    >>> data = np.array([8, 2, 5])
    >>> csr = sparse.csr_matrix((data, indices, indptr))
    >>> csr.todense()
    matrix([[8, 0, 2],
            [0, 0, 5],
            [0, 0, 0],
            [0, 0, 0]])
    >>> sparsefuncs.inplace_swap_row(csr, 0, 1)
    >>> csr.todense()
    matrix([[0, 0, 5],
            [8, 0, 2],
            [0, 0, 0],
            [0, 0, 0]])
    r1   r.   N)r   r   r   rM   rW   r   r   rI   rJ   s      r   inplace_swap_rowrZ     sQ    J 
{{1~!((e+Q1%	QAHH-Q1%r   c                 >   |dk  r|| j                   d   z  }|dk  r|| j                   d   z  }t        j                  |       r| j                  dk(  rt	        | ||       yt        j                  |       r| j                  dk(  rt        | ||       yt        |        y)a  
    Swap two columns of a CSC/CSR matrix in-place.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Matrix whose two columns are to be swapped. It should be of
        CSR or CSC format.

    m : int
        Index of the column of X to be swapped.

    n : int
        Index of the column of X to be swapped.

    Examples
    --------
    >>> from sklearn.utils import sparsefuncs
    >>> from scipy import sparse
    >>> import numpy as np
    >>> indptr = np.array([0, 2, 3, 3, 3])
    >>> indices = np.array([0, 2, 2])
    >>> data = np.array([8, 2, 5])
    >>> csr = sparse.csr_matrix((data, indices, indptr))
    >>> csr.todense()
    matrix([[8, 0, 2],
            [0, 0, 5],
            [0, 0, 0],
            [0, 0, 0]])
    >>> sparsefuncs.inplace_swap_column(csr, 0, 1)
    >>> csr.todense()
    matrix([[0, 8, 2],
            [0, 0, 5],
            [0, 0, 0],
            [0, 0, 0]])
    r   r   r1   r.   N)r    r   r   r   rW   rM   r   rY   s      r   inplace_swap_columnr\     s    J 	1u	QWWQZ1u	QWWQZ	{{1~!((e+Q1%	QAHH-Q1%r   c                     t        j                  |       r*| j                  dv r|rt        | |      S t	        | |      S t        |        y)a  Compute minimum and maximum along an axis on a CSR or CSC matrix.

     Optionally ignore NaN values.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Input data. It should be of CSR or CSC format.

    axis : {0, 1}
        Axis along which the axis should be computed.

    ignore_nan : bool, default=False
        Ignore or passing through NaN values.

        .. versionadded:: 0.20

    Returns
    -------

    mins : ndarray of shape (n_features,), dtype={np.float32, np.float64}
        Feature-wise minima.

    maxs : ndarray of shape (n_features,), dtype={np.float32, np.float64}
        Feature-wise maxima.
    )r.   r1   r   N)r   r   r   r   r   r   )r   r   
ignore_nans      r   min_max_axisr_   9  s?    6 
{{1~!((n4&qt44"1400r   c                    |dk(  rd}n;|dk(  rd}n3| j                   dk7  r$t        dj                  | j                               |A|| j                  S t        j                  t        j
                  | j                        |      S |dk(  r7t        j
                  | j                        }||j                  d      S ||z  S |dk(  r|.t        j                  | j                  | j                  d         S t        j                  |t        j
                  | j                              }t        j                  | j                  | j                  d   |	      S t        d
j                  |            )a  A variant of X.getnnz() with extension to weighting on axis 0.

    Useful in efficiently calculating multilabel metrics.

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_labels)
        Input data. It should be of CSR format.

    axis : {0, 1}, default=None
        The axis on which the data is aggregated.

    sample_weight : array-like of shape (n_samples,), default=None
        Weight for each row of X.

    Returns
    -------
    nnz : int, float, ndarray of shape (n_samples,) or ndarray of shape (n_features,)
        Number of non-zero values in the array along a given axis. Otherwise,
        the total number of non-zero values in the array is returned.
    r   r   r.   z#Expected CSR sparse format, got {0}intp)	minlength)rd   r/   zUnsupported axis: {0})r   r   nnzr(   dotr*   r+   astypebincountr#   r    r)   r   )r   r   sample_weightoutr/   s        r   count_nonzerork   ]  s-   , rz		
U	=DDQXXNOO | 55L66"''!((+];;	ggahh ::f%%]""	 ;;qyyAGGAJ??iirwwqxx/@AG;;qyyAGGAJPP077=>>r   c                    t        |       |z   }|st        j                  S t        j                  | dk        }t	        |d      \  }}| j                          |rt        || ||      S t        |dz
  | ||      t        || ||      z   dz  S )zCompute the median of data with n_zeros additional zeros.

    This function is used to support sparse matrices; it modifies data
    in-place.
    r   rO   r   g       @)lenr(   nanrk   divmodsort_get_elem_at_rank)r!   n_zerosn_elems
n_negativemiddleis_odds         r   _get_medianrw     s     $i'!Gvv!!$(+JGQ'NFFIIK z7CC 	&1*dJ@
FD*g
>	? r   c                 8    | |k  r||    S | |z
  |k  ry|| |z
     S )z@Find the value in data augmented with n_zeros for the given rankr    )rankr!   rt   rr   s       r   rq   rq     s3    jDzj7"wr   c                    t        j                  |       r| j                  dk(  st        d| j                  z        | j                  }| j
                  \  }}t        j                  |      }t        t        j                  |            D ]H  \  }\  }}t        j                  | j                  ||       }||j                  z
  }	t        ||	      ||<   J |S )aC  Find the median across axis 0 of a CSC matrix.

    It is equivalent to doing np.median(X, axis=0).

    Parameters
    ----------
    X : sparse matrix of shape (n_samples, n_features)
        Input data. It should be of CSC format.

    Returns
    -------
    median : ndarray of shape (n_features,)
        Median.
    r1   z%Expected matrix of CSC format, got %s)r   r   r   r   r+   r    r(   zeros	enumerate	itertoolspairwisecopyr!   r=   rw   )
r   r+   	n_samples
n_featuresmedianf_indstartendr!   nzs
             r   csc_median_axis_0r     s     KKNqxx50?!((JKKXXFGGIzXXj!F(););F)CD .|swwqvveC()"#D"-u	. Mr   c                      dddf    j                   t         fd fdfdfd j                   j                        S )aA  Create an implicitly offset linear operator.

    This is used by PCA on sparse data to avoid densifying the whole data
    matrix.

    Params
    ------
        X : sparse matrix of shape (n_samples, n_features)
        offset : ndarray of shape (n_features,)

    Returns
    -------
    centered : LinearOperator
    Nc                     | z  | z  z
  S Nry   xr   offsets    r   <lambda>z)_implicit_column_offset.<locals>.<lambda>      Q!+ r   c                     | z  | z  z
  S r   ry   r   s    r   r   z)_implicit_column_offset.<locals>.<lambda>  r   r   c                 6    | z  | j                         z  z
  S r   )sumr   XTr   s    r   r   z)_implicit_column_offset.<locals>.<lambda>  s    "q&FQUUW$45 r   c                 \    | z  j                   | j                  d      d d d f   z  z
  S )Nr   r   )r4   r   r   s    r   r   z)_implicit_column_offset.<locals>.<lambda>  s,    "q&688aeeemD!G.D#DD r   )matvecmatmatrmatvecrmatmatr9   r    )r4   r   r9   r    )r   r   r   s   ``@r   _implicit_column_offsetr     sB     D!G_F	
B++5Dgggg r   c                 @   t        j                  |       r| j                  dv r| j                  dk(  st	        d      t        j                  |      r|j                  dv r|j                  dk(  st	        d      | j
                  d   |j
                  d   k7  r.d| j
                  d    d|j
                  d    d	}t	        |      | j
                  \  }}|j
                  d   }| j                  |j                  k7  s,| j                  t        j                  t        j                  fvrd
}t	        |      |.t        j                  ||f| j                  j                        }n]|j
                  d   |k7  s|j
                  d   |k7  rt	        d      |j                  | j                  j                  k7  rt	        d      d}| j                  dk(  rK|j                  dk(  r+d}|j                  | j                  |j                  }}} ||}}n0| j                         } n|j                  dk(  r|j                         }t        | j                  | j                  | j                   |j                  |j                  |j                   ||||
       |r|j                  }|S )a  Compute A @ B for sparse and 2-dim A and B while returning an ndarray.

    Parameters
    ----------
    A : sparse matrix of shape (n1, n2) and format CSC or CSR
        Left-side input matrix.
    B : sparse matrix of shape (n2, n3) and format CSC or CSR
        Right-side input matrix.
    out : ndarray of shape (n1, n3) or None
        Optional ndarray into which the result is written.

    Returns
    -------
    out
        An ndarray, new created if out=None.
    r7   rO   z2Input 'A' must be a sparse 2-dim CSC or CSR array.z2Input 'B' must be a sparse 2-dim CSC or CSR array.r   r   z1Shapes must fulfil A.shape[1] == B.shape[0], got z == .zBDtype of A and B must be the same, either both float32 or float64.r8   z3Shape of out must be ({n1}, {n3}), got {out.shape}.z)Dtype of out must match that of input A..Fr1   T)r   r   r   ndimr   r    r9   r(   float32float64emptyr!   r4   tocsrr   r#   r+   )ABrj   msgn1n2n3transpose_outs           r   sparse_matmul_to_denser     s   " KKNqxx>9affkMNNKKNqxx>9affkMNNwwqzQWWQZ771:,d1771:,a1 	 oWWFB	
Bww!''QWWRZZ,DDRo
{hhBxqvv||499Q<21!3RSS99$HIIMxx588u MQSS#%%#qAB 	A	
U	GGI			188QVVQYY#r2r eeJr   )NF)F)NNr   ))__doc__r~   numpyr(   scipy.sparsesparser   scipy.sparse.linalgr   sklearn.utils.fixesr   r   sklearn.utils.sparsefuncs_fastr   r3   r   r   r2   r	   r?   sklearn.utils.validationr
   r   r   r&   r,   r5   r@   rB   rD   rM   rW   rZ   r\   r_   rk   rw   rq   r   r   r   ry   r   r   <module>r      s    H
    . D :
&1R2$K\ NR pf*Z)X:<~*Z.b!H3?l, >6<r   